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Abstract. This paper is devoted to state some fixed point results for
multivalued mappings in modular vector spaces. For this purpose, we
study the uniform noncompact convexity, a geometric property for mod-
ular spaces which is similar to nearly uniform convexity in the Banach
spaces setting. Using this property, we state several new fixed point
theorems for multivalued nonexpansive mappings in modular spaces.
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1. Introduction

The beginning of the Fixed Point Theory for nonexpansive mappings oc-
curred in 1965 when Browder [5], Browder and Göhde [6,18] and Kirk [24]
proved that every nonexpansive mapping defined on a convex closed bounded
subset of, respectively, a Hilbert space, a uniformly convex Banach space or
a reflexive Banach space with normal structure, has a fixed point. A natu-
ral problem is to extend these results to multivalued nonexpansive mappings
(see Problem 8 in [32]). Using the uniqueness of the asymptotic center of a
bounded sequence in a uniformly convex space, Browder–Göhde’s Theorem
was extended by Lim [27] (see also in [33] Corollary 3.5). Surprisingly, 55 years
later, it is still an open problem the possibility of extending Kirk’s Theorem.
However, some partial extensions have been obtained assuming that the Ba-
nach space satisfies several different conditions which imply normal structure
(see [9] and references therein). Another direction to research has been the de-
velopment of the theory for single-valued nonexpansive mappings in modular
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function spaces (see, for instance [21,22]). Modular spaces were introduced
by Nakano [29,30] and developed by Orlicz and Musielak [28]. A very rele-
vant class of modular spaces are the variable exponent Lebesgue spaces, due
to their applications to partial differential equations and variational integrals
with non-standard growth conditions. This fact, especially after M. Ru̇žička
[34] discovered that they constitute a natural functional setting for the math-
ematical model of electrorheological fluids, has led to renewed attention on
the modular function spaces.

Nearly uniform convexity is a geometric condition that has proved to
be successful to obtain fixed points for multivalued nonexpansive mappings
in Banach spaces [12,13]. Since this condition has a counterpart in modular
spaces [21, Section 4.3], it is very natural to study the validity of these results
in the setting of modular spaces. After several sections with preliminaries and
technical results, in Sect. 6, we state some fixed point results for multivalued
nonexpansive mappings in modular spaces. Our approach follows, in some
parts, similar arguments to those in [12,13], but, in some other parts, we
need some very different techniques. We avoid details in the first case and
we will give complete proofs in the latter. We have included two examples
of Orlicz sequential variable exponent spaces [31] where our results can be
applied.

2. Preliminaries

We start by recalling some notions and facts concerning modular spaces. For
more details, the reader is referred to [21,23,28–30].

Definition 2.1. Let X be an arbitrary vector space.

(a) A functional ρ : X → [0,∞] is called a convex modular if for arbitrary
x, y ∈ X ,
(i) ρ(x) = 0 if and only if x = 0;
(ii) ρ(αx) = ρ(x) for every scalar α with |α| = 1;
(iii) ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and α, β ≥ 0.

(b) A modular ρ defines a corresponding modular space, i.e. the vector space
Xρ given by

Xρ = {x ∈ X : ρ(x/λ) < ∞ for some λ > 0}.

Notice that the convexity of the modular implies that the ρ-ball Bρ(x, r) =
{y ∈ Xρ : ρ(y − x) ≤ r} is convex for any x ∈ Xρ and r > 0.

The formula

‖x‖ρ = inf
{

α > 0 : ρ
(x

α

)
≤ 1

}

defines a norm which is frequently called the Luxemburg norm. Thus, any
convex modular space can be simultaneously studied as a normed space with
the Luxemburg norm and any topic on these spaces can be split in two parts
corresponding either to the modular space or the normed space. It should be
noticed that in non-trivial cases, the Luxemburg norm is particularly difficult
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to compute. Consequently, the results for the norm should be usually deduced
from the properties of the modular space.

Definition 2.2. (a) The sequence {xn} in Xρ is said to be ρ-convergent to
x ∈ Xρ if ρ(xn − x) → 0 as n → ∞.

(b) The sequence {xn} in Xρ is said to be ρ-Cauchy if ρ(xn − xm) → 0 as
n and m go to ∞.

(c) A subset C of Xρ is called ρ-closed if the ρ-limit of a ρ-convergent
sequence of C always belongs to C.

(d) Xρ is said to be ρ-complete if every ρ-Cauchy sequence is ρ-convergent.
(e) A subset C of Xρ is ρ-bounded if

diamρ(C) = sup{ρ(x − y);x, y ∈ C} < ∞.

It is clear that the diameter of a set is preserved by translation, i.e.,
diamρ(C) = diamρ(C + x) for every x ∈ Xρ. Therefore, C is ρ-bounded
if and only if C + x is.

(f) A subset C of Xρ is called ρ-compact if for any {xn} in C there exists
a subsequence {xnk

} of {xn} and x ∈ C such that lim
k

ρ(xnk
− x) = 0.

(g) ρ is said to satisfy the Fatou property if for any sequence {xn} in Xρ

ρ-convergent to x ∈ Xρ, we have ρ(x) ≤ lim inf
n

ρ(xn).

Given a subset A of Xρ, we denote co(A) its convex hull, i.e., the smallest
convex subset of Xρ containing A. From the convexity of the modular ρ, we
easily deduce that diamρ(co(A)) = diamρ(A).

Let us describe the relationship between the modular-convergence and
norm-convergence in modular spaces. We can use the following proposition:

Proposition 2.3. (Proposition 3.7 and 3.9 in [21]) Let ρ be a convex modular
and let x ∈ Xρ. The following assertions are true:

(a) If ‖x‖ρ < 1 then ρ(x) ≤ ‖x‖ρ.
(b) If ‖x‖ρ > 1 then ρ(x) ≥ ‖x‖ρ.

Remark 2.4. (1) From part (a) of Proposition 2.3 we conclude that a norm-
convergent sequence in Xρ is ρ-convergent. Therefore, every ρ-closed set
in Xρ is norm-closed.

(2) An easy consequence of part (b) of Proposition 2.3 is that any ρ-bounded
subset of Xρ is also norm-bounded.

(3) It is easy to check that the Fatou property implies that the ρ-balls are
ρ-closed and that the ρ-diameter of a set is the same as the ρ-diameter
of its ρ-closure. The Fatou property also implies that: if x ∈ Xρ and K
is a nonempty ρ-compact subset of Xρ, then there exists y0 ∈ K such
that

ρ(x − y0) = dρ(x,K),

where dρ(x,K) = inf{ρ(x, y) : y ∈ K}.

In the following, we always assume that the modular is ρ-complete.
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Definition 2.5. Let ρ be a convex modular. We say that the modular satisfies
the Δ2-type condition if there exists K > 0 such that ρ(2x) ≤ Kρ(x) for any
x ∈ Xρ.

Definition 2.6. The growth function ωρ : [0,∞) → [0,∞) of a modular ρ is
defined as follows:

ωρ(t) := sup
{

ρ(tx)
ρ(x)

: 0 < ρ(x) < ∞
}

for all t ≥ 0.

Lemma 2.7. [11] Let ρ be a convex modular satisfying the Δ2-type condition.
Then the growth function ωρ has the following properties:
1. ωρ(t) < ∞ for every t ∈ [0,∞).
2. ωρ(t) = 0 if and only if t = 0.
3. ωρ : [0,∞) → [0,∞) is a convex, strictly increasing function. So, it is

continuous.
4. ωρ(αβ) ≤ ωρ(α)ωρ(β) for all α, β ≥ 0.
5. ω−1

ρ (α)ω−1
ρ (β) ≤ ω−1

ρ (αβ) for all α, β ≥ 0, where ω−1
ρ is the function

inverse of ω.
6. ‖x‖ρ ≤ 1

ω−1
ρ (1/ρ(x))

for every x ∈ Xρ\0.

Remark 2.8. It follows from the above lemma that ρ(x) ≤ ωρ(‖x‖ρ) for every
x ∈ Xρ. Indeed, for every α > ‖x‖ρ

ρ(x) = ρ(αx/α) ≤ ωρ(α)ρ(x/α) ≤ ωρ(α).

Letting α go to ‖x‖ρ and using the continuity of ωρ(·), we obtain the wanted
inequality. As a consequence any norm-bounded subset of Xρ is also ρ-bounded.

Furthermore, we also obtain that ρ-convergence is identical to norm-
convergence. Moreover, the modular is ρ-complete if and only if it is norm-
complete and ρ-compact (ρ-closed) sets are the same as norm-compact (norm-
closed) sets. We will remove the prefix ρ in this case.

The following is a technical lemma which will be needed because of the
lack of the triangular inequality.

Lemma 2.9. [11] Assume that ρ is a convex modular satisfying the Δ2-type
condition. Let {xn}, {yn} two sequences in Xρ. Then

lim
n

ρ(yn) = 0 =⇒ lim sup
n

ρ(xn + yn) = lim sup
n

ρ(xn)

and

lim
n

ρ(yn) = 0 =⇒ lim inf
n

ρ(xn + yn) = lim inf
n

ρ(xn).

As a result of the above lemma, the modular ρ satisfies the Fatou prop-
erty under the Δ2-type condition. In fact, ρ(x) = lim

n
ρ(xn) if lim

n
ρ(xn−x) = 0

and the modular is continuous.
In the remainder of the paper, we will assume that Xρ satisfies the Fatou

property even though no Δ2-type condition is assumed.
Some existence fixed point theorems for nonlinear mappings defined in

modular spaces require a kind of uniform continuity of the modular.
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Definition 2.10. A modular ρ is said to be uniformly continuous on bounded
sets if for every bounded subset M of Xρ and for every ε > 0, there exists
δ > 0 such that

|ρ(x + y) − ρ(x)| < ε

whenever x ∈ M , y ∈ Xρ, ρ(y) < δ.

The following result is a particular case of Lemma 3.4 in [14] (see also
[20]).

Lemma 2.11. Assume that ρ is a convex modular satisfying the Δ2-type con-
dition. Then

1. ρ is uniformly continuous on bounded sets.
2. For any bounded sequence {xn} ⊂ Xρ and any bounded subset M of

Xρ, the function φ : M → R defined by φ(x) = lim sup
n

ρ(xn − x) is ρ-

continuous, i.e., φ(y) = limm φ(ym) provided y, ym ∈ M and lim
m

ρ(ym −
y) = 0.

The following property can be understood as the modular equivalence
of the Banach space reflexivity. It will be a powerful tool to prove the fixed
point property in modular spaces.

Definition 2.12. [21] A modular space Xρ is said to satisfy property (R) if
every nonincreasing sequence {Cn} of nonempty, ρ-bounded, ρ-closed, convex
subsets of Xρ has a nonempty intersection.

The method of asymptotic centers has played an important role in the
fixed point theory for nonexpansive multivalued mappings in Banach spaces.
Some definitions and results concerning asymptotic centers can be adapted
to modular spaces in a straightforward way:

Let C be a nonempty ρ-closed ρ-bounded subset of the space Xρ and
{xn} be a bounded sequence in Xρ. We define

rρ(C, {xn}) = inf{lim sup
n

ρ(xn − x) : x ∈ C},

Aρ(C, {xn}) = {x ∈ C : lim sup
n

ρ(xn − x) = rρ(C, {xn})}.

The number rρ(C, {xn}) and the (possible empty) set Aρ(C, {xn}) are called,
respectively, the ρ-asymptotic radius and the ρ-asymptotic center of {xn} in
C.

Obviously, Aρ(C, {xn}) is a convex set as C is. Furthermore, the set
Aρ(C, {xn}) is nonempty and closed whenever the space satisfies the Δ2-
type condition and satisfies property (R). Indeed, for any m ≥ 1 consider the
set

Am = {y ∈ C : lim sup
n

ρ(xn − y) ≤ r +
1
m

},
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where r = rρ(C, {xn}). Clearly Am is nonempty and convex. Also, Am is
closed by Lemma 2.11. It follows from property (R) that Aρ(C, {xn}) =⋂
m≥1

Am 
= ∅.

The sequence {xn} is said to be regular relative to C if the asymptotic
radii of all subsequences of {xn} (relative to C) are the same. If, in addition,
Aρ(C, {yn}) = Aρ(C, {xn}) for every subsequence {yn} of {xn} we say that
{xn} is asymptotically uniform relative to C.

Similarly as Goebel, Lim and Kirk [15,24,27] did for Banach spaces, the
following lemma can be proved:

Lemma 2.13. Let ρ be a convex modular satisfying the Δ2-type condition. Let
C be a nonempty closed bounded separable subset of the space Xρ and {xn} be
a bounded sequence in Xρ. Then {xn} contains a regular and asymptotically
uniform subsequence relative to C.

If D is a ρ-bounded subset of Xρ, the ρ-Chebyshev radius of D relative
to C is defined by

rρ(C,D) := inf{sup{ρ(x − y) : y ∈ D} : x ∈ C}.

Notice that rρ(C,D) ≤ diamρ(D) if D ⊂ C. Moreover, if Xρ satisfies the
Δ2-type condition then diamρ(D) ≤ ω(2)rρ(C,D).

Let C be a nonempty subset of the space Xρ. We shall denote by
Fρ(C) the family of all nonempty ρ-closed subsets of C and by Kρ(C) (resp.
KCρ(C)) the family of all nonempty ρ-compact subsets of C (resp. ρ-compact
convex). We can define the analogue to the Hausdorff distance for modular
spaces by

Hρ(A,B) := max
{

sup
a∈A

dρ(a,B), sup
b∈B

dρ(b, A)
}

, A,B ∈ Fρ(C),

where for x ∈ Xρ and E ⊂ Xρ dρ(x,E) := inf{ρ(x − y) : y ∈ E} is the
ρ-distance from the point x to the subset E. This function will be called
Hausdorff ρ-distance even though it is not a metric.

If C is a ρ-closed convex subset of Xρ, then a multivalued mapping
T : C → Fρ(Xρ) is said to be ρ-contractive if there exists a constant k ∈ [0, 1)
such that

Hρ(Tx, Ty) ≤ kρ(x − y), x, y ∈ C,

and T is said to be ρ-nonexpansive if

Hρ(Tx, Ty) ≤ ρ(x − y), x, y ∈ C.

Finally, we say that x ∈ C is a fixed point of T if and only if x ∈ Tx. A
counterpart of the Banach Contraction Principle for multivalued mappings
in modular spaces has been proved in [7].

Theorem 2.14. Let ρ be a convex modular satisfying the Δ2-type condition, C
a nonempty bounded closed subset of Xρ, and T : C → Fρ(C) a ρ−contraction
mapping. Then T has a fixed point.
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3. Measures of noncompactness in modular spaces

The definitions of both Kuratowski and Hausdorff measure of noncompact-
ness were introduced in modular function spaces by Khamsi and Kozlowski
[21]. Similarly, we can extend such concepts to modular abstract spaces in
the following way.

Definition 3.1. Let ρ be a convex modular and B the family of all nonempty
ρ-bounded subset of Xρ. Define the Kuratowski measure of noncompactness
of A ∈ B by

α(A) = inf{ε >0 : A can be covered by a finite number of sets

with ρ − diameter smaller than ε},

and the Hausdorff measure of noncompactness of A by

χ(A) = inf{ε >0 : A can be covered by a finite number of

ρ − balls of radius smaller than ε}.

We will make the obvious convention that the infimum over an empty set is
infinite.

Note that χ(A) ≤ α(A) ≤ diamρ(A). If in addition ρ satisfies the Δ2-
type condition, then α(A) ≤ ω(2)χ(A).

We next summarize the basic properties of the above measures of non-
compactness. These properties follow immediately from the definitions and
some of them have been proved in [21].

Proposition 3.2. Let φ denote α or χ. Then the following properties hold:
1 If A ⊂ B then φ(A) ≤ φ(B) for all A,B ∈ B.
2 φ(A

ρ
) = φ(A) for all A ∈ B, where A

ρ
denotes the ρ-closure of A.

3 φ(A ∪ B) = max{φ(A), φ(B)} for all A,B ∈ B.
4 If A is a finite set, then φ(A) = 0.
5 φ(A + x) = φ(A) for any x ∈ Xρ.
6 φ(−A) = φ(A).
7 φ(λA+μB) ≤ λφ(A)+μφ(B) if λ+μ = 1 and λ, μ ≥ 0 for all A,B ∈ B.
8 If α(A) = 0, then A

ρ
is ρ-compact. If ρ is a convex modular satisfying

the Δ2-type condition, χ(A) = 0 implies A
ρ
is ρ-compact. Conversely,

if ρ is a convex modular satisfying the Δ2-type condition and A is ρ-
compact, then φ(A) = 0.

9 If {An} is a decreasing sequence of nonempty ρ-closed, ρ-bounded subset
of Xρ and limn φ(An) = 0, then A∞ := ∩n≥1An is nonempty. If φ = α,
then A∞ is ρ-compact. If, in addition, ρ satisfies the Δ2-type condition,
and φ = χ then A∞ is ρ-compact.

Let ρ a modular satisfying the Δ2-type condition. Assume that C is a
subset of the modular space Xρ. We can consider the Hausdorff measure of
noncompactness χC defined for any ρ-bounded subset A of C by χC(A) =
inf{ε > 0 : A can be covered by finitely many ρ-balls centered at points in
C with radius less than ε}. It must be noted that this measure depends on
C and it is, in general, different from χ =: χXρ

. However, if C is a convex
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closed set, it is easy to check that the arguments to prove the properties in
Proposition 3.2 equally well apply to the measure χC .

We are going to prove that the Kuratowski and Hausdorff measure of
noncompactness are invariant under passage to the convex hull.

Theorem 3.3. Let ρ be a convex modular satisfying the Δ2-type condition. Let
φ denote α or χ, then φ(co(A)) = φ(A) for all A ∈ B.
Proof. We prove the result for χ. The proof for α is analogous. Since A ⊂
co(A) we obtain χ(A) ≤ χ(co(A)). If χ(A) < χ(co(A)), there exists λ > 1
such that χ(co(A)) > λχ(A). Choose α ∈ (0, 1) such that αω( 1

α ) ≤ λ. We
are going to follow an argument as in [2] to get a contradiction. Indeed, for
every ε > 0 there exist x1, · · · , xn ∈ Xρ such that

A ⊂
n⋃

i=1

Bρ(xi, χ(A) + ε).

Let us define

Δ = {(σ1, · · · , σn) :
n∑

i=1

σi = 1, σi ≥ 0∀i = 1 · · · , n}

and Δ(σ) =
n∑

i=1

σiBρ(xi, χ(A) + ε). As proved in [2, Theorem 2.4], the

set
⋃

σ∈Δ Δ(σ) is convex.

Since A ⊂
n⋃

i=1

Bρ(xi, χ(A) + ε) ⊂
⋃

σ∈Δ

Δ(σ) it follows that

co(A) ⊂
⋃

σ∈Δ

Δ(σ).

Since Δ is compact, we can find σ(1), · · · , σ(m) ∈ Δ such that for all
σ ∈ Δ, we have

min{‖σ − σ(j)‖1 : j = 1, · · · ,m} < min
{ ε

M
, 1

}
= ε′,

where M = sup{ρ(x) : x ∈ Bρ(xi, χ(A) + ε), i = 1 · · · , n} < +∞.

Let x be any element of co(A). Since x =
n∑

i=1

σiyi, for some σ =

(σ1, · · · , σn) ∈ Δ and yi ∈ Bρ(xi, χ(A) + ε), i = 1, · · · , n, there exists

j ∈ {1, · · · ,m} such that
n∑

i=1

|σi − σj
i | < ε′.

Denote x =
n∑

i=1

σj
i yi ∈ Δ(σj). We have

ρ(x − x) = ρ

(
n∑

i=1

(σi − σj
i )yi

)
= ρ

(
n∑

i=1

(|σi − σj
i |sign(σi − σj

i )yi)

)
.
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Put zi = sign(σi − σj
i )yi. Since

n∑
i=1

|σi − σj
i | ≤ ε′ ≤ 1, we apply the

convexity of the modular to obtain

ρ(x − x) ≤
n∑

i=1

|σi − σj
i |ρ(zi) =

n∑
i=1

|σi − σj
i |ρ(yi).

Hence,

ρ(x − x) ≤
n∑

i=1

|σi − σj
i |M < ε.

Furthermore,

ρ

(
x −

n∑
i=1

σj
i xi

)
= ρ

(
x − x + x −

n∑
i=1

σj
i xi

)

= ρ

(
x − x +

n∑
i=1

σj
i (yi − xi)

)

≤ αω

(
1
α

)
ρ

(
n∑

i=1

σj
i (yi − xi)

)

+ (1 − α)ω
(

1
1 − α

)
ρ(x − x)

≤ λ(χ(A) + ε) + (1 − α)ω
(

1
1 − α

)
ε.

Therefore,

co(A) ⊂
m⋃

j=1

[
Bρ

(
n∑

i=1

σj
i xi, λ(χ(A) + ε) + (1 − α)ω

(
1

1 − α

)
ε

)]
.

This implies that

χ(co(A)) ≤ max
1≤j≤m

χ

(
Bρ

(
n∑

i=1

σj
i xi, λ(χ(A) + ε) + (1 − α)ω

(
1

1 − α

)
ε

))

≤ λ(χ(A) + ε) + (1 − α)ω
(

1
1 − α

)
ε.

Bearing in mind that ε was chosen arbitrary, we obtain χ(co(A) ≤ λχ(A)
which is a contradiction.

�

4. Uniform noncompact convexity in modular spaces

Similarly as Goebel and Sekowski [17] did for Banach spaces, we can define
a scaling of the convexity for modular spaces using the measures of noncom-
pactness.
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Definition 4.1. [21] Let ρ be a convex modular. Let φ denote α or χ. The ρ-
modulus of noncompact convexity associated with φ is defined in the following
way:

Δφ(r, ε) = sup{c > 0 : for any ρ-bounded convex A ⊂ Xρ and x ∈ Xρ

such that A ⊂ Bρ(x, r) with φ(A) ≥ rε,

then dρ(x,A) ≤ (1 − c)r},

for every r > 0, ε > 0.

Remark 4.2. Since both measures of noncompactness α and χ are invariants
under translations and dρ(0, A) = dρ(x,A + x) for every set A ⊂ Xρ and
every x ∈ Xρ, Definition 4.1 is equivalent to the following:

Definition 4.3. Let ρ be a convex modular. Let φ denote α or χ. The ρ-
modulus of noncompact convexity associated with φ is defined in the following
way:

Δφ(r, ε) = sup{c > 0 : for any ρ-bounded convex A ⊂ Bρ(0, r) with

φ(A) ≥ rε, then dρ(0, A) ≤ (1 − c)r},

for every r > 0, ε > 0.

Observe that the function Δχ(r, ·) is defined for ε ∈ (0, 1]. If ρ satisfies
the Δ2-type condition, then Δα(r, ·) is defined for ε ∈ (0, ω(2)]. It is clear
that both functions are non-decreasing in ε.

The ρ-characteristic of noncompact convexity of Xρ associated with the
measure of noncompactness φ is defined by

εφ(r) = sup{ε ≥ 0 : Δφ(r, ε) = 0},

for every r > 0.

Definition 4.4. Let ρ be a convex modular. The modular space Xρ is said to
be φ-uniformly ρ-noncompact convex (φ-UNC in short) if εφ(r) = 0 for every
r > 0.

Remark 4.5. It is easy to check that Δα(r, ε) ≤ Δχ(r, ε). Consequently,
εα(r) ≥ εχ(r). Clearly if Xρ is α-uniformly ρ-noncompact convex, then Xρ

is χ-uniformly ρ-noncompact convex. Moreover, If ρ satisfies the Δ2-type
condition Δχ

(
r, ε

ω(2)

)
≤ Δα(r, ε) and both concepts are equivalent.

Remark 4.6. In [1] (see also [5,21]), the authors introduced some interlinked
notions of ρ-uniform convexity in a modular space. One of them leads to
define the ρ-modulus of uniform convexity for every r > 0 and ε > 0 as
follows:

δ1(r, ε) = inf
{

1 − 1
r
ρ

(
x + y

2

)}
,

where the infimum is taken over all x, y ∈ Xρ such that ρ(x) ≤ r, ρ(y) ≤ r
and ρ(x − y) ≥ εr.
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According to [1, Definition 3.1] (see also [21]) a modular ρ satisfies
(UUC1) if for every s ≥ 0 and ε > 0, there exist η(s, ε) > 0 such that

δ1(r, ε) > η(s, ε) > 0, for r > s.

Let us show the connection between this modulus and the ρ-modulus of
noncompact convexity associated with φ = α or χ.

Let A ⊂ Xρ be nonempty ρ-bounded convex such that A ⊂ Bρ(0, r)
with φ(A) ≥ rε, r > 0 and ε > 0. For ζ < 1, by definition of φ, we can find
y1, y2 ∈ A such that ρ(y1 − y2) ≥ ζεr. Therefore, we have

ρ

(
y1 + y2

2

)
≤ r(1 − δ1(r, ζε)).

Since
y1 + y2

2
∈ A, we deduce that

dρ(0, A) ≤ r(1 − δ1(r, ζε)).

This implies

δ1(r, ζε)) ≤ Δα(r, ε),

for every r > 0, ε > 0 and ζ < 1.
Consequently, the class of φ-uniformly ρ-noncompact convex spaces in-

cludes all ρ-(UUC1) spaces. The following example shows that the converse
of this assertion is not true.

Example 4.7. A uniformlyρ-noncompact convex space which is not ρ-uniformly
convex.

Let {pn} be a sequence in [1,∞) such that 1 < p =: lim infn pn ≤
lim supn pn < ∞. Consider the Orlicz space �pn for the modular

ρ(x) =
∞∑

n=1

|x(n)|pn .

It is well known that (�pn , ρ) is a modular sequence space which satisfies
the Δ2-type condition. Furthermore, (�pn , ‖ · ‖ρ) is a reflexive Banach space
whenever ‖ · ‖ρ is the corresponding Luxemburg norm [10, Theorem 18].
Note that (�pn , ρ) does not satisfy any uniform convexity condition (see [1,
Definition 3.1]) whenever the sequence {pn} attains the value 1 more than
once, because it contains R

2 with the 1-norm. It is clear that the modular is
additive for disjointedly supported vectors. On the other hand, the functional
Λk : �pn → R defined by Λk(x) = x(k) is continuous and so every weakly null
sequence in (�pn , ‖ · ‖ρ) converges to 0 coordinate-wise.

We are going to prove that Δχ(ε, r) ≥ ε/2. To do that, let A be a convex
subset of the closed ball Bρ(0, r) such that χ(A) > εr. We can find a sequence
{xn} in A such that sepρ (xn) = inf{ρ(xn − xm) : n,m ∈ N} ≥ εr. Taking a
subsequence, we can assume that {xn} is weakly convergent, say to x ∈ Ā, and
limn ρ(xn − x) =: lr does exist. After a further subsequence, we can assume
that there exist two sequences {un}, {vn} such that limn ρ(x − un) = 0,
limn ρ(xn − x − vn) = 0, supp un < supp vn and supp vn < supp vn+1

for every n ∈ N, where supp(x) := {n ∈ N : x(n) 
= 0} and supp u <
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supp v means that there exists N ∈ N such that supp u ⊂ [1, N ] and supp
v ⊂ [N + 1,+∞). Choose an arbitrary η > 0. Using Lemma 2.11, we can
choose n,m large enough such that

εr − η < ρ(vn − vm) (4.1)
|ρ(vn) − lr| < η (4.2)

|ρ(un) − ρ(x)| < η (4.3)
ρ(xn) ≥ ρ(vn + un) − η. (4.4)

Thus,

εr − η < ρ(vn − vm) = ρ(vn) + ρ(vm) ≤ 2lr + 2η.

Moreover,

r ≥ ρ(xn) ≥ ρ(vn + un) − η = ρ(vn) + ρ(un) − η ≥ lr + ρ(x) − 3η ≥ ε

2
r + ρ(x) − 6η.

Hence, ρ(x) ≤ r(1 − ε/2) + 6η. Since η is arbitrary, we have dρ(0, A) ≤
r(1 − ε/2) which implies Δχ(ε, r) ≥ ε/2.

Next lemma provides an important tool to prove the relationship be-
tween modular uniform noncompact convexity and property (R) as well as
one of the main fixed point theorems in our paper (Theorem 6.7 below).

Lemma 4.8. Let ρ be a convex modular satisfying the Δ2-type condition. As-
sume that Xρ is φ-UNC. Let s ∈ (0,+∞) and ε > 0. Then there exists λ < 1
and η > 0 such that, for every r ∈ (s, s + η), we have 1 − Δφ(r, ε) ≤ λ.

Proof. Choose λ ∈
(
1 − Δφ

(
s, ε

ω(2)

)
, 1

)
. Since ω(t)

t → 1 as t → 1, we can
find η ∈ (0, s) such that

ω
(r

s

) s

r
<

λ

1 − Δφ

(
s, ε

ω(2)

)

if r ∈ (s, s + η). Assume that A ⊂ Bρ(0, r) is a convex set such that
φ(A) ≥ rε. Consider the set B = s

r A. We have that B ⊂ Bρ(0, s) and
φ(B) ≥ rε

ω( r
s ) ≥ rε

ω(2) . Thus,

dρ(0, B) ≤ s

(
1 − Δφ

(
s,

ε

ω(2)

))
,

which implies

dρ(0, A) ≤ sω
(r

s

) (
1 − Δφ

(
s,

ε

ω(2)

))
< λr.

Therefore, 1 − Δφ(r, ε) ≤ λ.

�
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Theorem 4.9. Let ρ be a convex modular satisfying the Δ2-type condition.
Assume that Xρ is φ-UNC. Then, for any closed bounded convex subset of Xρ

and x ∈ Xρ, the set

Pρ(x,C) = {y ∈ C : dρ(x,C) = ρ(x − y)}
is nonempty compact and convex.

Proof. Since C is closed, we may assume without loss of generality that d :=
dρ(x,C) > 0. Consider the sets Cn = C ∩Bρ(x, d+ 1

n ) for any n ≥ 1. Clearly
{Cn} is a decreasing sequence of closed bounded convex subsets of Xρ and
Pρ(x,C) =

⋂
n≥1

Cn.

Assume that ε := inf
n

φ(Cn) = lim
n

φ(Cn) > 0. We have

dρ(x,Cn) ≤
(

1 − Δφ

(
d +

1
n

,
ε

d + 1

))(
d +

1
n

)
.

According to Lemma 4.8, there exists λ := λ(d, ε) < 1 and n0 such that
for every n ≥ n0

dρ(x,Cn) ≤ λ

(
d +

1
n

)
.

Since d ≤ dρ(x,Cn), we obtain

d ≤ λ

(
d +

1
n

)
,

contradicting the fact that d > 0. Hence limn φ(Cn) = 0. By Proposition
3.2, we deduce that

⋂
n≥1

Cn is a nonempty ρ-compact convex subset of C and

the proof is complete.

�

Theorem 4.10. Let ρ be a convex modular satisfying the Δ2-type condition.
Assume that Xρ is φ-UNC. Then Xρ has the property (R).

Proof. Let {Cn}n≥1 be a decreasing sequence of closed bounded convex sub-
sets of Xρ. Fix x ∈ C1. We have

r = sup
n≥1

dρ(x,Cn) ≤ diamρ(C1).

From Theorem 4.9, for every n ≥ 1 the set Kn = Cn ∩ Bρ(x, r) is
nonempty. Clearly, {Kn} is a decreasing sequence of closed bounded convex
subsets of Xρ. Following the same argument as in the proof of Theorem 4.9,
we can show that limn φ(Kn) = 0. Indeed, if ε := inf

n
φ(Kn) = lim

n
φ(Kn) > 0,

we have

dρ(x,Kn) ≤
(
1 − Δφ

(
r,

ε

r

))
r,
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for all n ≥ 1. Taking supremum and bearing in mind that Δφ

(
r, ε

r

)
> 0

we get a contradiction. So,
⋂
n≥1

Kn is a nonempty ρ-compact convex subset

of Xρ. Therefore,
⋂
n≥1

Cn is nonempty.

�

Remark 4.11. In [21], Theorems 4.9 and 4.10 are stated without assuming
the Δ2-type condition, but it is not clear for us their validity, because a
positive lower bound of Δφ(r + 1/n, ε), independent of n, is needed in both
proofs. To obtain this lower bound, we have proved a kind of continuity of
the modulus with respect to the first variable from the Δ2-type condition
(Lemma 4.8). This bound can be also obtained if we, additionally, assume
in the definition of uniform ρ-noncompact convexity that there is function
η(·, ·) such that Δφ(r, ε) > η(s, ε) > 0 for every r > s and ε > 0. (Compare
with Theorem 4.1 and Theorem 4.2 in the same monograph when condition
(UUC2) is assumed).

5. Asymptotic centers in UNC spaces

In this section, we shall give a connection between the asymptotic center of
a sequence and the ρ-modulus of noncompact convexity. As in the Banach
space setting it will play a crucial role to prove the existence of fixed point
for multivalued ρ-nonexpansive mappings.

First, we state the following lemma.

Lemma 5.1. Let ρ be a convex modular satisfying the Δ2-type condition and
C a closed convex subset of Xρ. Let {xn} be a bounded sequence in C and
W the convex closed hull of its terms. Define Φ : W → [0,∞) by Φ(x) =
lim supn ρ(xn −x). Let {zk} be a sequence in W such that zk ∈ Ak =: co{xn :
n ≥ k} (in particular, zk can be equal to xk) and z ∈ ∩∞

k=1co{zj : j ≥ k}.
Then

Φ(z) ≤ lim sup
k

Φ(zk).

Proof. Choose a > lim supk Φ(zk). For k large enough, Φ(zk) < a, i.e. zk ∈
Φ−1([0, a]). Note that Φ−1([0, a]) is a convex set. Since from Lemma 2.11 the
function Φ is continuous, we have that Φ−1([0, a]) is also a closed set which
contains {zj : j > k}. Thus, it contains the closed set co{zj : j ≥ k}. In
particular, it contains z.

�
Before we present our result, we need the theorem below. Even though

this theorem is a direct adaptation of Theorem 5 from [8] for the modular ρ,
we include its proof for the sake of completeness.

We shall use a simple version of Ramsey Lemma. By N we denote the
set of nonnegative integers, [N] the collection of its infinite subsets and for
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every set C in [N], [C]2 will denote the set formed by all ordered pair formed
with numbers in C.

Ramsey’s Lemma. Let f : [N]2 → {1, 2} be a function. Then there exists
C ∈ [N] such that the restriction of f to [C]2 is a constant.

Theorem 5.2. Let ρ be a convex modular and {xn} a bounded sequence in Xρ.
Then there exists a subsequence {zn} of {xn} such that the limit lim

n�=m
ρ(zn −

zm) exists.

Proof. For every subsequence {yn} of {xn}, we denote

ψ({yn}) = inf{ε > 0 :{yn} can be covered by finitely many sets

with diameter ≤ ε}.

Claim. There exists a subsequence {yn} of {xn} such that ψ({zn}) =
ψ({yn}) for every subsequence {zn} of {yn}.

To prove the claim, define by induction {z0
n} = {xn} and

ψm+1 = inf{ψ({zn}) : {zn} is a subsequence of {zm
n }}.

Let {zm+1
n } be a subsequence of {zm

n } such that

ψ({zm+1
n }) < ψm+1 +

1
m + 1

.

Consider the diagonal subsequence {zn
n}. We will show that this sequence

satisfies the required condition. Since {zn
n} is a subsequence of {zm

n } for n > m
we have ψ({zn

n}) ≤ ψ({zm
n }) for each m. Assume that {zn} is a subsequence

of {zn
n}. Hence, {zn} is a subsequence of {zm

n } for n > m. Thus,

ψ({zn
n}) ≤ ψ({zm

n }) < ψm +
1
m

≤ ψ({zn}) +
1
m

.

Since m is arbitrary, we obtain

ψ({zn
n}) ≤ ψ({zn}) ≤ ψ({zn

n})

and the claim is proved.
Choose now an arbitrary ε > 0 and a subsequence {yn} of {xn} sat-

isfying the property in the claim. Taking a subsequence (which “a fortiori”
satisfies the same property) we can assume ψ({yn}) + ε ≥ ρ(yn − ym) for
every n,m. Define the following function from [N]2 into {1, 2}: f(n,m) = 1 if
ρ(yn − ym) > ψ({yn}) − ε and f(n,m) = 2 if ρ(yn − ym) ≤ ψ({yn}) − ε. By
Ramsey’s Lemma, there exists a subsequence {zn} of {yn} satisfying either
ρ(zn − zm) > ψ({yn})− ε for every n,m ; n 
= m or ρ(zn − zm) ≤ ψ({yn})− ε
for every n,m. Since the second possibility is a contradiction according to the
property satisfied by {yn}, we deduce that the first possibility always holds
and we have

ψ({yn}) − ε ≤ ρ(zn − zm) < ψ({yn}) + ε

for every n,m ; n 
= m. Choosing ε = 1/n, we can conclude the proof
by a diagonal argument.

�
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Theorem 5.3. Let ρ be a convex modular satisfying the Δ2-type condition.
Assume that Xρ is a φ-UNC. Let C be a nonempty closed bounded convex
subset of the space Xρ and let {xn} be a sequence in C which is regular
relative to C. Then there exists λ < 1 depending on rρ(C, {xn}) such that

rρ(C,Aρ(C, {xn})) ≤ λrρ(C, {xn}).

Proof. We are going to prove the result for φ = α. Denote r = rρ(C, {xn})
and A = Aρ(C, {xn}). According to Theorem 5.2, we can find a subsequence
{yn} of {xn} such that the limit lim

n�=m
ρ(yn −ym) exists. Take z ∈ ∩∞

n=1co{yk :

k ≥ n} which is a nonempty set due to property (R). Since {xn} is regular
relative to C, we have r = rρ(C, {yn}) and from Lemma 5.1, we obtain

r ≤ lim sup
n

ρ(yn − z) ≤ lim inf
m

lim sup
n

ρ(yn − ym) = lim
n�=m

ρ(yn − ym).

Hence, α({yn}) ≥ r. Thus, α(co{yk : k ≥ n}) ≥ r, for every n ∈ N.
Assume x lies in A. Consider λ

(
r, 1

2

)
< 1 and η(r, 1

2 ) > 0 given by
Lemma 4.8. Since r = lim sup

n
ρ(yn −x), for every 0 < ε < η(r, 1

2 ) there exists

n0 ∈ N such that ρ(yn − x) < r + ε for all positive integer n greater than
or equal to n0. Hence, the sequence {yn}n≥n0 is contained in the closed ball
Bρ(x, r + ε) and α(co{yk : k ≥ n}) ≥ (r + ε) r

r+ε . Therefore, for all n ≥ n0

dρ(x, co{yk : k ≥ n}) ≤
(

1 − Δα

(
r + ε,

r

r + ε

))
(r + ε)

≤
(

1 − Δα

(
r + ε,

1
2

))
(r + ε) < λ

(
r,

1
2

)
(r + ε).

In view of Theorem 4.9, we can find zn ∈ co{yk : k ≥ n}) such that

ρ(x − zn) = dρ(x, co{yk : k ≥ n}).

Again by Theorem 4.10, ∩∞
n=n0

co{zk : k ≥ n} 
= ∅.
For each w ∈ ∩∞

n=n0
co{zk : k ≥ n} and for all n ≥ n0, we have

ρ(x − w) ≤ sup{ρ(x − y) : y ∈ co{zk : k ≥ n}} = sup{ρ(x − zk) : k ≥ n}.

Therefore,

ρ(x − w) ≤ lim sup
k

ρ(x − zn) ≤ λ

(
r,

1
2

)
(r + ε).

Since this inequality is true for every ε > 0 and for every x ∈ A, we obtain
the inequality in the statement.

�

Remark 5.4. Assume 0 < d < rρ(C, {xn}). If rρ(C, {xn}) ∈ (
d, d + η(d, 1

2 )
)
,

we can follow the same argument as in Theorem 5.3 to obtain λ(d) depending
on d such that

rρ(C,Aρ(C, {xn})) ≤ λ(d)rρ(C, {xn}).
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6. Fixed point results

Our fixed point results for multivalued ρ-nonexpansive mappings rely on the
following proposition.

Proposition 6.1. Let ρ be a convex modular satisfying the Δ2-type condition.
Let C be a nonempty closed bounded convex separable subset of the space Xρ

and T : C → KCρ(C) a ρ-nonexpansive mapping. Suppose {xn} ⊂ C is an
approximate fixed point sequence for T , i.e., lim

n
dρ(xn, Txn) = 0, and each

subsequence of {xn} has a nonempty asymptotic center relative to C. Then
there exists a subsequence {zn} of {xn} such that

Tx ∩ A 
= ∅, for all x ∈ A := Aρ(C, (zn)).

Proof. Since C is separable, according to Lemma 2.13 there exists a subse-
quence {zn} of {xn} which is regular and asymptotically uniform with respect
to C. Denote r = rρ(C, {zn}).

From the compactness of the set Tzn, we can find a sequence {un} in
C such that un ∈ Tzn and limn→∞ ρ(zn − un) = 0. Take any x ∈ A and
vn ∈ Tx such that

ρ(un − vn) = dρ(un, Tx) ≤ Hρ(Tzn, Tx) ≤ ρ(zn − x).

Because of the ρ-compactness of Tx, we can assume, by passing through
a subsequence, that {vn} converges to a point v ∈ Tx. From Lemma 2.9, we
obtain

lim sup
n→∞

ρ(zn − v) = lim sup
n→∞

ρ(un − vn) ≤ lim sup
n→∞

ρ(zn − x) = r.

This shows that v ∈ A, and so Tx ∩ A 
= ∅.

�
Now we are ready to prove an analogous result to the Kirk–Massa’s

theorem [25] in modular spaces.

Theorem 6.2. Let ρ be a convex modular satisfying the Δ2-type condition.
Assume that C is a nonempty closed bounded convex subset of the space Xρ

and T : C → KCρ(C) a ρ-nonexpansive mapping. Suppose that each sequence
in C has a nonempty and compact asymptotic center relative to C. Then T
has a fixed point.

Proof. Since the Δ2-type condition is satisfied and T is a continuous compact
valued self-mapping, we can construct a closed convex subset of C which is
separable and invariant under T (see [26]). Thus, we can suppose that C is
separable.

For a fixed element x0 ∈ C and for each n ≥ 1, define the mapping

Tnx :=
1
n

x0 +
(

1 − 1
n

)
Tx, x ∈ C.

We have that Tn is a multivalued ρ-contraction and it has a fixed point
xn ∈ C by Theorem 2.14. It is easily seen that lim

n
dρ(xn, Txn) = 0. Without
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loss of generality, we may assume that {xn} is regular and asymptotically
uniform with respect to C.

According to the previous proposition, we can also assume that

Tx ∩ A 
= ∅, ∀x ∈ A := Aρ(C, {xn}).

Now we define the mapping T̃ : A → KCρ(A) by T̃ (x) = Tx ∩ A. Since
T is continuous, from Proposition 2.45 in [19], we know that the mapping T̃
is upper semicontinuous. Since Tx ∩ A is a compact convex set we can apply
the Kakutani–Bohnenblust–Karlin Theorem (see [16]) to obtain a fixed point
for T̃ and so for T .

�
It should be pointed out that a modular ρ satisfying (UUC1) has the

property (R) (see [1] and [21, Theorem 4.2]). If, in addition, the modular ρ is
uniformly continuous on bounded sets, it is easy to check that the asymptotic
center of a sequence is nonempty and singleton. In view of this result, we can
deduce the following corollary from Theorem 6.2.

Corollary 6.3. Let ρ be a (UUC1) convex modular satisfying the Δ2-type con-
dition. Assume that C is a nonempty closed bounded convex subset of the
space Xρ and T : C → KCρ(C) a ρ-nonexpansive mapping. Then T has a
fixed point.

Definition 6.4. Let ρ be a convex modular. A multivalued mapping T : C →
2Xρ is called ρ-φ−contractive where φ is a measure of noncompactness if there
exists a constant k ∈ [0, 1) such that for each ρ-bounded subset B of C, we
have

φ(T (B)) ≤ kφ(B).

The following theorem states a relationship between ρ-contractive and ρ-
χC−contractive mappings. In the framework of a Banach space, an analogous
result was proved in [13].

Theorem 6.5. Let ρ be a convex modular satisfying the Δ2-type condition
and C a nonempty closed subset of Xρ. Assume that T : C → Kρ(C) is ρ-
contractive with constant k ∈ [0, 1). Then T is ρ-χC-contractive for the same
constant k.

Proof. Let A a bounded subset of C, ε > 0 and μ > 1. Since μ > 1 we can
take α ∈ (0, 1) such that αω( 1

α ) ≤ μ. Now, we choose a number ε′ > 0 such
that

ε′ < min

{
1,

1
αω( 1

α )
ε,

1
(1 − α)ω( 1

1−α )
ε

}
.

By definition of χC(A) there exists a1, ...aN ∈ C such that

A ⊂ ∪N
i=1Bρ(ai, χC(A) + ε′).

On the other hand, since T is compact valued, there exists y1, ...yn ∈ C such
that ∪N

i=1Tai ⊂ ∪n
j=1B(yj , ε

′) ⊂ ∪n
j=1Bρ(yj , ε

′).
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Let x ∈ A and i ∈ {1, ..., N} be such that x ∈ Bρ(ai, χC(A)+ε′). Taking
y ∈ Tx, from the compactness of Tai, we can find zi ∈ Tai such that

ρ(y − zi) = dρ(y, Tai) ≤ Hρ(Tx, Tai) ≤ kρ(x − ai) ≤ k(χC(A) + ε′).

Since zi ∈ Tai, we have ρ(zi − yj) ≤ ε′ for some j ∈ {1, ..., n}. Property
(iii) of the modular and the definition of the growth function ω give

ρ(y − yj) ≤ αω

(
1
α

)
ρ(y − zi) + (1 − α)ω

(
1

1 − α

)
ρ(zi − yj) ≤

αω

(
1
α

)
k(χC(A) + ε′) + (1 − α)ω

(
1

1 − α

)
ε′.

Thus ρ(y − yj) ≤ μkχC(A) + 2ε. Hence, χC(T (A)) ≤ μkχC(A) + 2ε.
Since ε is arbitrary we have χC(T (A)) ≤ μkχC(A) for all μ > 1. Thus,
χC(T (A)) ≤ kχC(A), obtaining the desired result.

�

Theorem 6.6. Let ρ be a convex modular satisfying the Δ2-type condition and
C a nonempty closed convex subset of Xρ. Assume that T : C → KCρ(C) is
a ρ-contractive mapping with constant k ∈ [0, 1). Suppose that A is a closed
bounded convex subset of C such that Tx ∩ A 
= ∅ for every x ∈ A. Then T
has a fixed point in A.

Proof. According to Theorem 6.5, the mapping T is ρ-χC-contractive. Denote
A1 = A and assume that we have defined a finite decreasing sequence of closed
convex sets An ⊂ An−1 ⊂ ... ⊂ A1 such that Tx ∩ Aj 
= ∅ for every x ∈ Aj

and χC(Aj) ≤ kχC(Aj−1) for all j = 1, ..., n. Define An+1 = [co T (An)]∩An.
Then, An+1 is a closed convex subset of An. Furthermore, for every x ∈ An+1,
we have Tx ∩ An 
= ∅. Since Tx ⊂ T (An), we obtain that Tx ∩ An+1 is
nonempty. On the other hand,

χC(An+1) = χC(co(T (An)) ∩ An) ≤ χC(co(T (An)))

= χC(co(T (An)) = χC(T (An))

≤ kχC(An),

Since k < 1, lim
n

χC(An) = 0 and A∞ =: ∩∞
n=1An is a nonempty compact

convex subset of A.
Let x ∈ A∞ and take an ∈ Tx∩An which is nonempty. Since χC({an}) =

χC({ak : k ≥ n}) ≤ χC(An), the sequence {an} has some cluster point
a ∈ A∞. On the other hand, the sequence {an} lies in Tx which is a compact
set implying that a belongs to Tx. Thus, Tx∩A∞ 
= ∅. Since A∞ is compact
convex we apply Kakutani–Bohnenblust–Karlin Theorem to obtain that T
has a fixed point in A∞ ⊂ A.

�
We state now the main fixed point result in this paper.
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Theorem 6.7. Let ρ be a convex modular satisfying the Δ2-type condition.
Assume that Xρ is α-UNC and for some ε0 ∈ (0, 1), there exists γ > 0 such
that lim

r→0
Δα(r, ε0) ≥ γ. Let C be a nonempty closed bounded convex subset of

the space Xρ and T : C → KCρ(C) a ρ-nonexpansive mapping. Then T has
a fixed point.

Proof. As in Theorem 6.2 we can suppose that C is separable. First, we claim
that for any closed convex subset A of C such that Tx∩A 
= ∅ for every x ∈ A,
there exists an approximated fixed point sequence of T in A, i.e. there exists
{xn} ⊂ A such that dρ(xn, Txn) → 0. Indeed, let x0 ∈ A be fixed and, for
each n ≥ 1, define

Tnx :=
1
n

x0 + (1 − 1
n

)Tx, x ∈ C.

Since Tn is (1 − 1/n)-contractive and Tnx ∩ A 
= ∅, Tn has a fixed point
xn ∈ A from Theorem 6.6. It is easy to deduce that lim

n
dρ(xn, Txn) = 0.

Without loss of generality, we may assume that {xn} is regular and asymp-
totically uniform with respect to C. On the other hand, we can apply Theorem
5.3 to obtain

rρ(C,Aρ(C, {xn})) ≤ λ(r)r,

where r = rρ(C, {xn} and λ(r) < 1. Now, we follow a similar proof to that in
[12] (Theorem 4.1). In the first step we proceed as in Theorem 6.2 to obtain a
set A1 such that Tx∩A1 
= ∅. According to the above claim, we may assume
that sets A2, ..., Am and approximated fixed point sequences {xk

n} ⊂ Ak are
constructed where Ak = Aρ(C, {xk−1

n }), rk = rρ(C, {xk−1
n }, λ(rk) < 1 and

rρ(C,Ak) ≤ λ(rk)rk ≤ λ(rk)rρ(C,Ak−1)

for k = 2, ...,m. Defining Am+1 = Aρ(C, {xm
n }) and choosing a suitable

approximated fixed point sequence {xm+1
n } in Am+1, we obtain

rρ(C,Am+1) ≤ λ(rm+1)rm+1 ≤ λ(rm+1)rρ(C,Am) ≤ λ(rm+1)λ(rm)rm

and we can continue the induction process.
Hence, {rm} is a non-decreasing sequence. Suppose that d := lim

m
rm >

0. Choose η(d, 1
2 ) > 0 given by Lemma 4.8. Without loss of generality, we can

suppose that rm ∈ (d, d + η(d, 1
2 )) for every m ≥ 1. By Remark 5.4 , we have

that rm+1 ≤ rρ(C,Am) ≤ λ(d)rm, where λ(d) < 1. Taking limit as m → ∞
we have d ≤ λ(d)d. This contradicts the fact that d > 0. Thus, lim

m
rm = 0.

Since lim
r→0

Δα(r, ε0) ≥ γ and {rm} is a non-decreasing sequence, we proceed
as in Theorem 5.3 to get

rρ(C,Am) ≤ λrm,

for m sufficient large, where λ = 1 − γ. This implies that

rρ(C,Am) ≤ λm−1rρ(C,A1).
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Choose xm ∈ Am. We shall prove that {xm}m is a norm-Cauchy se-
quence. For m sufficiently large we have for any positive integer n

ρ(xm − xm+1) ≤ ω(2)
2

(ρ(xm − xm
n ) + ρ(xm

n − xm+1))

≤ ω(2)
2

(diamρAm + ρ(xm
n − xm+1)).

Taking upper limit as n → ∞,

ρ(xm − xm+1) ≤ ω(2)
2

(diamρAm + lim sup
n

ρ(xm
n − xm+1))

=
ω(2)

2
(diamρAm + rρ(C, {xm

n }))

≤ ω(2)
2

(diamρAm + rρ(C,Am))

≤ ω(2)
2

(ω(2)rρ(C,Am) + rρ(C,Am)

=
ω(2)

2
(ω(2) + 1)rρ(C,Am)

≤ ω(2)
2

(ω(2) + 1)λm−1rρ(C,A1).

Let M = ω(2)
2 (ω(2) + 1)rρ(C,A1), then

1
λm−1M

≤ 1
ρ(xm − xm+1)

.

Property (4) in Lemma 2.9 implies
(

ω−1

(
1
λ

))m−1

ω−1

(
1
M

)
≤ ω−1

(
1

ρ(xm − xm+1)

)
,

and from property (6) of the same lemma, we obtain

‖xm+1 − xm‖ρ ≤ 1

ω−1
(

1
ρ(xm−xm+1)

) ≤
(

1
ω−1

(
1
λ

)
)m−1

1
ω−1

(
1
M

) .

Since ω−1 is strictly increasing, we have 1

ω−1( 1
λ ) < 1. This implies that

{xm} is a norm-Cauchy sequence and so norm-convergent to a point x ∈ C.
Thus, the sequence {xm} is ρ-convergent to x.

Let us see that x is a fixed point of T . For each m ≥ 1, it is not difficult
to check that

dρ(xm, Txm) ≤ ω(3) (ρ(xm − xm
n ) + dρ(xm

n , Txm
n ) + Hρ(Txm

n , Txm))

≤ ω(3) (2ρ(xm − xm
n ) + dρ(xm

n , Txm
n )) .

Taking upper limit as n → ∞

dρ(xm, Txm) ≤ 2ω(3) lim sup
n

ρ(xm − xm
n ) ≤ 2ω(3)λm−1rρ(C,A1).
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Taking limit in m in both sides we obtain limm dρ(xm, Txm) = 0. In a
similar way we can prove that dρ(x, Tx) = 0, i.e. x ∈ Tx. Indeed, we have

dρ(x, Tx) ≤ ω(3) (ρ(x − xm) + dρ(xm, Txm) + Hρ(Txm, Tx))

≤ ω(3) (2ρ(xm − x) + dρ(xm, Txm))

and letting m → ∞ we get the desired result.

�
The above theorem extends the Kirk–Massa theorem in modular spaces,

namely Theorem 6.2, in the sense that we do not need the compactness of
asymptotic center of a sequence. We illustrate this fact by means of the
following example.

Example 6.8. A uniformly ρ-noncompact convex space with non-compact as-
ymptotic centers

Let {pn} be as in Example 4.7 and define σ : �pn → [0,∞) by

σ(x) = sup
n

{|x(n)|pn +
1
2

∞∑
k=n+1

|x(k)|pk}.

It is clear that σ is a convex modular and (�pn , σ) satisfies the Δ2-type
condition. Furthermore,

1
2
ρ(x) ≤ σ(x) ≤ ρ(x)

which implies that the Luxemburg norms ‖ ·‖σ and ‖ ·‖ρ are equivalent.
(Nominally,

‖x‖σ ≤ ‖x‖ρ ≤ 21/P ‖x‖σ,

where P = lim supn pn). Thus, (�pn , ‖ · ‖σ) is a reflexive Banach space
and, as in Example 4.7, any weakly null sequence converges to zero coordinate-
wise.

Claim. Assume that supp x ≤ N < supp y. Then σ(x+y) ≤ σ(x)+σ(y).
Furthermore, σ(x) + (1/2)σ(y) ≤ σ(x + y) if σ(x) > σ(y).

To prove the claim, note that max{σ(x), σ(y)} ≤ σ(x+y) ≤ σ(x)+σ(y).
Assume that there exists k > N such that

σ(x + y) = |y(k)| +
1
2

∞∑
n=k+1

|y(n)|.

In this case, we have σ(x) ≤ σ(x + y) = σ(y). Thus, the condition
σ(x) > σ(y) implies that there exists k ≤ N such that

σ(x + y) = |x(k)| +
1
2

N∑
i=k+1

|x(i)| +
1
2

∞∑
i=N+1

|y(i)|

= σ(x) +
1
2
ρ(y) ≥ σ(x) +

1
2
σ(y).

Assume that A is a convex subset of the closed ball Bσ(0, r) such that
χ(A) > εr. As in Example 4.7, we find sequences {xn} in A and {un}, {vn}
such that sepσ (xn) ≥ εr, {xn} is weakly convergent, say to x, and limn σ(xn−
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x) =: lr does exist; limn σ(x − un) = 0, limn σ(xn − x − vn) = 0, supp un <
supp vn and supp vn < supp vn+1 for every n ∈ N. For an arbitrary η > 0,
we can choose n,m large enough such that (1.1)-(1.4) in Example 4.7 are
satisfied (replacing ρ by σ). The same argument as in Example 4.7 proves
that εr − η < σ(vn − vm) ≤ 2lr + 2η.

We split the remaining part of the proof in two cases: (1) Assume σ(x) ≤
lr. In this case, there exists n ∈ N such that σ(un) ≤ σ(vn) + η and we have

r + η ≥ σ(xn) + η ≥ σ(vn) + σ(un) + η ≥ 2σ(un) + 2η

which implies σ(x) ≤ r/2. (2) Assume σ(x) > lr. There exists n ∈ N

such that σ(un) > σ(vn) and we have

r ≥ σ(xn) ≥ σ(vn + un) − η ≥ σ(un) +
1
2
σ(vn) − η ≥ lr + σ(x) − 3η

≥ rε

4
+ σ(x) − 6η

which implies Δχ(ε, r) ≥ ε/4.
Finally, considering the sequence {en}, it is clear that lim infn σ(en −

x) ≥ 1 for every x ∈ �pn . Thus, rρ(Bσ(0, 1), {en}) = 1. Note that σ(en −
(1/2)ek) = 1 for every k < n which implies that the sequence {en/2} lies in
the asymptotic center of {en} with respect to the unit ball.
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[34] Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory.
Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)

T. Domı́nguez Benavides and P. Lorenzo Ramı́rez
Departamento de Análisis Matemático
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