
Escuela Superior Técnica de Ingenieŕıa
Departamento de Ingenieŕıa de Sistemas y Automática

Doctoral Thesis

Implementation of MPC in
embedded systems using first

order methods

Pablo Krupa Garćıa

Supervised by:
Daniel Limon Marruedo

Teodoro Alamo Cantarero

Seville, June 2021

Contents
Acknowledgements i

Notation, conventions and definitions iii

1 Introduction 1

1.1 Motivation and objectives . 1

1.2 Outline of the dissertation . 3

1.3 Publications . 5

I Restart schemes for accelerated first order methods 7

2 Preliminaries: Accelerated first order methods 9

2.1 First order methods . 10

2.1.1 Proximal gradient method 10

2.1.2 Alternating direction method of multipliers 16

2.1.3 The extended alternating direction method of multipliers . 17

2.2 Accelerated first order methods . 18

2.2.1 Fast proximal gradient method (FISTA) 18

2.2.2 A monotone variant of FISTA 23

2.3 Conclusions . 24

3 Restart schemes for accelerated first order methods 25

3.1 A brief review of the literature . 27

3.1.1 Fixed-rate restart schemes 28

3.1.2 Adaptive restart schemes 30

3.2 Implementable restart schemes with linear convergence 34

3.2.1 A restart scheme for FISTA 34

3.2.2 A gradient based restart scheme for FISTA 42

3.2.3 Restart scheme for accelerated first order methods 47

3.3 Numerical results . 59

3.3.1 Application to Lasso problems 60

3.3.2 Application to QP problems 63

3.4 Conclusions and future lines of work 66

II Implementation of MPC in embedded systems 67

4 Preliminaries 69

4.1 Problem formulation . 69

4.2 A brief introduction to model predictive control 71

4.3 A brief state of the art . 73

5 Sparse solvers for model predictive control 77
5.1 Various structure-exploiting solvers 78

5.1.1 Solving systems of equations with banded decomposition . 78
5.1.2 Solving equality-constrained QPs with banded structure . . 80
5.1.3 Solving box-constrained separable QPs 81

5.2 Solving QPs with FISTA through duality 82
5.2.1 QP problem’s dual formulation 83
5.2.2 Solving the QP’s dual problem with FISTA 85

5.3 Solving QPs with ADMM . 87
5.4 Simple standard MPC formulations 88

5.4.1 FISTA-based solver for standard MPC 91
5.4.2 ADMM-based solver for standard MPC 92

5.5 MPC with terminal quadratic constraint 94
5.5.1 ADMM solver for MPC with terminal quadratic constraint 95
5.5.2 Computation of admissible ellipsoidal invariant sets 100

5.6 MPC for tracking . 102
5.6.1 Recasting the MPCT formulation for EADMM 104
5.6.2 EADMM-based solver for the MPCT formulation 105

5.7 Test Benches . 108
5.7.1 Chemical plant: double reactor and separator 108
5.7.2 Ball and plate . 111
5.7.3 Oscillating masses . 112

5.8 Numerical results . 113
5.8.1 Comparison between the proposed ADMM-based solvers . . 114
5.8.2 Comparison between the ADMM- and FISTA-based solvers 118
5.8.3 Standard MPC subject to terminal equality constraint . . . 121
5.8.4 Standard MPC without terminal constraint 122
5.8.5 MPC subject to terminal quadratic constraint 123
5.8.6 MPC for tracking . 125
5.8.7 Restart methods applied to the FISTA-based solvers 128

5.9 Conclusions and future lines of work 135

6 Harmonic based model predictive control for tracking 137
6.1 The harmonic MPC formulation 138
6.2 Recursive feasibility of the HMPC formulation 144
6.3 Asymptotic stability of the HMPC formulation 147
6.4 Selection of the base frequency . 153
6.5 Advantages of the HMPC formulation 155

6.5.1 Performance advantages of the HMPC formulation 155
6.5.2 Domain of attraction . 159

6.6 Conclusions and future lines of work 162

Bibliography 163

List of Algorithms 177

Index 179

Acknowledgements
First and foremost, I want to thank my supervisors, Professors Daniel Limón

and Teodoro Álamo. The passion and energy of Daniel, along with his good-
hearted disposition and ever-present willingness to discuss my problems and ques-
tions, hooked me in and kept me going. It was in his office, in 2015, that this
journey began when I met him to ask about a graduate thesis he was offering.
I found myself, a solid hour and a half later, having received a private lecture
on MPC simply because I showed some interest. Looking back at that meeting,
I have come to realize that it was one of the most life-changing moments of my
life. I wouldn’t be here without the support and the knowledge he has shared
with me since then. Teodoro’s attitude towards science and research, his strive
for excellence, and his seemingly endless knowledge have inspired me and made
me grow throughout these years. His constant search of a better algorithm and
a better proof, and his obsession with using the proper punctuation marks after
every single equation, have, for better or worse, been deeply drilled into my mind.
I will always fondly remember the hours spent in his office discussing optimization
algorithms and MPC; oftentimes with me struggling to keep up with his line of
thought, but finally managing to do so through his sheer perseverance. I don’t
know if I would have the patience. I am deeply in debt with both of them; more,
I think, than they are aware of.

I would also like to thank all the other members of the GEPOC research
group; those currently there and those now working elsewhere. They have always
been helpful and kind. One cannot ask for a better work environment. I would
also like to acknowledge Nilay Saraf, who is a pleasure to work with. I know few
people as willing as he to work the extra hour to get a better scientific result.

A huge thanks to my family, friends and loved ones. I will not list them all
for fear leaving someone out, but there are a few I feel deserve a special mention.
To my parents and brother, for the numerous times they have asked about my
progress during these years, even though they may not understand half of what
I’m talking about. Likewise, I would like to thank my friends Manuel and Isa,
who are always supportive (and as insistent as humanly possible). In particular,
I would like to thank Manuel for his huge effort in trying to understand my work
and all the interest he has shown over the years. Thanks to Laura, who has also
always shown a great interest in what I do; going so far as to promise that she will
read this dissertation. I’m holding you to your word. A deep and special thanks
to Paula, for always being there and encouraging me, particularly during these
last few months while I was writing this dissertation.

Finally, thanks to all the people I worked with in the Mitsubishi Electric
Research Laboratories. In particular, a special thanks to Dr. Claus Danielson,
who welcomed and helped me during my stay and from whom I learnt a lot.

Pablo Krupa Garćıa,
Seville, June 2021.

i

ii

Notation, conventions and definitions

We list here the notation, basic definitions, conventions and well-known math-
ematical background that we use throughout the paper. Additionally, section-
specific definitions and notation may be presented throughout the manuscript
when needed. The definitions and conventions shown here are standard in the
literature, and therefore no proofs nor specific references are provided. We refer
the reader to [1, 2, 3] as general references containing most of the definitions and
conventions stated here.

Spaces and general set notation

Let C and D be two sets. We use the standard set notations C ⊂ D (C is a strict
subset of D), D ⊆ D (C is a subset or equal to D), C ∩ D (intersection of C and
D) and C ∪D (union of C and D). If x is an element of set C, we write x ∈ C. The
empty set is denoted by ∅.
The set of real numbers is denoted by R. The set of extended real numbers, i.e.,
R extended with −∞ and +∞, is denoted by R. We denote by R≥0 and R>0

the set of non-negative and (strictly) positive real numbers, respectively. We use
analogous notations for the non-positive (R≤0) and negative (R<0) real numbers
as well as for their extended real number counterparts (R>0, R≥0, R<0, R≤0). We
denote by [a, b] the set of real numbers x satisfying a ≤ x ≤ b. We use a rounded
bracket (instead of a square one), to indicate strict inequality, e.g., (a, b] denotes
the set of real numbers x satisfying a < x ≤ b.
The set of integer numbers is denoted by Z. For integers i, j ∈ Z satisfying i ≤ j,
we denote Zji

.
= {x ∈ Z : i ≤ x ≤ j }. We use the same notation used with

real numbers to indicate the sets of positive (Z>0), non-negative (Z≥0), negative
(Z<0) and non-positive (Z≤0) integer numbers.

Vectors and matrices

We denote by Rn the set of n-dimensional real vectors. For x ∈ Rn, we denote
by x(i) its ith component. The inner product (or dot product) of two vectors
x, y ∈ Rn is denoted by 〈x, y〉 =

∑n
i=1 x(i)y(i). All vectors are considered column

vectors unless otherwise specified. For vectors x1 ∈ Rn1 , x2 ∈ Rn2 , . . . , xN ∈ RnN ,
with N ∈ Z>0, we denote by (x1, x2, . . . , xN) the column vector formed by the
concatenation of column vectors x1 to xN . Vector (x1, x2, . . . , xN) ∈ Rn1 ×Rn2 ×
· · · × RnN can also be viewed as the Cartesian product of vectors x1 to xN . The
transposed of a vector x ∈ Rn is denoted by x>. For vectors x, y ∈ Rn, the
notations x ≤ y, x > y, etc. are to be taken componentwise.

We denote by Rm×n the space of m by n dimensional real matrices. For M ∈
Rm×n, we denote by M(i,j) its (i, j)th component, M> its transposed and M−1 its

iii

inverse (if M is non-singular). We say that M is diagonal if M(i,j) = 0 whenever
i 6= j. The space of diagonal matrices in Rn×n is denoted by Dn. We denote by
Sn++,Sn+ ⊂ Rn×n the spaces of positive definite and positive semi-definite matrices
in Rn×n, respectively. We denote their diagonal counterparts by Dn++ ⊂ Sn++ and
Dn+ ⊂ Sn+. Given a symmetric matrix M , its maximum and minimum eigenvalues
are given by λmax(M) and λmin(M), respectively. For matrices and/or scalars
M1,M2, . . . ,MN (not necessarily of the same dimension), with N ∈ Z>0, we
denote by diag(M1,M2, . . . ,MN) the diagonal concatenation of M1 to MN .
We denote by 1n×m ∈ Rn×m and 0n×m ∈ Rn×m the matrices of all ones and all
zeros, respectively. The vectors of ones and zeros in Rn are denoted by 1n and
0n, respectively. The identity matrix of dimension n is denoted by In. We may
drop the dimensions of the matrices/vectors if they are clear from the context,
and instead simply write 1, 0 or I.

Norms

Given a ∈ R, |a| denotes its absolute value. Given x ∈ Rn, we denote: the
standard Euclidean norm by ‖x‖2

.
=
√
〈x, x〉; the M -weighted Euclidean norm by

‖x‖M
.
=
√
〈x,Mx〉 (provided that M ∈ Sn++); the `1-norm by ‖x‖1

.
=
∑n

i=1 |x(i)|;
the `∞-norm by ‖x‖∞

.
= maxi∈Zn1 |x(i)|; and ‖x‖ to represent any vector norm.

The spectral norm of a matrix M ∈ Rn×m is denoted by ‖M‖ .=
√
λmax(M>M).

Definition N.1 (Dual norm). Given any norm ‖ · ‖ : Rn → R≥0, its dual norm
‖ · ‖∗ : Rn → R≥0 is defined as ‖x‖∗

.
= supz∈Rn{ 〈x, z〉 : ‖z‖ ≤ 1 }.

If ‖ · ‖ is an M -weighted Euclidean norm ‖x‖ =
√
〈x,Mx〉, where M ∈ Sn++, then

its dual norm is given by ‖x‖∗ =
√
〈x,M−1x〉.

Sequences

A sequence of elements xj indexed by j ∈ J ⊆ Z is denoted by {xj}, where the
set J will be clear from the context. Additionally, we use {xj}≥0 if J = Z≥0,
and {xj}>0 if J = Z>0. If the index set J is finite, then we denote by a bold
x the Cartesian product of {xj}. We often times append the index term j as
a superscript, instead of a subscript, i.e., we write xj to denote element j of
an ordered sequence. In particular, we do this to express the iterates of some
algorithms. For signals (or sequences) that evolve over time we use the following
specific notation. Let x ∈ Rn be a vector whose value changes over time, which
we index by letter t. We denote by x(t) the value of x at time instant t.

iv

Set definitions

Definition N.2 (Convex set). A set C ⊆ Rn is convex if αx + (1 − α)y ∈ C,
∀x, y ∈ C, ∀α ∈ [0, 1].

Definition N.3 (Affine set). A set C ⊆ Rn is said to be affine if it contains all
the lines that pass through pairs of points x, y ∈ C with x 6= y.

Definition N.4 (Closed, open, bounded and compact sets). A non-empty set
C ∈ Rn is closed if the limit of every converging sequence {xk}, with xk ∈ C, is
also contained in C. It is open if its complement {x ∈ Rn : x 6∈ C } is closed. It
is bounded is there exists c ∈ R>0 such that ‖x‖ ≤ c, ∀x ∈ C. It is compact if it is
closed and bounded.

Definition N.5 (Affine hull). The affine hull of a set C, which is denoted by
aff(C), is the intersection of all the affine sets containing C.

Definition N.6 (Interior and relative interior of a set). A point x ∈ Rn is an
interior point of a set C ⊆ Rn is there exists an open sphere S

.
= { z ∈ Rn :

‖z − x‖2 < ε } that is contained in C. The set of all interior points of C is called
the interior , and is denoted by int(C). A point x ∈ Rn is a relative interior point
of a set C ⊆ Rn is there exists an open sphere S for some ε ∈ R>0 such that
S ∩ aff(C) ⊂ C. The set of all relative interior points of of C is called the relative
interior , and is denoted by ri(C).

Definition N.7 (Ellipsoid). For a given P ∈ Sn++, c ∈ Rn, r ∈ R>0 we denote by

E(P, c, r)
.
= {x ∈ Rn : ‖x− c‖2P ≤ r2 }

the ellipsoid centered at c with radius r and geometry determined by P .

Definition N.8 (Admissible invariant set). Consider a discrete-time autonomous
system z(t + 1) = f(z(t)), where t is the current discrete-time instant and
f : Rn → Rn describes the system dynamics, that is subject to z(t) ∈ Z ⊆ Rn, ∀t.
An admissible invariant set of the system is a set Ω ⊆ Z such that

z(t) ∈ Ω =⇒ z(t+ 1) ∈ Ω.

Functions

We use the standard notation for the derivative and partial derivative of a dif-

ferentiable real-valued function f . That is,
df

dx
is the derivative of f(x) with

respect to x (we may also use the shorthand f ′) and
∂f

∂x
is the partial derivative

v

of f(x, y, . . .) with respect to x. For time derivatives we may use the shorthands

ḟ
.
=
df

dt
and f̈

.
=
d2f

dt2
. We use the notation

df(x)

dx

∣∣∣
x̂

to indicate the value of the

derivative of f(x) evaluated at x̂.
The gradient of a differentiable function f : Rn → R is denoted by ∇f . We denote
by ∇f(x) its value at x ∈ Rn.

Definition N.9 (Lipschitz continuity). A function f : C → Rm, with C ⊆ Rn is
Lipschitz continuous if there exists a constant L ∈ R>0 such that

‖f(x)− f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ C.

This condition will also be satisfied for any L̂ > L. We call the smallest value for
which it is satisfied the Lipschitz constant .

Definition N.10 (Extended real-valued function). A function f is said to be
a real valued function if it maps f : Rn → R, and it is said to be an extended
real-valued function it it maps f : Rn → R.

Definition N.11 (Epigraph). The epigraph of a function f : C → R, where
C ⊆ Rn, is the subset of Rn+1 given by

epi(f)
.
= { (x,w) : x ∈ C, w ∈ R, f(x) ≤ w }.

Definition N.12 (Domain). The (effective) domain of an extended real-valued
function f : C → R, where C ⊆ Rn, is given by

dom(f)
.
= {x ∈ C : f(x) < +∞}.

Definition N.13 (Proper). Let C ⊆ Rn be a convex set. An extended real-valued
function f : C → R is said to be proper if f(x) < +∞ for at least one x ∈ C and
f(x) > −∞ for all x ∈ C.

Definition N.14 (Convex function). Let C ⊆ Rn be a convex set. A function
f : C → R is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y ∈ C, ∀α ∈ [0, 1].

The function is called strictly convex is the above expression holds with strict
inequality for all x, y ∈ C with x 6= y and all α ∈ (0, 1).

If, in addition to convex, function f is differentiable, then it satisfies

f(x) ≥ f(y) + 〈∇f(y), x− y〉, ∀x, y ∈ C.

If f : Rn → R is a proper extended real-valued function, then it is convex if epi(f)
is a convex subset of Rn+1. In this case, the above inequality and Definition N.14
hold for all x, y ∈ dom(f).

vi

Definition N.15 (Concave function). A function f is concave if −f is convex.

Definition N.16 (Closed function). Let C ⊆ Rn be a convex set. A function
f : C → R is closed if its epigraph is a closed set.

Notation N.17 (Space of proper closed convex functions). We denote the space
of proper closed convex functions f : Rn → R by Γ(Rn).

Definition N.18 (Subdifferential). Let f ∈ Γ(Rn). A vector g is said to be a
subgradient of f at x ∈ dom(f) if

f(y) ≥ f(x) + 〈g, y − x〉, ∀y ∈ Rn.

The set of all subgradients of f at x is called the subdifferential of f at x, and
is denoted by ∂f(x). If f is differentiable, then its gradient ∇f(x) at any point
x ∈ int(dom(f)) is the unique subgradient of f and x, i.e., ∂f(x) = {∇f(x)}.

Definition N.19 (Strong convexity). A function f : Rn → R is µ-strongly con-
vex, for a given µ ∈ R>0, over the convex set C ⊆ Rn if and only if for all pairs
(x, y) ∈ C × C

f(x) ≥ f(y) + 〈g, x− y〉+
µ

2
‖x− y‖22, ∀g ∈ ∂f(y),

or equivalently

〈gx − gy, x− y〉 ≥ µ‖x− y‖22, ∀gx ∈ ∂f(x), ∀gy ∈ ∂f(y).

If the set C is not specified, then it is implicitly assumed that C = int(dom(f)).

Definition N.20 (Smoothness). A function f : Rn → R is said to be L-smooth
(otherwise referred to as Lipschitz) over C ⊆ Rn, for a given L ∈ R>0, if it is
differentiable over C and satisfies

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ C.

If the set C is not specified, then it is implicitly assumed that C = Rn.

Descent lemma. A well known result on L-smooth functions is the so called
descent lemma, which states that, an L-smooth function f : Rn → R over C ⊆ Rn
satisfies,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖22, ∀x, y ∈ C.

Definition N.21 (K∞-class functions). A function α : R≥0 → R is said to be a
K∞-class function (denoted by α ∈ K∞), if it is continuous, strictly increasing,
unbounded above and α(0) = 0.

vii

Operators

Definition N.22 (Indicator function). The indicator function of a non-empty
set C ⊆ D is the function IC : D → {0,+∞} where, given x ∈ D, IC(x) = 0 if
x ∈ C and IC(x) = +∞ if x 6∈ C.

Definition N.23 (Projection onto a set). Given a non-empty set C ⊆ Rn and
R ∈ Sn++, the operator πRC : Rn → Rn given by

πRC (x) = arg min
z∈C
‖z − x‖R,

is the R-weighted projection of x ∈ Rn onto C. If R = In, we simply write πC(x),
which is the standard Euclidean projection onto C.

Definition N.24 (Proximal operator). Given a function f : Rn → R, its proximal
operator is given by

proxf (x) = arg min
z∈Rn

f(z) +
1

2
‖z − x‖22, for any x ∈ Rn.

Notation N.25 (Ceiling and floor). Given a ∈ R, dae denotes the smallest integer
greater than of equal to a, and bac the largest integer smaller than or equal to a.

Well-known inequalities and laws

Triangle inequality. For an x, y ∈ Rn, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Cauchy-Schwarz inequality. For any x, y ∈ Rn, we have |〈x, y〉| ≤ ‖x‖2‖y‖2.

Jensen’s inequality. For a convex function f : Rn → R, vectors xj ∈ Rn and
scalars aj ∈ Z>0 for j ∈ Zm1 , we have

f

(∑m
j=1 ajxj∑m
j=1 aj

)
≤
∑m

j=1 ajf(xj)∑m
j=1 aj

.

Moreover, if f is concave, the inequality is reversed (from ≤ to ≥).

Parallelogram law. For any vector norm ‖ · ‖ on Rn and x, y ∈ Rn, we have

‖x‖22 + ‖y‖22 =
1

2
‖x+ y‖22 +

1

2
‖x− y‖22.

viii

1

Chapter 1

Introduction

1.1 Motivation and objectives

The results presented in this dissertation originate from our objective of imple-
menting model predictive control (MPC) in programmable logic controllers (PLC),
which are the most widely used embedded system in the industry for the imple-
mentation of low-level control loops. These devices are small ruggedized digital
computers that have been adapted to the harsh industrial environments and to
their use for controlling manufacturing and chemical processes. However, they
are typically characterized for having very small memory and computational re-
sources; mainly due to the fact that they are mostly used for the implementation
of PID controllers and simple automatons.

The possibility of routinely implementing MPC in PLCs, given their current
prevalence, could lead to important economical and competitive advantages, as
well as help bridge the gap between the great interest that the academic control
community has shown towards MPC in recent years with the reticence that many
industries have towards changing their current control schemes, in spite of the
potential advantages that MPC offers.

There are many aspects to tackle and decisions to make to achieve this goal,
as well as many different avenues to do so. Indeed, the implementation of MPC in
embedded systems is a widely researched topic, as will become apparent through-
out this manuscript. In this dissertation, we focus on the implementation of
linear MPC in embedded systems. We center our attention on two of the main
aspects that one must consider: the MPC formulation to be implemented, and
the optimization algorithm employed to solve its optimization problem.

There are other aspects to consider: practical aspects such as the fact that the
system state might not be measured, the use of additional ingredients to guaran-
tee an offset-free control, or the time certification of the optimization algorithm.
Although we have studied some of these practical issues in the context of the
implementation of MPC in PLCs, our focus in this dissertation is in the devel-
opment of solvers and MPC formulations particularly adapted to the limitations
of embedded systems. This has led to the development of an open-source Matlab

2 Chapter 1. Introduction

toolbox for the automatic code-generation of library-free sparse solvers for MPC.
The toolbox is called SPCIES: Suite of Predictive Controllers for Industrial Em-
bedded Systems [4] and is available at https://github.com/GepocUS/Spcies.

The solvers we develop are based on first order methods, since we found that
the structures that arise in certain MPC formulations could be exploited with
them. Even though these optimization methods typically require more iterations
to converge to a close proximity of the optimal solution than other optimization
algorithms, their use may be preferable due to the fact that each iteration requires
less operations than the ones of other alternative iterative methods, particularly
when dealing with large optimization problems.

Even though each iteration of the first order methods may be computation-
ally cheep, relatively speaking, a reduction of the number of iterations can have
a significant impact on the applicability of the method, including its use as the
embedded solver for MPC. Therefore, improvements of the convergence of these
methods, both from a practical and theoretical standpoint, can be beneficial in
many different areas. There are many ways in which this objective may be tack-
led: proper selection of the method’s parameters, numerical preconditioning of
the optimization problem, warmstarting procedures, etc. We have focused on im-
proving the convergence of a subclass of first order methods known as accelerated
first order methods, which have a quicker theoretical convergence than the non-
accelerated variants and often perform better in practice. However, they may
suffer from an oscillating behaviour that increases the number of iterations re-
quired to obtain a solution. This phenomenon can be addressed with the use of
restart schemes, which restart the algorithm when certain conditions are met. We
propose various restart schemes with theoretical properties.

Finally, in line with our study of MPC formulations suitable for their im-
plementation in embedded systems, we developed a novel formulation that may
be particularly suitable for its implementation in embedded systems due to its
good performance with low prediction horizons, both in terms of its performance
as well as its domain of attraction. This formulation, which we label harmonic
MPC, tackles the problem of implementing MPC in embedded systems from an-
other perspective: that of developing formulations that by their nature require
fewer resources for their implementation.

Even though the initial focus was on the implementation of MPC in industrial
embedded systems, the results shown in this dissertation will not focus on PLCs.
Instead, we describe the solvers in general terms, focusing on showing how the
structures are exploited and on comparing them with other alternatives from
the literature. Therefore, we do not focus on the other practical aspects that
must be addressed for the implementation of MPC in a real industrial setting.
Additionally, the restart schemes for accelerated first order methods are presented
from the point of view of the broader field of convex optimization. That is, they
are not particularized to their use for MPC, although we show numerical results
of their application to this problem.

https://github.com/GepocUS/Spcies

1.2. Outline of the dissertation 3

1.2 Outline of the dissertation

This dissertation presents contributions in two separate (although closely related)
fields: restart schemes for accelerated first order methods, and the implementation
of linear model predictive control (MPC) in embedded systems. Thus, we divide
the manuscript into two parts.

Part I presents novel restart schemes for accelerated first order methods. These
methods tend to exhibit a degradation of their convergence when close to the op-
timal solution due to the appearance of an oscillating behavior. Restart schemes
aim to suppress this oscillatory behavior by stopping and restarting (thus their
name) the algorithm when certain conditions are met. Previous restart schemes in
the literature have been shown to provide a practical performance improvement.
However, some do not prove linear convergence of the restarted algorithm or they
require the knowledge of hard-to-obtain parameters of the function to be mini-
mized. We present three novel restart schemes that are applicable to a wide range
of (not necessarily strongly convex) optimization problems without requiring prior
knowledge of its characterizing parameters. We present the iteration complexity
of the proposed schemes and present numerical results comparing them to other
restart schemes from the literature.

Part I is divided into the following chapters:

Chapter 2 presents the preliminary concepts and the first order methods that
will be used and discussed throughout the rest of this dissertation. In particular,
Section 2.1 introduces the first order methods and Section 2.2 the accelerated first
order methods. The results presented in this chapter are well known, although
we introduce some propositions that will be used in following chapters.

Chapter 3 discusses restart schemes for accelerated first order methods. We
start by providing a general explanation of restart schemes and motivating their
usefulness. We then present a brief overview of the literature, explaining some
of the most well known restart schemes in Section 3.1. Our three novel restart
schemes are presented in Section 3.2. The first two are particularized to a certain
accelerated first order method known as FISTA (which is essentially the acceler-
ated proximal gradient method), whereas the third one considers a wider range
of accelerated first order methods. We conclude the chapter with some numerical
results comparing the proposed restart schemes with some of the ones presented
in the literature in Section 3.3.

Part II deals with the implementation of linear MPC in embedded systems. The
on-line implementation of MPC in embedded systems is challenging due to the
low computational and memory resources that typically characterize them. We
present an efficient approach for solving various MPC formulations using some
of the first order methods presented in Part I. This approach allows us to take
advantage of the inner structures of the matrices of the MPC’s optimization prob-
lem, leading to a sparse optimization algorithm that does not require storing the
sparse matrices using the typical sparse matrix representations (such as com-

4 Chapter 1. Introduction

pressed sparse column/row or dictionary of keys). Instead, we only need to store
the repeating submatrices, not needing to store the information of their location.
The developed solvers have been made available in an open-source Matlab toolbox
SPCIES [4]. The toolbox takes the model of the system and parameters of the
MPC controller, and automatically generates the library-free code of the solver for
its implementation in the embedded system of choice. Additionally, we present a
novel MPC formulation, which we call harmonic MPC and label by HMPC, which
is particularly suitable for its use with small prediction horizons, since it exhibits
a larger domain of attraction that reduces the feasibility and performance issues
that some MPC formulations display when the prediction horizon is not large
enough. Due to its good performance with small prediction horizons, this MPC
formulation may be suitable for its use in embedded systems.

Part II is divided into the following chapters

Chapter 4 introduces the topic of this part of the dissertation. We start by
describing the problem formulation in Section 4.1 and briefly describing MPC in
Section 4.2. Finally, in Section 4.3 we present a non-exhaustive review of the
literature in the topic of the implementation of MPC in embedded systems.

Chapter 5 presents our approach to sparsely solving MPC formulations using
first order methods. We start by presenting some rather straightforward sparse al-
gorithms for solving specific QP problems and systems of equations in Section 5.1.
Section 5.2 and Section 5.3 show how we solve QP problems using two of the first
order methods presented in Part I of this dissertation. This approach to solving
QP problems, along with the algorithms presented in Section 5.1, will be used
in Sections 5.4 to 5.6 to develop sparse solvers for the MPC formulations pre-
sented in each one of these sections. Section 5.7 presents three systems used as
test benches in the numerical results presented in Section 5.8, where we compare
our proposed solvers between each other and against other alternatives from the
literature. Additionally, we show the results of incorporating the restart schemes
of Part I to some of the proposed solvers.

Chapter 6 presents the harmonic MPC formulation, starting with its description
in Section 6.1. Sections 6.2 and 6.3 prove the recursive feasibility and asymptotic
stability of the proposed formulation, respectively. A discussion related to the
design of one of its main ingredients is presented in Section 6.4. Finally, we show-
case its potential advantages in Section 6.5, where we compare its performance
and domain of attraction against other MPC formulations with a particular focus
on using small prediction horizons.

1.3. Publications 5

1.3 Publications

The results shown in this dissertation are supported by several journal and congress
publications, some of which are currently under review.
The novel restart schemes and proofs presented in Part I can be found in:

[5] T. Alamo, P. Krupa, and D. Limon, “Restart FISTA with global linear
convergence,” in Proceedings of the European Control Conference (ECC), pp.
1969–1974, IEEE, 2019. Extended version available at arXiv:1906.09126.

[6] T. Alamo, P. Krupa, and D. Limon, “Gradient based restart FISTA,” in Pro-
ceedings of the Conference on Decision and Control (CDC), pp. 3936–3941,
IEEE, 2019.

[7] T. Alamo, P. Krupa, and D. Limon, “Restart of accelerated first order meth-
ods with linear convergence for non-strongly convex optimization,” arXiv
preprint: 2102.12387, 2021. Submitted to Transactions on Automatic Con-
trol.

The sparse solvers for the implementation of MPC in embedded systems presented
in Chapter 5, as well as some additional numerical results to the ones presented
in this dissertation, can be found in:

[8] P. Krupa, D. Limon, and T. Alamo, “Implementation of model predictive
control in programmable logic controllers,” IEEE Transactions on Control
Systems Technology, vol. 29, no. 3, pp. 1117–1130, 2021.

[9] P. Krupa, D. Limon, and T. Alamo, “Implementation of model predictive
controllers in programmable logic controllers using IEC 61131-3 standard,”
in Proceedings of the European Control Conference (ECC), pp. 288–293,
IEEE, 2018.

[10] P. Krupa, I. Alvarado, D. Limon, and T. Alamo, “Implementation of model
predictive control for tracking in embedded systems using a sparse extended
ADMM algorithm,” arXiv preprint: 2008.09071, 2020. Submitted to Trans-
actions on Control Systems Technology.

[11] P. Krupa, J. Camara, I. Alvarado, D. Limon, and T. Alamo, “Real-time
implementation of MPC for tracking in embedded systems: Application to
a two-wheeled inverted pendulum,” in Proceedings of the European Control
Conference (ECC), 2021. Preprint available at arXiv:2103.14571.

[12] P. Krupa, R. Jaouani, D. Limon, and T. Alamo, “A sparse ADMM-based
solver for linear MPC subject to terminal quadratic constraint,” arXiv pre-
print: 2105.08419, 2021. Submitted to Automatica.

6 Chapter 1. Introduction

The harmonic MPC formulation presented in Chapter 6 can be found in:

[13] P. Krupa, D. Limon, and T. Alamo, “Harmonic based model predictive
control for set-point tracking,” IEEE Transactions on Automatic Control,
2020.

[14] P. Krupa, M. Pereira, D. Limon, and T. Alamo, “Single harmonic based
model predictive control for tracking,” in Proceedings of the Conference on
Decision and Control (CDC), pp. 151–156, IEEE, 2019.

Other articles related to this dissertation but not directly discussed in it are:

[15] P. Krupa, N. Saraf, D. Limon, and A. Bemporad, “PLC implementation of a
real-time embedded MPC algorithm based on linear input/output models,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 6987–6992, 2020.

[16] I. Alvarado, P. Krupa, D. Limon, and T. Alamo, “Tractable robust MPC
design based on nominal predictions,” arXiv preprint: 2104.06088, 2021.
Submitted to Journal of Process Control.

[17] P. Krupa, C. Danielson, C. Laughman, S. A. Bortoff, D. J. Burns, S. Di
Cairano, and D. Limon, “Modelica implementation of centralized MPC con-
troller for a multi-zone heat pump,” in Proceedings of the European Control
Conference (ECC), 2019.

Part I

Restart schemes for accelerated
first order methods

9

Chapter 2

Preliminaries: Accelerated first
order methods

First order methods (FOM) are iterative numerical methods for solving optimiza-
tion problems that only require knowledge of the gradient/subgradient (but not
Hessian) of the objective function [18, 19]. The origin of these methods can be
traced back to the works of Cauchy in 1847 [20]. Since then, many different FOMs
have been proposed and developed [18, 19, 21, 22].

These methods have been used in a wide variety of fields, including machine
learning and model predictive control [18, 23]. The rising number of fields and
applications that deal with large optimization problems has increased the interest
in these methods due to their lower computational cost per iteration and memory
requirements when compared to other optimization methods, such as interior
point or active set methods.

As a gentle introduction to the topic, the most most well know FOM is the
gradient descent method. Consider the optimization problem

min
z∈Rnz

f(z), (2.1)

where the convex function f : Rnz → R is Lipschitz continuously differentiable.
Then, the gradient descent method applies, for k ≥ 0, the recursion

zk+1 = zk − ρk∇f(zk)

starting at an initial point z0 ∈ Rnz and where ρk ∈ R>0 is the step size. If ρk is
chosen appropriately, the above recursion converges to an optimal solution z∗ of
(2.1) as k →∞ [18].

In 1983, Yurii Nestevor proposed a variation of the gradient descent method
known as the accelerated gradient descent method [24]. This new method pro-
vided a O(1/k2) convergence rate (in terms of objective function value), which is
the optimal convergence rate for the class of optimization problems (2.1); a sig-
nificant improvement over the O(1/k) rate of the gradient descent method. The

10 Chapter 2. Preliminaries: Accelerated first order methods

acceleration is obtained by providing a certain “momentum” to the algorithm in
the form of an overrelaxation step. In particular, the iteration of the accelerated
gradient descent method are, for k ≥ 0,

zk+1 = yk − ρk∇f(zk),

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
,

yk+1 = zk +
tk − 1

tk+1
(zk − zk−1),

starting at an initial point y0 ∈ Rnz and taking t0 = 1.

The idea behind this method has been applied to many other FOMs, ranging
from methods for smooth convex optimization [24, 25], to methods for composite
non-smooth convex optimization [22, 26, 27, 28]. These methods are referred to
as accelerated, of fast, first order methods (AFOM).

This chapter introduces a few FOMs and AFOMs. In particular, we present
two popular FOMs: the proximal gradient method and the Alternating Direction
Method of Multipliers (ADMM); and the accelerated variant of the proximal gra-
dient method, which we label as FISTA. Additionally, we present a variation of
ADMM known as extended ADMM (EADMM), and a variant of FISTA known as
monotone FISTA (MFISTA). We show the pseudocode of each method and some
of the their properties (in particular, those that will be of use for future develop-
ments throughout this dissertation). The properties we show in this chapter are
for the most part well established in the literature. However, we include our own
proofs for some of them. We do this to show that the properties we cite are still
applicable to our particular problem formulation and/or assumptions, which are
not always the same as the ones that can be found in the references provided.

We refer the reader to [18, 19, 22, 29, 30] for a few references in the field of
first order methods, and to [1, 23] for general references on convex optimization.

2.1 First order methods

This section describes two popular FOMs: the proximal gradient method and the
alternating direction method of multipliers (ADMM). Additionally, we describe
an extension of ADMM to composite convex optimization problems with three
functions in the objective function.

2.1.1 Proximal gradient method

The proximal gradient method is a FOM for convex composite optimization prob-
lems that is based on performing a proximal operator at each iteration of the
algorithm [18, 29]. We follow, however, an equivalent description of the method,
in which we make use of the so called composite gradient mapping [27, §2], which
we formerly define further ahead. For an in depth explanation of the proximal

2.1. First order methods 11

gradient method and its different variants, we refer the reader to [18, §10.2], and,
as a more accessible reference, to [29].

Consider the convex composite optimization problem

f∗ = min
z∈Z
{f(z)

.
= Ψ(z) + h(z)} , (2.2)

under the following assumption.

Assumption 2.1. We assume that:

(i) The function Ψ ∈ Γ(Rnz) may be non-smooth.

(ii) h : Rnz → R is a smooth differentiable convex function. That is, there exists
R ∈ Snz++ such that

h(z) ≤ h(y) + 〈∇h(y), z − y〉+
1

2
‖z − y‖2R, ∀(z, y) ∈ Rnz × Rnz . (2.3)

(iii) Z ⊆ Rnz is a non-empty closed convex set.

(iv) Problem (2.2) is solvable. That is, there exists z∗ ∈ Z ∩ dom(Ψ) such that

f∗ = f(z∗) = inf
z∈Z

f(z).

We denote by Ωf
.
= { z ∈ Rnz : z ∈ Z, f(z) = f∗ } the optimal set of problem

(2.2), which, due to Assumtion 2.1.(iv) is non-empty. It is well known that this
set is a singleton if f is strictly convex.

Remark 2.2. It is standard to write the smoothness condition (2.3) as the well
known descent lemma

h(z) ≤ h(y) + 〈∇h(y), z − y〉+
L

2
‖z − y‖2S , ∀(z, y) ∈ Rnz × Rnz , (2.4)

where L ∈ R>0 provides a bound on the Lipschitz constant of ∇h [3, §2.1] and
S ∈ Snz++ is usually taken as the identity matrix. However, since

L

2
‖z − y‖2S =

1

2
‖z − y‖2LS , ∀(z, y) ∈ Rnz × Rnz ,

we have that (2.3) implies (2.4) if we take R = LS. We use expression (2.3) be-
cause it simplifies the algebraic expressions and results we present throughout this
dissertation, but analogous results can be obtained if the standard L-smoothness
definition (Definition N.20) and descent lemma are used instead of (2.3).

Given y ∈ Rnz , one could use the local information given by∇h(y) to minimize
the value of f around y. Under Assumtion 2.1, this can be done obtaining the
optimal solution of the strictly convex optimization problem

min
z∈Z

Ψ(z) + 〈∇h(y), z − y〉+
1

2
‖z − y‖2R.

12 Chapter 2. Preliminaries: Accelerated first order methods

The solution of this optimization problem leads to the notion of the composite gra-
dient mapping [27, §2], which constitutes a generalization of the gradient mapping
(see [3, §2.2.3] for the case when Ψ(·) = 0 and [26] for the case when Z = Rnz).

Definition 2.3 (Composite gradient mapping). Let f ∈ Γ(Rnz) be the composi-
tion of two functions f = Ψ + h, and let Z ⊆ Rnz . Let Assumtion 2.1 hold. We
denote the following mappings T f,ZR : Rnz → Rnz and Gf,ZR : Rnz → Rnz :

T f,ZR (y) = arg min
z∈Z

Ψ(z) + 〈∇h(y), z − y〉+
1

2
‖z − y‖2R, (2.5a)

Gf,ZR (y) = R
(
y − T f,ZR (y)

)
. (2.5b)

When the identities of f , R and Z are clear from the context, we will often omit
the superscripts and subscript and simply write T(y) and G(y).

The following proposition states the uniqueness of the composite gradient
mapping under Assumtion 2.1. This result is well known in the literature (see,
for instance, [18, §6.1] for an analogous result). However, we include a proof of
the proposition for our particular notation and description of problem (2.2).

Proposition 2.4 (On the unique solution of the composite gradient mapping).
Let f ∈ Γ(Rnz) be the composition of two functions f = Ψ + h, and let Z ⊆ Rnz .
Let Assumtion 2.1 hold. Then, T f,ZR (y) is a singleton for any y ∈ Rnz .

Proof: Let ΨZ = Ψ + IZ . Then, after some simple algebraic manipulations and
cancellation of constant terms, we have that problem (2.5) can be equivalently
written as

T f,ZR (y) = arg min
z∈Rnz

ΨZ +
1

2
‖z −

(
y −R−1∇h(y)

)
‖2R. (2.6)

From Assumtion 2.1.(iv), we have that dom(ΨZ) = dom(Ψ) ∩ Z 6= ∅. More-
over, since both Ψ ∈ Γ(Rnz) (Assumtion 2.1.(i)) and IZ ∈ Γ(Rnz) (since As-
sumtion 2.1.(iii) states that Z is non-empty), we conclude that ΨZ ∈ Γ(Rnz).
Therefore, (2.6) is a strongly convex function that is not everywhere infinite. As
such, it is well known that it has a unique minimizer for any y ∈ Rnz . �

Equation (2.6) shows that the composite gradient mapping is closely related to
the proximal operator. Indeed, if R = LInz for some L ∈ R>0, then by definition
of the proximal operator (Definition N.24), we have that (2.6) is equivalent to
proxL−1ΨZ (y −R−1∇h(y)).

In the context of optimal gradient methods, it is assumed that the computation
of T(y) is cheap. This is the case when Z is a simple set (a box, Rnz , etc.),
R ∈ Dnz++, and Ψ(·) is a separable function. For example, in the well known
Lasso optimization problem, the computation of T(y) resorts to the computation

2.1. First order methods 13

of the shrinkage operator [26]. See [18, §6], [29, §6],[31], or [32, §28] for numerous
examples in which the computation of the composite gradient mapping is simple.

The following proposition gathers some well-known properties of the compos-
ite gradient mapping and the dual norm ‖G(·)‖R−1 . We include the proof for
completeness.

Proposition 2.5. Consider problem (2.2) and let Assumtion 2.1 hold. Then:

(i) For every y ∈ Rn and z ∈ Z,

f(T(y))− f(z) ≤ 〈G(y), T(y)− z〉+
1

2
‖G(y)‖2R−1 (2.7a)

= 〈G(y), y − z〉 − 1

2
‖G(y)‖2R−1 (2.7b)

= −1

2
‖T(y)− z‖2R +

1

2
‖y − z‖2R. (2.7c)

(ii) For every y ∈ Z,
1

2
‖G(y)‖2R−1 ≤ f(y)− f(T(y)) ≤ f(y)− f∗.

Proof: Let hy : Rnz → R be the given by hy(z) = 〈∇h(y), z − y〉+ 1
2‖z − y‖

2
R,

ΨZ : Rnz → R be given by ΨZ(z) = Ψ(z) + IZ(z), and Fy : Rnz → R be given
by Fy(z) = ΨZ(z) + hy(z). From Proposition 2.4, we have that, for any given
y ∈ Rnz , T(y) is the unique minimizer of problem (2.5a). Therefore,

Ψ(T(y)) + hy(T(y)) ≤ Ψ(z) + hy(z), ∀z ∈ Z,

which, since T(y) ∈ Z, implies

ΨZ(T(y)) + hy(T(y)) ≤ ΨZ(z) + hy(z), ∀z ∈ Rnz .

From this inequality we have that Fy(T(y)) ≤ Fy(z), ∀z ∈ Rnz , which due to the
definition of the subdifferential (Definition N.18) implies

0nz ∈ ∂Fy(T(y)). (2.8)

From Assumtion 2.1.(iv), we have that dom(ΨZ) = dom(Ψ) ∩ Z 6= ∅. Moreover,
since both Ψ ∈ Γ(Rnz) (due to Assumtion 2.1.(i)) and IZ ∈ Γ(Rnz) (since As-
sumtion 2.1.(iii) states that Z is non-empty), we conclude that ΨZ ∈ Γ(Rnz).
Additionally, since hy is a continuous real-valued function in Rnz , we have that it
is closed (see [1, Proposition 1.1.3]) and that its domain is Rnz . Therefore, Fy is
the sum of two closed convex functions satisfying ri(dom(ΨZ))∩ ri(dom(hy)) 6= ∅,
which along [1, Proposition 5.4.6], lets us conclude that

∂Fy(T(y)) = ∂ΨZ(T(y)) + ∂hy(T(y)),

where the subdifferential ∂hy of the differentiable function hy is given by

∂hy(T(y) = ∇hy(T(y)) = ∇h(y) +R(T(y)− y).

14 Chapter 2. Preliminaries: Accelerated first order methods

Thus, we obtain from (2.8) that

0 ∈ ∂ΨZ(T(y)) + ∂hy(T(y)) = ∂ΨZ(T(y)) +∇h(y) +R(T(y)− y),

which, using the definition of G(y)
.
= R(y − T(y)), can be rewritten as

G(y)−∇h(y) ∈ ∂ΨZ(T(y)).

Therefore, by the definition of ∂ΨZ (Definition N.18), we have that

ΨZ(z) ≥ ΨZ(T(y)) + 〈G(y)−∇h(y), z − T(y)〉, ∀z ∈ Rnz .

Since, Z ⊆ Rnz , T(y) ∈ Z and ΨZ = Ψ for every z ∈ Z, the previous inequality
implies

Ψ(z) ≥ Ψ(T(y)) + 〈G(y)−∇h(y), z − T(y)〉, ∀z ∈ Z. (2.9)

From the convexity of h, we have that h(z) ≥ h(y) + 〈∇h(y), z − y〉, ∀z ∈ Z.
Adding this to (2.9) yields

f(z) = Ψ(z) + h(z)

≥ Ψ(T(y)) + 〈G(y)−∇h(y), z − T(y)〉+ h(y) + 〈∇h(y), z − y〉
= Ψ(T(y)) + 〈G(y), z − T(y)〉+ h(y) + 〈∇h(y), T(y)− y〉, ∀z ∈ Z. (2.10)

From Assumtion 2.1.(ii) we have

h(y) ≥ h(T(y))− 〈∇h(y), T(y)− y〉 − 1

2
‖T(y)− y‖2R

= h(T(y))− 〈∇h(y), T(y)− y〉 − 1

2
‖R−1G(y)‖2R

= h(T(y))− 〈∇h(y), T(y)− y〉 − 1

2
‖G(y)‖2R−1 .

Adding this inequality to (2.10) yields

f(z) ≥ Ψ(T(y)) + h(T(y)) + 〈G(y), z − T(y)〉 − 1

2
‖G(y)‖2R−1

= f(T(y)) + 〈G(y), z − T(y)〉 − 1

2
‖G(y)‖2R−1 , ∀z ∈ Z,

which, if rearranged, proves (2.7a). We now prove (2.7b) and (2.7c) by means of
simple algebraic manipulations.

f(T(y))− f(z) ≤ 〈G(y), T(y)− z〉+
1

2
‖G(y)‖2R−1

= 〈G(y), y − z + T(y)− y〉+
1

2
‖G(y)‖2R−1

= 〈G(y), y − z〉+ 〈G(y), T(y)− y〉+
1

2
‖G(y)‖2R−1

= 〈G(y), y − z〉 − 〈G(y), R−1G(y)〉+
1

2
‖G(y)‖2R−1

= 〈G(y), y − z〉 − ‖G(y)‖2R−1 +
1

2
‖G(y)‖2R−1

= 〈G(y), y − z〉 − 1

2
‖G(y)‖2R−1 , ∀z ∈ Z. (2.11)

2.1. First order methods 15

Algorithm 1: Proximal gradient method

Require: z0 ∈ Rn, ε ∈ R>0

1 k ← 0
2 repeat
3 k ← k + 1

4 zk ← T f,ZR (zk−1)

5 until ‖Gf,ZR (zk)‖R−1 ≤ ε
Output: z̃∗ ← zk

This proves (2.7b). Next, from the definition of G(y), we have

f(T(y))− f(z) ≤ 〈R(y − T(y)), y − z〉 − 1

2
‖R(y − T(y))‖2R−1

= −〈R(y − T(y)), z − y〉 − 1

2
‖y − T(y)‖2R

= −1

2
‖y − T(y) + z − y‖2R +

1

2
‖z − y‖2R

= −1

2
‖T(y)− z‖2R +

1

2
‖y − z‖2R, ∀z ∈ Z,

which proves (2.7c) and concludes the proof of claim (i). Assume now that y ∈ Z.
Particularizing (2.11) to z = y yields

1

2
‖G(y)‖2R−1 ≤ f(y)− f(T(y)), ∀y ∈ Z,

which, along f∗ ≤ f(T(y)), proves claim (ii). �

The proximal gradient method solves problem (2.2) by iteratively applying
the operator T(·) at each iteration. Algorithm 1 shows the pseudocode of this
method for a given exit tolerance ε ∈ R>0 and an initial condition z0 ∈ Rnz .
It returns a suboptimal solution z̃∗ of problem (2.2), where the suboptimality is
determined by ε. The fact that the exit condition ‖G(zk)‖R−1 ≤ ε serves as a
measure of optimality of zk is provided by the following proposition. Once again,
this proposition is well known in the literature (see, for instance, [18, Corollary
10.8]), but we include a proof for completeness.

Proposition 2.6. Consider problem (2.2). Let Assumtion 2.1 hold and Gf,ZR be
given by Definition 2.3. Then z ∈ Rnz belongs to the optimal set

Ωf
.
= { z ∈ Rnz : z ∈ Z, f(z) = f∗ },

if and only if Gf,ZR (z) = 0nz .

Proof: We first show the implication G(z) = 0nz =⇒ z ∈ Ωf . Since R ∈ Snz++, we
infer from G(z)

.
= R(z − T(z)) that G(z) = 0nz =⇒ z = T(z). Let z∗ ∈ Ωf ⊆ Z.

16 Chapter 2. Preliminaries: Accelerated first order methods

Algorithm 2: Alternating direction method of multipliers algorithm

Require: v0 ∈ Rnv , λ0 ∈ Rp, ρ ∈ R>0, εp ∈ R>0, εd ∈ R>0

1 k ← 0
2 repeat
3 zk+1 ← arg min

z
Lρ(z, vk, λk)

4 vk+1 ← arg min
v
Lρ(zk+1, v, λk)

5 λk+1 ← λk + ρ(Czk+1 +Dvk+1 − d)
6 k ← k + 1

7 until rp ≤ εp and rd ≤ εd
Output: z̃∗ ← zk, ṽ

∗ ← vk, λ̃
∗ ← λk

Then, from the implication G(z) = 0nz =⇒ z = T(z) and Proposition 2.5.(i) we
have that

f∗ = f(z∗) ≥ f(T(z))− 〈G(z), T(z)− z∗〉 − 1

2
‖G(z)‖2R−1 = f(T(z)) = f(z).

Therefore, z ∈ Ωf . Next, we show the implication z ∈ Ωf =⇒ G(z) = 0nz .
In this case, we have that f(z) = f∗, which along Proposition 2.5.(ii) leads to
1
2‖G(z)‖2R−1 ≤ f(z)− f∗ = 0. Thus, G(z) = 0nz . �

Remark 2.7. We note that it is common to substitute the exit condition of Algo-
rithm 1 (step 5) for ‖G(zk−1)‖R−1 ≤ ε, since G(zk−1) requires T(zk−1), which has
already been computed in step 4.

2.1.2 Alternating direction method of multipliers

The alternating direction method of multipliers (ADMM) [21] is a FOM for solving
convex composite optimization problems of the form

min
z,v

f(z) + g(v) (2.12a)

s.t. Cz +Dv = d, (2.12b)

where z ∈ Rnz , v ∈ Rnv , f ∈ Γ(Rnz), g ∈ Γ(Rnv), C ∈ Rp×nz , D ∈ Rp×nv and
d ∈ Rp. Let the augmented Lagrangian function Lρ : Rnz × Rnv × Rp → R be
given by

Lρ(z, v, λ) = f(z) + g(v) +
ρ

2
‖Cz +Dv − d+

1

ρ
λ‖22,

where λ ∈ Rp are the dual variables and ρ ∈ R>0 is the penalty parameter. We
denote a solution point of (2.12) by (z∗, v∗, λ∗), assuming that one exists.

Algorithm 2 shows the ADMM algorithm applied to problem (2.12) for the
given exit tolerances (εp, εd) ∈ R>0 × R>0 and initial point (v0, λ0) ∈ Rnv × Rp.
The superscript k denotes the value of the variable at iteration k of the algorithm.

2.1. First order methods 17

The exit condition of the algorithm is determined by the primal (rp ∈ R≥0) and
dual (rd ∈ R≥0) residuals given by

rp = ‖Czk +Dvk − d‖∞,
rd = ‖vk − vk−1‖∞.

The use of these residuals, as well as the justification for using rd as a residual for
dual optimality, can be found in [21, §3.3]. The algorithm returns a suboptimal
solution point (z̃∗, ṽ∗, λ̃∗) of (2.12), where the subopimality is determined by the
values of εp and εd.

There are numerous results on the convergence of ADMM applied to (2.12)
depending on the assumptions made on its ingredients. For instance, we refer
the reader to [21], [18, Theorem 15.4], [33] or [34]. Additionally, it has been
shown that the use of different values of ρ for each constraint can improve the
convergence of the algorithm in practical settings [35, §5.2].

2.1.3 The extended alternating direction method of multipliers

This section introduces the extended ADMM (EADMM) algorithm [36], which, as
its name suggests, is an extension of the ADMM algorithm [21] (see Section 2.1.2
and Algorithm 2) to optimization problems with more than two separable func-
tions in the objective function. In particular, we focus on the case in which the
objective function has three separable functions.

Let θi : Rni → R for i ∈ Z3
1 be convex functions, Zi ⊆ Rni for i ∈ Z3

1 be closed
convex sets, Ci ∈ Rmz×ni for i ∈ Z3

1 and d ∈ Rmz . Consider the problem

min
z1,z2,z3

3∑
i=1

θi(zi) (2.13a)

s.t.
3∑
i=1

Cizi = d (2.13b)

zi ∈ Zi, i ∈ Z3
1. (2.13c)

and let its augmented Lagrangian Lρ : Rn1 × Rn2 × Rn3 × Rmz → R be given by

Lρ(z1, z2, z3, λ) =

3∑
i=1

θi(zi) + 〈λ,
3∑
i=1

Cizi − d〉+
ρ

2

∥∥∥∥∥
3∑
i=1

Cizi − d

∥∥∥∥∥
2

2

, (2.14)

where λ ∈ Rmz are the dual variables and ρ ∈ R>0 is the penalty parameter. We
denote a solution point of (2.13) by (z∗1 , z

∗
2 , z
∗
3 , λ
∗), assuming that one exists.

Algorithm 3 shows the implementation of the EADMM algorithm for a given
exit tolerance ε > 0 and initial points (z0

2 , z
0
3 , λ

0). Algorithm 3 returns a subop-
timal solution (z̃∗1 , z̃

∗
2 , z̃
∗
3 , λ̃
∗) of problem (2.13), where the suboptimality is deter-

mined by primal and dual exit tolerances εp ∈ R>0 and εd ∈ R>0, respectively.

18 Chapter 2. Preliminaries: Accelerated first order methods

Algorithm 3: Extended ADMM

Require: z0
2 ∈ Rn2 , z0

3 ∈ Rn3 , λ0 ∈ Rmz , ρ ∈ R>0, ε ∈ R>0

1 k ← 0
2 repeat

3 zk+1
1 ← arg min

z1

{
Lρ(z1, z

k
2 , z

k
3 , λ

k) | z1 ∈ Z1

}
4 zk+1

2 ← arg min
z2

{
Lρ(zk+1

1 , z2, z
k
3 , λ

k) | z2 ∈ Z2

}
5 zk+1

3 ← arg min
z3

{
Lρ(zk+1

1 , zk+1
2 , z3, λ

k) | z3 ∈ Z3

}
6 r ←

3∑
i=1

Ciz
k+1
i − d

7 λk+1 ← λk + ρr
8 k ← k + 1

9 until ‖r‖∞ ≤ εp and ‖z2 − zk−1
2 ‖∞ ≤ εd and ‖zk3 − z

k−1
3 ‖∞ ≤ εd

Output: z̃∗1 ← zk1 , z̃∗2 ← zk2 , z̃∗3 ← zk3 , λ̃∗ ← λk

The fact that the exit condition shown in step 9 of Algorithm 3 serves as an
indicator of the (sub-)optimality of the current iterate can be found in [36, §5].

As shown in [37], the EADMM algorithm is not necessarily convergent under
the typical assumptions of the classical ADMM algorithm. However, multiple
results have shown its convergence under additional assumptions [36, 38, 39] or
by adding additional steps [40, 41]. In particular, [36] proved its convergence
under the following assumption, as stated in the following theorem.

Assumption 2.8 ([36], Assumption 3.1). The functions θ1 and θ2 are convex,
function θ3 is µ3-strongly convex, and C1 and C2 are full column rank.

Theorem 2.9 (Convergence of EADMM; [36], Theorem 3.1). Suppose that As-

sumtion 2.8 holds and that the penalty parameter ρ ∈
(

0, 6µ3
17‖C>3 C3‖

)
. Then, the

sequence of points (zk1 , z
k
2 , z

k
3 , λ

k) generated by Algorithm 3 converges to a point
in the optimal set of problem (2.13) as k →∞.

2.2 Accelerated first order methods

This section describes two accelerated variants of the proximal gradient method:
a non-monotone variant, and a monotone variant.

2.2.1 Fast proximal gradient method (FISTA)

The fast proximal gradient method is the accelerated variant of the proximal
gradient method (see Section 2.1.1), which constitutes an extension of the fast
gradient method [24] to composite convex optimization problems given by (2.2)

2.2. Accelerated first order methods 19

Algorithm 4: FISTA

Require: z ∈ Rn, ε ∈ R>0

1 y0 ← T(z), z0 ← T(z), t0 ← 1, k ← 0
2 repeat
3 k ← k + 1
4 zk ← T(yk−1)

5 tk ←
1

2

(
1 +

√
1 + 4t2k−1

)
6 yk ← zk +

tk−1 − 1

tk
(zk − zk−1)

7 until ‖G(zk)‖R−1 ≤ ε
Output: z̃∗ ← zk

under Assumtion 2.1. Its interest stems from its improved convergence rate with
respect to the non-accelerated variant, achieving a O(1/k2) rate of convergence in
terms of objective function values, whereas the non-accelerated variant achieves
a rate of O(1/k) [26].

We will refer to the fast proximal gradient method using the acronym FISTA
(Fast Iterative Shrinking-Threshold Algorithm), which was the term coined by
Beck and Teboulle in 2009 [26].

Algorithm 4 shows the FISTA algorithm applied to (2.2) under Assumtion 2.1,
starting from an initial point z ∈ Rnz and for a given exit tolerance ε ∈ R>0. It
returns a suboptimal solution z̃∗ of problem (2.2), where the suboptimality is
determined by ε. Note that Algorithm 4 has a similar complexity to the proximal
gradient method (Algorithm 1), since they both apply the operator T f,ZR at each
iteration and the others steps of FISTA are simple operations.

Remark 2.10. We note that Remark 2.7 also applies to the exit condition of Al-
gorithm 4, where, in this case, the exit condition ‖G(zk)‖R−1 ≤ ε can be substituted
by ‖G(yk−1)‖R−1 ≤ ε.

The following proposition shows two well known properties satisfied by the
iterates of FISTA (see [24], [26, §10.7]) that will be of importance for future
developments and results presented in this dissertation. The proof makes use of
the following lemma, which shows two important facts about the sequence {tk}≥0

generated by Algorithm 4. We include the proofs of the lemma and proposition
for completeness.

Lemma 2.11. Let the sequence {tk}≥0 be defined by t0 = 1 and

tk =
1

2

(
1 +

√
1 + 4t2k−1

)
, k ∈ R>0.

Then, (i) t2k−1 = t2k − tk, ∀k ≥ 1, and (ii) tk ≥
k + 2

2
, ∀k ≥ 0.

20 Chapter 2. Preliminaries: Accelerated first order methods

Proof: Claim (i) is trivial, since tk is defined as the roots of t2k− tk− t2k−1 = 0 for
all k ≥ 1. Claim (ii) is proven by induction on k. The claim is trivially satisfied
for k = 0. Suppose that the claim is satisfied for k − 1, i.e. tk−1 ≥ k+2

2 . Then,

tk =
1

2

(
1 +

√
1 + 4t2k−1

)
≥ 1

2

(
1 +

√
4t2k−1

)
=

1

2
+ tk−1 ≥

1

2
+
k + 1

2
=
k + 2

2
,

which shows that it is also satisfied for k. �

Proposition 2.12. Consider problem (2.2) and let Assumtion 2.1 hold. Let
{zk}≥0 and {yk}≥0 be the sequences generated by FISTA (Algorithm 4) for prob-

lem (2.2) starting at z0 = y0 = T f,ZR (z), where z ∈ Rnz is given. Then:

(i) f(zk)− f∗ ≤
2

(k + 1)2
‖z0 − πRΩf (z0)‖2R, ∀k ≥ 1.

(ii) ‖Gf,ZR (yk)‖R−1 ≤
4

k + 2
‖z0 − πRΩf (z0)‖R, ∀k ≥ 0.

Proof: For the sake of simplicity, we use the shorthand notations z̄0
.
= πRΩf (z0),

Gk
.
= Gf,ZR (yk), y

+
k
.
= T f,ZR (yk), δfk

.
= f(zk)− f∗, δzk

.
= zk− z̄0 and δyk

.
= yk− z̄0,

where the subscripts may change, e.g., y+
k+1

.
= T f,ZR (yk+1).

We start by proving claim (i). Particularizing inequality (2.7c) from Proposi-
tion 2.5.(i) to y0 ∈ Z ⊆ Rnz and z̄0 ∈ Ωf ⊆ Z, we obtain

f(y+
0)− f(z̄0) ≤ −1

2
‖y+

0 − z̄0‖2R +
1

2
‖y0 − z̄0‖2R.

From steps 1 and 4 of the algorithm we have z0 = y0 and z1 = y+
0 . Furthermore,

by definition of z̄0 we have f(z̄0) = f∗. Therefore we can rewrite the previous
inequality as

f(z1)− f∗ ≤ −1

2
‖z1 − z̄0‖2R +

1

2
‖z0 − z̄0‖2R ≤

1

2
‖z0 − z̄0‖2R, (2.15)

which proves claim (i) for k = 1. We now proceed to prove the claim for k ≥ 2.
From step 4 of Algorithm 4 we have

zk = y+
k−1, ∀k ≥ 1. (2.16)

Therefore, inequality (2.7b) from Proposition 2.5.(i) leads to

f(z) ≥ f(zk+1) +
1

2
‖Gk‖2R−1 − 〈Gk, yk − z〉, ∀z ∈ Z, ∀k ≥ 1.

We notice that, by construction, zk ∈ Z, ∀k ≥ 1. Thus, particularizing the
previous inequality to z = zk and to z = z̄0 ∈ Ωf ⊆ Z, we obtain the inequalities:

f(zk) ≥ f(zk+1) +
1

2
‖Gk‖2R−1 − 〈Gk, yk − zk〉, ∀k ≥ 1,

f(z̄0) ≥ f(zk+1) +
1

2
‖Gk‖2R−1 − 〈Gk, yk − z̄0〉, ∀k ≥ 1,

2.2. Accelerated first order methods 21

which can be rewritten as

δfk − δfk+1 ≥
1

2
‖Gk‖2R−1 − 〈Gk, δyk − δzk〉, ∀k ≥ 1, (2.17a)

−δfk+1 ≥
1

2
‖Gk‖2R−1 − 〈Gk, δyk〉, ∀k ≥ 1. (2.17b)

We introduce now the auxiliary nomenclature Γk defined as

Γk
.
= t2k−1δfk − t2kδfk+1, ∀k ≥ 1,

which, making use of Lemma 2.11.(i) allows us to write

Γk = (t2k − tk)δfk − t2kδfk+1 = (t2k − tk)(δfk − δfk+1)− tkδfk+1, ∀k ≥ 1. (2.18)

In view of Lemma 2.11.(ii), tk ≥ 1, ∀k ≥ 0. This implies that we can replace the
terms δfk − δfk+1 and −δfk+1 in inequality (2.18) by the lower bounds given in
inequalities (2.17). Doing so, we obtain:

Γk ≥ (t2k − tk)
(

1

2
‖Gk‖2R−1 − 〈Gk, δyk − δzk〉

)
+ tk

(
1

2
‖Gk‖2R−1 − 〈Gk, δyk〉

)
=
t2k
2
‖Gk‖2R−1 − 〈Gk, t2k(δyk − δzk) + tkδzk〉, ∀k ≥ 1. (2.19)

Step 6 of the algorithms can be rewritten as

δyk − δzk =
tk−1 − 1

tk
(δzk − δzk−1), ∀k ≥ 1,

which, introducing the notation sk
.
= δzk−1 + tk−1(δzk − δzk−1), leads to

sk − δzk = δzk−1 + tk−1(δzk − δzk−1)− δzk = (tk−1 − 1)(δzk − δzk−1)

= tk(δyk − δzk), ∀k ≥ 1. (2.20)

Using the definition of sk along with (2.20), we show that Gk can be written in
terms of sk and sk+1:

tkGk
(∗)
= tkR(yk − zk+1) = tkR(δyk − δzk+1)

= tkR(δyk − δzk + δzk − δzk+1)

= R(sk − δzk + tk(δzk − δzk+1))

= R(sk − sk+1), ∀k ≥ 1, (2.21)

where (∗) is due to (2.16). We can now keep developing (2.19) as follows

Γk ≥
1

2
‖tkGk‖2R−1 − 〈Gk, tk(sk − δzk) + tkδzk〉 =

1

2
‖tkGk‖2R−1 − 〈tkGk, sk〉

(2.21)

≥ 1

2
‖R(sk − sk+1)‖2R−1 − 〈R(sk − sk+1), sk〉

=
1

2
‖sk+1 − sk‖2R + 〈R(sk+1 − sk), sk〉

=
1

2
‖(sk+1 − sk) + sk‖2R −

1

2
‖sk‖2R =

1

2
‖sk+1‖2R −

1

2
‖sk‖2R, ∀k ≥ 1.

22 Chapter 2. Preliminaries: Accelerated first order methods

Thus, for every k ≥ 1,

Γk = t2k−1δfk − t2kδfk+1 ≥
1

2
‖sk+1‖2R −

1

2
‖sk‖2R.

Equivalently,

t2kδfk+1 +
1

2
‖sk+1‖2R ≤ t2k−1δfk +

1

2
‖sk‖2R, ∀k ≥ 1.

Since this inequality holds ∀k ≥ 1, we can apply it in a recursive way to obtain

t2kδfk+1 +
1

2
‖sk+1‖2R ≤ t20δf1 +

1

2
‖s1‖2R

= δf1 +
1

2
‖δz0 + t0(δz1 − δz0)‖2R

= δf1 +
1

2
‖z1 − z̄0‖2R

(2.15)

≤ 1

2
‖z0 − z̄0‖2R, ∀k ≥ 1.

Therefore,

t2k(f(zk+1)− f∗) +
1

2
‖sk+1‖2R ≤

1

2
‖z0 − z̄0‖2R, ∀k ≥ 1,

from where, making use of Lemma 2.11.(ii), we finally conclude that

f(zk+1)− f∗ ≤
‖z0 − z̄0‖2R

2t2k
≤

2‖z0 − z̄0‖2R
(k + 2)2

, ∀k ≥ 1.

Next, we prove claim (ii). We start by proving the claim for k = 0. From
(2.15) we derive

‖z1 − z̄0‖R ≤ ‖z0 − z̄0‖R. (2.22)

Thus

‖G(y0)‖R−1 = ‖R(y0 − y+
0)‖R−1 = ‖y0 − y+

0 ‖R = ‖z0 − z1‖R
= ‖z0 − z̄0 + z̄0 − z1‖R ≤ ‖z0 − z̄0‖R + ‖z1 − z̄0‖R
≤ 2‖z0 − z̄0‖R.

We now prove the claim for k > 0. From s1 = δz0 + t0(δz1− δz0) = z1− z̄0, along
with (2.22), we derive ‖s1‖R = ‖z1 − z̄0‖R ≤ ‖z0 − z̄0‖R, which in addition to the
following inequality that can be deduced from (2.15):

‖sk+1‖R ≤ ‖z0 − z̄0‖R, ∀k ≥ 1,

leads to
‖sk‖R ≤ ‖z0 − z̄0‖R, ∀k ≥ 1.

From here we derive, for every k ≥ 1,

‖sk+1−sk‖R ≤ ‖sk+1‖R + ‖sk‖R ≤ ‖z0−z̄0‖R + ‖z0−z̄0‖R = 2‖z0 − z̄0‖R. (2.23)

2.2. Accelerated first order methods 23

Algorithm 5: MFISTA

Require: z ∈ dom f , ε ∈ R>0

1 y0 ← z, z0 ← z, t0 ← 1, k ← 0
2 repeat
3 k ← k + 1

4 vk ← T f,ZR (yk−1)

5 tk ←
1

2

(
1 +

√
1 + 4t2k−1

)
6 zk ←

 vk if f(vk) ≤ f(zk−1)

zk−1 otherwise

7 yk ← zk +
tk−1

tk
(vk − zk) +

tk−1 − 1

tk
(zk − zk−1)

8 until ‖G(zk)‖R−1 ≤ ε
Output: z̃∗ ← zk

From (2.21) we have

Gk =
1

tk
R(sk − sk+1), ∀k ≥ 1.

Therefore, taking into account Lemma 2.11.(ii),

‖Gk‖R−1 =
1

tk
‖sk − sk+1‖R

(2.23)

≤ 2

tk
‖z0 − z̄0‖R ≤

4

k + 2
‖z0 − z̄0‖R, ∀k ≥ 1.

�

2.2.2 A monotone variant of FISTA

This section presents a monotone version of FISTA, which we label by MFISTA,
and which is presented in [42, §V.A]. FISTA is not a monotone algorithm, in that
the function values {f(zk)}≥0 generated by Algorithm 4 are not necessarily non-
increasing. However, a small adjustment can be made to it to provide a monotone
behaviour.

Algorithm 5 shows the MFISTA algorithm applied to problem (2.2) under
Assumption 2.1 for an initial point z ∈ dom(f) and an exit tolerance ε ∈ R>0.
It returns a suboptimal solution z̃∗ of problem (2.2), where the suboptimality is
determined by ε. We note that Remark 2.10 also applies to Algorithm 5.

Note that MFISTA and FISTA both require a single computation of the com-
posite gradient mapping T f,ZR (yk−1) and a few vector-vector operations (with
MFISTA requiring a few more than FISTA). The main difference between the
two, computationally speaking, is that MFISTA requires the two function evalu-
ations f(vk) and f(zk−1) at each iteration, while FISTA requires none.

The interesting aspect of MFISTA is that it shares FISTA’s convergence rate
result given in Proposition 2.12.(i), as stated in the following proposition.

24 Chapter 2. Preliminaries: Accelerated first order methods

Proposition 2.13. Consider problem (2.2) and let Assumtion 2.1 hold. Let
{zk}≥0 be the sequence generated by MFISTA (Algorithm 5) for problem (2.2)
starting at z ∈ dom(f). Then,

f(zk)− f∗ ≤
2

(k + 1)2
‖z0 − πRΩf (z0)‖2R, ∀k ≥ 1.

Proof: The proof of this proposition requires modifications to the proof given for
FISTA (see Proposition 2.12). We refer the reader to [42] for its proof.

2.3 Conclusions

In this chapter we have presented some well known FOMs and AFOMs. As we
discussed previously, the popularity of these methods has increased in recent years
do to the rising number of applications that deal with large optimization problems.
In this case, even though FOMs typically require more iterations to solve than
methods that make use of the Hessian of the optimization problem, their lower
computational cost per iteration may make them a more suitable choice.

However, these methods are not without issue. In addition to the fact that
they may require a large number of iterations to converge, there are other aspects
that have drawn the attention of the scientific community. One of the main chal-
lenges is the study and improvement of their theoretical and practical convergence
properties. As an example, numerous results address the problem of selecting the
penalty parameter of ADMM [22, 43, 44].

In the following chapter we will address one of these challenges: improvements
of the convergence of AFOMs related to the undesirable oscillating behaviour that
they display when close to the optimal solution.

25

Chapter 3

Restart schemes for accelerated
first order methods

One of the drawbacks of accelerated first order methods is that they may suffer
from undesirable oscillatory behavior which slows down their convergence [45].
The intuitive reason behind this is that AFMOs can be thought of as momentum
driven, in the sense that each iterations depends on the previous ones with an
added momentum that is increased over time. This momentum, coupled with the
fact that most AFOMs are non-monotone in the objective function value, leads to
the appearance, in many applications, of a periodic oscillation when close to the
optimal solution. To illustrate this issue, let us take a look at a simple example.

Example 3.1. Consider the quadratic programming (QP) problem

min
z∈R2
{f(z)

.
=

1

2
z>Hz + q>z}, (3.1)

where H = diag(0.5, 1) and q = −(0.1, 1). It is well known that the solution of
this problem is given by z∗ = −H−1q = (0.2, 1). We solve problem (3.1) using
FISTA algorithm (Algorithm 4) with the initial condition z = −(2, 5), and taking
R = 100I2 and ε = 10−6.

Remark 3.2. We note that our selection of R in Example 3.1, while it does
satisfy Assumtion 2.1.(ii) for the given smalll-sized optimization problem, could
have easily been selected to provide a much better performance of FISTA. For
larger optimization problems, however, it is common for R to be overestimated,
since the computation of a better value is not worth the computational burden. For
the purposes of this example, it was selected this way to enhance the oscillatory
behavior of the algorithm, thus providing visually obvious oscillations. We remark
that the oscillatory behavior would be present, in a greater or lesser extent, when
solving most optimization problems if the exit tolerance is sufficiently small. In
Section 3.3 we show examples with larger-sized optimization problems.

26 Chapter 3. Restart schemes for accelerated first order methods

-0.5 0 0.5 1
0

0.5

1

1.5

2

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.1: Example 3.1. FISTA without a restart scheme.

Figure 3.1 shows the result of solving Example 3.1 using FISTA (Algorithm 4).
Figure 3.1a shows the (incomplete) trajectory of the iterates zk produced by
FISTA, whereas Figure 3.1b shows the difference f(zk) − f∗ in a logarithmic
scale. Notice that during the initial iterations f(zk) is monotonically converging
towards the optimal solution, as can be seen in Figure 3.1b. However, it soon be-
comes non-monotone with the appearance of the oscillations. The general trend
still converges towards the optimal solution, but at a slower rate. The algorithm
converged after 853 iterations to the given tolerance.

This issue can be addressed by means of a restart scheme. Intuitively, a restart
scheme is a procedure in which an iterative method is stopped when a certain
condition, which we label the restart condition, is met, and is then restarted
using the last value of the iterates as the new initial condition. This process
continues until a terminal exit condition is satisfied.

In the context of AFOMs, and as a more formal description of a restart scheme,
we consider the following. Let A be a non-specific AFOM that starts at a given
initial point z0, and generates a sequence {zk}≥0 that converges towards the opti-
mal solution z∗ of the optimization problem as k →∞. The algorithm terminates
at a finite iterate kout when a certain condition Ec is met. In a non-restarted
paradigm, this restart condition will be a certificate for the degree of suboptimal-
ity of zout

.
= zkout . For instance, the exit condition of FISTA (Algorithm 4) is

given by

Ec(zk) =

{
true if ‖G(zk)‖R−1 ≤ ε,
false otherwise,

where ε ∈ R>0 is the given exit tolerance. The exit condition Ec is therefore
a map to {true, false} in relation to the current state of the algorithm. If the
exit condition Ec is evaluated to true, then the algorithm terminates, returning
zout ← zk and kout ← k. We will write this as [zout, kout]← A(z, Ec).

A restarted paradigm follows the procedure shown in Algorithm 6. The pro-
cedure uses an AFOM algorithm A; an initial condition r0 ∈ C ⊆ Rnz , where
C will depend on the algorithm A; a restart condition Ec; and a terminal exit

3.1. A brief review of the literature 27

Algorithm 6: General restart procedure for AFOMs.

Require: r0 ∈ C, Ec, Et
1 k ← 0, j ← 0
2 repeat
3 j ← j + 1
4 [rj , kj]← A(rj−1, Ec)
5 k ← k + kj
6 Evaluate Et;

7 until Et = true
Output: rout ← rj , jout ← j, kout ← k

condition Et. The algorithm makes successive calls to A, generating a sequence
{rj}≥0 of restart points, where j is the restart counter. At each iteration j (with
the exception of the first iteration) algorithm A is given the value it returned in
its previous call and is executed until the restart condition Ec is satisfied. The
terminal exit condition Et should be a measure of the optimality of rj , whereas
the restart condition Ec can be any condition; although, obviously, it will be cho-
sen to improve the (practical) convergence of this scheme when compared with
the non-restarted variant. The algorithm returns, in rout, the last rj provided
by A, the total number of restarts jout, and the total number kout of iterations
performed by A among all its calls. In the following, we will use the letters r and
j to refer to the restart points and restart counter, respectively, and the letters z
and k to refer to the inner iterates of A.

3.1 A brief review of the literature

Various restart schemes for AFOMs have been presented in the literature [27,
45, 46, 47, 48, 49, 50, 51], each considering a particular class of optimization
problem and with different assumptions on the knowledge (or lack thereof) of the
parameters that characterize it.

Additionally, each one derives convergence properties of their restart scheme
under certain assumptions. These convergence properties are often based on the
notion of the iteration complexity of the algorithm, which is the upper bound of
the number of iterations required to find an ε-accurate optimal solution. Typi-
cally, and unless we explicitly state otherwise, this is expressed as the number of
iterations k required to reach a suboptimal solution f(zk) satisfying

f(zk)− f∗ ≤ ε,

but other measures of suboptimality may be used.
Complexity bounds have been derived for many first order methods and their

accelerated variants. For instance, when applied to an L-smooth convex optimiza-
tion problem, the projected gradient method attains a complexityO(L/ε), whereas

28 Chapter 3. Restart schemes for accelerated first order methods

the fast projected gradient method has the much better complexity O(
√
L/ε)

[3, 26, 52]. If, in addition, the problem is µ-strongly convex, then the iteration
complexities are O (L/µ log(1/ε)) for the projected gradient method and

O

(√
L

µ
log

1

ε

)
(3.2)

for the fast projected gradient method [3, 27, 49]. The log(1/ε) term is particularly
relevant here, since it is indicative of a linear convergence rate, i.e., when the
iterates satisfy an expression of the form

f(zk)− f∗ ≤ Cρk,

for some C ∈ Z>0 and ρ ∈ (0, 1) [53, §3.1]. Furthermore, the iteration complexity
(3.2) is the optimal one for this class of optimization problems using a first order
black box oracle [3], meaning that a better iteration complexity cannot be attained
(up to a constant, that is) with a first order method that does not take advantage
of particularities of the problem structure.

One of the main questions when dealing with restart schemes is whether or
not iteration complexities can be derived; in particular, which of the above and
under what assumptions. Since restart schemes will be applied to AFOMs, we
are particularly interested in determining under what conditions (if any), does a
restart scheme attain the optimal iteration complexity (3.2).

3.1.1 Fixed-rate restart schemes

The most simple class of restart schemes are what we refer to as fixed-rate restart
schemes, in which the AFOM is restarted every time it performs a predetermined
fixed number of iterations. That is, the restart condition is given by

Ekm(k) =

{
true if k ≥ km
false otherwise,

where km ∈ Z>0 is fixed.
In [27, §5.1], a fixed-rate restart scheme is presented which considers the class

of optimization problems minz∈Z f(z), where Z ⊆ Rnz is a closed convex set
and f : Rnz → R is a µ-strongly convex and L-smooth function. By choosing
the restart rate appropriately, this restart scheme recovers the optimal iteration
complexity (3.2) for this class of optimization problem. Similar (and oftentimes
equivalent) fixed-rate restart schemes are presented in other publications, such as
in [48, §3.2], [45, §3.1].

Another particularly relevant fixed-rate restart scheme was presented in [46,
§5.2.2]. The interest of this scheme is that it proves linear convergence of the
restarted scheme for non-necessarily strongly convex optimization problems. In
particular, the paper considers the class of optimization problems

f∗ = min
z∈Z

f(z), (3.3)

3.1. A brief review of the literature 29

where Z ⊆ Rnz is a closed convex set and f : Rnz → R is a L-smooth convex func-
tion satisfying the following condition, known as the quadratic functional growth
condition (see [46, Definition 4]), for some µ > 0.

Definition 3.3 (Quadratic functional growth). Consider problem (3.3), where
Z ⊆ Rnz is a closed convex set and f : Rnz → R, and assume that its optimal set
Ωf is nonempty and that f∗ is finite. We say that f has a quadratic functional
growth on Z if there exists a constant µ ∈ R>0 such that

f(z)− f∗ ≥ µ

2
‖z − πΩf

(z)‖22, z ∈ Z. (3.4)

Remark 3.4. Inequality (3.4) is satisfied, at least locally, for a large class of not
necessarily strongly convex nor strictly convex functions [46, 54]. We note that it
is always satisfied if f is strongly convex.

The scheme presented in [46, §5.2.2] can be implemented in two different ways.
The first is by performing the fixed-rate restart given by

Ek∗(k) =

{
true if k ≥ k∗,
false otherwise,

where

k∗ =

⌈
2e

√
L

µ

⌉
.

The second alternative is to restart A whenever the following restart condition
E∗f : Rnz → {true, false} is satisfied:

E∗f (zk) =

 true if f(zk)− f∗ ≤
f(z0)− f∗

e2
,

false otherwise.
(3.5)

We note that this second approach, while equivalent to the first in the sense that
the same convergence results are obtained, is not (strictly speaking) a fixed-rate
restart scheme.

There are two main problems with fixed-rate restart schemes. First, they re-
quire knowledge of parameters that are not typically known beforehand or that are
often computationally expensive to compute, such as the parameters that char-
acterize the smoothness, the strong convexity, the quadratic functional growth or
the optimum value f∗. Second, the restart rate is derived from global parameters
of the optimization problem, and may thus result in an inappropriate restart rate
in better conditioned regions [45, §3.1].

Example 3.5. As an example of the use of a fixed-rate restart scheme, Figure 3.2
shows the use of the restart scheme from [46, §5.2.2] using the exit condition (3.5)
applied to FISTA to solve Example 3.1, along with the result of the non-restarted

30 Chapter 3. Restart schemes for accelerated first order methods

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.2: Example 3.1. FISTA with the fixed-rate restart scheme from [46, §5.2.2]. The
restarted version is depicted in red. The non-restarted variant is depicted in blue. The
red circles in (a) depict each of the iterates zk. The black crosses depict each of the restart
points rj .

variant of FISTA. The terminal exit condition was taken as the exit condition of
(non-restarted) FISTA (step 7 of Algorithm 4) with the exit tolerance ε given in
Example 3.1. The total number of FISTA iterations is kout = 415 and the number
of restarts is jout = 13.

3.1.2 Adaptive restart schemes

The second main class of restart schemes are commonly referred to as adaptive
restart schemes, because they either adapt the restart rate online or directly use
a restart condition that serves to evaluate the performance of the AFOM.

In [45], two simple and well-known adaptive restart schemes are presented;
which we label as the objective function value scheme, and the gradient alignment
scheme. It is shown that they both preserve the optimal convergence rate of the
fast gradient method for smooth strongly convex optimization problems, provided
that the objective function is quadratic.

The objective function value restart scheme performs a restart of the AFOM
each time the current iterate does not decrease with respect to the one of the
previous iterate. That is, the restart condition Ef : Rnz × Rnz → {true, false} of
this scheme is given by

Ef (zk, zk−1) =

{
true if f(zk)− f(zk−1) > 0

false otherwise.
(3.6)

The idea behind this restart scheme is very intuitive: the oscillations that appear
in AFOMs can be viewed as the algorithm “overshooting” the optimal value.
Thus, one of the simplest indicators of the presence of the oscillations is an increase
of the objective function value.

Example 3.6. Figure 3.3 shows the application of the objective function value
restart scheme using FISTA, alongside the non-restarted variant, to solve Exam-

3.1. A brief review of the literature 31

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.3: Example 3.1. FISTA with the objective function value restart scheme. The
restarted version is depicted in red. The non-restarted variant is depicted in blue. The
red circles in (a) depict each of the iterates zk. The black crosses depict each of the restart
points rj .

ple 3.1. The terminal exit condition was taken as the exit condition of (non-
restarted) FISTA (step 7 of Algorithm 4) with the exit tolerance ε given in Ex-
ample 3.1. The total number of FISTA iterations is kout = 246 and the number
of restarts is jout = 5.

In its simplest form, the gradient alignment restart scheme considers the class
of non-constrained optimization problems minz∈Rnz f(z) with a continuously dif-
ferentiable objective function f : Rnz → R. The scheme performs a restart of the
AFOM each time the direction in which the iterates are “moving”, i.e., zk− zk−1,
is not aligned with the negative of the gradient ∇f(zk−1) of the objective function.
The idea is to restart the AFOM whenever the iterates are moving in a “bad”
direction, as measured by the negative of the gradient.

The extension of this scheme to constrained optimization problems and/or to
problems with non-differentiable objective functions is to substitute the gradient
∇f(·) with whichever gradient operator is used by the AFOM (the projected
gradient, the projected subgradient, the proximal operator, the composite gradient
mapping, etc.). Thus, the restart condition Eg : Rnz × Rnz × Rnz → {true, false}
of this scheme can be expressed as

Eg(zk, zk−1, y; g) =

{
true if 〈g(y), zk − zk−1〉 > 0

false otherwise,
(3.7)

where g : Rnz → Rnz is the gradient operator used by the AFOM, and y is the
point where the gradient operator is evaluated. By default, we consider g ≡ Gf,ZR ,

where Gf,ZR is the composite gradient mapping operator given by Definition 2.3.

In this case, we simply label Ec(zk, zk−1, y;Gf,ZR) by Ec(zk, zk−1, y).

Remark 3.7. The most straightforward choice of y in the restart condition (3.7)
is to take y = zk−1, but this may not always be the case. In fact, to avoid

32 Chapter 3. Restart schemes for accelerated first order methods

-0.5 0 0.5 1
0

0.5

1

1.5

2

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.4: Example 3.1. FISTA with the gradient alignment restart scheme. The
restarted version is depicted in red. The non-restarted variant is depicted in blue. The
red circles in (a) depict each of the iterates zk. The black crosses depict each of the restart
points rj .

additional computations, the best choice is to choose y as whichever point is used
in the AFOM to evaluate the gradient operator g(·) at. For instance, in FISTA
(Algorithm 4), where g(y) = G(y) = R(y − T(y)), the best choice is to take y =
yk−1, since T(yk−1) is evaluated in step 4.

As stated in [45, §3.2], this scheme has two advantages when compared to
the objective function value restart scheme. First, it is more numerically stable,
since the gradient will tend to a fixed point as we approach the optimum, whereas
f(zk)− f(zk−1) will tend to present numerical issues due to cancellation errors as
f(zk) approaches f∗. Second, the evaluation of its restart condition requires no
additional computations, since g(y) is evaluated in AFOMs (see Remark 3.7).

Example 3.8. Figure 3.4 shows the result of applying the gradient alignment
restart scheme to Example 3.1 using FISTA, along with the result of the non-
restarted variant of FISTA. The terminal exit condition was taken as the exit
condition of (non-restarted) FISTA (step 7 of Algorithm 4) with the exit tol-
erance ε given in Example 3.1. We apply the exit condition Eg(zk, zk−1, yk−1),
where yk−1 is chosen as the point in which the composite gradient mapping is
evaluated because T(yk−1) is computed in step 4 of Algorithm 4, thus avoiding
additional computations (see Remark 3.7). In this case, since the QP problem is
unconstrained, the composite gradient mapping G of FISTA is simply the gradi-
ent ∇f . The total number of FISTA iterations is kout = 221 and the number of
restarts is jout = 5.

In [47], the restart schemes Ef and Eg from [45] are applied to the class of
composite optimization problems

min
z∈Rnz

Ψ(z) + h(z), (3.8)

where Ψ ∈ Γ(Rnz) and h : Rnz → R is a smooth convex function. Additionally,
they present a novel variation of the restart schemes proposed in [45]. Finally, they

3.1. A brief review of the literature 33

present some numerical results that indicate that these restart methods provide
good practical convergence for this class of composite optimization problems, even
though, for the most part, they lack theoretical linear convergence rates.

In [51], the adaptive restart schemes of [45] are applied to the optimized gra-
dient method [55], as well as a similar, but novel, adaptive restart scheme for this
FOM. However, no convergence rates nor iteration complexities are derived.

In [49], a restart scheme for the accelerated proximal gradient method is pre-
sented. The authors extend the results from [27, §5.3] by presenting a scheme with
the same iteration complexity but that requires less computations of the gradient
operator. The scheme considers the class composite optimization problems (3.8)
where Ψ ∈ Γ(Rnz) and h : Rnz → R is L-smooth and µ-strongly convex. The pro-
posed scheme starts with an estimate µ̂ of µ, which is hopefully a lower bound,
i.e. µ̂ ≤ µ. It then runs the accelerated proximal gradient method, where L is
determined by line search, using µ̂ and performs checks to determine if it is indeed
a lower bound of µ. It it is determined that µ̂ does not satisfy µ̂ ≤ µ, then it is
decreased and the algorithm starts from the previous restart point, i.e., the iter-
ates obtained from the last call to the accelerated proximal gradient method are
discarded. Even though this may result in the execution of “useless” iterations,
linear convergence is still derived. Additionally, they adapt the scheme to the case
of high-dimensional Lasso problems, which are not generally strongly convex over
the entire domain of h.

In [50], a restart scheme that improves upon the results of [27, §5.3] and
[49] is presented, wherein an (improved) iteration complexity (3.2) is derived for
the same class of optimization problems but where h only needs to satisfy the
quadratic functional growth condition with parameter µ (Definition 3.3), instead
of it needing to be strongly convex. The proposed approach performs calls to
the AFOM with a fixed number of iterations that is determined by estimating
the parameter µ. After each call to the AFOM, it is determined whether the
estimate was correct, and adjusted if it is not. An additional improvement of this
scheme, when compared with the ones in [27, §5.3] and [49], is that no iterates of
the AFOM are “wasted” if the estimation of µ is changed. Finally, the authors
in [50] show that a fixed-rate restart scheme for AFOMs applied to the above
class of optimization problem is linearly convergent (in the sense described in [50,
Corollary 3]), for any positive choice of the restart rate. However, the optimal
iteration complexity (3.2) is only recovered if the problem parameters are known.

34 Chapter 3. Restart schemes for accelerated first order methods

3.2 Implementable restart schemes with linear con-
vergence

This section presents three novel restart schemes for AFOMs. Section 3.2.1
presents a restart scheme for FISTA that is based on monitoring the evolution
of the objective function values, whereas Section 3.2.2 presents a restart scheme
for FISTA that is based on monitoring the composite gradient mapping. Both
schemes consider the class of optimization problems (2.2) under Assumtion 2.1 and
under the satisfaction of a weighted quadratic functional growth. Under these as-
sumptions, linear convergence of the restarted FISTA algorithm is recovered. The
restart scheme from Section 3.2.1 is then extended to a wider class of AFOMs in
Section 3.2.3.

3.2.1 A restart scheme for FISTA

This section presents a restart scheme, originally presented in [5], for FISTA (Al-
gorithm 4) that exhibits linear convergence for the class of optimization problems

f∗ = min
z∈Z
{f(z)

.
= Ψ(z) + h(z)} , (3.9)

under Assumtion 2.1 and the following assumption:

Assumption 3.9 (Weighted quadratic functional growth). Problem (3.9) sat-
isfies the following weighted quadratic functional growth condition (see Defini-
tion 3.3) with parameter µ for the R-weighted Euclidean norm ‖ · ‖R:

f(z)− f∗ ≥ µ

2
‖z − πRΩf (z)‖2R, ∀z ∈ Z. (3.10)

Remark 3.10. We note that Assumtion 3.21 is equivalent to the quadratic func-
tional growth condition (Definition 3.3) in the event that h is L-smooth in the
sense of Definition N.20 instead of being smooth in the sense of Assumtion 2.1.(ii).

The proposed restart scheme is based on the following proposition, which
presents some novel results that further characterize the convergence properties
of FISTA under the above quadratic functional growth assumption.

Proposition 3.11. Consider problem (3.9) under Assumtions 2.1 and 3.9. Then,
the iterates of FISTA (Algorithm 4) satisfy:

(i) f(zk)− f∗ ≤
4

µ(k + 1)2
(f(z0)− f∗), ∀k ≥ 1.

(ii) f(zk) ≤ f(z0), ∀k ≥
⌊

2√
µ

⌋
.

(iii) f(zk)− f∗ ≤
f(z0)− f(zk)

e
, ∀k ≥

⌊
2
√
e+1√
µ

⌋
.

3.2. Implementable restart schemes with linear convergence 35

Proof: For convenience, we denote z̄0
.
= πRΩf (z0). We recall that, from Proposi-

tion 2.12.(i), we have that

f(zk)− f∗ ≤
2

(k + 1)2
‖z0 − z̄0‖2R, ∀k ≥ 1,

which along (3.10) leads to

f(zk)− f∗ ≤
4

µ(k + 1)2
(f(z0)− f∗), ∀k ≥ 1,

where the fact that zk ∈ Z follows from step 4 of Algorithm 4 and the definition
of T (Definition 2.3). This proves claim (i). Denote

αk
.
=

4

µ(k + 1)2
, ∀k ≥ 1,

and suppose that k ≥
⌊

2√
µ

⌋
. Then,

αk =
4

µ(k + 1)2
≤ 4

µ

(⌊
2
√
µ

⌋
+ 1

)2 <
4

µ

(
2
√
µ

)2 = 1.

Therefore, αk ∈ (0, 1), ∀k ≥
⌊

2√
µ

⌋
, which along with claim (i), leads to

f(zk)− f∗ ≤ f(z0)− f∗, ∀k ≥
⌊

2
√
µ

⌋
,

thus proving claim (ii). Next, in view of claim (i), we have

f(zk)− f∗ ≤ αk(f(z0)− f∗) = αk(f(z0)− f(zk) + f(zk)− f∗)
= αk(f(z0)− f(zk)) + αk(f(zk)− f∗).

Therefore
(1− αk)(f(zk)− f∗) ≤ αk(f(z0)− f(zk)). (3.11)

Suppose now that k ≥
⌊

2
√
e+1√
µ

⌋
. Note that this implies that k ≥

⌊
2√
µ

⌋
, which in

turn implies that 1 − αk > 0. Therefore, we can divide both terms of inequality
(3.11) to obtain

f(zk)− f∗ ≤
αk

1− αk
(f(z0)− f(zk)) =

4
µ(k+1)2

1− 4
µ(k+1)2

(f(z0)− f(zk))

=
4(f(z0)− f(zk))

µ(k + 1)2 − 4
≤ 4(f(z0)− f(zk))

µ(
⌊

2
√
e+1√
µ

⌋
+ 1)2 − 4

≤ 4(f(z0)− f(zk))

µ(2
√
e+1√
µ)2 − 4

=
4(f(z0)− f(zk))

4(e+ 1)− 4
=
f(z0)− f(zk)

e
,

which proves claim (iii). �

36 Chapter 3. Restart schemes for accelerated first order methods

Algorithm 7: Restart FISTA based on objective function values

Require: r0 ∈ Z, ε > 0
1 n0 ← 0, j ← 1 k ← 0

2 [r1, n1]← FISTA
(
r0, E

e
f (nj−1)

)
3 repeat
4 j ← j + 1

5 [rj , nj]← FISTA
(
rj−1, nj−1, E

e
f (nj−1)

)
6 k ← k + nj

7 if f(rj−1)− f(rj) >
f(rj−2)− f(rj−1)

e
then

8 nj ← 2nj−1

9 end if

10 until ‖G(rj)‖R−1 ≤ ε
Output: rout ← rj , jout ← j, kout ← k

Proposition 3.11.(iii) tells us that there exists a finite number of iterations after
which the distance to the optimal value f∗ is smaller than a fraction of the distance

covered from z0 to the current iterate. Furthermore, notice that
⌊

2
√
e+1√
µ

⌋
>
⌊

2√
µ

⌋
.

Therefore, if k ≥
⌊

2
√
e+1√
µ

⌋
, not only is Proposition 3.11.(iii) satisfied, but also,

from Proposition 3.11.(ii), we have that f(z0) − f(zk) ≥ 0. Therefore, a fixed-

rate restart scheme with the rate set to km =
⌊

2
√
e+1√
µ

⌋
>
⌊

2√
µ

⌋
would provide

linear convergence. However, this restart scheme would suffer from the same
issues of other fixed-rate restart schemes: the value of µ would be required for
its implementation, and the use of the global µ might lead to a worse practical
convergence than if local information was used instead (see Section 3.1.1).

Remark 3.12. We note that claims (ii) and (iii) of Proposition 3.11 may be
satisfied for values of k smaller that the given bounds. That is, the proposition
states that the satisfaction of both inequalities is guaranteed if k is larger or equal
to the given bounds, but they may also be satisfied for smaller values of k.

We propose the restart scheme shown in Algorithm 7, which uses the restart
condition Eef : Rnz × Rnz × Z>0 → {true, false} given by

Eef (zk, zm, k;n) = true ⇐⇒

f(zm)− f(zk) ≤

f(z0)− f(zm)

e
(3.12a)

f(zk) ≤ f(z0) (3.12b)

k ≥ n, (3.12c)

where m =
⌊
k
2

⌋
+1. For convenience, we drop the (zk, zm, k) notation, and instead

simply write Eef (n). Starting from an initial point r0 ∈ Z, and for a given exit
tolerance ε ∈ R>0, Algorithm 7 makes successive calls to FISTA using the above

3.2. Implementable restart schemes with linear convergence 37

exit condition. The algorithm returns an ε-accurate solution rout of problem (3.9),
in terms of ‖G(rout)‖R−1 ≤ ε (which is a valid condition for suboptimality of rout,
as shown in Proposition 2.6); the total number of restart iterations jout; and the
total number of iterations kout performed by FISTA.

The idea behind this restart scheme is to use an approximation of claims (ii)
and (iii) of Proposition 3.11, where for claim (iii) zk is used as our best estimation
of z∗ and zm is the middle point of the sequence of iterates generated by the current
call to FISTA. Therefore, the restart condition is only true if (i) the current iterate
zk of FISTA is no worse, in terms of its objective function value, than the current
initial condition z0, and (ii) if the amount that the objective function value has
decreased from z0 to zm is e times smaller than the amount decreased from zm to
zk. That is, (3.12a) serves as a way of detecting a degradation of the performance
of FISTA, whereupon the condition is satisfied if the second half of the iterates are
providing significantly less benefits that the first half, measured in terms of the
decrease obtained in the objective function value; whereas (3.12b) is guaranteeing
that, at the very least, the new restart point is no worse than the previous one.

Remark 3.13. In fact, the imposition of (3.12b) guarantees that f(rj−1) > f(rj)
provided that rj−1 6= z∗. This follows from noting that at every restart iteration
j of Algorithm 7, step 1 of Algorithm 4 performs the assignment z0 ← T(rj−1).
Thus, in view of Proposition 2.5.(ii) and the use of the exit condition (3.12b), we
have that f(rj−1) > f(z0) ≥ f(zout) = f(rj) if rj−1 6= z∗. Therefore, in general,
a net improvement is attained at every iteration j.

The problem is that, due to the non-monotone nature of FISTA, the amounts
f(zm)− f(zk) and f(z0)− f(zm) are not necessarily positive. However, we know
from Proposition 3.11 that this will not the case if k is sufficiently large. For this
reason, the restart condition also includes a minimum number of iterations n that
is adapted between calls to FISTA. In particular, at each iterate j of Algorithm 7,
we set the minimum number of iterations of FISTA as nj , which is generally taken
as the number of iterations performed by FISTA in iteration j− 1. However, this
minimum number of iterations is doubled if the condition

f(rj−1)− f(rj) >
f(rj−2)− f(rj−1)

e
(3.13)

is satisfied, which, once again, is an approximation of Proposition 3.11.(iii) but
this time between restart points. The idea is that nj will eventually converge
to a number of iterations in which claims (ii) and (iii) of Proposition 3.11 are
being satisfied by the outputs of FISTA obtained at each iteration j. If these
conditions are being satisfied for the current value of nj , then it is not increased.
However, if we detect that they are not satisfied, either because FISTA exits with
a number of iterations nj larger than nj−1 or because condition (3.13) is satisfied,
then n is increased. The use of nj can be viewed as a way of finding the optimal
restart rate, in the sense of the rate used by the fixed-rate restart schemes (see

38 Chapter 3. Restart schemes for accelerated first order methods

-0.5 0 0.5 1
0

0.5

1

1.5

2

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.5: In red, Algorithm 7 applied to Example 3.1. The non-restarted FISTA is
depicted in blue. The red circles in (a) depict each of the iterates zk. The black crosses
depict each of the restart points rj .

Section 3.1.1). However, we do not use global information. Instead, if the iterates
a providing a good performance, then we do not increase nj artificially.

The main drawbacks of this restart scheme are that (i) it requires evaluating
the objective function value at every iteration of FISTA, which is not necessary
in the non-restarted FISTA algorithm, and (ii) the evaluation of (3.12a) requires
storing the historic of the past objective function values for the current call to
FISTA. This latter issue is not a significant problem in practical terms, since
the use of a maximum desired number of iterations in a real implementation of
iterative algorithms is commonplace. Thus, memory can be allocated for storing
the past values of the objective function values even if the value of µ is unknown.

Example 3.14. Figure 3.5 shows the use of Algorithm 7 to solve Example 3.1
along with the result of the non-restarted FISTA algorithm. The total number of
FISTA iterations is kout = 237 and the number of restarts is jout = 8.

The main properties of Algorithm 7 are summarized in the following theorem.
Claim (i) simply provides an upper bound of ‖G(rj−1)‖R−1 in terms of the differ-
ence f(rj−1)− f(rj), which due to (3.12b) is non-negative; claim (ii) provides an
upper bound to the value of nj ; and claim (iii) provides the iteration complex-
ity of the algorithm to reach an ε-accurate solution of problem (3.9) in terms of
‖G(rout)‖R−1 ≤ ε. Note that the iteration complexity is given by

O

(
1
√
µ

log
1

ε

)
, (3.14)

which we note is optimal in the sense discussed in Section 3.1 and shown in (3.2).

Remark 3.15. The reader may have noted that the Lipschitz constant L does
not seem to be present in the iteration complexity (3.14), as is the case of the
iteration complexities provided in Section 3.1 for the AFOMs. However, this is
not the case, since parameter R effectively accounts for L (see Remark 2.2). If we
were to rewrite the characterization of the smoothness of h using the L-smoothness

3.2. Implementable restart schemes with linear convergence 39

condition given in Definition N.20 instead of using (2.3), then
√
L would appear

in (3.14).

Theorem 3.16 (Convergence properties of Algorithm 7). Consider problem (3.9)
under Assumtions 2.1 and 3.9. Then, the sequences {rj} and {nj} generated by
Algorithm 7 and its output kout satisfy:

(i)
1

2
‖Gf,ZR (rj−1)‖2R−1 ≤ f(rj−1)− f(rj), ∀j ≥ 1.

(ii) nj ≤
4
√
e+ 1
√
µ

, ∀j ≥ 0.

(iii) The total number of iterations of FISTA required to attain the exit condition

‖Gf,ZR (rout)‖R−1 ≤ ε is upper bounded by

kout ≤
16
√
µ

⌈
log

(
1 +

2(f(r0)− f∗)
ε2

)⌉
.

Proof: By construction, rj−1 ∈ Z, for all j ≥ 1. Therefore, we have from Propo-
sition 2.5.(ii), that

1

2
‖G(rj−1)‖2R−1 ≤ f(rj−1)− f(T(rj−1)), ∀j ≥ 1. (3.15)

We also notice that rj is computed invoking FISTA algorithm using rj−1 as ini-
tial condition (z = rj−1). That is, [rj , nj] ← FISTA(rj−1, E

e
f (nj−1)). Since

the output value f(rj) is forced to be no larger than the one corresponding to
z0 = T(z) = T(rj−1), we have f(rj) ≤ f(T(rj−1)). Therefore, we obtain from in-
equality (3.15) that

1

2
‖G(rj−1)‖2R−1 ≤ f(rj−1)− f(T(rj−1)) ≤ f(rj−1)− f(rj), ∀j ≥ 1,

which proves claim (i).

Let us now prove that if nj−1 ≤ 4
√
e+1√
µ , then the value nj obtained from

[rj , nj]← FISTA(rj−1, E
e
f (nj−1)), also satisfies

nj ≤
4
√
e+ 1
√
µ

. (3.16)

Let us denote m̄
.
=
⌊

2
√
e+1√
µ

⌋
. Since m̄ ≥

⌊
2
√
e+1√
µ

⌋
, we infer, from Proposi-

tion 3.11.(iii) that

f(zm̄)− f∗ ≤ f(z0)− f(zm̄)

e
.

From this inequality, we obtain

f(zm̄)− f(zk) ≤ f(zm̄)− f∗ ≤ f(z0)− f(zm̄)

e
.

40 Chapter 3. Restart schemes for accelerated first order methods

Therefore, the restart condition (3.12a) is satisfied for m = m̄. Since m =
⌊
k
2

⌋
+ 1

we have m ≥ k
2 . This means that for m = m̄, the corresponding value for k is no

larger than

k ≤ 2m̄ = 2

⌊
2
√
e+ 1
√
µ

⌋
≤ 4(

√
e+ 1)
√
µ

.

We also notice that, in view of Proposition 3.11.(ii), the restart condition (3.12b)

is satisfied for every k ≥
⌊

2√
µ

⌋
. Therefore, nj−1 ≤ 4

√
e+1√
µ implies that nj , obtained

from [rj , nj]← FISTA(rj−1, E
e
f (nj−1)), also satisfies (3.16).

Making use of the previous discussion, we now prove claim (ii) by reduction
to the absurd. Suppose that

nj >
4
√
e+ 1
√
µ

. (3.17)

Because of the previous discussion, an taking into account that n0 = 0, inequality
(3.17) could only be attained by the doubling step nj = 2nj−1 of the algorithm
(see step 8). That is, inequality 3.17 is possible only if there is s ∈ Z>0 > 1 such

that ns−1 >
2
√
e+1√
µ and

f(rs−1)− f(rs) >
f(rs−2)− f(rs−1)

e
.

Since [rs−1, ns−1]← FISTA(rs−2, E
e
f (ns−2)), we have that rs−1 is obtained from

rs−2 applying ns−1 >
2
√
e+1√
µ iterations of FISTA algorithm. However, we have

from Proposition 3.11.(iii) that this number of iterations implies

f(rs−1)− f(rs) ≤ f(rs−1)− f∗ ≤ f(T(rs−2))− f(rs−1)

e
.

From Proposition 2.5.(ii) we also have f(T(rs−2)) ≤ f(rs−2), which when com-
bined with the above inequality leads to

f(rs−1)− f(rs) ≤
f(rs−2)− f(rs−1)

e
.

That is, there is no doubling step if ns−1 ≥ 2
√
e+1√
µ , which proves claim (ii).

We now show that there is a doubling step (i.e., step 8 is executed) at least
every

T
.
=

⌈
log

(
1 +

2(f(r0)− f∗)
ε2

)⌉
iterations of the algorithm. Suppose that there is no doubling step from iteration
j = s+ 1 to j = s+ T , where s ∈ Z>0 ≥ 1. That is,

f(rj−1)− f(rj) ≤
f(rj−2)− f(rj−1)

e
, ∀j ∈ [s+ 1, s+ T].

3.2. Implementable restart schemes with linear convergence 41

From this, and claim (i) of the theorem, we obtain the following sequence of
inequalities:

1

2
‖G(rs+T−1)‖2R−1 ≤ f(rs+T−1)− f(rs+T) ≤ f(rs+T−2)− f(rs+T−1)

e

≤
(

1

e

)T
(f(rs−1)− f(rs)) ≤

(
1

e

)T
(f(rs−1)− f∗)

≤
(

1

e

)T
(f(r0)− f∗) =

(
1

e

)⌈log
(

1+
2(f(r0)−f

∗)
ε2

)⌉
(f(r0)− f∗)

≤
(

1

e

)log
(

1+
2(f(r0)−f

∗)
ε2

)
(f(r0)− f∗)

=

 1

1 +
2(f(r0)− f∗)

ε2

 (f(r0)− f∗) ≤ ε2

2
.

We conclude that T consecutive iterations without doubling step implies that the
exit condition ‖G(rs+T−1)‖R−1 ≤ ε is satisfied. Therefore, there must be at least
one doubling step every T iterations. This implies that there exist j ∈ [s+1, s+T]
such that

f(rj−1)− f(rj) >
f(rj−2)− f(rj−1)

e
,

which, in view of step 7, implies that nj = 2nj−1. Moreover, since {nj} is a
non-decreasing sequence, we get ns+T ≥ nj = 2nj−1 ≥ 2ns, ∀s ≥ 1. That is,

ns ≤
ns+T

2
, ∀s ≥ 1. (3.18)

Let us rewrite j as j = m + nT , where 0 ≤ m < T and n ≥ 0. From the non
decreasing nature of {nj}, we have that

j∑
i=0

ni =

m+nT∑
i=0

ni =

m∑
i=0

ni +

n−1∑
`=0

T∑
i=1

nm+i+`T ≤ Tnm + T

n∑
`=1

nm+`T

= T

n∑
`=0

nm+`T = T

n∑
`=0

nj−`T . (3.19)

Also, from inequality (3.18), we have nj−T ≤ nj
2 . Using this inequality in a

recursive manner we obtain

nj−`T ≤
(

1

2

)`
nj , ` = 0, . . . , n,

which along with (3.19) leads to

j∑
i=0

ni ≤ T
n∑
`=0

(
1

2

)`
nj ≤ T

∞∑
`=0

(
1

2

)`
nj = 2Tnj .

42 Chapter 3. Restart schemes for accelerated first order methods

Algorithm 8: Gradient Based Restart FISTA

Require: r0 ∈ Rn, ε ∈ R>0

1 y0 ← T(r0), z0 ← T(r0), t0 ← 1, k ← 0 j ← 0, ρ0 ← ‖G(r0)‖R−1

2 repeat
3 k ← k + 1
4 zk ← T(yk−1)

5 tk ←
1

2

(
1 +

√
1 + 4t2k−1

)
6 yk ← zk +

tk−1 − 1

tk
(zk − zk−1)

7 if ‖G(yk)‖R−1 ≤
ρj
e

then

8 j ← j + 1
9 rj ← yk

10 ρj ← ‖G(rj)‖R−1

11 yk ← T(rj), zk ← T(rj), tk ← 1

12 end if

13 until ρj ≤ ε
Output: zout ← zk, jout ← j, kout ← k

By now making the summation up to j = jout, claim (iii) now directly follows

by noting that claim (ii) states that nj ≤ 4
√
e+1√
µ , ∀j ≥ 0, and by noting that

kout =
∑jout

j=0 nj if no doubling steps (step 8 of the algorithm) are performed and

kout ≤
∑jout

j=0 nj otherwise. �

3.2.2 A gradient based restart scheme for FISTA

This section presents a computationally cheap and simple to implement restart
scheme for FISTA (Algorithm 4) that was originally presented in [6] and that ex-
hibits linear convergence when applied to the class of optimization problems (3.9)
under Assumtions 2.1 and 3.9. The scheme is based on monitoring the evolution
of the composite gradient mapping G during the iterates of FISTA through the
use of the exit condition Eeg : Rnz → {true, false} given by

Eeg(yk) =

 true if ‖G(yk)‖R−1 ≤
1

e
‖G(z)‖R−1

false otherwise,
(3.20)

where yk is the iterate of FISTA computed at step 6 of Algorithm 4. That is,
FISTA is restarted every time the value of the composite gradient mapping is
reduced by e with respect to the one corresponding to the initial condition.

3.2. Implementable restart schemes with linear convergence 43

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.6: In red, Algorithm 8 applied to Example 3.1. The non-restarted FISTA is
depicted in blue. The red circles in (a) depict each of the iterates zk. The black crosses
depict each of the restart points rj .

However, there is a minor difference with the implementation of this restart
scheme that does not fit within the general restart scheme shown in Algorithm
6, which is that FISTA is not restarted using the last point zk that it generated,
but instead the last yk is used. Due to this small difference, we now present the
complete pseudocode of this restart scheme.

For an initial starting point r0 ∈ Rnz , and an exit tolerance ε ∈ R>0, Algo-
rithm 8 implements FISTA with the restart scheme (3.20) for solving the class of
optimization problems (3.9) under Assumtions 2.1 and 3.9. Steps 3 to 6 are the
steps of the non-restarted FISTA algorithm (see Algorithm 4), whereas steps 8 to
11 implement the restart procedure and step 7 checks the restart condition (3.20).
Notice that in step 9 the new restart point rj is not assigned zk, as would be the
case of the general restart scheme described by Algorithm 6. Instead, the current
iterate yk is used, both as the new initial condition (see step 9) as for the new
“initial” value of the gradient mapping (see step 10). The algorithm generates a
sequence ρj = ‖G(rj)‖R−1 and exits when ρj ≤ ε, i.e., when an ε-accurate solution
of problem (3.9) has been found. This solution is returned in zout, alongside the
total number of restart iterations jout and total number of FISTA iterations kout.

Example 3.17. Figure 3.6 shows the use of Algorithm 8 to solve Example 3.1
along with the result of the non-restarted FISTA algorithm. The total number of
FISTA iterations is kout = 431 and the number of restarts is jout = 14.

The convergence properties of this restart scheme are derived from the fol-
lowing proposition, which shows that, under the assumption of the quadratic
functional growth condition, ‖G(y)‖R−1 can be used to bound the distance of T(y)
to the optimal set Ωf of problem (3.9). A similar result can be found in [46, The-
orem 7]. However, our proposition can be applied to any non-necessarily feasible
point y ∈ Rnz , i.e., y need not belong to Z. Analogous results can also be found
in other publications, such as [56, 57].

44 Chapter 3. Restart schemes for accelerated first order methods

Proposition 3.18. Consider problem (3.9) under Assumtions 2.1 and 3.9 and let
Ωf be the optimal set of problem (3.9). Then,

‖T f,ZR (y)− πRΩf (T f,ZR (y))‖R ≤
1 +
√

1 + µ

µ
‖Gf,ZR (y)‖R−1 , ∀y ∈ Rnz .

Proof: To simplify the notation, let us define y+ .
= T f,ZR (y), ȳ

.
= πRΩf (y) and

ȳ+ .
= πRΩf (T f,ZR (y)). From equation (2.7a) in Proposition 2.5 we have that

f(y+)− f(z) ≤ 〈G(y), y+ − z〉+
1

2
‖G(y)‖2R−1 , ∀y ∈ Rnz , ∀z ∈ Z.

Particularizing this inequality to z = ȳ+ we obtain

f(y+)− f(ȳ+) ≤ 〈G(y), y+ − ȳ+〉+
1

2
‖G(y)‖2R−1 .

Since ȳ+ ∈ Ωf we have f(ȳ+) = f∗. Therefore, we infer from Assumtion 3.9 that

µ

2
‖y+ − ȳ+‖2R ≤ f(y+)− f∗ = f(y+)− f(ȳ+)

≤ 〈G(y), y+ − ȳ+〉+
1

2
‖G(y)‖2R−1

= 〈R−
1
2G(y), R

1
2 (y+ − ȳ+)〉+

1

2
‖G(y)‖2R−1

(∗)
≤ ‖G(y)‖R−1‖y+ − ȳ+‖R +

1

2
‖G(y)‖2R−1 ,

where in (∗) we are making use of the Cauchy-Schwarz inequality. Then, adding
1
2‖y

+ − ȳ+‖2R to both terms of the last inequality, we obtain

1

2
(µ+ 1) ‖y+ − ȳ+‖2R ≤

1

2

(
‖G(y)‖R−1 + ‖ȳ+ − ȳ‖R

)2
.

That is, √
µ+ 1‖y+ − ȳ+‖R ≤ ‖G(y)‖R−1 + ‖ȳ+ − ȳ‖R,

(
√
µ+ 1− 1)‖y+ − ȳ+‖R ≤ ‖G(y)‖R−1 ,

from where we conclude that

‖y+ − ȳ+‖R ≤
1√

1 + µ− 1
‖G(y)‖R−1 =

1 +
√
µ+ 1

µ
‖G(y)‖R−1 .

�

3.2. Implementable restart schemes with linear convergence 45

The following theorem gathers the main convergence properties of the restart
scheme presented in Algorithm 8. Claim (i) states the sublinear convergence
of {‖G(yk)‖R−1}≥0 under the quadratic functional growth assumption without
taking into account the restart procedure; claim (ii) provides an upper bound to
the number of iterations required to satisfy the restart condition (3.20) (step 7
of Algorithm 8); and claim (iii) states the linear convergence of the composite
gradient mapping under the restart procedure. Finally, claim (iii) provides the
iteration complexity.

Remark 3.19. We note that we use ‖G(rj)‖R−1 ≤ ε as the exit condition of Al-
gorithm 8 to simplify the proofs and expressions of Theorem 3.20. In a practical
setting, however, the objective is to find an ε-accurate solution in as fewer iter-
ations as possible. Therefore, the exit condition ‖G(yk−1)‖R−1 ≤ ε may be used
instead (see Remark 2.10).

Theorem 3.20 (Convergence properties of Algorithm 8). Consider problem (3.9)
under Assumtions 2.1 and 3.9. Then, the sequences generated by Algorithm 8
satisfy:

(i) ‖Gf,ZR (yk)‖R−1 ≤
4(1 +

√
µ+ 1)

µk
‖Gf,ZR (r0)‖R−1 , ∀k ≥ 1.

(ii) ‖Gf,ZR (yk)‖R−1 ≤
1

e
‖Gf,ZR (r0)‖R−1 , ∀k ≥

4e

µ
(1 +

√
µ+ 1).

(iii) Let a(µ)
.
= max

{
1,

4e(1 +
√
µ+ 1)

µ

}
. Then,

min
i=0,...,k

{‖G(yi)‖R−1 , ‖G(r0)‖R−1} ≤ e
(

1

e

)⌊ k
a(µ)

⌋
‖G(r0)‖R−1 .

(iv) The total number of iterations kout required to exit the algorithm is upper
bounded by

kout ≤ max

{
1,

4e(1 +
√
µ+ 1)

µ

}⌈
log

(
‖G(r0)‖R−1

ε

)⌉
.

Proof: Notice that, from step 1 of Algorithm 8, we have that z0 = y0 = T(r0),
which along with Proposition 3.18 implies that

‖z0 − πRΩf (z0)‖R ≤
1 +
√
µ+ 1

µ
‖G(r0)‖R−1 .

From Proposition 2.12.(ii) we also have that

‖G(yk)‖R−1 ≤
4

k + 2
‖z0 − πRΩf (z0)‖R, ∀k ≥ 0.

46 Chapter 3. Restart schemes for accelerated first order methods

Therefore, we obtain

‖G(yk)‖R−1 ≤
4

k + 2
‖z0 − πRΩf (z0)‖R ≤

4(1 +
√
µ+ 1)

(k + 2)µ
‖G(r0))‖R−1

≤ 4(1 +
√
µ+ 1)

kµ
‖G(r0)‖R−1 , ∀k ≥ 1,

which proves claim (i). Let m ∈ R be the scalar that satisfies

4(1 +
√
µ+ 1)

µm
=

1

e
,

from where we obtain that m =
4e

µ
(1 +

√
µ+ 1). This means that

4(1 +
√
µ+ 1)

µk
≤ 1

e
, ∀k ≥ m.

Therefore, a sufficient condition for ‖G(yk)‖R−1 ≤
1

e
‖G(r0)‖R−1 is

k ≥ 4e

µ
(1 +

√
µ+ 1),

which proves claim (ii). Notice that the restart condition ‖G(yk)‖R−1 ≤
ρj
e

(see

step 7 of the algorithm) implies that

‖G(rj)‖R−1 ≤
(

1

e

)j
‖G(r0)‖R−1 . (3.21)

Additionally, in view of claim (ii), we have that each restart occurs in a number
of iterations no larger than a(µ). Thus, the number of restarts j is no smaller

than

⌊
k

a(µ)

⌋
. Therefore, we obtain from (3.21) that

min
i=0,...,k

{‖G(yi)‖R−1 , ‖G(r0)‖R−1} ≤
(

1

e

)⌊ k
a(µ)

⌋
‖G(r0)‖R−1 ≤ e

(
1

e

) k
a(µ)

‖G(r0)‖R−1 ,

which proves claim (iii). Clearly, if ‖G(r0)‖R−1 ≤ ε the algorithm exits in one
iteration. Otherwise, we obtain from (3.21) that the number of restarts j required
to attain the desired accuracy ε is no larger than⌈

log

(
‖G(r0)‖R−1

ε

)⌉
.

Since, in view of claim (ii), a restart occurs in a number of iterations no larger
than a(µ), we conclude that the total number of iterations is upper bounded by

kout ≤ a(µ)

⌈
log

(
‖G(r0)‖R−1

ε

)⌉
,

thus proving claim (iv). �

3.2. Implementable restart schemes with linear convergence 47

3.2.3 Restart scheme for accelerated first order methods

We remind the reader that ‖ · ‖ represents any vector norm and ‖ · ‖∗ represents
its dual norm (see Definition N.1).

This section presents a restart scheme for AFOMs that can be viewed as an
extension of the scheme presented in Section 3.2.1, in that it is based on a restart
condition that checks the evolution of the objective function value and on the use
of a minimum number of iterations that is adapted between restarts. However,
the scheme presented here is applicable to a wider class of AFOMs and relies on
a less restrictive interpretation of the quadratic functional growth condition (see
Definition 3.3). The restart scheme presented in this section is currently under
review, but a preprint of the article can be found in [7].

Let us consider a convex optimization problem

f∗ = min
z∈Rnz

f(z), (3.22)

that we assume is solvable and is subject to the following assumption, which is a
relaxation of the quadratic functional growth condition (Definition 3.3).

Assumption 3.21. The function f ∈ Γ(Rnz) satisfies, for every ρ ∈ R≥0 a
quadratic functional growth condition of the form

f(z)− f∗ ≥ µρ
2
‖z − πΩf

(z)‖2, ∀z ∈ Vf (ρ),

for some µρ ∈ R>0, where Vf (ρ) = { z ∈ Rnz : f(z) − f∗ ≤ ρ } is a level set of
problem (3.22) with respect to f∗.

Additionally, let us consider a fixed point algorithm A applied to problem
(3.22) starting from an initial condition z0 ∈ dom(f), i.e., given an initial condition
z0, algorithm A generates a sequence {zk}≥0 such that limk→∞ f(zk) = f∗. We
use the following notation to refer to the iterates provided by algorithm A.

Definition 3.22. Let A be an iterative algorithm applied to solve problem (3.22)
using as initial condition z0. Given an integer k ∈ R≥0, we denote by Ak(z0) ∈ Rnz
the vector corresponding to iteration k of the algorithm.

Remark 3.23. We note that the notation given in Definition 3.22 bares a close
resemblance to the one presented in Chapter 3 for the output of a restart scheme
[zout, kout] ← A(z0, Ec). However, they are not equivalent, since A(z0, Ec) is a
notation to the call of the algorithm with a certain exit condition, whereas Ak(z0)
is the vector in Rnz corresponding to iterate k of the algorithm. Even so, the two
notations are strongly related. In fact,

[Akm(z0), km]← A(z0, Ekm),

where, for km∈R>0, Ekm is the exit condition given by Ekm(k) = true⇐⇒ k = km.

48 Chapter 3. Restart schemes for accelerated first order methods

The following assumption characterizes the class of fixed point algorithms we
consider in this section. We note that g is to be taken as the gradient operator
used by the AFOM A, e.g., the composite gradient mapping (see Definition 2.3),
the proximal operator, the projected gradient, the gradient, the subgradient, etc.

Assumption 3.24. The fixed point iterative algorithm A, applied to solve (3.22)
under Assumtion 3.21 satisfies, for every z0 ∈ dom(f):

(i) f(Ak(z0))− f∗ ≤
af

(k + 1)2
‖z0 − πΩf

(z0)‖2, ∀k ≥ 1,

(ii) f(A1(z0)) ≤ f(z0)− 1

2Lf
‖g(z0)‖2∗,

for some af ∈ R>0, Lf ∈ R>0 and where g : Rnz → Rnz is a gradient operator
satisfying g(z) = 0 ⇐⇒ z ∈ Ωf , where Ωf is the optimal set of (3.22).

The parameters af and Lf shown in Assumtion 3.24 will take different values
depending on the AFOM being used and on the characteristics of problem (3.22).
For instance, if f = h + Ψ is the composition of a smooth function h and a
non-smooth function Ψ, then Lf is the Lipschitz constant of h (see Sections 3.2.1
and 3.2.2). The value of af is equal to 2Lf in the FISTA and MFISTA algorithms,
but it will take other values in different AFOMs or if certain strategies, such as
backtracking strategies, are used (see [18, §10] or [27]).

The two conditions listed in Assumtion 3.24 are satisfied by most AFOMs.
The sublinear convergence stated in Assumtion 3.24.(i) is one of the main prop-
erties of AFOMs. For instance, we show the satisfaction of this property for
FISTA (see Proposition 2.12.(i)) and MFISTA (see Proposition 2.13). For other
AFOMs satisfying this condition, we refer the reader to [18, 19, 58], to [30] for
an accelerated variant of ADMM, and to [59] for an accelerated version of the
alternating minimization algorithm with a particular focus on its certification for
model predictive control.

The condition stated in Assumtion 3.24.(ii), on the other hand, is not nec-
essarily satisfied by most AFOMs shown in the literature. However, any AFOM
can be easily modified to satisfy this condition. For instance, in view of Proposi-
tion 2.5.(ii), all that an AFOM based on the composite gradient mapping needs
to include to satisfy Assumtion 3.24.(ii) is to start by obtaining z1 = T(z0), which
is a simple modification. We note that the FISTA and MFISTA algorithms that
we present in Algorithms 4 and 5, respectively, already include this initial step.

In short, by considering problem (3.22) under to Assumtion 3.21 and a fixed
point algorithm A under Assumtion 3.24, we are encompassing a wide range of
optimization problems and AFOMs.

We now present a proposition regarding the iterates of A under Assum-
tions 3.21 and 3.24 that will serve as a basis for the development of the convergence
analysis of the restart scheme presented in this section. An equivalent result can
be found in [46, §5.2.2]. The proposition makes use of a scalar nρ, which, due to

3.2. Implementable restart schemes with linear convergence 49

Algorithm 9: Delayed exit condition on A
Prototype: [zm,m]← Ad(z0, n)
Require: z0 ∈ dom(f), n ∈ R

1 k ← 0
2 repeat
3 k ← k + 1

4 zk ←

Ak(z0) if f(Ak(z0)) ≤ f(zk−1)

zk−1 otherwise

5 `←
⌊
k
2

⌋
6 until k ≥ n and f(z`)− f(zk) ≤

1

3
(f(z0)− f(z`))

Output: zm ← zk, m← k

its prevalence and importance in future developments, we characterize separately
in the following definition.

Definition 3.25. We define nρ ∈ R>0 as the scalar satisfying

nρ
.
= max

{
1

2
,

√
2af
µρ

}
,

where µρ and af are given in Assumtions 3.21 and 3.24, respectively.

Proposition 3.26. Let Assumtion 3.24 hold. Then, for every z0 ∈ Vf (ρ),

f(Ak(z0))− f∗ ≤
(

nρ
k + 1

)2

(f(z0)− f∗), ∀k ≥ 1.

Proof: Denote f0
.
= f(z0), fk

.
= f(Ak(z0)), ∀k > 1. Then,

fk − f∗ ≤
af

(k + 1)2
‖z0 − πΩf

(z0)‖2 ≤
2af

µρ(k + 1)2
(f0 − f∗) ≤

n2
ρ

(k + 1)2
(f0 − f∗).

�

Before we present the restart scheme, we must introduce Algorithm 9, which
implements a delayed exit condition on algorithm A. For a given initial condition
z0 ∈ dom(f) and a scalar n, Algorithm 9 uses a given AFOM A to generate a
sequence {zk}≥0 that satisfies (see step 4)

f(zk) = min{f(zk−1), f(Ak(z0))}, ∀k ≥ 1.

Therefore,
f(zk) = min

i=0,...,k
f(Ai(z0)). (3.23)

50 Chapter 3. Restart schemes for accelerated first order methods

Figure 3.7: Satisfaction of the delayed exit condition (3.24).

The algorithm terminates after k ≥ n iterations if the following exit condition is
satisfied (see step 6):

f(z`)− f(zk) ≤
1

3
(f(z0)− f(z`)) , (3.24)

where ` =
⌊
k
2

⌋
. The outputs of the algorithm are the current iterate zm = zk, and

the total number of iterations m ≥ n required to satisfy the exit condition (3.24).
Intuitively, as illustrated in Figure 3.7, exit condition (3.24) detects a degra-

dation in the performance of the iterations of A. Notice that at iteration m, the
reduction corresponding to the last half of the iterations (from

⌊
m
2

⌋
to m) is no

larger than one third of the reduction achieved in the first half of the iterations
(from 0 to

⌊
m
2

⌋
).

Remark 3.27. We note that algorithm A does not need to be started from z0 every
time it is called in step 4 of Algorithm 9. Instead, the algorithm is started at z0 the
first time it is called, and then one more iteration is performed at each iteration
k of Algorithm 9. Then, either the current value of Ak(z0) or the previous value
of zk−1 is stored in zk.

Remark 3.28. Step 4 of Algorithm 9 generates a sequence {zk}≥0 whose asso-
ciated objective function values are non-increasing. Therefore, if A is a mono-
tone AFOM, e.g., MFISTA (see Section 2.2.2), then the assignment zk ← zk−1

will never be performed. In this case, the same sequence {zk}≥0 can be obtained
by simply calling the monotone algorithm A with the following exit condition
E3
f : Rnz × Rnz × Z>0 → {true, false}:

E3
f (zk, zl, k; z0, n) = true ⇐⇒

 f(zl)− f(zk) ≤
1

3
(f(z0)− f(zl))

k ≥ n.

The following property provides three conditions satisfied by the inputs and
outputs of Algorithm 9. This result is instrumental to prove the convergence
results of the restart scheme we present further ahead. Claim (i) is similar to
Assumtion 3.24.(ii), in that it states that the output of the algorithm provides

3.2. Implementable restart schemes with linear convergence 51

a net improvement with respect to the input (unless z0 = z∗, in which case,
obviously, there is no net gain). Claim (ii) states the convergence rate of the
algorithm. Finally, claim (iii) provides an upper bound to the output m, provided
that n is no larger than d4nρe.

Proposition 3.29. Let Assumtion 3.24 hold. Then, given an initial condition
z0 ∈ Vf (ρ) ⊆ dom(f) and a scalar n ∈ R, the output [zm,m] of Algorithm 9
satisfies

(i) f(zm) ≤ f(z0)− 1

2Lf
‖g(z0)‖2∗,

(ii) f(zm)− f∗ ≤
(

nρ
m+ 1

)2

(f(z0)− f∗),

(iii) n ∈ (0, d4nρe] =⇒ m ∈ [n, d4nρe].

Proof: From (3.23) and Assumtion 3.24.(ii) we have

f(zm) = min
i=0,...,m

f(Ai(z0)) ≤ f(A1(z0)) ≤ f(z0)− 1

2Lf
‖g(z0)‖2∗,

which proves claim (i). In view of (3.23) and Proposition 3.26 we have that

f(zk)− f∗
(3.23)

≤ f(Ak(z0))− f∗ ≤
(

nρ
k + 1

)2

(f(z0)− f∗), ∀k ∈ Zm1 . (3.25)

Claim (ii) immediately follows by taking k = m. The inequality n ≤ m trivially
follows from step 6 of Algorithm 9. Therefore, in order to prove claim (iii), it

suffices to show that inequality (3.24) is satisfied for k̂ = d4nρe and ˆ̀=
⌊
d4nρe

2

⌋
≥

b2nρc ≥ 1 (where the last inequality follows from Definition 3.25 which states that
nρ ≥ 1/2). Indeed,

f(zˆ̀)− f∗
(3.25)

≤
(

nρ
ˆ̀+ 1

)2

(f(z0)− f∗) ≤
(
nρ
2nρ

)2

(f(z0)− f∗) =
1

4
(f(z0)− f∗),

which implies that

f(zˆ̀) ≤
1

4
f(z0) +

3

4
f∗ ≤ 1

4
f(z0) +

3

4
f(zk̂).

Thus,

f(zˆ̀)− f(zk̂) ≤
1

4
(f(z0)− f(zk̂)) =

1

4
(f(z0)− f(zˆ̀)) +

1

4
(f(zˆ̀)− f(zk̂)),

from where we conclude that f(zˆ̀)− f(zk̂) ≤
1

3
(f(z0)− f(zˆ̀)). �

52 Chapter 3. Restart schemes for accelerated first order methods

Algorithm 10: Restart scheme for AFOMs based on Ad
Require: r0 ∈ dom(f), ε ∈ R>0

1 m0 ← 1, m−1 ← 1, j ← −1, k ← 0
2 repeat
3 j ← j + 1

4 sj ←

√
f(rj−1)− f(rj)

f(rj−2)− f(rj)
if j ≥ 2

0 otherwise

5 nj ← max{mj , 4sjmj−1}
6 [rj+1,mj+1]← Ad(rj , nj)
7 k ← k +mj+1

8 until f(rj)− f(rj+1) ≤ ε
Output: rout ← rj+1, jout ← j, kout ← k

Algorithm 10 shows the proposed restart scheme. Starting from an initial
condition r0 ∈ dom(f) and given a AFOM A satisfying Assumtion 3.24, Algo-
rithm 10 makes successive calls to Ad (Algorithm 9), with a minimum number of
iterations nj that is adapted at each restart iteration j to take into account the
evolution of the previous objective function values. The algorithm generates a
sequence {rj}≥0 that converges to an optimal solution z∗ of problem (3.22) under
Assumtion 3.21 as j → +∞. The algorithm returns an ε-accurate solution rout in
terms of the exit condition shown in step 8 (see Remark 3.32 for some discussion
on this exit condition); the total number of restart iterations jout; and the total
number of iterations kout performed by algorithm A.

The idea behind the restart scheme proposed in Algorithm 10 bares some
similarities to the one presented in Section 3.2.1 (see Algorithm 7), in that it
makes use of a minimum number of iterations nj , whose value at each iteration j
is determined by the evolution of the past objective function values. The similarity
is fairly obvious if step 4 of Algorithm 10 is compared with step 7 of Algorithm 7.
In both algorithms, the minimum number of iterations is increased if the fraction

f(rj−1)− f(rj)

f(rj−2)− f(rj−1)
(3.26)

is larger that a certain amount. In this case, however, the reason behind using
(3.26) as a measure for determining the (possible) increase of nj does not have
such an intuitive explanation as the one discussed in Section 3.2.1.

Example 3.30. Figure 3.8 shows the use of Algorithm 10 to solve Example 3.1
along with the result of the non-restarted FISTA algorithm. We take A as
MFISTA, which can be implemented as described in Remark 3.28. The total
number of MFISTA iterations is kout = 239 and the number of restarts is jout = 5.

3.2. Implementable restart schemes with linear convergence 53

(a) Trajectory of zk. (b) Convergence to optimal objective function value.

Figure 3.8: In red, Algorithm 10 applied to Example 3.1 using MFISTA. The non-restarted
FISTA is depicted in blue. The red circles in (a) depict each of the iterates zk. The black
crosses depict each of the restart points rj .

The following proposition provides some key results on the iterates of Algo-
rithm 10.

Proposition 3.31. Let Assumtion 3.24 hold and consider Algorithm 10 for a
given initial condition r0 ∈ Vf (ρ) ⊆ dom(f) and an exit tolerance ε ∈ R>0. Then:

(i) Proposition 3.29 can be applied to the iterates of Algorithm 10, i.e., taking
z0 ≡ rj , n ≡ nj , zm ≡ rj+1 and m ≡ mj+1.

(ii) The sequence {mj}≥0 is non-decreasing. In particular,

mj ≤ nj ≤ mj+1, ∀j ∈ Zjout0 . (3.27)

(iii) The sequence {sj}≥0 satisfies sj ∈ (0, 1], ∀j ∈ Zjout2 .

Proof: Since r0 ∈ Vf (ρ) for some ρ ∈ R>0, and each rj , for j ≥ 1, is obtained from
a call to Algorithm 9 (see step 6), we have in view of Proposition 3.29.(i) that the
iterates zk also satisfy zj ∈ Vf (ρ), ∀j ∈ Zjout0 , for the same value of ρ. Therefore,
Proposition 3.29 can be applied to each call to Ad, thus proving claim (i). That
is, for every j ∈ Z≥0, the iterates of Algorithm 10 satisfy

f(rj+1) ≤ f(rj)−
1

2Lf
‖g(rj)‖2∗, (3.28a)

f(rj+1)− f∗ ≤
(

nρ
mj+1 + 1

)2

(f(rj)− f∗), (3.28b)

nj ∈ (0, d4nρe]⇒ mj+1 ∈ [nj , d4nρe]. (3.28c)

Next, due to step 5 we have mj ≤ nj , j ∈ Zjout0 . Moreover, from (3.28c), we

have that nj ≤ mj+1, ∀j ∈ Zjout0 , which proves claim (ii).

54 Chapter 3. Restart schemes for accelerated first order methods

Finally, from the exit condition of the algorithm (step 8), we have

f(rj−1)− f(rj) > ε, ∀j ∈ Zjout1 . (3.29)

Additionally, from (3.28a) we have f(rj−2) ≥ f(rj−1), ∀j ∈ Zjout2 . Thus,

f(rj−2)− f(rj) ≥ f(rj−1)− f(rj)
(3.29)
> ε > 0, ∀j ∈ Zjout2 .

Therefore, from step 4, and taking j ≥ 2, we have

0 < sj =

√
f(rj−1)− f(rj)

f(rj−2)− f(rj)
≤ 1, ∀j ∈ Zjout2 ,

which proves claim (iii). �

Remark 3.32. From Proposition 3.31.(i), we have that we can rearrange Propo-
sition 3.29.(i) to read as

‖g(rj)‖2∗ ≤ 2Lf (f(rj)− f(rj+1)).

Therefore, the exit condition f(rj)− f(rj+1) ≤ ε implies ‖g(rj)‖2∗ ≤ 2Lf ε. Since,
as per Assumtion 3.24, g(rj) serves to characterize the optimality of rj, we con-
clude that the exit condition of Algorithm 10 also serves to characterize the op-
timality of rj+1. This means that the exit condition of Algorithm 10 could be
replaced by ‖g(rj)‖∗ ≤ ε̃, where ε̃ ∈ Rp.

The following theorem presents the main convergence properties of Algo-
rithm 10. In particular, claim (iii) provides its iteration complexity, which we
note is of the same order than the optimal iteration complexity (3.2) that can be
obtained using AFOMs applied to the class of optimization problems (3.22) under
Assumtion 3.21.

Theorem 3.33. Let Assumtion 3.24 hold and consider Algorithm 10 for a given
initial condition r0 ∈ Vf (ρ) ⊆ dom(f) and an exit tolerance ε ∈ R>0. Then:

(i) The number of calls to Ad (step 6) is bounded. That is, jout is finite.

(ii) The number of iterations of A at each call of Ad (step 6) is upper bounded
by d4nρe. That is,

mj+1 ≤ d4nρe , ∀j ∈ Zjout0 . (3.30)

(iii) The total number of iterations of A required to attain the exit condition
f(rjout)− f(rjout+1) ≤ ε (see step 8), is upper bounded by

kout =

jout∑
j=0

mj+1 ≤
e d4nρe

2

⌈
5 +

1

log 15
log

(
1 +

f(r0)− f∗

ε

)⌉
.

3.2. Implementable restart schemes with linear convergence 55

Proof: In the following, we will make use of two technical lemmas: Lemmas 3.35
and 3.36, which we have included, for convenience, immediately after this proof.

Let T ∈ Z be such that

f(rj)− f(rj+1) > ε, ∀j ∈ ZT0 , (3.31)

is satisfied. Then, defining dj
.
= f(rj)− f(rj+1), we have

f(r0)− f(rT+1) =

T∑
j=0

dj ≥ (T + 1)

(
min

j=0,...,T
dj

)
> (T + 1)ε.

Thus,

T + 1 <
f(r0)− f(rT+1)

ε
≤ f(r0)− f∗

ε
≤ ρ

ε
,

from where we infer that the largest integer T satisfying (3.31) is bounded. Con-
sequently, the exit condition of Algorithm 10 (step 8) is satisfied within a finite
number of iterations, thus proving claim (i).

To prove claim (ii), we start by noting that both m1 and m2 are no larger
than d4nρe. Indeed, from step 4 we have that s0 = s1 = 0, which, in virtue of step
5, implies that n0 = m0 = 1 and n1 = m1. Since n0 = 1 is no larger than d4nρe
we have from (3.28c) that m1 is also upper-bounded by d4nρe. Moreover, since
n1 = m1 ≤ d4nρe, we obtain by the same reasoning that m2 ≤ d4nρe. We now
prove that if j ≥ 2 and mj ≤ d4nρe, then mj+1 ≤ d4nρe. From step 4 we have

s2
j =

f(rj−1)− f(rj)

f(rj−2)− f(rj)
= 1− f(rj−2)− f(rj−1)

f(rj−2)− f(rj)

≤ 1− f(rj−2)− f(rj−1)

f(rj−2)− f∗
=
f(rj−1)− f∗

f(rj−2)− f∗
(3.28b)

≤
(

nρ
mj−1 + 1

)2

.

Thus, we have sjmj−1 ≤ nρ. Therefore,

nj = max{mj , 4sjmj−1} ≤ max{d4nρe , 4nρ} = d4nρe ,

which, along with (3.28c), leads to mj+1 ≤ d4nρe, thus proving the claim.
Finally, to prove claim (iii), we start by noting that the computation of each

rj+1 is obtained from mj+1 iterations of A (see step 6). Thus,

kout =

jout∑
j=0

mj+1

(3.30)

≤ (1 + jout) d4nρe . (3.32)

Let us denote

D
.
=

⌈
5 +

1

log 15
log

(
1 +

f(r0)− f∗

ε

)⌉
.

Consider first the case jout < D. Since both jout and D are integers we infer
from this inequality that 1 + jout ≤ D. This, along with (3.32), implies that
kout ≤ d4nρeD.

56 Chapter 3. Restart schemes for accelerated first order methods

Suppose now that jout ≥ D. We first recall that Property 3.31.(ii) states that
the sequence {mj+1}≥0 is non-decreasing. We now rewrite jout as jout = d+ tD,
where d ∈ Z0,D−1 and t ∈ Z≥0. Thus,

kout =
d∑
j=0

mj+1 +
tD∑
j=1

md+j+1 ≤ Dmd+1 +D
t∑
i=1

md+1+iD = D
t∑
i=0

md+1+iD.

From Lemma 3.36.(v) we have

md+1+iD ≤
md+1+(i+1)D√

15
, ∀i ∈ Zt−1

0 .

Thus,

kout ≤ D
t∑
i=0

md+1+tD

(
1√
15

)t−i
.

Using now m1+d+tD ≤ d4nρe, see (3.30), we obtain

NA
D d4nρe

≤
t∑
i=0

(
1√
15

)t−i
=

t∑
j=0

(
1√
15

)j
≤
∞∑
j=0

(
1√
15

)j
=

√
15√

15− 1
≤ e

2
.

Thus, NA ≤
e

2
d4nρeD. �

Remark 3.34. The iteration complexity provided in Theorem 3.33.(iii) considers
the exit condition shown in step 8 of Algorithm 10, whereas the iteration complexi-
ties shown in previous sections consider exit conditions of the form ‖g(rout)‖∗ ≤ ε̃.
However, in view of Remark 3.32, this exit condition can also be used in Algo-
rithm 10, in which case the iteration complexity shown in Theorem 3.33.(iii) would
be the same but replacing ε with ε̃/(2Lf).

The following lemma is used exclusively in the proof of Lemma 3.36.

Lemma 3.35. The function ϕ : R→ R defined as

ϕ(s)
.
=

(
1

s2
− 1

)
max

{
1, (4s)4

}
,

satisfies ϕ(s) ≥ 15, ∀s ∈ (0,

√
15

4
].

Proof: We have that

ϕ(s) =

 44(s2 − s4) if s > 1
4 ,

1

s2
− 1 if s ≤ 1

4 .

3.2. Implementable restart schemes with linear convergence 57

It is clear that ϕ(·) is monotonically decreasing in (0, 1
4]. Thus,

min
s∈(0,

√
15
4

]

ϕ(s) = min
s∈[1

4
,
√
15
4

]

ϕ(s) = min
s∈[1

4
,
√
15
4

]

44(s2 − s4).

We notice that the derivative of s2−s4 is 2s(1−2s2), which vanishes only once in
the interval of interest (at s = 1√

2
). From here we infer that s2 − s4 is increasing

in [1
4 ,

1√
2
) and decreasing in (1√

2
,
√

15
4]. Thus, the minimum is attained at the

extremes of the interval [1
4 ,
√

15
4]. That is, we conclude that

min
s∈(0,

√
15
4

]

ϕ(s) = min{ϕ(
1

4
), ϕ(

√
15

4
)} = min{15, 15} = 15.

�

Lemma 3.36 (A few technical results on the iterates of Algorithm 10). Let
Assumtion 3.24 hold and consider Algorithm 10 for a given initial condition
r0 ∈ Vf (ρ) ⊆ dom(f) and an exit tolerance ε ∈ R>0. Assume that jout ≥ 2

and that there exist T ∈ Zjout2 and ` ∈ Zjout−T0 such that

m`+1 >
1√
15
m`+1+T .

Then,

(i) sj ∈
(

0,
√

15
4

]
, ∀j ∈ Z`+T`+2 ,

(ii)
`+T∑
j=`+2

log
(
max {1, (4sj)4}

)
< 4 log 15,

(iii)
`+T∑
j=`+2

log

(
1

s2
j

− 1

)
≤ log

(
1 +

f(r0)− f∗

ε

)
,

(iv) T < 5 +
1

log 15
log

(
1 +

f(r0)− f∗

ε

)
.

Additionally, let

D
.
=

⌈
5 +

1

log 15
log

(
1 +

f(r0)− f∗

ε

)⌉
.

Then,

(v) m`+1 ≤
1√
15
m`+1+D, ∀` ∈ Zjout−D0 .

58 Chapter 3. Restart schemes for accelerated first order methods

Proof: From step 4 of Algorithm 10 we have

s2
j =

f(rj−1)− f(rj)

f(rj−2)− f(rj)
, j ∈ Zjout2 .

The inequality sj > 0, ∀j ∈ Z`+T`+2 follows from Property 3.31.(iii). In order to

prove the first claim it remains to prove the inequality sj ≤
√

15
4 , ∀j ∈ Z`+T`+2 .

We proceed by reductio ad absurdum. Assume that there is j ∈ Z`+T`+2 such that

sj >
√

15
4 . In this case,

mj+1

(3.27)

≥ nj = max{mj , 4sjmj−1} ≥ 4sjmj−1 >
√

15mj−1.

From this and the non-decreasing nature of the sequence {mj}≥0 stated in Prop-
erty 3.31.(ii) we obtain

m`+1+T ≥ mj+1 >
√

15mj−1 ≥
√

15m`+1,

which contradicts the initial assumptions, thus proving claim (i).
From the non-decreasing nature of the sequence {mj}≥0 stated in Property

3.31.(ii) we have

mj+1

(3.27)

≥ nj = max {mj , 4sjmj−1} ≥ mj−1 max {1, 4sj}, ∀j ∈ Z`+T`+2 .

Equivalently,

log (max {1, 4sj}) ≤ ln
mj+1

mj−1
, ∀j ∈ Z`+T`+2 ,

which implies

`+T∑
j=`+2

log (max {1, 4sj}) ≤
`+T∑
j=`+2

log
mj+1

mj−1
= log

m`+Tm`+1+T

m`+1m`+2

≤ log
m2
`+1+T

m2
`+1

= 2 log
m`+1+T

m`+1

< 2 log
√

15 = log 15.

Claim (ii) immediately follows from multiplying this inequality by 4.
To prove the third claim, we start by noticing that

`+T∏
j=`+2

(
1

s2
j

− 1) =
`+T∏
j=`+2

f(rj−2)− f(rj−1)

f(rj−1)− f(rj)
=

f(r`)− f(r`+1)

f(r`+T−1)− f(r`+T)
.

Since `+ T ≤ jout we have f(r`+T−1)− f(r`+T) > ε > 0, which leads to

`+T∏
j=`+2

(
1

s2
j

− 1) <
f(r`)− f(`+1)

ε

(3.28a)

≤ f(r0)− f(r`+1)

ε
≤ f(r0)− f∗

ε
,

3.3. Numerical results 59

from where claim (iii) directly follows.
Next, we add the inequalities given in claims (ii) and (iii) to obtain

`+T∑
j=`+2

log

((
1

s2
j

−1

)
max

{
1, (4sj)

4
})

< log

(
1 +

f(r0)− f∗

ε

)
+4 log 15. (3.33)

From claim (i) we have sj ∈
(

0,
√

15
4

]
, ∀j ∈ Z`+T`+2 . Thus, making use of Lemma 3.35,

the left term of (3.33) can be lower bounded by means of the following inequality

15 ≤
(

1

s2
− 1

)
max

{
1, (4s)4

}
, ∀s ∈

(
0,
√

15
4

]
.

That is,
`+T∑
j=`+2

log 15 < log

(
1 +

f(r0)− f∗

ε

)
+ 4 log 15.

Equivalently,

(T − 1) log 15 < log

(
1 +

f(r0)− f∗

ε

)
+ 4 log 15,

thus proving claim (iv).
Finally, we prove claim (v) by reductio ad absurdum. If there exist ` ∈ Zjout−D0

such that m`+1 >
1√
15
m`+1+D, then we obtain from claim (iv) that

D < 5 +
1

ln 15
ln

(
1 +

f(z0)− f∗

ε

)
,

which contradicts the definition of D. �

3.3 Numerical results

This section presents numerical results comparing the three restart schemes pro-
posed in Section 3.2 with some of the restart schemes of the literature described
in Section 3.1. In particular, we compare the restart schemes presented in Algo-
rithms 7, 8 and 10 with the objective function value restart scheme [45], whose
restart condition Ef is given by (3.6); the gradient alignment restart scheme [45],
whose restart condition Eg is given by (3.7); and the optimal fixed-rate restart
scheme from [46, §5.2.2], using the restart condition E∗f given by (3.5).

For convenience and space considerations, the tables and figures of this section
will use the nomenclature of the exit conditions (Ef , Eg and E∗f) to refer to the
restart schemes of the literature. Similarly, we will refer to the restart schemes
we propose in Section 3.2 by their algorithms (Alg. 7, Alg. 8 and Alg. 10).

The results shown here use FISTA (Algorithm 4), with the exception of Al-
gorithm 10, which uses MFISTA (Algorithm 5). We chose MFISTA because, due

60 Chapter 3. Restart schemes for accelerated first order methods

to its monotone behavior, step 4 of Algorithm 9 always evaluates to the upper
expression (see Remark 3.28). Therefore, MFISTA can be directly used in place
of Ad in step 6 of Algorithm 10 making use of the restart condition shown in
Remark 3.28. The norm of the restart scheme presented in Algorithm 10 will
use the same norm ‖ · ‖R as the other restart schemes. In order to provide a
fair comparison between the different schemes, we exit them as soon as an iterate
zk satisfying ‖G(zk)‖R−1 ≤ ε is attained for the selected value of ε ∈ R>0. This
way, we can compare how quickly each restart scheme finds an ε-accurate solu-
tion of the problem at hand. Restart scheme E∗f requires knowledge of f∗, which
we obtain by solving the optimization problem using Algorithm 7 with and exit
tolerance of ε = 10−8.

As additional numerical results, Section 5.8.7 shows the application of the
above mentioned restart schemes to solve the optimization problems of different
MPC formulations using FISTA.

3.3.1 Application to Lasso problems

This section presents the result of applying the restart schemes to weighted Lasso
problems of the form

min
z∈Rnz

1

2N
‖Az − b‖22 + ‖Wz‖1, (3.34)

where z ∈ Rnz , A ∈ RN×nz is sparse with an average of 90% of its entries being
zero (sparsity is generated by setting a 0.9 probability for each element of the
matrix to be 0), nz > N , and b ∈ RN . Each nonzero element in A and b is
obtained from a Gaussian distribution with zero mean and variance 1. W ∈ Dnz++

is a diagonal matrix with elements obtained from a uniform distribution on the
interval (0, α]. We note that problems (3.34) can be reformulated in such a way
that they satisfy the quadratic growth condition [46, §6.3].

We take R as the diagonal matrix constructed as

R(i,i) =

n∑
j=1

|H(i,j)|, (3.35)

where H = 1
NA

>A, which due to the Gershgorin Circle Theorem [60, §7.2] (see
also [27, §6]) satisfies the smoothness condition given in Assumtion 2.1.(ii).

Table 3.1 shows the results of solving 100 randomly generated problems (3.34)
that share the values of N = 600, nz = 800, and α = 0.003. We take ε = 10−7.
Figure 3.9 and Figure 3.10 show the evolution of ‖G(zk)‖R−1 and f(zk) − f∗,
respectively, of each one of the restart schemes for one of the Lasso problems
(3.34) used to obtain the results of Table 3.1. Additionally, they show the result
of applying FISTA without a restart scheme.

Table 3.2 and Figures 3.11 and 3.12 show analogous results to Table 3.1 and
Figures 3.9 and 3.10, respectively, but taking N = 100, nz = 200 and α = 0.3.

3.3. Numerical results 61

Restart scheme Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 914.69 1431.2 897.46 946.62 894.21 1350.3

Med. Iter. 907 1410.5 880.5 945.5 880.5 1331

Max. Iter. 1155 1800 1131 1349 1199 1696

Min. Iter. 704 1154 737 692 702 1084

Table 3.1: Comparison between restart schemes applied to FISTA to solve 100 problems
(3.34) with N = 600, nz = 800, α = 0.003 and ε = 10−7.

0 320 640 960 1280 1600
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 3.9: Evolution of the dual norm of the composite gradient mapping for different
restart schemes applied to a randomly generated problem (3.34) with N = 600, nz = 800,
α = 0.003 and ε = 10−7. Black dots represent the iterations in which a restart occurred.

0 320 640 960 1280 1600
10

-11

10
-9

10
-7

10
-5

10
-3

10
-1

Figure 3.10: Evolution of the distance, in terms of function value, to the optimal solu-
tion for different restart schemes applied to a randomly generated problem (3.34) with
N = 600, nz = 800, α = 0.003 and ε = 10−7. Black dots represent the iterations in which
a restart occurred.

62 Chapter 3. Restart schemes for accelerated first order methods

Restart scheme Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 91.33 146.5 83.04 87.53 82.96 136.42

Med. Iter. 91.5 141 80 86.5 81 131

Max. Iter. 195 372 158 164 146 350

Min. Iter. 69 104 61 58 58 98

Table 3.2: Comparison between restart schemes applied to FISTA to solve 100 problems
(3.34) with N = 100, nz = 200, α = 0.3 and ε = 10−7.

0 40 80 120 160 200
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 3.11: Evolution of the dual norm of the composite gradient mapping for different
restart schemes applied to a randomly generated problem (3.34) with N = 100, nz = 200,
α = 0.3 and ε = 10−7. Black dots represent the iterations in which a restart occurred.

0 40 80 120 160 200
10

-13

10
-11

10
-9

10
-7

10
-5

10
-3

10
-1

Figure 3.12: Evolution of the distance, in terms of function value, to the optimal solu-
tion for different restart schemes applied to a randomly generated problem (3.34) with
N = 100, nz = 200, α = 0.3 and ε = 10−7. Black dots represent the iterations in which a
restart occurred.

3.3. Numerical results 63

3.3.2 Application to QP problems

This section presents the results of applying the restart schemes to unconstrained
QP problems of the form

min
z∈Rnz

1

2
z>Hz + q>z, (3.36)

where z ∈ Rnz , H ∈ Snz++ and q ∈ Rnz . Matrix H is obtained by first computing
a matrix M whose elements are taken from a uniform distribution on the interval
(0, 1] and then taking

H =
1

2
M>M + αInz

for some α ∈ R>0 whose value affects the condition number of H (smaller values
of α tend to result in higher condition numbers). The elements of vector q are
taken from a uniform distribution on the interval (0, β] for some β ∈ R>0. Note
that problems (3.36) have no non-smooth term Ψ. As in Section 3.3.1, we take R
using (3.35).

Table 3.3 shows the results of solving 100 randomly generated problems (3.36)
that share the values of nz = 200, α = 10 and β = 20, taking ε = 10−5. It also
shows information about the condition numbers of the matrices H. Figure 3.13
and Figure 3.14 show the evolution of ‖G(zk)‖R−1 and f(zk)− f∗, respectively, of
each one of the restart schemes for one of the QP problems (3.36) used to obtain
the results of Table 3.3. Additionally, they show the result of applying FISTA
without a restart scheme.

Table 3.4 and Figures 3.15 and 3.16 show analogous results to Table 3.3 and
Figures 3.13 and 3.14, respectively, but taking α = 0.1 instead of α = 10, resulting
in worse conditioned QP problems.

64 Chapter 3. Restart schemes for accelerated first order methods

Restart scheme Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f cond(H)

Avg. Iter. 177.39 324.76 179.5 189.23 184.82 304.95 40.12

Med. Iter. 178 325 180 188 184.5 305 40.03

Max. Iter. 187 334 187 218 206 317 43.25

Min. Iter. 171 315 173 167 168 296 37.93

Table 3.3: Comparison between restart schemes applied to FISTA to solve 100 problems
(3.36) with nz = 200, α = 10, β = 20 and ε = 10−5. The last column shows details about
the condition numbers of the matrices H.

0 80 160 240 320 400
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 3.13: Evolution of the dual norm of the composite gradient mapping for different
restart schemes applied to a randomly generated problem (3.36) with nz = 200, α = 10,
β = 20 and ε = 10−5. Black dots represent the iterations in which a restart occurred.

0 80 160 240 320 400
10

-9

10
-7

10
-5

10
-3

10
-1

10
1

10
3

Figure 3.14: Evolution of the distance, in terms of function value, to the optimal solution
for different restart schemes applied to a randomly generated problem (3.36) with nz =
200, α = 10, β = 20 and ε = 10−5. Black dots represent the iterations in which a restart
occurred.

3.3. Numerical results 65

Restart scheme Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f cond(H)

Avg. Iter. 1816.4 3115.8 1784.8 1725.3 1724.1 3037.2 3864.9

Med. Iter. 1816.5 3126.5 1796 1727.5 1721.5 3053.5 3860.7

Max. Iter. 2099 3319 2041 2228 2228 3269 4200.7

Min. Iter. 1447 2719 1505 1396 1413 2621 3355.18

Table 3.4: Comparison between restart schemes applied to FISTA to solve 100 problems
(3.36) with nz = 200, α = 0.1, β = 20 and ε = 10−5. The last column shows details
about the condition numbers of the matrices H.

0 600 1200 1800 2400 3000
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Figure 3.15: Evolution of the dual norm of the composite gradient mapping for different
restart schemes applied to a randomly generated problem (3.36) with nz = 200, α = 0.1,
β = 20 and ε = 10−5. Black dots represent the iterations in which a restart occurred.

0 600 1200 1800 2400 3000
10

-7

10
-5

10
-3

10
-1

10
1

10
3

Figure 3.16: Evolution of the distance, in terms of function value, to the optimal solution
for different restart schemes applied to a randomly generated problem (3.36) with nz =
200, α = 0.1, β = 20 and ε = 10−5. Black dots represent the iterations in which a restart
occurred.

66 Chapter 3. Restart schemes for accelerated first order methods

3.4 Conclusions and future lines of work

The numerical results presented in Section 3.3 showcase the good practical perfor-
mance of Algorithms 7 and 10, which solve optimization problems in a number of
iterations similar to the ones obtained using the adaptive restart schemes whose
exit conditions are given by Ef (3.6) and Eg (3.7). Algorithms 7 and 10, however,
are linearly convergent for the class of non-strongly convex optimization problems
described in Section 3.2.

Algorithm 8, on the other hand, performs similarly to the restart scheme
whose restart condition is given by E∗f (3.5), both in terms of the number of
iterations and in the fact that a restart is produced at intervals of similar length.
We find that Algorithm 8 tends to perform slightly worse than E∗f and that they
both tend to have a much more predictable performance than the other restart
schemes. Restart scheme E∗f , however, requires knowledge of f∗, which is not
always available.

A comparison between the figures showing ‖G(zk)‖R−1 with those showing
f(zk)− f∗ clearly highlights the relation between ‖G(zk)‖R−1 and the optimality
of zk highlighted in Proposition 2.6.

The practical usefulness of the restart schemes would have to be further an-
alyzed by performing tests comparing the computation times of each, since the
advantages obtained by the reduction in the number of iterations may be overshad-
owed by the additional computations required to evaluate the restart conditions.
Even though their usefulness would have to be determined in a case-by-case basis,
additional research can be made in this line. For instance, the recent preprint [61]
presents a restart scheme that is based on the restart scheme presented in Sec-
tion 3.2.1 but that required less evaluations of the objective function. The results
they show indicate that their proposed restart scheme required more iterations
that ours, but that the computation times may be smaller.

Another future line of work is the proposal of a gradient-based restart scheme
similar to the one presented in Section 3.2.2 but applicable to a wider class of
accelerated first order methods.

Finally, the results shown here have focused on FISTA and its monotone vari-
ant MFISTA, but the application of the restart schemes to other accelerated first
order methods, such as the accelerated ADMM, in an interesting line of research.

Part II

Implementation of MPC in
embedded systems

69

Chapter 4

Preliminaries

This chapter addresses some of the preliminary concepts and ideas related to
model predictive control (MPC) and its implementation in embedded systems.

We start by introducing the problem formulation in Section 4.1, i.e., by pre-
senting the class of system and system model under consideration as well as the
control objective. We then provide a brief description of MPC in Section 4.2 so as
to introduce the concepts and nomenclature used throughout the remainder of the
dissertation. Finally, in Section 4.3 we present a brief (and non-exhaustive) review
of the literature regarding the implementation of MPC in embedded systems.

Before we proceed, we provide for the sake of clarity our definition of an embed-
ded system. Some examples of well known embedded systems are Programmable
Logic Controllers (PLC), FPGAs, Arduino and Raspberry Pi.

Definition 4.1 (Embedded system). We understand by embedded system any
computer system that combines both hardware and software and that has a dedi-
cated function within a larger system. In particular, we circumscribe our definition
to those electronic systems that are based either on microcontrollers or micropro-
cessors and that are used to control the physical device they are embedded in.
Integral to our definition is the fact that embedded systems are characterized by
their low computational and memory resources when compared to more powerful
computing devices, such as the average desktop PC.

4.1 Problem formulation

We consider a discrete-time, linear, time-invariant, state space model

x(t+ 1) = Ax(t) +Bu(t) (4.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control input of the system
at the discrete time instant t ∈ Z, A ∈ Rn×n, and B ∈ Rn×m. Additionally, we
assume that the system is subject to state and input constraints

(x(t), u(t)) ∈ Y ⊆ Rn × Rm, ∀t, (4.2)

70 Chapter 4. Preliminaries

where the set Y will be given either by box constraints of the form

Y = { (x, u) ∈ Rn × Rm : x ≤ x ≤ x, u ≤ u ≤ u }, (4.3)

where x ∈ Rn, x ∈ Rn, u ∈ Rm, and u ∈ Rm; or by coupled input-state constraints

Y = { (x, u) ∈ Rn × Rm : y ≤ Ex+ Fu ≤ y }, (4.4)

where y ∈ Rp, y ∈ Rp, E ∈ Rp×n and F ∈ Rp×m. We make the following
assumption on model (4.1) and its constraints.

Assumption 4.2. We assume that:

(i) Model (4.1) is controllable.

(ii) The constraint set Y has a non-empty interior.

Remark 4.3. If the constraints are given by (4.3), then Assumtion 4.2.(ii) implies
that x < x and u < u.

The control objective is to steer the system (4.1) to the given reference (xr, ur) ∈
Rn×Rm whilst satisfying the system constraints (4.2), where we assume that the
reference is a (piecewise) constant set-point, i.e. a constant reference whose value
can change at any unpredictable time. Obviously, this objective is only possible if
the reference is an admissible steady state (see the following definition) of system
(4.1) under (4.2).

Definition 4.4 (Admissible steady state). Consider a system (4.1) subject to
(4.2) under Assumtion 4.2. We say that a pair (x̂, û) ∈ Rn × Rm is an admissible
steady state of the (4.1) under (4.2) if x̂ = Ax̂+Bû (i.e., it is a steady state) and
(x̂, û) ∈ Y. We say that it is strictly admissible if (x̂, û) ∈ int(Y).

If the reference is not an admissible steady state, then we wish to steer the
system to the “closest” admissible steady state, for some criterion of closeness.

In this dissertation we are concerned with linear systems (4.1). However, for
future purposes, we now introduce some notation for the real system from where
the linear model is derived.

In general, model (4.1) will be a linear representation of some real system
governed by a continuous-time, non-linear, ordinary differential equation

dx
dt

= f (x (t), u(t)), (4.5)

where x (t) ∈ Rn and u(t) ∈ Rm are the state and control input of the system
at the continuous time instant t ∈ R, respectively, and f : Rn × Rm → Rn is
a continuous differentiable function. Additionally, the constraints (4.2) will have
been obtained so as to satisfy some real system constraints

(x (t), u(t)) ∈ Y ⊆ Rn × Rm, ∀t. (4.6)

4.2. A brief introduction to model predictive control 71

In the case of box constraints, the set Y will be given by

Y = { (x , u) ∈ Rn × Rm : x ≤ x ≤ x , u ≤ u ≤ u }.

where x ∈ Rn, x ∈ Rn, u ∈ Rm, and u ∈ Rm.

In particular, we consider that model (4.1) has been obtained by linearizing
the real system model (4.5) around an operating point (x ◦, u◦), which we assume
to be an admissible steady state of (4.5) under (4.6). Additionally we consider
that x and u may have been subject to scaling using the scaling matrices Nx ∈ Dn
and Nu ∈ Dm as follows:

x = Nx(x − x ◦), u = Nu(u − u◦).

There are many other ways in which a linear model can be derived from a
non-linear one or from data of the system [62]. Our above consideration is merely
the one we take in the numerical examples we show in this dissertation.

We refer to x, u and their bounds as being in incremental units to emphasize
that they are (scaled) increments with respect to the operating point of the real
system model. Additionally, we refer to x , u and their bounds as being in en-
gineering units, and we will represent them using calligraphic font. We use this
naming convention to emphasize the fact that they relate to the real system (even
though, in many occasions, the state has no tangible physical interpretation).

4.2 A brief introduction to model predictive control

Model predictive control (MPC) is an advanced control strategy that is very
prevalent in the current control literature due to its inherent ability to provide
constraint satisfaction and asymptotic stability to the given target [63, 64]. In
MPC, the control action is obtained, at each sample time, from the solution of
an optimization problem in which a prediction model is used to predict the future
evolution of the system over a given prediction horizon.

The need for solving an optimization problem in real-time and the fact that a
model of the system is required have historically hindered the use of MPC in many
industries and applications. In spite of this, there are numerous publications on
the successful use of MPC in different areas, including water distribution networks
[65], micro grids [66], power converters [67], automotive applications [68, 69], or
temperature control of buildings [70], data centers [71] and of the heat, ventilation
and air conditioning systems [17, 72, 73].

Different MPC formulations and control architectures are used in the above
references. In this dissertation we focus on linear MPC formulations with simple
constraints. This section is not intended as a thorough description nor explanation
of MPC. Instead, it is a brief introduction to the class of MPC problems that we
focus on in this dissertation, as well as to the nomenclature that we will use.

72 Chapter 4. Preliminaries

We consider linear MPC formulations described by the following parametric
optimization problem:

min
x,u

J .
=

N−1∑
j=0

`j(x,u;xr, ur) + Vt(x,u;xr, ur)

 (4.7a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (4.7b)

x0 = x(t) (4.7c)

(xj , uj) ∈ Yj , j ∈ ZN−1
0 (4.7d)

xN ∈ Xt, (4.7e)

where N ∈ Z>0 is the prediction horizon; (4.7b) is the prediction model (4.1), with
A ∈ Rn×n and B ∈ Rn×m; the sequences x = (x0, . . . , xN) and u = (u0, . . . , uN−1)
are the predicted states xj ∈ Rn and inputs uj ∈ Rm throughout the prediction
horizon; xr ∈ Rn and ur ∈ Rm are the given state and input reference; x(t) ∈ Rn
is the system state at the current discrete time instant t; Yj ⊆ Rn × Rm are the
constraints for the prediction step j; `j(·) and Vt(·) are the stage costs for each
prediction step j and the terminal cost functions, respectively, which in general
are functions of the predicted states x and inputs u and are parametrized by the
reference (xr, ur); and Xt is the terminal set . Constraint (4.7e) is known as the
terminal constraint .

The MPC formulations that we discuss and present in the following chapters
loosely fall within the above general formulation, although some of them include
additional decision variables and constraints. However, we always consider that
the functions `j and Vt of the cost function J (4.7a) are real valued convex func-
tions and that Xt ⊆ Rn is a closed convex set. Therefore, problem (4.7) is a
convex optimization problem.

We denote an optimal solution of problem (4.7) (assuming that one exists) by
x∗ = (x∗0, x

∗
1, . . . , x

∗
N) and u∗ = (u∗0, u

∗
1, . . . , u

∗
N−1). The MPC control law, i.e.,

the control action u(t) to be applied to the system each discrete time instant t, is
given by u(t) = u∗0. At the next sample time t+1, the MPC optimization problem
is recalculated taking the new system state x(t+ 1) in (4.7c), and so forth.

The following two definitions play an important role in the stability of MPC.

Definition 4.5 (Feasibility region). Consider an MPC formulation defined by
some optimization problem parametrized by the current system state at time
instant t ∈ Z. Its feasibility region is the set of states x(t) ∈ Rn for which said
optimization problem is feasible.

Definition 4.6 (Domain of attraction). Consider an MPC formulation
parametrized by the current system state at time instant t ∈ Z and whose objec-
tive is to steer the system to a reference xr ∈ Rn. Its domain of attraction is the
set of states x(t) ∈ Rn such that the MPC controller steers the closed-loop system
to the reference xr while satisfying the constraints.

4.3. A brief state of the art 73

We will often consider the following standard assumption.

Assumption 4.7. Let Assumtion 4.2 hold and assume that

(i) (xr, ur) is an admissible steady state of system (4.1) under (4.2).

(ii) x(t) strictly belongs to the feasibility region (Definition 4.5) of the MPC
formulation, i.e., there exist x and u satisfying (4.7b) and (4.7c) for which
(4.7d) and (4.7e) are strictly satisfied.

In MPC, the terminal set Xt is typically taken as an admissible invariant
set (see Definition N.8) of the system (4.1) for the constraints (4.2) under some
terminal control law . That is, for some predefined control law, any state belonging
to Xt will remain in Xt. The use of a terminal admissible invariant set provides
the MPC controller with stability guarantees if its other ingredients are suitably
designed [64].

The control objective of the MPC controller is to steer the system to the
reference (xr, ur) whilst satisfying the system constraints (4.2), which will only
be possible if (xr, ur) is an admissible steady state of (4.1) under (4.2).

Remark 4.8. We note that our control objective, as stated above, is to steer the
system to an admissible steady state of the linear model (4.1) whilst satisfying
(4.2). Since this model is a linearization of a (possibly) non-linear model, our
control objective does not guarantee that the real system will converge to the desired
set point, unless additional ingredients are added to the overall control architecture
[8, 74]. During this dissertation we will not delve into this topic any further,
since our main interest is in the development of MPC formulations and solvers
suitable for their implementation in embedded systems, and not on the additional
ingredients required for their use in a real environment.

4.3 A brief state of the art

The implementation of linear MPC in embedded systems is an extensively re-
searched topic in the field of control, with many publications tackling different
embedded systems, MPC formulations and approaches. This section presents a
(non-exhaustive) review of the state of the art. We focus on the implementation of
linear MPC, instead of non-linear, because the solvers proposed in this dissertation
all fall into this paradigm. There are also multiple results on the implementation
of nonlinear MPC in embedded systems [75, 76, 77, 78], as well as multiple tools
and solvers [79, 80]. Additionally, we focus on the implementation of nominal
MPC, although results of the implementation of robust MPC are also available,
including the min-max robust MPC approach [81, 82, 83]. Henceforth, we will
refer to “linear MPC” simply as “MPC”, unless specifically stated otherwise.

The implementation of MPC in embedded systems can be divided into two
main paradigms: explicit MPC, and online MPC.

74 Chapter 4. Preliminaries

In explicit MPC [84, 85], the solution of the MPC control law is computed
offline and stored in the embedded system. In [86] the authors show that the
control law of standard MPC subject to state and input constraints is given by a
piece-wise affine and continuous function of the state. This function can be com-
puted offline and stored as a look-up table. Therefore, no optimization problem
has to be solved online, since the control action is determined by evaluating the
look-up table. This approach has been used in various publications to implement
MPC in embedded systems [87, 88, 89, 90, 91]. However, its drawback is that the
size of the look-up table, and thus the memory requirements and computational
time needed to evaluate it, becomes prohibitively large for medium to large-sized
systems and/or for problems involving many constraints.

The second main paradigm is to solve the MPC’s optimization problem at
each sample time for the current system state. A large portion of the results in
this field come from the recent development of solvers that are tailored to their use
in embedded systems, which can be used to solve the MPC optimization problem
online. Many of them generate library-free code that is tailored to the problem
to be solved, thus resulting in a rather efficient implementation. There are a wide
range of solvers, each particularized to a certain class of optimization problem
and based on a particular optimization method. A few of the most noteworthy
and well known solvers that have been used for the embedded implementation of
MPC are the following:

� CVXGEN [92] is an web-based “code generator for convex optimization
problems that can be reduced to quadratic programs” [92] and that is better
suited for small scale problems. It generates library-free C code tailored to
the specific QP problem, which is solved using a primal-dual interior point
method.

� qpOASES [93, 94], is an open-source C++ QP solver based on a parametric
active set method that, according to the authors, is “particularly suited for
model predictive control applications” [94].

� OSQP [35] is open-source sparse operator splitting solver for QP problems
that is based on the ADMM algorithm. The solver is written in C, but has
interfaces to various other programming languages.

� ODYS [95] is a proprietary solver for QP problems with a specific focus on
MPC. It has been used to implement MPC in various industries, such as,
for instance, in automotive mass production [69].

� FiOrdOs [96] is a Matlab toolbox for automated C-code generation of first
order methods for parametric convex programs that is well suited for its
application to MPC. The optimization problem is solved using the gradient
method or the fast gradient method.

4.3. A brief state of the art 75

� FORCES [97] is a proprietary solver that generates code for convex opti-
mization problems that is based on interior point methods and well suited
for MPC.

� qpDUNES [98] is an C-based open-source QP solver based on a dual Newton
strategy.

Some examples of these tools being used to implement MPC in industrial embed-
ded systems include [99], where qpOASES is implemented in a PLC to control a
MISO system; [100], where qpOASES, CVXGEN and FiOrdOs are implemented
in a PLC and compared (see also [101] for another implementation using FiOr-
dOs); or [102] which compares the scalability of FiOrdOs and qpOASES in a PLC.
A very useful tool for building optimizations problems and solving them with the
above solvers (and many others) is the YALMIP toolbox for Matlab [103].

The above solvers are not specific to MPC, although some consider and/or
provide tools for it. As such, even though they can be used to solve a wider
class of optimization problems, their use for MPC has been reported in numerous
publications. However, another approach followed by some authors is to develop
solvers that are tailored or more focused on MPC. These solvers may attain a more
efficient implementation due to their narrow focus. Some noteworthy examples
include:

� µAO-MPC [104] is a code generation tool for MPC subject to box constraints
on the inputs. It generates self-contained code tailored to the specific MPC
problem and system. The optimization problem is solved using the aug-
mented Lagrangian method along with the fast gradient method.

� PRESAS [105] is a primal active-set solver for block-sparse QPs with a
particular focus on MPC (both linear and non-linear).

� HPMPC [106] is a C library for the implementation of MPC. Various rou-
tines are used, depending on if the MPC is unconstrained or constrained
(Riccati recursion, interior point and ADMM). Its successor, HPIPM [107],
which is currently under active development, focuses on interior point meth-
ods for QPs, with a particular focus on MPC.

� SPCIES [4] is the Matlab toolbox that contains the solvers that have been
developed as part of this dissertation.

We now briefly describe other noteworthy publications in this field that don’t
quite fall into the above paradigms, either because they implement MPC in em-
bedded systems but without presenting a fully-fledged solver, or because they
present novel methods/approaches for its implementation.

In [108], an online implementation of embedded MPC is presented, where the
MPC optimization problem is solved using a combination of Nesterov’s fast gra-
dient method and method of multipliers. A parallel coordinate descent algorithm

76 Chapter 4. Preliminaries

for network systems is presented in [109] and applied to MPC in a PLC. In [110],
an accelerated dual gradient projection algorithm for embedded MPC with an
iteration complexity that grows linearly with the prediction horizon is presented.
The article [111] presents the implementation of MPC in FPGAs using the fast
gradient method and ADMM. In [112], Nesterov’s fast gradient method is used to
solve MPC in a PLC. A tool for software-hardware code generation of operator
splitting methods for MPC in FPGAs is presented in [113], The application of an
accelerated dual proximal algorithm is proposed in [114] to finding the solution
of the infinite horizon constrained LQR problem. In [115], a primal-dual iterative
algorithm particularized to MPC is developed for its implementation in FPGAs.
In [116], MPC is programmed on a FPGA using high-level synthesis tools along
with µAO-MPC. A primal active-set method for bounded-variable least-squares
problems [117] is implemented in a PLC to solve MPC in [15]. An ADMM algo-
rithm for MPC which exploits the problem structure by decoupling the system
dynamics is presented in [118]. Decoupling the system dynamics allows for a par-
allel implementation of the algorithm. In [119], another ADMM based solver for
MPC that decouples the system dynamics is presented, in this case by exploiting
the symmetry of the system.

As evidences from the above references, research in this field is very exten-
sive, encompassing a wide range of embedded systems, optimization methods
and approaches. For additional references we refer the reader to the surveys
[120, 121, 122, 123].

77

Chapter 5

Sparse solvers for model
predictive control

This chapter considers system (4.1) subject to the box constraints (4.3).

This chapter presents sparse solvers for various MPC formulations in which the
choice of formulation and optimization algorithm leads to an efficient solver that
exploit the structure of the problem. That is, we define the MPC formulations
and the decision variables in such a way that the ingredients of the first order
methods (i.e., the resulting matrices) are simple enough to be able to perform
matrix-vector operations are simple and can be performed without having to use
the typical sparse matrix representations (e.g., the compressed sparse column/row
or dictionary of keys formats). The advantage of doing this is that we do not need
to store all the non-zero elements of the matrices nor the arrays that determine
their positions within them. Instead, we only need to store the repeating sub-
matrices once, and the sparse matrix-vector operations are performed by direct
identification of their inner structure. This results in solvers with low iteration
complexity and memory footprint; although, in some aspects, at the expense of
some restrictions.

The solvers presented in this chapter have been included in the SPCIES tool-
box for Matlab1 [4], which is available at https://github.com/GepocUS/Spcies.
We do not provide the exact pseudocode of the solvers, since the specific ways in
which we perform the sparse matrix-vector operations, as well as certain details
such as what variables are stored, are subject to future changes and improve-
ments. Instead, we describe the pseudocode in more general terms. We show
how the sparse matrix-vector operations arise, the inner structure of the matri-
ces, and providing enough information to understand which variables are required
and which are not. The reader can find the exact code of the solvers in [4].

1For future reference, the version of the toolbox as of the date of presentation of this dissertation
is v0.3.2. Future versions may have made improvements upon the results shown here.

https://github.com/GepocUS/Spcies

78 Chapter 5. Sparse solvers for model predictive control

We start this chapter with three sections that provide the foundation for the
sparse MPC solvers. Section 5.1 presents three solvers that will be used repeatedly
throughout this chapter: one for a particular class of systems of equations, one for
a particular class of equality-constrained QP problems and one for a particular
class of box-constrained separable QP problems. Sections 5.2 and 5.3 show how
the FISTA and ADMM algorithm can be applied to solve QP problems.

The ideas presented in the aforementioned section will be employed in the
development of sparse solvers for the four MPC formulations described in Sec-
tions 5.4 to 5.6.

5.1 Various structure-exploiting solvers

This section presents three rather evident results that will be used throughout
this chapter: a sparse solver for a particular class of systems of equations, a
way to solve a particular class of equality-constrained QP problems, and, for
future reference, the algorithm for solving a diagonal strongly-convex QP problem
subject to box constraints.

5.1.1 Solving systems of equations with banded decomposition

Let us consider a matrix W satisfying the following assumption.

Assumption 5.1. Matrix W satisfies:

(i) W ∈ Smz++.

(ii) The Cholesky decomposition of W , i.e., the upper triangular matrix Wc

satisfying W = W>c Wc, has the following structure:

Wc =

β1 α1 0n 0n
.. β2 α2 0n
..
0n βN−1 αN−1

0n 0n βN

 , (5.1)

where βi ∈ Rn×n, for i ∈ ZN1 , are upper triangular matrices, and αi ∈ Rn×n,
for i ∈ ZN−1

1 . Obviously, mz = Nn.

Algorithm 11 shows how to sparsely solve a system of equations Wz = w
where W satisfies Assumtion 5.1. It performs forward and backward substitution
using the Cholesky factorization of W . That is, it sequentially solves the two
following triangular systems of equations

W>c ẑ = w, Wcz = ẑ,

using the auxiliary variable ẑ.

5.1. Various structure-exploiting solvers 79

Algorithm 11: Sparse solver for Wz = w under Assumtion 5.1

Prototype: z ← solve W(w)
1 z ← w
// Forward substitution:

2 for j ← 1 to n do // Compute first n elements

3 for i← 1 to j − 1 do z(j) ← z(j) − β̂1
(i,j)z(i) end for

4 z(j) ← β̂1
(j,j)z(j)

5 end for
6 for k ← 1 to N − 1 do // Compute the rest of the elements

7 for j ← 1 to n do
8 for i← 1 to n do
9 z(j+kn) ← z(j+kn) − αk(i,j)z(i+(k−1)n)

10 end for
11 for i← 1 to j − 1 do

12 z(j+kn) ← z(j+kn) − β̂k+1
(i,j)z(i+kn)

13 end for

14 z(j+kn) ← β̂k+1
(j,j)z(j+kn)

15 end for

16 end for
// Backwards substitution:

17 for j ← n to 1 by −1 do // Compute last n elements

18 for i← n to j + 1 by −1 do

19 z(j+(N−1)n) ← z(j+(N−1)n) − β̂N(j,i)z(i+(N−1)n)

20 end for

21 z(j+(N−1)n) ← β̂N(j,j)z(j+(N−1)n)

22 end for
23 for k ← N − 2 to 0 by −1 do // Compute the rest of the elements

24 for j ← n to 1 by −1 do
25 for i← n to 1 by −1 do

26 z(j+kn) ← z(j+kn) − αk+1
(j,i)z(i+(k+1)n)

27 end for
28 for i← n to j + 1 by −1 do

29 z(j+kn) ← z(j+kn) − β̂k+1
(j,i)z(i+kn)

30 end for

31 z(j+kn) ← β̂k+1
(j,j)z(j+kn)

32 end for

33 end for
Output: z

80 Chapter 5. Sparse solvers for model predictive control

Algorithm 11 has been developed to have a small memory and computational
footprint by taking advantage of the structure of Wc. In particular, variable z
is used to store w, ẑ and z itself, thus only requiring the declaration of a single
array of dimension mz instead of 3. That is, in a real implementation, the vector
w would be passed by reference, and the function would return the solution z in
the same array. To avoid performing divisions, which are more computationally
expensive than multiplications, we store and use the matrices β̂i given by

β̂i(j,k) =

βi(j,k) if j 6= k,

1

βi(j,k)

if j = k,

instead of matrices βi.

Remark 5.2. Only the matrices β̂i, for i ∈ ZN1 , and αi, for i ∈ ZN−1
1 , need

to be stored in a real implementation of Algorithm 11 (as well as an array of
dimension mz). That is, the position of the non-zero elements of Wc do not
need to be stored, as would be the case if Wc where to be stored using the typical
sparse matrix representations, such as, for instance, the compressed sparse column
format.

5.1.2 Solving equality-constrained QPs with banded structure

We now present a procedure for sparsely solving a particular class of equality-
constrained QP problems by making use of Algorithm 11.

Let us consider the equality-constrained QP problem

min
z∈Rnz

z>Hz + q>z (5.2a)

s.t. Gz = b, (5.2b)

under the following assumption.

Assumption 5.3. Assume that H ∈ Snz++, G ∈ Rmz×nz satisfies rank(G) = mz,
mz < nz and that W = GH−1G> satisfies Assumtion 5.1.

Remark 5.4. Note that matrix W defined in Assumtion 5.3 satisfies W ∈ Smz++

due to the assumptions on H and G.

Problem (5.2) has an explicit solution given by the following proposition, taken
from [23, §10.1.1].

5.1. Various structure-exploiting solvers 81

Algorithm 12: Solver for equality-constrained QP

Prototype: z∗ ← solve eqQP(q, b;H,G)
Input: q ∈ Rnz , b ∈ Rmz

1 µ← −GH−1q − b
2 µ← solve W(µ)

3 z∗ ← −H−1(G>µ+ q)
Output: z∗

Proposition 5.5 (Explicit solution of equality-contrained QP problem). Con-
sider a QP problem (5.2), where H ∈ Snz++, q ∈ Rnz , G ∈ Rmz×nz and b ∈ Rmz . A
vector z∗ ∈ Rnz is an optimal solution of this optimization problem if and only if
there exists a vector µ ∈ Rmz such that

Gz∗ = b,

Hz∗ + q +G>µ = 0,

which using simple algebra and defining W
.
= GH−1G>, leads to

Wµ = −(GH−1q + b) (5.3a)

z∗ = −H−1(G>µ+ q). (5.3b)

Therefore, a solution to (5.2) under Assumtion 5.3 can be obtained by first
solving (5.3a), which can be sparsely solved using Algorithm 11, and then evalu-
ating (5.3b). We formally state this in the following corollary, where we consider
(5.2) to be parametrized by q ∈ Rnz and b ∈ Rmz .

Corollary 5.6. Problem (5.2) parametrized by q ∈ Rnz and b ∈ Rmz can be
solved under Assumtion 5.3 using Algorithm 12, where step 2 calls Algorithm 11
for the matrix W = GH−1G>.

Remark 5.7. Algorithm 12 is a sparse solver if the matrix-matrix and matrix-
vector operations in steps 1 and 3 can be performed sparsely, which, at the very
least, requires H−1 and G to be sparse.

5.1.3 Solving box-constrained separable QPs

This section presents a straightforward result for the sole purpose of facilitating
future developments: how to solve QP problems with a diagonal Hessian subject
to box constraints. Let us consider the box-constrained QP problem

min
z∈Rnz

z>Hz + q>z (5.4a)

s.t. z ≤ z ≤ z, (5.4b)

under the following assumption.

82 Chapter 5. Sparse solvers for model predictive control

Algorithm 13: Solver for box-constrained QP

Prototype: z∗ ← solve boxQP(q;H, z, z)
Input: q ∈ Rnz

1 for j ← 1 to nz do

2 z∗(j) ← max
{

min
{
−H−1

(j,j)q(j), z(j)

}
, z(j)

}
3 end for

Output: z∗

Assumption 5.8. Assume that H ∈ Dnz++ and that z ∈ Rnz , z ∈ Rnz satisfy
z ≤ z.

Then, the components of z are decoupled. It is clear that the optimal solution
z∗ of (5.4) is given by

z∗(j) = max
{

min
{
−H−1

(j,j)q(j), z(j)

}
, z(j)

}
, j ∈ Znz1 .

Algorithm 13 solves (5.4) under Assumtion 5.8 using the above expression, where
we consider (5.4) to be parametrized by q ∈ Rnz .

Remark 5.9. We note that only the inverse of the diagonal elements of H are
required in Algorithm 13. Thus, they can be stored in an array of dimension nz.

Remark 5.10. If H is given by H = ρInz for some ρ ∈ R>0, then we will
use the slight abuse of notation z∗ ← solve boxQP(q; ρ, z, z) as the prototype of
Algorithm 13. In this case, step 2 of the algorithm will be substituted by

z∗(j) ← max
{

min
{
−ρ−1q(j), z(j)

}
, z(j)

}
.

5.2 Solving QPs with FISTA through duality

Let us consider a QP problem

min
z
{J(z)

.
=

1

2
z>Hz + q>z} (5.5a)

s.t. Gz = b (5.5b)

z ∈ Z, (5.5c)

where z ∈ Rnz are the decision variables, J : Rnz → R is the cost function,
q ∈ Rnz , G ∈ Rmz×nz and b ∈ Rmz ; under the following assumption.

5.2. Solving QPs with FISTA through duality 83

Assumption 5.11. We assume that:

(i) The Hessian H ∈ Snz++.

(ii) Z ⊆ Rnz is a non-empty closed convex set.

(iii) G satisfies rank(G) = mz.

(iv) There exist ẑ ∈ ri(Z) such that Gẑ = b.

We note that problem (5.5) is solvable under Assumtion 5.11.(iv). Further-
more, since H is assumed to be positive definite, problem (5.5) under Assum-
tion 5.11 is a convex optimization problem with a strongly convex cost function.
Therefore, it is well known that it has a unique optimal solution z∗.

In this section we show how to solve problem (5.5) under Assumtion 5.11 by
applying FISTA (Algorithm 4) to its dual formulation, which we now introduce.

5.2.1 QP problem’s dual formulation

Let us consider the following Lagrangian function L : Rnz × Rmz → R of (5.5):

L(z, λ) = J(z) + 〈λ, b−Gz〉,

where λ ∈ Rmz are the dual variables for the equality constraints (5.5b). Then,
the dual function ψ : Rmz → R is given by

ψ(λ) = min
z∈Z
L(z, λ),

and the dual problem by
max
λ∈Rmz

ψ(λ). (5.6)

Let the optimal solutions of problems (5.5) and (5.2.1) be given by z∗ (primal
optimal solution) and λ∗ (dual optimal solution), respectively. Then the primal
optimal value and dual optimal value are given by J∗ = J(z∗) and ψ∗ = ψ(λ∗).

The following proposition states the necessary and sufficient conditions for
optimality of problems (5.5) and (5.6).

Proposition 5.12. Consider the primal and dual problems (5.5) and (5.6). Let
Assumtion 5.11 hold. Then, J∗ = ψ∗, and (z∗, λ∗) are a primal and dual optimal
solution pair if and only if z∗ is feasible (i.e., z∗ ∈ Z and Gz∗ = b) and

z∗ = arg min
z∈Z
L(z, λ∗). (5.7)

Moreover, at least one dual optimal solution λ∗ exists.

Proof: This proposition follows directly from [1, Proposition 5.3.3], where the
fact that J∗ is finite and that (5.7) has a unique optimal solution follow from J
being strongly convex (note Assumtion 5.11.(i) states that H ∈ Snz++). �

84 Chapter 5. Sparse solvers for model predictive control

For a given λ, let zλ ∈ Rnz be defined as

zλ = arg min
z∈Z
L(z, λ) (5.8)

It is obvious that φ(λ) = L(zλ, λ). Since J is a strongly convex function, we have
that, under Assumtion 5.11.(iv), the dual function ψ is a continuously differen-
tiable smooth concave function [124, Lemma 3.1] whose gradient is given by [19,
Example 2.2.4]

∇ψ(λ) = b−Gzλ. (5.9)

The following proposition characterizes the smoothness of ψ in terms of the
matrixW

.
= GH−1G> (c.f., Assumtion 2.1.(ii)). Its proof is based on the following

lemma. Note that, since H ∈ Sn++ and rank(G) = mz, we have that W ∈ Smz++.

Lemma 5.13. Consider the primal and dual problems (5.5) and (5.6), where the
dual function ψ is given by (5.2.1). Let Assumtion 5.11 hold and zλ be given by
(5.8). Assume that ∆z ∈ Rnz is such that zλ + ∆z ∈ Z. Then,

〈∆z,Hzλ + q −G>λ〉 ≥ 0.

Proof: From the convexity of Z, have that (1−µ)zλ+µ(zλ+∆z) ∈ Z, ∀µ ∈ [0, 1],
(see Definition N.2) which leads to zλ+µ∆z ∈ Z, ∀µ ∈ [0, 1]. From the optimality
of zλ, we have

ψ(λ) =
1

2
z>λHzλ + q>zλ + 〈λ, b−Gzλ〉

≤ 1

2
(zλ + µ∆z)>H(zλ + µ∆z) + 〈q, zλ + µ∆z〉+ 〈λ, b−G(zλ + ∆z)〉

= ψ(λ) + µ〈∆z,Hzλ + q −G>λ〉+
µ2

2
∆z>H∆z, ∀µ ∈ [0, 1].

Therefore,

µ〈∆z,Hzλ + q −G>λ〉+
µ2

2
∆z>H∆z ≥ 0, ∀µ ∈ [0, 1],

which is trivially satisfied if µ = 0. Otherwise, dividing by µ, we have that

〈∆z,Hzλ + q −G>λ〉+
µ

2
∆z>H∆z ≥ 0, ∀µ ∈ (0, 1].

For this to be true ∀µ ∈ (0, 1], it must be true that 〈∆z,Hzλ + q−G>λ〉 ≥ 0. �

Proposition 5.14 (Smoothness of the QP’s dual function). Consider the primal
and dual problems (5.5) and (5.6), where the dual function ψ is given by (5.2.1).
Let Assumtion 5.11 hold and zλ be given by (5.8). Denote W

.
= GH−1G>. Then

for any (λ,∆λ) ∈ Rmz × Rmz ,

ψ(λ+ ∆λ) ≥ ψ(λ) + 〈∆λ, b−Gzλ〉 −
1

2
‖∆λ‖2W .

5.2. Solving QPs with FISTA through duality 85

Proof: Let us define ∆z as

zλ + ∆z = arg min
z∈Z

1

2
z>Hz + q>z + 〈λ+ ∆λ, b−Gz〉.

It is clear that zλ + ∆z ∈ Z. Then, from the definition of ψ, we have

ψ(λ+∆λ) =
1

2
(zλ+∆z)>H(zλ+∆z) + 〈q, zλ+∆z〉+ 〈λ+∆λ, b−G(zλ+∆z)〉

= ψ(λ) +
1

2
∆z>H∆z + 〈∆z,Hzλ + q −G>λ〉+ 〈∆λ, b−G(zλ+∆z)〉

(∗)
≥ ψ(λ) +

1

2
∆z>H∆z + 〈∆λ, b−G(zλ+∆z)〉

= ψ(λ) + 〈∆λ, b−Gzλ〉+
1

2
∆z>H∆z + 〈∆λ,−G∆z〉

≥ ψ(λ) + 〈∆λ, b−Gzλ〉+ min
∆z

{
1

2
∆z>H∆z + 〈∆λ,−G∆z〉

}
(∗∗)
= ψ(λ) + 〈∆λ, b−Gzλ〉 −

1

2
∆λ>GH−1G>∆λ,

where (∗) is due to Lemma 5.13 and (∗∗) follows from

min
∆z

{
1

2
∆z>H∆z + 〈∆λ,−G∆z〉

}
= −1

2
∆λ>GH−1G>∆λ,

which is a well known result in the field of convex optimization. �

5.2.2 Solving the QP’s dual problem with FISTA

We now show how to solve the dual problem (5.6) using FISTA (Algorithm 4).
The results we now present are well known and can be found in several prior
publications, but are included here for completeness.

Since FISTA is expressed in terms of the minimization of a convex function,
instead of maximization of a concave one, we consider the convex problem

− min
λ∈Rmz

−ψ(λ). (5.10)

We note that, from (5.9), we have

∇(−ψ(λ)) = −(b−Gzλ). (5.11)

Then, under Assumtion 5.11, and taking into consideration Proposition 5.14,
we have that Assumtion 2.1 is satisfied for (5.10). In particular, problem (5.10)
has no non-smooth term Ψ, and the matrix R that characterizes its smoothness
(Assumtion 2.1.(ii)) is W

.
= GH−1G>. Therefore, the iterates of FISTA applied

to problem (5.10) will converge to λ∗.

86 Chapter 5. Sparse solvers for model predictive control

Algorithm 14: FISTA for solving QP problem (5.5)

Require: λ ∈ Rmz , ε ∈ R>0

1 t0 ← 1, k ← 0

2 qk ← q −G>λ

3 zk ← arg min
z∈Z

1

2
z>Hz + q>k z

4 Γk ← −(Gzk − b)
5 ∆λk ← solution of W∆λ = Γk
6 yk ← λ+ ∆λk
7 λk ← λ+ ∆λk
8 repeat
9 k ← k + 1

10 qk ← q −G>yk−1

11 zk ← arg min
z∈Z

1

2
z>Hz + q>k z

12 Γk ← −(Gzk − b)
13 ∆λk ← solution of W∆λ = Γk
14 λk ← ∆λk + yk−1

15 tk ←
1

2

(
1 +

√
1 + 4t2k−1

)
16 yk ← λk +

tk−1 − 1

tk
(λk − λk−1)

17 until ‖Γk‖∞ ≤ ε
Output: z̃∗ ← zk, λ̃

∗ ← yk−1

Let us now take a closer look at step 4 of Algorithm 4, which performs the
assignment λk ← T −ψ,R

mz

W (yk−1). That is,

λk ← arg min
λ∈Rmz

〈∇(−ψ(yk−1)), λ− yk−1〉+
1

2
‖λ− yk−1‖2W

= arg min
λ∈Rmz

〈Gzyk−1
− b, λ− yk−1〉+

1

2
‖λ− yk−1‖2W ,

which is a strongly convex unconstrained QP problem. Therefore, λk is the solu-
tion of the system of equations

W (λk − yk−1) = −(Gzyk−1
− b).

By defining ∆λk = λk − yk−1, step 4 of Algorithm 4 reduces to first computing
zyk−1

, then solving the system of equations W∆λk = −(Gzyk−1
− b), and then

performing the assignment λk ← ∆λk + yk−1.
FISTA algorithm applied to the dual problem (5.10) is shown in Algorithm 14.

Note that its exit condition (step 17) does not correspond to the exit condition
of Algorithm 4, which would be ‖yk−1 − λk‖W ≤ ε. We use the exit condition
‖Γk‖∞ ≤ ε because it is computationally cheaper to evaluate, since Γk ∈ Rmz is

5.3. Solving QPs with ADMM 87

Algorithm 15: ADMM for solving QP problem (5.12)

Require: v0 ∈ Rnz , λ0 ∈ Rnz , ρ ∈ R>0, εp ∈ R>0, εd ∈ R>0

1 k ← 0
2 repeat
3 qk ← q + λk − ρvk
4 zk+1 ← min

z

1

2
z>Hρz + q>k z, s.t. Gz = b

5 q̂k ← −ρzk+1 − λk
6 vk+1 ← arg min

v∈Z
ρ
2v
>v + q̂>k v

7 λk+1 ← λk + ρ(zk+1 − vk+1)
8 k ← k + 1

9 until ‖zk − vk‖∞ ≤ εp and ‖vk − vk−1‖∞ ≤ εd
Output: z̃∗ ← zk, ṽ

∗ ← vk, λ̃
∗ ← λk

already computed in step 12. The fact that Γk is a measure of optimality of the

current iterate follows from Γk = −(Gzk−b) = −(Gzyk−1
−b) (5.11)

= −∇(−ψ(yk−1)).
Then, since (5.10) is an unconstrained smooth convex problem, we have that
λ∗ = yk−1 ⇐⇒ ∇(−ψ(yk−1)) = 0. That is, λ∗ = yk−1 ⇐⇒ Γk = 0. Addition-
ally, from Proposition 5.12, we have that z∗ = zλ∗ . Thus, the outputs of the
algorithm are the suboptimal dual solution λ̃∗ = yk−1 and the suboptimal primal
solution z̃∗ = zλ̃∗ = zyk−1

= zk, where the suboptimality is determined by ε.

Remark 5.15. Note that steps 3 and 11 of Algorithm 14 require solving a con-
strained QP problem, which in general is not trivial. However, in the following
sections we will consider assumptions under which this problem will have a simple
and explicit solution. Additionally, steps 5 and 13 require solving a system of
equations, which can be computationally demanding. However, we will consider
systems of equations that satisfy Assumtion 5.1, and may therefore be sparsely
solved using Algorithm 11.

5.3 Solving QPs with ADMM

This section explains how problem (5.5) under Assumtion 5.11 can be solved using
ADMM (Algorithm 2). The results we now present are well known and can be
found in several prior publications, but are included here for completeness.

We start by rewriting (5.5) into a problem of class (2.12) by taking

min
z,v

1

2
z>Hz + q>z (5.12a)

s.t. Gz = b (5.12b)

v ∈ Z (5.12c)

z − v = 0. (5.12d)

88 Chapter 5. Sparse solvers for model predictive control

That is, the ingredients of (2.12) are given by: C = Inz , D = −Inz , d = 0nz ,

f(z) =
1

2
z>Hz + q>z + IGz=b(z),

g(v) = IZ(v),

where IGz=b is the indicator function of the set { z ∈ Rnz : Gz = b }.
Let us revisit steps 3 and 4 of Algorithm 2 when applied to (5.12). Step 3 of

Algorithm 2 now reads as

zk+1 ← arg min
z

1

2
z>Hz + q>z +

ρ

2
‖z − vk +

1

ρ
λk‖22

s.t. Gz = b

= arg min
z

1

2
z>Hρz + q>k z (5.13)

s.t. Gz = b,

where Hρ = H + ρInz and qk = q+ λk − ρvk. Step 4 of Algorithm 2 now reads as

vk+1 ← arg min
v∈Z

ρ

2
‖zk+1 − v +

1

ρ
λk‖22

= arg min
v∈Z

ρ

2
v>v + q̂>k v, (5.14)

where q̂k = −ρzk+1 − λk.
Algorithm 15 shows the result of particularizing Algorithm 2 to problem (5.12)

following the above discussion.

Remark 5.16. As in Remark 5.15, steps 4 and 6 of Algorithm 15 require solving
an equality-constrained QP and a constrained QP, respectively. In general, these
problems are not necessarily simple to solve. However, in this chapter we will
consider assumptions under which both steps can be solved using Algorithms 12
and 13, respectively.

5.4 Simple standard MPC formulations

This section considers two simple standard MPC formulations, which are partic-
ularizations of the general MPC formulation (4.7). We describe the formulation,
and present sparse solvers based on the algorithms shown in Sections 5.2 and 5.3.
The solvers were originally presented in [8, 9], although with a bigger emphasis
on their implementation in PLCs.

5.4. Simple standard MPC formulations 89

The first one is an MPC formulation with a terminal equality constraint:

min
x,u

N−1∑
j=0

‖xj − xr‖2Q + ‖uj − ur‖2R (5.15a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (5.15b)

x0 = x(t) (5.15c)

x ≤ xj ≤ x, j ∈ ZN−1
1 (5.15d)

u ≤ uj ≤ u, j ∈ ZN−1
0 (5.15e)

xN = xr, (5.15f)

and the second one is an MPC formulation without a terminal constraint:

min
x,u

N−1∑
j=0

(
‖xj − xr‖2Q + ‖uj − ur‖2R

)
+ ‖xN − xr‖2T (5.16a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (5.16b)

x0 = x(t) (5.16c)

x ≤ xj ≤ x, j ∈ ZN1 (5.16d)

u ≤ uj ≤ u, j ∈ ZN−1
0 . (5.16e)

We consider Assumtion 4.7 to hold for both the above MPC formulations.
Assumptions on the cost function matrices Q, R and T will be stated further
ahead when applicable.

The advantage of the MPC formulation (5.15) is that it avoids the computation
of an admissible invariant set Xt (Definition N.8), which can be very demanding
even for average-sized systems [125], by using the simplest one: the singleton
{xr} To see that under Assumtion 4.7, the singleton {xr} is, indeed, an admissible
invariant set of the system, note that the admissible terminal control law u(t) = ur
keeps the system at xr. However, this comes at the expense of a reduction of the
domain of attraction of the MPC controller (Definition 4.6) due to the use of the
smallest admissible invariant set of the system.

This drawback can be avoided by simply eliminating the terminal constraint,
leading to the MPC formulation (5.16). However, this comes at the expense
of losing the stability guarantees that accompany the use of a suitable terminal
constraint. In particular, the controller may not stabilize every feasible initial
state; only those contained within a certain region which may be difficult to
characterize [126]. Thus, the feasibility region and the domain of attraction of the
MPC formulation (5.16) may not be the same.

Remark 5.17. We note that the MPC formulation (5.15) does not include a
terminal cost because it does not require one for stability purposes and we chose
to focus on a simple MPC formulation in order to attain solvers with low iteration
complexity.

The MPC formulations (5.15) and (5.16) can be posed as QPs (5.5) as follows.

90 Chapter 5. Sparse solvers for model predictive control

QP problem of the MPC formulation (5.15):

Take the decision variables as:

z = (u0, x1, u1, x2, u2, . . . , xN−1, uN−1). (5.17a)

Then, the resulting ingredients of the QP problem (5.5) are given by

H = diag(R,Q,R,Q,R, . . . , Q,R), (5.17b)

q = −(Rur, Qxr, Rur, Qxr, Rur, . . . , Qxr, Rur), (5.17c)

G =

B −In 0 · · · · · · 0 0
0 A B −In · · · 0 0

0 0
. . .

. . .
. . . 0 0

0 0 · · · A B −In 0
0 0 · · · 0 0 A B

 , (5.17d)

b = (−Ax(t),0n,0n, . . . ,0n, xr), (5.17e)

Z = { z : z ≤ z ≤ z }, (5.17f)

where

z = (u, x, u, x, u, . . . , x, u), (5.17g)

z = (u, x, u, x, u, . . . , x, u). (5.17h)

The dimensions of the QP problem are nz = (N − 1)(n+m) +m and mz = Nn.

QP problem of the MPC formulation (5.16):

Take the decision variables as:

z = (u0, x1, u1, x2, u2, . . . , xN−1, uN−1, xN). (5.18a)

Then, the resulting ingredients of the QP problem (5.5) are given by

H = diag(R,Q,R,Q,R, . . . , Q,R, T), (5.18b)

q = −(Rur, Qxr, Rur, Qxr, Rur, . . . , Qxr, Rur, Txr), (5.18c)

G =

B −In 0 · · · · · · 0
0 A B −In · · · 0

0 0
. . .

. . .
. . . 0

0 0 0 A B −In

 , (5.18d)

b = (−Ax(t),0n,0n, . . . ,0n), (5.18e)

Z = { z : z ≤ z ≤ z }, (5.18f)

where

z = (u, x, u, x, u, . . . , x, u, x), (5.18g)

z = (u, x, u, x, u, . . . , x, u, x). (5.18h)

The dimensions of the QP problem are given by nz = N(n+m) and mz = Nn.

5.4. Simple standard MPC formulations 91

5.4.1 FISTA-based solver for standard MPC

We apply the results of Section 5.2 to the QP problems of the MPC formulations
(5.15) and (5.16), whose ingredients are given by (5.17) and (5.18), respectively,
under the following assumption.

Assumption 5.18. Let Assumtion 4.7 hold and assume that Q ∈ Dn++, R ∈ Dm++

and T ∈ Dn++.

It is easy to see that the satisfaction of Assumtion 5.18 implies the satisfac-
tion of Assumtion 5.11 for both QP problems, where, additionally, H ∈ Dnz++.
Therefore, Algorithm 14 can be applied to them.

Let us take a closer look at the computationally expensive steps of Algorithm
14. Steps 5 and 13 of Algorithm 14 require solving W∆λ = Γk. However, due to
the banded structures of G and H, matrix W = GH−1G> satisfies Assumtion 5.1.
Therefore, they can be solved using Algorithm 11.

Steps 3 and 11 of Algorithm 14 perform the assignment

zk ← min
z

1

2
z>Hz + q>k z

s.t. z ≤ z ≤ z,

where

qk =

{
q −G>λ if k = 0

q −G>yk−1 otherwise,

which satisfies Assumtion 5.8, and can therefore be solved using Algorithm 13.

Algorithm 16 shows the particularization of Algorithm 14 to the QP problems
of the MPC formulations (5.15) and (5.16) under Assumtion 5.18. The control
action u(t) is taken as the first m elements of z̃∗.

Remark 5.19. One of the key aspects of Algorithm 16 is that the matrix-matrix
and matrix-vector operations can be performed sparsely without needing to store
all the non-zero elements of the matrices. Instead, it only requires the compu-
tation/storage of the repeating elements once, such as matrices A and B, for G;
Q−1, R−1 and T−1 (if applicable) for H−1; −Qxr, −Rur and −Txr for q; −Ax(t)
for b; and x, x, u, u for z and z.

Remark 5.20. We note that steps 5 and 13 of Algorithm 16 can be solved using
Algorithm 13 because the Hessian is diagonal and we are considering box con-
straints. However, these conditions can be relaxed without greatly compromising
the efficiency of the algorithm. In particular, (i) if non-diagonal cost function ma-
trices are considered, and/or (ii) we consider coupled input-state constraints(4.4),
then these steps would result in N decoupled small-scale, inequality-constrained

QP problems, which could be individually solved using interior point or active set
methods.

92 Chapter 5. Sparse solvers for model predictive control

Algorithm 16: Sparse FISTA solver for standard MPC formulations

Require: x(t) ∈ Rn, xr ∈ Rn, ur ∈ Rm, λ ∈ Rmz , ε ∈ R>0

1 Compute q with xr and ur
2 Compute b with x(t)
3 t0 ← 1, k ← 0

4 qk ← q −G>λ
5 zk ← solve boxQP(qk;H, z, z)
6 Γk ← −(Gzk − b)
7 ∆λk ← solve W(Γk)
8 yk ← λ+ ∆λk
9 λk ← λ+ ∆λk

10 repeat
11 k ← k + 1

12 qk ← q −G>yk−1

13 zk ← solve boxQP(qk;H, z, z)
14 Γk ← −(Gzk − b)
15 ∆λk ← solve W(Γk)
16 λk ← ∆λk + yk−1

17 tk ←
1

2

(
1 +

√
1 + 4t2k−1

)
18 yk ← λk +

tk−1 − 1

tk
(λk − λk−1)

19 until ‖Γk‖∞ ≤ ε
Output: z̃∗ ← zk, λ̃

∗ ← yk−1

Remark 5.21. The typical choice for the terminal cost function matrix T is to
take it as the solution of the discrete Riccati equation

A>TA− T − (A>TB)(R+B>TB)−1(B>TA) +Q = 0n×n.

This matrix, however, is generally non-diagonal and thus cannot be used in Al-
gorithm 16 unless the last n elements of zk are updated in step 13 by solving a
small-scale inequality-constrained QP problem, as discussed inn Remark 5.20.

5.4.2 ADMM-based solver for standard MPC

We apply the results of Section 5.3 to the QP problems of the MPC formulations
(5.15) and (5.16), whose ingredients are given by (5.17) and (5.18), respectively,
under the following assumption.

Assumption 5.22. Let Assumtion 4.7 hold and assume that Q ∈ Sn+, R ∈ Sm+
and T ∈ Sn+.

5.4. Simple standard MPC formulations 93

Algorithm 17: Sparse ADMM solver for standard MPC formulations

Require: x(t) ∈ Rn, xr ∈ Rn, ur ∈ Rm, v0 ∈ Rnz , λ0 ∈ Rnz , ρ ∈ R>0,
εp ∈ R>0, εd ∈ R>0

1 Compute q with xr and ur
2 Compute b with x(t)
3 k ← 0
4 repeat
5 qk ← q + λk − ρvk
6 zk+1 ← solve eqQP(qk, b;Hρ, G)
7 q̂k ← −ρzk+1 − λk
8 vk+1 ← solve boxQP(q̂k; ρ, z, z)
9 λk+1 ← λk + ρ(zk+1 − vk+1)

10 k ← k + 1

11 until ‖zk − vk‖∞ ≤ εp and ‖vk − vk−1‖∞ ≤ εd
Output: z̃∗ ← zk, ṽ

∗ ← vk, λ̃
∗ ← λk

It is easy to see that the satisfaction of Assumtion 5.22 implies the satisfaction
of Assumtion 5.11 for both QP problems. Therefore, Algorithm 15 can be applied
to them. Let us take a closer look at steps 4 and 6 of Algorithm 15.

Step 4 of Algorithm 15 requires solving the QP problem (5.13), which due to
the block diagonal structure of Hρ under Assumtion 5.22 and to the banded struc-
ture of G, satisfies Assumtion 5.3. Therefore, it can be solved using Algorithm 12
as described in Corollary 5.6.

Step 6 requires solving the QP problem (5.14), which satisfies Assumtion 5.8
and can therefore be solved using Algorithm 13.

Algorithm 17 shows the particularization of Algorithm 15 to the QP problems
of the MPC formulations (5.15) and (5.16) under Assumtion 5.22. The control
action u(t) is taken as the first m elements of ṽ∗.

Remark 5.23. We note that the reason why Assumtion 5.22 considers non-
diagonal cost function matrices, when Assumtion 5.18 does not, is that step 8 of
Algorithm 17 can always be solved using Algorithm 13, whereas in the FISTA-based
solver the use of non-diagonal cost function matrices prevented its use. However,
Remark 5.20.(ii) still also holds here for the case in which coupled input-state
constraints (4.4) are used in place of box constraints.

Remark 5.24. Remark 5.19 also applies to Algorithm 17. That is, the matrix-
matrix and matrix-vector operations are all performed sparsely thanks to the simple
structures of the matrices and only the absolutely necessary variables are stored
and computed.

94 Chapter 5. Sparse solvers for model predictive control

5.5 MPC with terminal quadratic constraint

This section presents the sparse ADMM-based solver presented in [12] for the
MPC formulation

min
x,u

N−1∑
j=0

(
‖xj − xr‖2Q + ‖uj − ur‖2R

)
+ ‖xN − xr‖2T (5.19a)

s.t. x0 = x(t) (5.19b)

xj+1 = Axj +Buj , j ∈ ZN−1
0 (5.19c)

xj ≤ xj ≤ xj , j ∈ ZN−1
1 (5.19d)

uj ≤ uj ≤ uj , j ∈ ZN−1
0 (5.19e)

xN ∈ E(P, c, r), (5.19f)

where E(P, c, r) is the ellipsoid defined by the given P ∈ Sn++, c ∈ Rn and r ∈ R>0

(see Definition N.7); under the following assumption.

Assumption 5.25. Let assumption Assumtion 4.7 hold and assume that Q ∈ Sn+,
R ∈ Sm+ , T ∈ Sn+, and that the bounds (xj , xj) ∈ Rn×Rn, (uj , uj) ∈ Rm×Rm given

in (5.19d) and (5.19e) satisfy x ≤ xj < xj ≤ x, j ∈ ZN−1
1 and u ≤ uj < uj ≤ u,

j ∈ ZN−1
0 , where x, x, u and u are the system bounds (4.3).

As discussed in Section 4.2, MPC formulations typically rely on a terminal
constraint xN ∈ Xt (see (4.7e)) to guarantee stability of the closed-loop system
[127], where the terminal set Xt is taken as an admissible invariant set of the
system given its state and input constraints (see Definition N.8). This is true
for both nominal MPC formulations [64, §2], as well as for many robust MPC
formulations, in which case Xt takes the form of a robust admissible invariant set
of the system [128]. Additionally, in some robust MPC approaches the constraints
are tightened throughout the prediction horizon [128, 129], thus our consideration
of step-dependent constraints in (5.19d) and (5.19e).

MPC formulation (5.19) captures these paradigms for the particular case in
which the (robust) admissible invariant set is taken as an ellipsoid E(P, c, r). Typ-
ically, an admissible invariant set in the form of a polyhedral set is used, i.e., a
set of the form {x ∈ Rn : Atx ≤ bt } where At ∈ Rnt×n and bt ∈ Rnt , either
so that the resulting optimization problem is a QP, or because the maximal (ro-
bust) admissible invariant set is used, which for controllable linear systems is a
polyhedral set. The computation of the polyhedral admissible invariant set for
MPC is a well researched field [130]. However, it typically results in the addition
of a large amount of inequality constraints, i.e. nt is very large [125, §5], even
for moderately large systems. As such, even though the resulting optimization
problem is a QP, for which many efficient solvers have been developed (see the
QP solvers listed in Section 4.3), it may be computationally demanding to solve.

5.5. MPC with terminal quadratic constraint 95

In many cases, the polyhedral (robust) admissible invariant set can be sub-
stituted by one in the form of an ellipsoid E(P, c, r) [125, §4.1] [131], [16], thus
leading to the MPC formulation (5.19). This comes at the expense of the resulting
optimization problem no longer being a QP problem, but with the advantage of
it (typically) having significantly fewer constraints. In fact, in many occasions,
the computation of a polyhedral (robust) admissible invariant set is prohibitively
expensive, whereas the computation of an ellipsoidal one is attainable, since it can
be posed, for instance, as a linear matrix inequality (LMI) problem2 [132]. This
further motivates the usefulness of a solver tailored to this MPC formulation.

Finally, we note that optimization problem (5.19) is a quadratically con-
strained quadratic programming (QCQP) problem, which is generally challenging
to solve but can have closed-form solutions in some cases [133]. In particular, in
[134] the authors present the FalcOpt solver [80], which is suitable for embedded
systems and considers nonlinear MPC subject to a terminal quadratic constraint.
However, it does not consider state constraints and the use of (a variation of)
the sequential quadratic programming approach may make it less efficient when
dealing with the linear MPC case than a tailored linear MPC solver.

5.5.1 ADMM solver for MPC with terminal quadratic constraint

Optimization problem (5.19) cannot be cast as a QP (5.12) due to the termi-
nal quadratic constraint (5.19f), so the procedure used in Section 5.3 cannot be
employed here. However, a very similar procedure can be used.

The MPC formulation (5.19) can be cast as an optimization problem (2.12) as
follows. Let us define the auxiliary variables (x̃1, . . . , x̃N) and (ũ0, ũ1, . . . , ũN−1),
and take

z = (u0, x1, u1, x2, u2, . . . , xN−1, uN−1, xN),

v = (ũ0, x̃1, ũ1, x̃2, ũ2, . . . , x̃N−1, ũN−1, x̃N).

To facilitate readability, we divide z and v into two parts, given by z = (z◦, zf) ∈
Rn◦ × Rn and v = (v◦, vf) ∈ Rn◦ × Rn, where

z◦
.
= (u0, x1, u1, x2, u2, . . . , xN−1, uN−1),

v◦
.
= (ũ0, x̃1, ũ1, x̃2, ũ2, . . . , x̃N−1, ũN−1),

zf
.
= xN and vf

.
= x̃N . Therefore, n◦ = (N − 1)(n + m) + m. Then, problem

(5.19) can be recast as (2.12) by taking

f(z) =
1

2
z>Hz + q>z + I(Gz−b=0)(z),

g(v) = I(v≤v◦≤v)(v◦) + IE(P,c,r)(vf),

2See Section 5.5.2, where, for completeness, we provide a design procedure for an ellipsoidal
admissible positive invariant set E(P, c, r).

96 Chapter 5. Sparse solvers for model predictive control

where

H = diag(R, Q, R, Q, R, . . . , Q, R, T), (5.20a)

q = −(Rur, Qxr, Rur, . . . , Qxr, Rur, Txr), (5.20b)

v◦ = (u0, x1, u1, . . . , xN−1, uN−1), (5.20c)

v◦ = (u0, x1, u1, . . . , xN−1, uN−1), (5.20d)

G =

B −In 0 · · · · · · 0
0 A B −In · · · 0

0 · · · . . .
. . .

. . . 0
0 · · · 0 A B −In

 , (5.20e)

b = (−Ax(t), 0n, 0n, . . . , 0n), (5.20f)

and by imposing

z◦ − v◦ = 0n◦ , (5.21a)

P 1/2(zf − vf) = 0n, (5.21b)

where P 1/2 ∈ Sn++ is the matrix that satisfies P = P 1/2P 1/2. Thus, the matrices
C, D and vector d of (2.12) are given by

C = diag(Im, In, Im, . . . , In, Im, P
1/2),

D = −diag(Im, In, Im, . . . , In, Im, P
1/2),

d = 0n◦+n.

The reason for imposing P 1/2(zf −vf) = 0n, instead of zf −vf = 0n, will be clear
further ahead (see Remark 5.27).

Let us now also divide λ into two parts: λ = (λ◦, λf) ∈ Rn◦ × Rn, where λ◦
are the dual variables associated to the constraints (5.21a) and λf are the dual
variables associated to the constraints (5.21b).

Then, step 3 of Algorithm 2 requires solving the optimization problem:

min
z

1

2
z>Ĥz + q̂>k z (5.22a)

s.t. Gz = b, (5.22b)

where

Ĥ = H + ρC>C = H + ρ diag(Im, In, Im, . . . , In, Im, P),

q̂k = q + ρC>Dvk + C>λk = q + (λk◦ − ρvk◦ , P 1/2λkf − ρPvkf).

Due to the block diagonal structure of Ĥ and the banded structure of G shown in
(5.20e), problem (5.22) satisfies Assumtion 5.3 and can therefore be solved using
Algorithm 12.

5.5. MPC with terminal quadratic constraint 97

Step 4 of Algorithm 2 has a separable structure that allows the problem to be
divided in two parts, one for v◦ and one for vf . The update of vk+1

◦ is the solution
of the following optimization problem:

vk+1
◦ = arg min

v◦

ρ

2
v>◦ v◦ − (ρzk+1

◦ + λk0)>v◦

s.t. v◦ ≤ v◦ ≤ v◦,

which satisfies Assumtion 5.8 and can therefore be solved using Algorithm 13.
The update of vk+1

f is the solution of the optimization problem

vk+1
f = arg min

vf

ρ

2
v>f Pvf − (ρPzk+1

f + P 1/2λkf)>vf

s.t. vf ∈ E(P, c, r).

Dividing the objective function by ρ and defining P−1/2 = P−1P 1/2, this problem
can be recast as

vk+1
f = arg min

vf

1

2
‖vf − (zk+1

f + ρ−1P−1/2λkf)‖2P (5.23a)

s.t. vf ∈ E(P, c, r), (5.23b)

which has an explicit solution given by the following theorem.

Theorem 5.26. Let a ∈ Rn, P ∈ Sn++, c ∈ Rn, r ∈ R>0. Then, the solution v∗

of the convex optimization problem

min
v

1

2
‖v − a‖2P (5.24a)

s.t. v ∈ E(P, c, r), (5.24b)

is given by

v∗ =

a if a ∈ E(P, c, r)

r(a− c)
‖a− c‖P

+ c otherwise.

Proof: Let ã
.
= a − c, and let Π(P,c,r)(a) denote the argument that minimizes

(5.24) for the given P , c and r. Then, it is clear that

Π(P,c,r)(a) = Π(P,0n,r)(ã) + c, (5.25)

since this simply corresponds to shifting the origin to the center of the ellipsoid
in (5.24b), and then undoing it. Therefore, it suffices to find a closed expression
for the solution of Π(P,0n,r)(ã), i.e., to find an explicit solution to

min
v

1

2
‖v − ã‖2P (5.26a)

s.t. v>Pv ≤ r2. (5.26b)

98 Chapter 5. Sparse solvers for model predictive control

The Lagrangian L : Rn × R→ R of (5.26) is given by

L(v, y) =
1

2
‖v − ã‖2P + y(v>Pv − r2), (5.27)

where y ∈ R is the dual variable for the constraint (5.26b). The dual function
associated with (5.26) is

Ψ(y) = inf
v
L(v, y). (5.28)

Let us define v(y) ∈ Rn as

v(y) = arg min
v
L(v, y). (5.29)

It is clear from the definition of v(y) that the dual function (5.28) can be expressed
as

Ψ(y) = L(v(y), y).

The dual problem of (5.26) is to maximize the dual function Ψ(y) subject to y ≥ 0
[23, §5], i.e., to find the optimal solution of

max
y≥0
L(v(y), y). (5.30)

We start by rewriting optimization problem (5.29) as

v(y) = arg min
v

1

2
v>(1+2y)Pv − ã>Pv.

whose optimal solution is the vector v(y) for which the gradient of the objective
function is equal to zero, since it is an unconstrained convex problem with a
differentiable real-valued objective function [23, §4.2.3]. That is,

(1+2y)Pv(y)− P ã = 0n,

which leads to

v(y) =
1

1+2y
ã. (5.31)

Substituting expression (5.31) into (5.27) leads to

L(v(y), y) =

[
1

2

(
2y

1 + 2y

)2

+
y

(1 + 2y)2

]
ã>P ã− r2y

=
y

1+2y
ã>P ã− r2y, (5.32)

which, for y > −1/2, is a differentiable real-valued concave function3. Therefore,
given that y is a scalar, the optimal solution y∗ of (5.30) is given by

y∗ = max{ŷ, 0}, (5.33)

3An easy way to see this is to note that

y

1 + 2y
=

1

2

(
1− 1

1 + 2y

)
,

where −1/(1+2y) is differentiable, real-valued and concave for y > −1/2.

5.5. MPC with terminal quadratic constraint 99

where ŷ is the scalar such that

dL(v(y), y)

dy

∣∣∣
ŷ

= 0,

which, differentiating (5.32), leads to

ã>P ã− r2(1+2ŷ)2

(1+2ŷ)2
= 0,

ŷ =
1

2

(√
ã>P ã

r
− 1

)
. (5.34)

Given that strong duality holds, we have that the optimal solution of (5.26) v∗,
is given by v∗ = v(y∗). Therefore, from (5.31), (5.33) and (5.34), we have that

v(y∗) =

rã√
ã>P ã

, if ã>P ã > r2,

ã, if ã>P ã ≤ r2,

which, noting that v(y∗) ≡ Π(P,0n,r)(ã) and taking into account (5.25), proves the
claim. �

Remark 5.27. We note that the reason for imposing (5.21b) is so that (5.23) can
be solved using the simple explicit solution provided in Theorem 5.26. If, instead,
we had taken the more simple constraint zf − vf = 0n, problem (5.23) would have
been a standard Euclidean projection onto the ellipsoid E(P, c, r), which does not
have an explicit solution and would have thus required an iterative algorithm, such
as [135, §2], to be solved.

Algorithm 18 shows the particularization of Algorithm 2 to problem (5.19)
under Assumtion 5.25 obtained from the above discussion. The matrices used in
the algorithm are computed offline and stored in the embedded system. Therefore,
the value of ρ cannot be updated online. However, the values of c and r can
change between sample times, as well as the values of x(t), xr, ur and the bounds
in (5.19d) and (5.19e). The control action u(t) to be applied to the system is
taken as the first m elements of ṽ∗.

Remark 5.28. Remark 5.19 also applies to Algorithm 18. That is, the matrix-
matrix and matrix-vector operations are all performed sparsely thanks to the simple
structures of the matrices and only the absolutely necessary variables are stored
and computed.

100 Chapter 5. Sparse solvers for model predictive control

Algorithm 18: Sparse ADMM-based solver for (5.19)

Require: x(t), (xr, ur), v
0, λ0, εp > 0, εd > 0

1 Compute q with xr and ur
2 Compute b with x(t)
3 k ← 0
4 repeat

5 q̂k ← q + (λk◦ − ρvk◦ , P 1/2λkf − ρPvkf)

6 zk+1 ← solve eqQP(q̂k, b; Ĥ,G)

7 vk+1
◦ ← solve boxQP(−ρzk+1

◦ − λk◦; ρ, v◦, v◦)
8 vk+1

f ← zk+1
f + ρ−1P−1/2λkf

9 if (vk+1
f − c)>P (vk+1

f − c) > r2 then

10 vk+1
f ←

r(vk+1
f − c)√

(vk+1
f − c)>P (vk+1

f − c)
+ c

11 end if

12 λk+1
◦ ← λk◦ + ρ(zk+1

◦ − vk+1
◦)

13 λk+1
f ← λkf + ρP 1/2(zk+1

f − vk+1
f)

14 k ← k + 1

15 until rp ≤ εp and rd ≤ εd
Output: z̃∗ ← zk, ṽ∗ ← vk, λ̃∗ ← λk

5.5.2 Computation of admissible ellipsoidal invariant sets

Consider a system described by (4.1) subject to

Cx ≤ c, Du ≤ d, (5.35)

where C ∈ Rpx×n, c ∈ Rpx , D ∈ Rpu×m, d ∈ Rpu ; and a steady state reference
(xr, ur) satisfying the above constraints that we wish the system to converge to.

We describe a procedure taken from various articles in the literature (see, for
instance, [136] [137, §C.8.1], [132]) for computing a control gain K and an ad-
missible positive invariant ellipsoidal set E(P, c, r) (see Definition N.7 and Defini-
tion N.8) of system (4.1) subject to (5.35) for the control law u(t)=K(x(t)−xr)+ur
such that the closed-loop system admissibly converges to xr for any initial state
x(t) ∈ E(P, c, r). The procedure is based on solving an optimization problem
subject to LMIs.

To simplify the procedure, we start by shifting the origin to the reference
(xr, ur). That is, let x̂

.
= x − xr and û

.
= u − ur. Then, we compute a gain K

and an ellipsoid E(P,0n, r) (i.e., taking c = xr), such that the closed loop system
x̂(t + 1) = AK x̂(t), where AK

.
= A + BK, admissibly converges to the origin for

the constraints

Cx̂ ≤ ĉ, DKx̂ ≤ d̂, (5.36)

5.5. MPC with terminal quadratic constraint 101

where ĉ ∈ Rpx and d̂ ∈ Rpu are given by

ĉ = c− Cxr, d̂ = d−Dur.

The implication for invariance given in Definition N.8 reads as

x̂>Px̂ ≤ r2 =⇒ x̂>A>KPAK x̂ ≤ r2,

which, applying the S-procedure [23, §B.2], is satisfied if there exists a scalar λ ≥ 0
such that [

λP −A>KPAK 0n
0>n r2(1− λ)

]
∈ Sn+1

++ ,

where we note that λ must therefore satisfy λ ∈ [0, 1). This expression can be
rewritten as [

λP 0n
0>n r2(1− λ)

]
−
[
A>K
0

]
P
[
AK 0

]
∈ Sn+1

++ .

Applying the Schur complement [23, §A.5.5] leads to: λP 0n A>K
0>n r2(1− λ) 0>n
AK 0n P−1

 ∈ S2n+1
++ ,

Finally, pre- and post-multiplying by diag(P−1, 1, In) and taking the transforma-
tion W

.
= P−1, Y

.
= KP−1, leads to the LMI: λW 0n WA> + Y >B>

0>n r2(1− λ) 0>n
AW +BY 0n W

 ∈ S2n+1
++ . (5.37)

Next, (5.36) must be satisfied for all x̂ ∈ E(P, 0, r). It is well known that

max
x∈E(P,0n,r)

v>x = r
√
v>P−1v,

where v ∈ Rn [132, §5.2.2]. Therefore this condition can be imposed by finding P
and K such that

r2C>j P
−1Cj ≤ ĉ2

j , j ∈ Zpx1 ,

r2(DjK)>P−1(DjK) ≤ d̂2
j , j ∈ Zpu1 ,

where the subindex j indicates the j-th row of the matrix or component of the
vector. Taking the above definitions of W and Y , this can be posed as the LMIs:

r2C>j WCj ≤ ĉ2
j , j ∈ Zpx1 , (5.38)[

r−2d̂2
j DjY

Y >D>j W

]
∈ Sn+1

++ , j ∈ Zpu1 . (5.39)

102 Chapter 5. Sparse solvers for model predictive control

The procedure is to select a value of r (typically, for convenience, we pick
r = 1) and then to solve the following convex optimization problem subject to
LMI constraints

min
W,Y

− tr(W) (5.40a)

s.t. (5.37), (5.38) and (5.39), (5.40b)

for increasing values of λ in the range 0 ≤ λ < 1 until a feasible solution is found.
Finally, P and K are recovered from the solution of (5.40). The minimization of
−tr(W) is done to maximize the size of the resulting ellipsoid.

Remark 5.29. Similar procedures can be used to compute the terminal ingredients
of a robust MPC controller that follows formulation (5.19) [16, §V.A].

5.6 MPC for tracking

The solvers presented in the previous sections all consider variations of the stan-
dard MPC formulations (4.7). This section, on the other hand, presents a sparse
solver, based on the extended ADMM algorithm (Algorithm 3), for a non-standard
MPC formulation known as MPC for tracking (MPCT) [138, 139]. This formu-
lation differs from standard MPC formulations (4.7) in the inclusion of a pair of
decision variables (xs, us) ∈ Rn×Rm known as the artificial reference. Out of the
different variants of the MPCT formulation, this dissertation is concerned with
the following one, which uses a terminal equality constraint.

min
x,u,
xs,us

N−1∑
j=0

(
‖xj−xs‖2Q+‖uj−us‖2R

)
+‖xs−xr‖2T+‖us−ur‖2S (5.41a)

s.t. x0 = x(t) (5.41b)

xj+1 = Axj +Buj , j ∈ ZN−1
0 (5.41c)

x ≤ xj ≤ x, j ∈ ZN−1
1 (5.41d)

u ≤ uj ≤ u, j ∈ ZN−1
0 (5.41e)

xs = Axs +Bus (5.41f)

x+ εx ≤ xs ≤ x− εx (5.41g)

u+ εu ≤ us ≤ u− εu (5.41h)

xN = xs, (5.41i)

where εx ∈ Rn and εu ∈ Rm are vectors with arbitrarily small positive components
which are added to avoid a possible loss of controllability when the constraints are
active at the equilibrium point [139]. We consider the following assumption, which
we note does not assume that (xr, ur) is an admissible steady state of system (4.1)
subject to (4.3).

5.6. MPC for tracking 103

Assumption 5.30. Let Assumtion 4.2 hold and assume that:

(i) Q ∈ Sn+, R ∈ Sm+ , T ∈ Sn+ and S ∈ Sm+ .

(ii) x(t) strictly belongs to the feasibility region of (5.41). That is, there exist
x, u, xs and us such that (5.41b), (5.41c), (5.41f) and (5.41i) are satisfied
and (5.41d), (5.41e), (5.41g) and (5.41h) are strictly satisfied.

Remark 5.31. We note that Assumtion 5.30.(ii) implies that x + εx < x − εx
and u+ εu < u− εu.

The cost function (5.41a) penalizes, on one hand, the difference between the
predicted states xj and control actions uj with the artificial reference xs and us,
respectively, and on the other, the discrepancy between the artificial reference and
the reference (xr, ur) given by the user.

The inclusion of the artificial reference provides the MPCT formulation with
a series of advantages with respect to other (standard) MPC formulations.

First, a common issue of standard MPC formulations with stability guaran-
tees is that the domain of attraction of the controller can become insufficient if
the prediction horizon is chosen too small. However, the use of small prediction
horizons is desirable in order to help overcome the computational and memory
limitations typically imposed by embedded systems. The MPCT formulation pro-
vides significantly larger domains of attraction than standard MPC formulations
[139], especially for small prediction horizons.

Second, it intrinsically deals with references that are not attainable, i.e., that
are not a steady state of the system and/or that violate the system constraints
[139]. In this case, it will steer the closed-loop system to the admissible steady
state (xa, ua) ∈ Rn×Rm that minimizes the cost ‖xa−xr‖2T +‖ua−ur‖2S . Finally,
it also guarantees recursive feasibility of the closed-loop system even in the event
of a sudden reference change [138].

We now present a sparse solver, originally presented in [10], for the MPCT
formulation (5.41) that is based on the EADMM algorithm (Algorithm 3). The
MPCT formulation (5.41) can be expressed as a QP problem (5.12). However,
the inclusion of the artificial reference (xs, us) leads to a Hessian matrix that
is not block diagonal. Therefore, if we were to follow the same procedure pre-
sented in Section 5.3, we would not be able to solve step 4 of Algorithm 15 using
Algorithm 12 because the resulting W matrix would not satisfy Assumtion 5.1.
Therefore, we propose to use instead use EADMM (Algorithm 3), which will allow
us to recover the structures that emerged in the previous sections, thus resulting
in a sparse solver with a very similar iteration complexity to the previous ones.

104 Chapter 5. Sparse solvers for model predictive control

5.6.1 Recasting the MPCT formulation for EADMM

Let us start by recasting problem (5.41) by defining the auxiliary variables x̃i
.
=

xi − xs and ũi
.
= ui − us as follows

min
x̃,ũ,x,
u,xs,us

N∑
i=0

(
‖x̃i‖2Q + ‖ũi‖2R

)
+ ‖xs − xr‖2T + ‖us − ur‖2S (5.42a)

s.t. x0 = x(t) (5.42b)

x̃i+1 = Ax̃i +Bũi, i ∈ ZN−1
0 (5.42c)

x ≤ xi ≤ x, i ∈ ZN−1
1 (5.42d)

u ≤ ui ≤ u, i ∈ ZN−1
0 (5.42e)

x+ εx ≤ xN ≤ x− εx, (5.42f)

u+ εu ≤ uN ≤ u− εu, (5.42g)

xs = Axs +Bus (5.42h)

x̃i + xs − xi = 0n, i ∈ ZN0 (5.42i)

ũi + us − ui = 0m, i ∈ ZN0 (5.42j)

xN = xs, (5.42k)

uN = us, (5.42l)

where the decision variables are xs, us, x̃ = (x̃0, . . . , x̃N), ũ = (ũ0, . . . , ũN),
x = (x0, . . . , xN), and u = (u0, . . . , uN). Equality constraints (5.42i) and (5.42j)
impose the congruence of the decision variables with the original problem (5.41).
Inequalities (5.41g) and (5.41h) are omitted because they are already imposed by
(5.42f) and (5.42g) alongside the inclusion of (5.42k) and (5.42l).

Remark 5.32. Note that the summation in the cost function (5.42a) now includes
i = N . However, this does not change the solution of the optimization problem
due to the inclusion of (5.42k) and (5.42l).

We can now obtain a problem of form (2.13) by taking

z1 = (x0, u0, x1, u1, . . . , xN−1, uN−1, xN , uN), (5.43a)

z2 = (xs, us), (5.43b)

z3 = (x̃0, ũ0, x̃1, ũ1, . . . , x̃N−1, ũN−1, x̃N , ũN), (5.43c)

which leads to

θ1(z1) = 0,

θ2(z2) =
1

2
z>2 diag(T, S)z2 − (Txr, Sur)

>z2,

θ3(z3) =
1

2
z>3 diag(Q,R,Q,R, . . . , Q,R)z3,

5.6. MPC for tracking 105

C1 =

[In 0n×m] 0 0

−In+m 0 0

0
. . . 0

0 0 −In+m

0 0 −In+m

 , C2 =

0

In+m
...

In+m

In+m

 ,

C3 =

0 . . . 0

In+m 0 0

0
. . . 0

0 0 In+m

0 . . . 0

 , b =

x(t)

0
...
0

0

 .

Matrices C1, C2 and C3 contain the equality constraints (5.42b), (5.42i),
(5.42j), (5.42k) and (5.42l). Specifically, the first n rows impose constraint (5.42b),
the last n + m rows impose the constraints (5.42k) and (5.42l), and the rest of
the rows impose the constraints (5.42i) and (5.42j). Set Z1 is the set of vectors
z1 (5.43a) for which the box constraints (5.42d)-(5.42g) are satisfied; set Z2 is the
set of vectors z2 (5.43b) that satisfy the equality constraint (5.42h); and set Z3 is
the set of vectors z3 (5.43c) that satisfy the equality constraints (5.42c).

Remark 5.33. Our selection of zi and Ci for i ∈ Z3
1 results in an optimization

problem that satisfies Assumption 2.8. Therefore, under a proper selection of ρ,
the iterates of the EADMM algorithm will converge to the optimal solution of the
MPCT controller. In practice, the parameter ρ may be selected outside the range
shown in Theorem 2.9 in order to improve the convergence rate of the algorithm
[36]. In this case, the convergence will not be guaranteed and will have to be
extensively checked with simulations.

5.6.2 EADMM-based solver for the MPCT formulation

We now particularize Algorithm 3 to the optimization problem (5.42). Let us take
a closer look at steps 3, 4 and 5 of Algorithm 3.

Step 3 of Algorithm 3 minimizes the Lagrangian (2.14) over z1, resulting in
the following box-constrained optimization problem:

min
z1

1

2
z>1 H1z1 + q>1 z1 (5.44a)

s.t. z1 ≤ z1 ≤ z1, (5.44b)

where

H1 = ρC>1 C1,

q1 = ρC>1 C2z
k
2 + ρC>1 C3z

k
3 + C>1 λ

k − ρC>1 b,
z1 = (−Mn, u, x, . . . , u, x+ εx, u+ εu),

z1 = (Mn, u, x, . . . , u, x− εx, u− εu),

106 Chapter 5. Sparse solvers for model predictive control

and Mn ∈ Rn > 0 has arbitrarily large components. Due to the structure of C1,

we have that H1 ∈ D(N+1)(n+m)
++ . Therefore, problem (5.44) can be solved using

Algorithm 13, since it satisfies Assumtion 5.8.

Remark 5.34. Remark 5.20.(ii) also applies to problem (5.44).

Step 4 of Algorithm 3 minimizes the Lagrangian (2.14) over z2 = (xs, us),
resulting in the following equality-constrained QP problem:

min
z2

1

2
z>2 H2z2 + q>2 z2 (5.45a)

s.t. G2z2 = b2, (5.45b)

where

H2 = diag(T, S) + ρC>2 C2,

q2 = −(Txr, Sur) + ρC>2 C1z
k+1
1 + ρC>2 C3z

k
3 + C>2 λ

k − ρC>2 b,
G2 = [(A− In) B],

b2 = 0n.

The solution of this problem is given by Proposition 5.5. Note that, since the
prediction model (5.41c) is assumed to be controllable, G2 is full rank. More-
over, H2 ∈ Sn+m

++ . Therefore, the optimal solution of (5.45) can be obtained by
substituting (5.3a) into (5.3b), which leads to the expression

z∗2 = M2q2,

where M2 = H−1
2 G>2 (G2H

−1
2 G>2)−1G2H

−1
2 − H−1

2 ∈ R(n+m)×(n+m) is computed
offline and b2 does not appear because it is equal to zero.

Step 5 of Algorithm 3 minimizes the Lagrangian (2.14) over z3, resulting in
the following equality-constrained QP problem:

min
z3

1

2
z>3 H3z3 + q>3 z3

s.t. G3z3 = b3,

where

H3 = diag(Q,R,Q,R, . . . , Q,R) + ρC>3 C3,

q3 = ρC>3 C1z
k+1
1 + ρC>3 C2z

k+1
2 + C>3 λ

k − ρC>3 b,

G3 =

A B −In 0 · · · · · · 0 0
0 0 A B −In · · · 0 0

0 0 · · · . . .
. . .

. . . 0 0
0 0 · · · 0 A B −In 0

 ,
b = 0Nn,

5.6. MPC for tracking 107

Algorithm 19: Extended ADMM for MPCT

Require: z0
2 , z0

3 , λ0, ρ > 0, ε > 0
1 Update b with x(t)
2 Update q2 with xr and ur
3 k ← 0
4 repeat
5 q1 ← ρC>1 C2z

k
2 + ρC>1 C3z

k
3 + C>1 λ

k − ρC>1 b
6 zk+1

1 ← solve boxQP(q1;H1, z1, z1)

7 q2 ← −(Txr, Sur) + ρC>2 C1z
k+1
1 + ρC>2 C3z

k
3 + C>2 λ

k − ρC>2 b
8 zk+1

2 ←M2q2

9 q3 ← ρC>3 C1z
k+1
1 + ρC>3 C2z

k+1
2 + C>3 λ

k − ρC>3 b
10 zk+1

3 ← solve eqQP(q3,0;H3, G3)

11 Γ←
3∑
i=1

Ciz
k+1
i − b

12 λk+1 ← λk + ρΓ
13 k ← k + 1

14 until ‖Γ‖∞ ≤ ε, ‖zk2−z
k−1
2 ‖∞ ≤ ε, ‖zk3−z

k−1
3 ‖∞ ≤ ε

Output: z̃∗1 ← zk1 , z̃∗2 ← zk2 , z̃∗3 ← zk3 , λ̃∗ ← λk

which, due to the block diagonal structure of H3 and the banded structure of G3

satisfies Assumtion 5.3 and can therefore be solved using Algorithm 12.

Algorithm 19 shows the particularization of Algorithm 3 to the MPCT for-
mulation (5.42) obtained from the above discussion. The control action u(t) is
obtained from the elements u0 of the output z̃∗ (5.43a) returned by Algorithm 19.

Remark 5.35. It has been shown that the performance of ADMM can be sig-
nificantly improved by having different values of ρ for different constraints [140,
§5.2], i.e., by considering ρ as a diagonal positive definite matrix. In particular,
we find that the convergence of Algorithm 19 improves significantly if the equality
constraints (5.42b), (5.42k), (5.42l), (5.42j) for i = N , and (5.42i) for i = 0 and
i = N , are penalized more than the others.

Remark 5.36. We note the operations in Algorithm 19 with matrices Ci, i ∈ Z3
1,

can be performed exclusively using vector-vector operations. This is due to the
fact that the matrices C>i Cj, i ∈ Z3

1, j ∈ Z3
1, are diagonal, with some having

a very small number of off-diagonal elements that are easily identified. This is
also true for the case in which ρ is taken as a diagonal positive definite matrix
(Remark 5.35). We maintain the expressions using matrices Ci in Algorithm 19
for simplicity.

Remark 5.37. The theoretical upper bound for ρ provided in Theorem 2.9 is eas-
ily computable in this case. Indeed, we have that C>3 C3 is the identity matrix,

108 Chapter 5. Sparse solvers for model predictive control

Figure 5.1: Double reactor and separator system.

and therefore its spectral norm is ‖C>3 C3‖ = 1. Furthermore, µ3 is the mini-
mum eigenvalue of diag(Q,R), which is simple to compute. However, in practice,
we find that better results are obtained following Remark 5.35 for larger values
of ρ than the one described in Theorem 2.9. Therefore, the convergence of the
algorithm will have to be extensively checked with simulations.

5.7 Test Benches

This section presents various systems that will be used in the numerical results
shown in the following sections. In particular, we present the following systems:
a multivariable chemical plant consisting of two reactors and one separator, a ball
and plate system, and a series of masses connected by springs.

5.7.1 Chemical plant: double reactor and separator

The chemical plant system, depicted in Figure 5.1 and inspired from [141], is a
chemical plant in which the two following first-order reaction take place between
the reactants A, B and C:

A→ B, (5.46a)

B→ C. (5.46b)

The reactions occur in two consecutive cylindrical reactors (labeled 1 and 2),
which are fed by flows Ff1 and Ff2, respectively, of reactants A and B with
concentrations cA0 and cB0 The reactants then flow into a cylindrical separator
(labeled 3), where part of the reactants are redirected either to reactor 1 through
flow FR or discarded through flow FD. The concentration of the reactants in each
cylinder is denoted by cXi, where X ∈ {A,B,C} and i ∈ Z3

1. Each cylinder i ∈ Z3
1

has a bottom with area Ai and a height of liquid hi that will be determined by the
input and output flows of the cylinder, where the output flows Fi are connected as

5.7. Test Benches 109

Table 5.1: Parameters of the double reactor and separator system

Parameter Value Units Parameter Value Units

A1 1 m2 T0 313 K
A2 1 m2 kA 10−5 1/s
A3 1 m2 kB 5 · 10−6 1/s
ρ 1100 kg/m3 EA/R -2840 K
Cp 4 kJ/kg K EB/R -2077 K
kv1 50 kg/m s ∆HA -100 kJ/kg
kv2 50 kg/m s ∆HB -39 kJ/kg
kv3 30 kg/m s αA 3.5 -
αC 0.5 - αB 1.1 -
αD 0.001 - cA0 1 wt(%)
cB0 0 wt(%)

Table 5.2: Operating point of the double reactor and separator system

Var. Val. [m] Var. Val. [wt(%)] Var. Val. [wt(%)] Var. Val. [K]

h◦1 0.7 c◦A1 0.4155 c◦B1 0.5480 T ◦1 329
h◦2 0.9 c◦A2 0.2581 c◦B2 0.6755 T ◦2 333
h◦3 1.33 c◦A3 0.2282 c◦B3 0.7 T ◦3 323

shown in Figure 5.1. The kinetics of the reactions (5.46) taking place in reactors
i ∈ Z2

1 are given by the Arrhenius equations

kAi = kAe
− EA
RTi , kBi = kBe

− EB
RTi ,

respectively, where e is Euler’s number, kA and kB are the pre-exponential factor,
EA and EB the activation energies, R the universal gas constant, and Ti the
temperature of each reactor. The cylinders i ∈ Z3

1 have heating/cooling systems
which transfer heats Qi, thus affecting the temperatures and, as a result, the
speed of the reactions.

The non-linear model (4.5) of the plant is given by:

dh1

dt
=

1

ρA1
(Ff1 + FR − F1), (5.47a)

dcA1

dt
=

1

ρA1h1
(Ff1(cA0 − cA1) + FR(cAR − cA1))− kA1cA1, (5.47b)

dcB1

dt
=

1

ρA1h1
(Ff1(cB0 − cB1) + FR(cBR − cB1)) (5.47c)

− kB1cB1 + kA1cA1, (5.47d)

dT1

dt
=

1

ρA1h1
(Ff1(T0 − T1) + FR(TR − T1)) +

Q1

ρA1H1Cp
(5.47e)

110 Chapter 5. Sparse solvers for model predictive control

Table 5.3: Upper and lower bounds for the double reactor and separator system

Variable Upper Lower Variable Upper Lower

h1,2,3 2 0 ci 1 0
T1,2 348 320 T3 338 320
Q1,2,3 5000 -5000 Ff1,f2,R 50 0

− 1

Cp
(kA1cA1∆HA + kB1cB1∆HB) , (5.47f)

dh2

dt
=

1

ρA2
(Ff2 + F1 − F2), (5.47g)

dcA2

dt
=

1

ρA2h2
(Ff2(cA0 − cA2) + F1(cA1 − cA2))− kA2cA2, (5.47h)

dcB2

dt
=

1

ρA2h2
(Ff2(cB0 − cB2) + F1(cB1 − cB2)) (5.47i)

− kB2cB2 + kA2cA2, (5.47j)

dT2

dt
=

1

ρA2h2
(Ff2(T0 − T2) + F1(T1 − T2)) +

Q2

ρA2H2Cp
(5.47k)

− 1

Cp
(kA2cA2∆HA + kB2cB2∆HB) , (5.47l)

dh3

dt
=

1

ρA3
(F2 − FD − FR − F3), (5.47m)

dcA3

dt
=

1

ρA3h3
(F2(cA2 − cA3)− (FD + FR)(cAR − cA3)) , (5.47n)

dcB3

dt
=

1

ρA3h3
(F2(cB2 − cB3)− (FD + FR)(cBR − cB3)) , (5.47o)

dT3

dt
=

1

ρA3h3
F2(T2 − T3) +

Q3

ρA3H3Cp
, (5.47p)

where ∆HA and ∆HB are the enthalpy of the reactions (5.46), respectively, Cp is
the specific heat of the reactants, and ρ their density (we assume Cp and ρ to be
the same for the three reactants), and the following relations hold for i ∈ Z3

1:

Fi = kvihi, FD = αDFR,

cAR =
αAcA3

c3
, cBR =

αBcB3

c3
,

c3 = αAcA3 + αBcB3 + αCcC3, cC3 = 1− cA3 − cB3,

where kvi ∈ R>0 determine the relation between the flows Fi and heights hi; αA,
αD and αC determine the relative amount of each reactant in flows FR and FD;
and αD determines the amount of discarded material.

5.7. Test Benches 111

Figure 5.2: Ball and plate system.

The state and control input of the system are given by

x = (h1, cA1, cB1, T1, h2, cA2, cB2, T2, h3, cA3, cB3, T3),

u = (Q1, Q2, Q3, Ff1, Ff2, FR).

The values of the parameters of the system are given in Table 5.1
We obtain a linear model (4.1) of the system by linearizing (5.47) around the

operating point (x ◦, u◦) described in Table 5.2 with a sample time of 3s and then
scaling the resulting model with the scaling matrices

Nx = diag(1, 1, 1, 0.1, 1, 1, 1, 0.1, 1, 1, 1, 0.1),

Nu = diag(0.001, 0.001, 0.001, 0.01, 0.01, 0.01).

We consider the box constraints (4.3) on state and control inputs given in
Table 5.3, where ci stands for all the concentrations cA1, cA2, cA3, cB1, cB2 and cB3.

5.7.2 Ball and plate

The ball and plate system, which is depicted in Figure 5.2, consists of a plate that
pivots around its center point such that its slope can be manipulated by changing
the angle of its two perpendicular axes. The objective is to control the position of
a solid ball that rests on the plate. We assume that the ball is always in contact
with the plate and that it does not slip when moving. The non-linear equations
of the system are [142],

p̈1 =
m

m+ Ib/r2

(
p1θ̇

2
1 + p2θ̇1θ̇2 + g sin θ1

)
(5.48a)

p̈2 =
m

m+ Ib/r2

(
p2θ̇

2
2 + p1θ̇1θ̇2 + g sin θ2

)
, (5.48b)

where m = 0.05Kg, r = 0.01m and Ib = (2/5)mr2 = 2 · 10−6Kg·m2 are the mass,
radius, mass moment of inertia of a solid ball, respectively; g = 9, 81m/s2 is the

112 Chapter 5. Sparse solvers for model predictive control

Figure 5.3: Chain of three masses connected by springs.

gravitational acceleration; p1 and p2 are the position of the ball on the two axes
of the plate relative to its center point; ṗ1, ṗ2, p̈1 and p̈2 their corresponding
velocities and accelerations; θ1 and θ2 are the angle of the plate on each of its
axes; and θ̇1 and θ̇2 their corresponding angular velocities.

The state of the system is given by

x = (p1, ṗ1, θ1, θ̇1, p2, ṗ2, θ2, θ̇2),

and the control input u = (θ̈1, θ̈2) is the angle acceleration of the plate in each
one of its axes. We consider the following box constraints (4.3) on the state and
control inputs:

|ṗi| ≤ 0.5 m/s2, |θi| ≤
π

4
rad, |θ̈i| ≤ 0.4 rad/s2, i ∈ Z2

1.

We obtain a linear model (4.1) by linearizing (5.48) around the operating point
x ◦ = 06, u◦ = 02 with a sample time of 0.2s and then scaling the resulting model
with the scaling matrices

Nx = diag(0.1, 1, 1, 1, 0.1, 1, 1, 1), Nu = I2.

5.7.3 Oscillating masses

The oscillating masses system, which is inspired by the case study from [143],
consists of three objects connected by springs as illustrated in Figure 5.3.

We take the mass of the outer objects as m1 = m3 = 1 and the mass of the
central object as m2 = 0.5. The spring constants are all taken as k = 2. There
are two external forces acting on the system: a force Ff acting on the first object,
and a force Fl acting on the last object, as illustrated in the figure. The state and
control inputs of the system are given by

x = (p1, p2, p3, v1, v2, v3), u = (Ff ,Fl),

where pi and vi, i ∈ Z3
1 are the position and velocity of each mass, respectively.

The continuous-time dynamics of the system are given by

m1v̇1 = k(p2 − 2p1) + Ff
m2v̇2 = k(p1 + p3 − 2p2)

m3v̇3 = k(p2 − 2p3) + Fl,

5.8. Numerical results 113

which we note are linear.
We compute a model (4.1) by taking a 0.2s sampling time and then scaling

the resulting model using the scaling matrices

Nx = diag(10, 10, 10, 1, 1, 1), Nu = I2.

We consider the following box constraints (4.3) on the states and control inputs:

|pi| ≤ 0.3, i ∈ Z3
1, |Fj | ≤ 0.8, j ∈ {f, l}.

The velocities vi, i ∈ Z3
1, are not constrained.

5.8 Numerical results

This section presents numerical results using the proposed solvers to control the
systems described in Section 5.7.

We present novel results using the latest version of the Spcies toolbox [4],
which at the time of writing of this dissertation is v0.3.2. Other solvers used
for comparison are: OSQP (version 0.6.0) [35], and qpOASES (version 3.2.0)
[93]. We use the default options of both solvers, with the exception of the OSQP
solver, where the exit tolerances are set to 10−4 and its warmstart procedure is
disabled to provide a better comparison between its underlying ADMM algorithm
with the ones proposed in this manuscript. Furthermore, printing information to
the console was disabled in both solvers due to the significant effect that it has
on computation times.

Additional results showcasing the performance of the proposed solvers can be
found in the papers [8, 9, 10, 11, 12]. In particular, [8] shows hardware-in-the-
loop results of the standard MPC formulations (5.15) and (5.16) controlling the
chemical plant described in Section 5.7.1 using a real industrial PLC; [9] shows
similar hardware-in-the-loop results but for a smaller sized system; [10] shows
some preliminary results of the solver for the MPCT formulation (5.41); [11]
shows the implementation of the solver for the MPCT formulation in a Raspberry
Pi to control an inverted pendulum robot, although the computation times are
larger due to the use of the less refined C-code available at the time; and [12] shows
the implementation of the MPC formulation with terminal quadratic constraint
(5.19) in a Rapsberry Pi to control the oscillating masses system described in
Section 5.7.3, where we compare it with other alternatives.

The results shown in this section have been obtained using a PC running the
Ubuntu 18.04.5 LTS operating system on a Intel Core i5-8250U CPU operating
at its base frequency of 1.60 GHz. For results on computation times in embedded
systems we refer the reader to the above references.

The systems are simulated using the same linear models that are used as the
prediction models of the MPC formulations. The plots and references, however,
are shown in engineering units because they are more intuitive to visualize than
the incremental units of the linear models.

114 Chapter 5. Sparse solvers for model predictive control

Q R N

Chemical plant 5I12 0.5I6 20
Ball and plate diag(100, 0.1, 0.1, 0.1, 100, 0.1, 0.1, 0.1) 0.05I2 17

Oscillating masses diag(15, 15, 15, 1, 1, 1) 0.1I2 10

Table 5.4: Parameters of the MPC formulations used for each test bench systems.

xr ur
Chemical plant (0.7, 0.419, 0.545, 329.571,

0.9, 0.261, 0.673, 333.435,

1.333, 0.231, 0.698, 337.602)

(0, 0, 750, 30, 10, 5)

Ball and plate (1.8, 0, 0, 0, 1.4, 0, 0, 0) (0, 0)
Oscillating masses (0.25, 0.25, 0.25, 0, 0, 0) (0.5, 0.5)

Table 5.5: References used for each test bench systems (in engineering units).

For convenience, throughout this section we will refer to the standard MPC
formulations (5.15) and (5.16) as equMPC and laxMPC, respectively, the MPC
formulation subject to a terminal ellipsoidal constraint (5.19) as ellipMPC and
the MPC for tracking formulation (5.41) as MPCT.

5.8.1 Comparison between the proposed ADMM-based solvers

We start by comparing the ADMM-based solvers of each MPC formulation de-
scribed in Sections 5.4 to 5.6 by performing tests on the three systems described
in Section 5.7. In every test we use the matrices Q, R and prediction horizon N
shown in Table 5.4 for the four MPC formulations. The ingredients P , c and r
defining the terminal constraint of the ellipMPC formulation are computed using
the procedure described in Section 5.5.2, where the LMI optimization problem is
constructed using YALMIP [103] and solved using the SDPT3 solver [144]. In all
cases, a feasible solution of problem (5.40) is found for r = 1 and λ = 0.95, from
where we obtain P and its associated control gain K. Using this gain K, matrix
T of the MPCT formulation is then computed as the solution of the Lyapunov
equation

(A+BK)>T (A+BK)− T = −Q−K>RK. (5.49)

The laxMPC and equMPC formulations are solved using Algorithm 17, el-
lipMPC using Algorithm 18 and MPCT using Algorithm 19. The penalty pa-
rameters are listed in Table 5.6. The exit tolerances are all set to 10−4.

In each test, the system is initialized in its operating point and the reference
is set to the values provided in Table 5.5. We show the trajectory of one of the
system states and one of the system outputs obtained with each one of the solvers,
as well as the number of iterations and computation times at each sample time.

Figure 5.4 shows the comparison between the solvers applied to the chemical
plant described in Section 5.7.1. Figure 5.4a shows the trajectory of the temper-

5.8. Numerical results 115

laxMPC equMPC ellipMPC MPCT

Chemical plant 15 15 15 ρ1 = 2, ρ2 = 40
Ball and plate 15 15 15 ρ1 = 10, ρ2 = 200

Oscillating masses 15 15 15 ρ1 = 2, ρ2 = 40

Table 5.6: Value of the penalty parameter ρ used for each one of the MPC formulations
and test benches. In the case of the MPCT formulation, ρ2 indicates the value of ρ for
the constraints listed in Remark 5.35 and ρ1 for the rest.

0 10 20 30 40 50
332

334

336

338

(a) State trajectory.

0 10 20 30 40 50

800

1000

1200

1400

(b) Control action trajectory.

0 10 20 30 40 50
1

1.2

1.4

1.6

1.8

2

(c) Computation times.

0 10 20 30 40 50

140

160

180

200

(d) Number of iterations.

Figure 5.4: Closed-loop simulation of the chemical plant: Comparison between the
ADMM-based solvers.

ature T3, Figure 5.4b the trajectory of the input Q3, Figure 5.4c the computation
times, and Figure 5.4d the number of iterations of each solver. Table 5.7 shows
an analysis of the number of iterations and computation times of each solver.

Figure 5.5 and Table 5.8 show analogous results to Figure 5.4 and Table 5.7,
respectively, but for the ball and plate system described in Section 5.7.2. Fig-
ure 5.5a shows the trajectory of the state ṗ1 and Figure 5.5b the trajectory of the

control input θ̈1.

Figure 5.6 and Table 5.9 show analogous results to Figure 5.4 and Table 5.7,
respectively, but for oscillating masses system described in Section 5.7.3. Fig-
ure 5.6a shows the trajectory of the state p2 and Figure 5.6b the trajectory of the
control input Fl.

The results indicate that there are no major differences, in terms of number
of iterations and computation times, between the four solvers. The EADMM
algorithm tends to present larger differences between the maximum and minimum
number of iterations, whereas the number of iterations of the ADMM solvers show
less variation.

116 Chapter 5. Sparse solvers for model predictive control

0 10 20 30 40 50

0

0.2

0.4

0.6

(a) State trajectory.

0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

(b) Control action trajectory.

0 10 20 30 40 50
0

0.5

1

1.5

2

(c) Computation times.

0 10 20 30 40 50
0

100

200

300

400

(d) Number of iterations.

Figure 5.5: Closed-loop simulation of the ball and plate: Comparison between the ADMM-
based solvers. The black dashed/dotted line in figure (a) represents the upper bound on
the velocity of the ball.

0 10 20 30 40 50
0

0.1

0.2

0.3

(a) State trajectory.

0 10 20 30 40 50
-1

-0.5

0

0.5

1

(b) Control action trajectory.

0 10 20 30 40 50
0

0.5

1

(c) Computation times.

0 10 20 30 40 50
0

200

400

600

800

(d) Number of iterations.

Figure 5.6: Closed-loop simulation of the oscillating masses: Comparison between the
ADMM-based solvers.

5.8. Numerical results 117

Formulation laxMPC equMPC ellipMPC MPCT

It
er

at
io

n
s Average 130.28 130.64 130.2 197.32

Median 127 128 127 197

Maximum 151 151 151 206

Minimum 127 127 127 196

C
om

p
.t

im
e Average 1.170 1.109 1.184 1.796

Median 1.089 1.071 1.137 1.762

Maximum 1.905 1.509 1.675 2.137

Minimum 1.081 1.058 1.129 1.749

Table 5.7: Comparison between the ADMM-based solvers for the chemical plant: number
of iterations and computation times [ms].

Formulation laxMPC equMPC ellipMPC MPCT

It
er

at
io

n
s Average 131.58 120.36 114.44 128.34

Median 87 82.5 53 104

Maximum 233 246 252 351

Minimum 83 68 48 91

C
om

p
.t

im
e Average 0.866 0.674 0.667 0.854

Median 0.55 0.571 0.479 0.715

Maximum 2.39 1.248 1.574 2.438

Minimum 0.442 0.357 0.26 0.539

Table 5.8: Comparison between the ADMM-based solvers for the ball and plate: number
of iterations and computation times [ms].

Formulation laxMPC equMPC ellipMPC MPCT

It
er

at
io

n
s Average 183.84 265.9 262.52 157.76

Median 182 269 267 107

Maximum 256 352 397 680

Minimum 111 62 63 63

C
om

p
.t

im
e Average 0.239 0.286 0.326 0.259

Median 0.201 0.273 0.306 0.17

Maximum 0.667 0.689 0.774 1.031

Minimum 0.165 0.116 0.135 0.113

Table 5.9: Comparison between the ADMM-based solvers for the oscillating masses: num-
ber of iterations and computation times [ms].

118 Chapter 5. Sparse solvers for model predictive control

We note that the algorithms still require a significant number of iterations
even when the optimal solution does not have any active constraints or when close
to the reference. These iterations could be reduced by incorporating a warmstart
procedure, such as the ones presented in [145] or [146]. For instance, in [10, §7], we
particularize the warmstart procedure from [145, §II] to the EADMM algorithm
for solving the MPCT formulation (Algorithm 19). Its particularization to the
other solvers would follow similarly.

Finally, we note that the results for the ellipMPC formulation are very similar
to the ones obtained for the standard MPC formulations (laxMPC and equMPC),
in spite of the addition of the terminal quadratic constraint. This is even the case
during the first 7 sample times in Figure 5.6d, during which the terminal quadratic
constraint was active. This indicates that the QCQP problem (5.19) solved using
ADMM is comparable, in terms of number of iterations and computation times,
to solving standard MPC formulations.

5.8.2 Comparison between the ADMM- and FISTA-based solvers

We now compare the sparse solvers for standard MPC formulations presented in
Section 5.4. That is, we compare the ADMM-based solve given in Algorithm 17
with the FISTA-based solve given in Algorithm 16 applied to the standard MPC
formulations (5.15) (labeled equMPC) and (5.16) (labeled laxMPC).

We present the results of applying the four solvers to the three systems de-
scribed in Section 5.7. The values of Q, R and N are shown in Table 5.4. We
obtain matrix T by first computing the matrix T̂ that solves the Riccati equation

A>T̂A− T̂ − (A>T̂B)(R+B>T̂B)−1(B>T̂A) +Q = 06×6,

and then taking T as the diagonal matrix satisfying

T(i,i) =

n∑
j=0

T̂(i,j).

We note that the reason why matrix T̂ is not used, as is typically done in MPC, is
because the FISTA-based solvers require the cost function matrices to be diagonal
(see Assumtion 5.18). We the above T because it is an easy choice. However, in a
real setting we must check that this matrix satisfies the Lyapunov equation (5.49).

We start the systems at the operating point and set the reference to the
admissible steady states provided in Table 5.5. The exit tolerances of the solvers
(ADMM and FISTA) are all set to 10−4 and the penalty parameter of the ADMM
algorithm is selected as ρ = 15 in all cases. We show the number of iterations
and computation times at each sample time. The state and input trajectories are
nearly indistinguishable to the naked eye when compared to the ones shown in
Section 5.8.1.

Figure 5.7 shows the comparison between the solvers applied to the chemical
plant described in Section 5.7.1. Figure 5.7a shows the computation times and

5.8. Numerical results 119

Formulation laxMPC equMPC

FOM ADMM FISTA ADMM FISTA

It
er

at
io

n
s Average 129.46 1 130.64 1

Median 126 1 128 1

Maximum 151 1 151 1

Minimum 126 1 127 1

C
om

p
.t

im
e Average 1.193 0.048 1.222 0.048

Median 1.083 0.031 1.15 0.033

Maximum 2.12 0.382 1.903 0.417

Minimum 1.063 0.029 1.055 0.032

Table 5.10: Comparison between the ADMM- and FISTA-based solvers for standard MPC
applied to the chemical plant: number of iterations and computation times [ms].

Formulation laxMPC equMPC

FOM ADMM FISTA ADMM FISTA

It
er

at
io

n
s Average 113.78 138.86 120.36 130.1

Median 73 1 82.5 1

Maximum 243 1203 246 1089

Minimum 59 1 68 1

C
om

p
.t

im
e Average 0.682 0.789 0.653 0.728

Median 0.453 0.0245 0.433 0.025

Maximum 1.55 6.288 1.587 5.59

Minimum 0.33 0.023 0.357 0.023

Table 5.11: Comparison between the ADMM- and FISTA-based solvers for standard MPC
applied to the ball and plate: number of iterations and computation times [ms].

Formulation laxMPC equMPC

FOM ADMM FISTA ADMM FISTA

It
er

at
io

n
s Average 193.26 24.24 265.9 26.96

Median 186 1 269 1

Maximum 307 360 352 279

Minimum 102 1 62 1

C
om

p
.t

im
e Average 0.249 0.058 0.289 0.06

Median 0.204 0.017 0.275 0.017

Maximum 0.849 0.517 0.762 0.5

Minimum 0.186 0.016 0.119 0.016

Table 5.12: Comparison between the ADMM- and FISTA-based solvers for standard MPC
applied to the oscillating masses: number of iterations and computation times [ms].

120 Chapter 5. Sparse solvers for model predictive control

0 10 20 30 40 50
0

0.5

1

1.5

2

(a) Computation times.

0 10 20 30 40 50
0

50

100

150

(b) Number of iterations.

Figure 5.7: Closed-loop simulation of the chemical plant: Comparison between the
ADMM- and FISTA-based solvers for the standard MPC formulations.

0 10 20 30 40 50
0

2

4

6

(a) Computation times.

0 10 20 30 40 50
0

500

1000

1500

(b) Number of iterations.

Figure 5.8: Closed-loop simulation of the ball and plate system: Comparison between the
ADMM- and FISTA-based solvers for the standard MPC formulations.

0 10 20 30 40 50
0

0.5

1

(a) Computation times.

0 10 20 30 40 50
0

100

200

300

400

(b) Number of iterations.

Figure 5.9: Closed-loop simulation of the oscillating masses system: Comparison between
the ADMM- and FISTA-based solvers for the standard MPC formulations.

Figure 5.7b the number of iterations of each solver. The state and input trajecto-
ries are very similar to the ones shown in Figure 5.4. Table 5.10 shows an analysis
of the number of iterations and computation times of each solver.

Figure 5.8 shows the comparison between the solvers applied to the ball and
plate system described in Section 5.7.2. Figure 5.8a shows the computation times
and Figure 5.8b the number of iterations of each solver. The state and input
trajectories are very similar to the ones shown in Figure 5.5. Table 5.11 shows an
analysis of the number of iterations and computation times of each solver.

Figure 5.9 shows the comparison between the solvers applied to the oscillating
masses system described in Section 5.7.3. Figure 5.9a shows the computation

5.8. Numerical results 121

0 10 20 30 40 50
0

2

4

6

8

(a) Computation times.

0 10 20 30 40 50
0

50

100

150

(b) Number of iterations.

Figure 5.10: Closed-loop simulation of the chemical plant: Comparison between solvers
applied to the standard MPC formulation with terminal equality constraint. The com-
putation times of qpOASES are shown divided by 10 to be able to appreciate the com-
putation times of the other solvers.

times and Figure 5.9b the number of iterations of each solver. The state and input
trajectories are very similar to the ones shown in Figure 5.6. Table 5.12 shows an
analysis of the number of iterations and computation times of each solver.

The results indicate that the FISTA-based solver (Algorithm 16) has a good
performance. However, as shown in Figure 5.8 and Table 5.11, the number of
iterations can increase significantly if there are active constraints in the optimal
solution. The comparison between the number of iterations of the FISTA-based
and ADMM-based solvers is somewhat unfair due to the difference between their
exit conditions. For instance, in Figure 5.9, the suboptimal solutions obtained
with both solvers were at a very similar distance to the optimal solution of the
problems at each sample time. In Figure 5.8, however, even though the exit toler-
ances of both algorithms where set to 10−4, the suboptimal solutions obtained with
the FISTA-based solver where up to several orders of magnitude closer to the opti-
mal solutions at each sample time than the ones obtained with the ADMM-based
solvers. This may explain the significant increase in the number of iterations of
the FISTA-based solvers shown in Figure 5.8 when compared to the mild increase
shown in Figure 5.9, even though in both cases there where active constraints in
the optimal solutions during the first few sample times.

5.8.3 Standard MPC subject to terminal equality constraint

This section compares the ADMM and FISTA-bases solvers for standard MPC
formulation (5.15) against other QP solvers from the literature. In particular, we
compare Algorithms 17 and 16 with OSQP and qpOASES to solve the QP problem
derived from the standard MPC formulation with terminal equality constraint
(5.15). The MPC ingredients, solver parameters and references are the same as
the ones used in Section 5.8.2.

Figure 5.10 shows the comparison between the solvers applied to the chemical
plant described in Section 5.7.1. Figure 5.10a shows the computation times and
Figure 5.10b the number of iterations of each solver. The state and input tra-
jectories are very similar to the ones shown in Figure 5.4. Table 5.13 shows an

122 Chapter 5. Sparse solvers for model predictive control

Solver ADMM FISTA OSQP qpOASES

It
er

at
io

n
s Average 130.64 1 25 0

Median 128 1 25 0

Maximum 151 1 25 0

Minimum 127 1 25 0
C

om
p

.t
im

e Average 1.116 0.04 0.764 72.09

Median 1.067 0.033 0.704 71.99

Maximum 1.841 0.398 2.081 75.93

Minimum 1.054 0.031 0.693 70.79

Table 5.13: Comparison between solvers applied to standard MPC with terminal equality
constraint for the chemical plant: number of iterations and computation times [ms].

analysis of the number of iterations and computation times of each solver.

The active-set method of the qpOASES solver exits after 0 iterations at every
sample time due to the optimal solution of the QP problems never having active
constraints. Even so, the initial computations still result in a computation time
that is much larger than the ones obtained with the solvers based on first order
methods. The OSQP solver always converges in 25 iterations (although if smaller
exit tolerances are used the number of iterations grows significantly). Even so, its
computation times are similar to the ones obtained by the ADMM solver. The
FISTA solver outperforms all others in this case because, once again, it converges
in a single iteration if there are no active constraints in the optimal solution.

5.8.4 Standard MPC without terminal constraint

This section compares the ADMM and FISTA-bases solvers for standard MPC
formulation (5.16) against other QP solvers from the literature. In particular,
we compare Algorithms 17 and 16 with OSQP and qpOASES to solve the QP
problem derived from the standard MPC formulation without terminal constraint
(5.16). The MPC ingredients, solver parameters and references are the same as
the ones used in Section 5.8.2.

Figure 5.11 shows the comparison between the solvers applied to the ball and
plate system described in Section 5.7.2. Figure 5.11a shows the computation times
and Figure 5.11b the number of iterations of each solver. The state and input
trajectories are very similar to the ones shown in Figure 5.5. Table 5.14 shows an
analysis of the number of iterations and computation times of each solver.

In this case the qpOASES solver performs a small number of iterations during
the first few sample times, since there are active constraints in the optimal solu-
tions of the resulting QP problems. Once again, the iterations drop to 0 as soon
as this is no longer the case. The OSQP solver shows a similar trend to FISTA,
although with fewer iterations. Nevertheless, the computation times of FISTA
are very similar to the ones obtained with OSQP.

5.8. Numerical results 123

0 10 20 30 40 50
0

2

4

6

8

(a) Computation times.

0 10 20 30 40 50
0

500

1000

1500

(b) Number of iterations.

Figure 5.11: Closed-loop simulation of the ball and plate: Comparison between solvers
applied to the standard MPC formulation without terminal constraint. The computation
times of qpOASES are shown divided by 10 to be able to appreciate the computation
times of the other solvers.

Solver ADMM FISTA OSQP qpOASES

It
er

at
io

n
s Average 113.78 138.86 73 1.4

Median 73 1 25 0

Maximum 243 1203 525 10

Minimum 59 1 25 0

C
om

p
.t

im
e Average 0.618 0.795 1.131 50.75

Median 0.399 0.024 0.41 49.45

Maximum 1.295 6.869 7.288 57.51

Minimum 0.318 0.023 0.399 48.76

Table 5.14: Comparison between solvers applied to standard MPC without terminal con-
straint for the ball and plate: number of iterations and computation times [ms].

5.8.5 MPC subject to terminal quadratic constraint

This section compares the ADMM-based solver for the MPC formulation subject
to terminal quadratic constraints (5.19) to solving the QP problem that arises from
considering the same MPC formulation but substituting the terminal ellipsoidal
set with the maximal admissible invariant set of the system, which for controllable
linear systems is a polyhedron. In particular, we apply both approaches to the
oscillating masses system described in Section 5.7.3.

We compare the solver against two alternatives: OSQP [35] and FalcOpt
[80, 134]. OSQP will be implemented using the maximal admissible invariant
set of the system, which is a polyhedron, in place of the ellipsoidal terminal set,
thus resulting in a QP problem. The comparison with this solver will allow us
to evaluate the computational advantages that can be obtained by using the el-
lipsoidal set instead of a polyhedral one. FalcOpt is a solver for MPC subject to
terminal ellipsoidal constraint that generates the code of the solver following a
similar philosophy to Spcies. Therefore, it serves as a comparison of our proposed
solver with other state-of-the-art solvers in the literature. However, FalcOpt con-
siders the case of non-linear MPC, does not consider state constraints and the

124 Chapter 5. Sparse solvers for model predictive control

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

(a) State trajectory.

0 10 20 30 40 50
-1

-0.5

0

0.5

1

(b) Control action trajectory.

0 10 20 30 40 50
0

1

2

3

4

(c) Computation times.

0 10 20 30 40 50
0

100

200

300

400

(d) Number of iterations.

Figure 5.12: Closed-loop simulation of the oscillating masses: Comparison between Algo-
rithm 18 for MPC with terminal quadratic constraints and OSQP applied to MPC using
the (polyhedral) maximal admissible invariant set.

matrix P of its terminal ellipsoidal constraint must be equal to the terminal cost
function T . That is, its terminal ellipsoidal set is given by E(T, xr, r).

The prediction horizon N and the cost function matrices Q and R are shown
in Table 5.4. The ingredients P , c and r defining the terminal constraint are com-
puted using the procedure described in Section 5.5.2, where the LMI optimization
problem is constructed using YALMIP [103] and solved using the SDPT3 solver
[144] taking c = xr and r = 1. A feasible solution of problem (5.40) is found for
λ = 0.95. The cost function matrix T is taken as the solution of the Lyapunov
function (5.49) for the matrix K obtained from the procedure used to compute
P . We take the penalty parameter of the ADMM algorithm as ρ = 15.

We compute the maximal admissible invariant set of the system using the
MPT3 toolbox [147], resulting in a polyhedron {x ∈ Rn : Atx ≤ bt } described
by a matrix At with 274 rows, resulting in as many constraints in the QP problem.
We solve this QP problem using the OSQP solver.

Vector r of the terminal ellipsoidal set of the FalcOpt solver is obtained using
a similar procedure to the one described in Section 5.5.2, but forcing P = T and
taking r as a decision variable. We minimize −r to obtain the largest admissible
invariant ellipsoid E(T, xr, r) of the system, obtaining r = 3.6552. We use the
FalcOpt solver from commit 5ac104c of its GitHub repository [80] with an exit
tolerance of 10−3 and its “gradients” option set to “casadi”, which uses CasADi
[79] (version v3.4.5) to compute the gradients.

Figure 5.12 shows the comparison between the two solvers applied to the oscil-
lating masses system described in Section 5.7.3. Figure 5.12c shows the computa-

5.8. Numerical results 125

Solver Algorithm 18 OSQP

It
er

a
ti

o
n

s Average 262.52 77

Median 267 50

Maximum 397 450

Minimum 63 50

C
o
m

p
.t

im
e Average 0.312 0.747

Median 0.295 0.455

Maximum 0.861 3.944

Minimum 0.183 0.449

Table 5.15: Comparison between solvers applied to MPC with terminal quadratic con-
straint for the oscillating masses: number of iterations and computation times [ms].

tion times and Figure 5.12d the number of iterations of each solver. Figure 5.12a
shows the trajectory of the state p2 and Figure 5.12b the trajectory of the control
input Fl. Table 5.15 shows an analysis of the number of iterations and compu-
tation times of Algorithm 18 and OSQP. The results using FalcOpt are omitted
due to them being several orders of magnitude bigger, either because we were not
able to fine-tune the solver correctly and/or because its focus on non-linear MPC
makes it less efficient at solving the linear MPC problem.

The oscillating masses system is described by 6 states and 2 inputs. Even so,
its maximal admissible invariant set results in the inclusion of 274 constraints to
the QP problem solved by OSQP. This is a reasonable amount of constraints, but
the number of can easily become unmanageable, even for average-sized systems,
resulting in an inapplicable optimization problem due to the large computation
times. In such a case, the computational results shown in Figure 5.12 and Ta-
ble 5.15 indicate that our proposed solver could result in an applicable controller
due to its smaller number of constraints. Furthermore, the computation of the
ellipsoidal AIS is computationally attainable even for large-sized systems (for in-
stance, using the approach described in Section 5.5.2), whereas the computation
of a polyhedral admissible invariant set can become very challenging.

The use of the maximal admissible invariant set has benefits in terms of the
domain of attraction of the MPC controller [125, §4.2], which would be (possi-
bly) reduced with the use of the quadratic constraint. However, the domain of
attraction can be enlarged by increasing the prediction horizon, which, due to the
sparse nature of the proposed algorithm, may be an acceptable approach.

5.8.6 MPC for tracking

This section compares the proposed EADMM-based solver for the MPCT formu-
lation (5.41) (Algorithm 19) against other alternatives. In particular, we compare
it against three other alternatives applied to the ball and plate system described
in Section 5.7.2.

The first two alternatives are the OSQP and qpOASES solvers applied to the

126 Chapter 5. Sparse solvers for model predictive control

0 10 20 30 40 50
0

0.2

0.4

0.6

(a) State trajectory.

0 10 20 30 40 50
-0.5

0

0.5

(b) Control action trajectory.

0 10 20 30 40 50
0

5

10

15

(c) Computation times.

0 10 20 30 40 50
0

500

1000

1500

2000

(d) Number of iterations.

Figure 5.13: Closed-loop simulation of the ball and plate: Comparison between Algorithm
19 and other alternatives. The black dashed/dotted line in figure (a) represents the upper
bound on the velocity of the ball.

QP problem that results from (5.41). The reason for using the EADMM algorithm,
instead of ADMM, is to be able to recover the inner matrix structures that enable
the use of Algorithm 11. However, the QP problem derived from (5.41) is still
a sparse QP problem, and thus may be also efficiently solved using sparse QP
solvers (such as OSQP) or active-set solvers (such as qpOASES), among other
alternatives.

Motivated by the fact that the QP problem derived from (5.41) is sparse, we
also compare the proposed Algorithm 19 against a third alternative. Note that the
Hessian of (5.41) is not block diagonal due to the inclusion of the artificial reference
(xs, us). However, we can recover a block diagonal Hessian by extending the state
space model. That is, by defining x̂i = (xi, xs) and ûi = (ui, us), i ∈ ZN−1

0 ,
problem (5.41) can be rewritten so that the resulting QP has a block diagonal
Hessian at the expense of a few drawbacks: (i) the dimension of the matrices
defining the system dynamics are increased in size, which increases the memory
requirements; (ii) this significantly increases the number of decision variables,
which will affect the iteration complexity of the algorithm; (iii) additional equality
constraints need to be added to ensure that xs and us are the same in all the
prediction steps; and (iv) the structure of (5.1), while still banded, no longer
satisfies Assumtion 5.1.

To solve this problem we use a sparse ADMM algorithm similar to the one
presented in Algorithm 17. However, in this case, we cannot employ Algorithm 11
to solve the system of equations. In fact, we find that we obtain better results in
this case if the sparse matrices are stored using the compressed sparse column/row

5.8. Numerical results 127

Solver EADMM extADMM OSQP qpOASES

It
er

a
ti

o
n

s Average 211.54 142.98 221.5 2.76

Median 92 84 25 0

Maximum 1999 693 1650 24

Minimum 80 76 25 0
C

o
m

p
.t

im
e Average 0.627 1.726 2.085 8.541

Median 0.281 1.022 0.278 7.891

Maximum 5.557 8.196 14.808 13.267

Minimum 0.273 0.912 0.268 7.751

Table 5.16: Comparison between solvers applied to the MPCT formulation to control the
ball and plate: number of iterations and computation times [ms].

formats, and the system of equations solved at each iteration of the ADMM al-
gorithm is solved using a sparse LDL representation as done in the QDLDL [35].
This ADMM-based solver for MPCT has also been included in the Spcies toolbox
[4], although we will not explain it in detail since it is out of the scope of this
dissertation. In the following, we will refer to this algorithm as extADMM to
denote that it makes use of the above extended state space representation.

The ingredients Q and R are the ones show in Table 5.4. However, we take
N = 15 in this test. Matrices T and S are selected as:

T = diag(600, 50, 50, 50, 600, 50, 50, 50), S = diag(0.3, 0.3).

The penalty parameters of the EADMM solver are shown in Table 5.6. The
penalty parameter of the extADMM solver is taken as ρ = 25. The exit tolerances
of EADMM, extADMM and OSQP solvers are all taken as 10−4. We use the
default exit tolerance of the qpOASES solver.

Figure 5.13 shows the comparison between the solvers applied to the ball and
plate system described in Section 5.7.2. Figure 5.13a shows the trajectory of the
state ṗ1 and Figure 5.13b the trajectory of the control input θ̈1. Figure 5.13c
shows the computation times and Figure 5.13d the number of iterations of each
solver. Table 5.16 shows an analysis of the number of iterations and computation
times of each solver.

In this test, the number of iterations of the solvers based on FOMs were
significantly larger that in the tests shown in the previous sections. This serves to
highlight the advantage that can be obtained with the proposed solvers against
other sparse QP solvers from the literature thanks to the low iteration complexity
that we obtain by exploiting the specific structure of the MPC formulations. The
extADMM solver converges, in general, in fewer iterations than the EADMM
solver. However, its computation times are larger due to its higher iteration
complexity, mostly due to the large matrices as a result of the extension of the
state space. Once again, the computation times of the qpOASES solver are larger
than the ones obtained with the sparse FOM-based solvers.

128 Chapter 5. Sparse solvers for model predictive control

5.8.7 Restart methods applied to the FISTA-based solvers

This section shows the application of the restart schemes presented in Part I of
this dissertation to FISTA for solving the standard MPC formulations. That is,
we show the results of using Algorithms 7, 8 and 10 to Algorithm 16 applied to
the MPC formulations (5.16) (labeled laxMPC) and (5.15) (labeled equMPC). We
refer the reader to Sections 3.2.1 to 3.2.3 for the details of these restart schemes.
For Algorithm 10 we employ MFISTA (Algorithm 5) instead of FISTA, since it
simplifies the implementation of the algorithm, as discussed in Remark 3.28.

Additionally, we also show the results of applying the objective function value
scheme [45], whose restart condition Ef is given by (3.6); the gradient alignment
scheme [45], whose restart condition Eg is given by (3.7); and the optimal restart
scheme from [46, §5.2.2] using the restart condition E∗f given by (3.5). We refer
the reader to Section 3.1 for the details of these restart schemes.

We apply the above restart schemes to the ball and plate system described
in Section 5.7.2 and to the oscillating masses system described in Section 5.7.3,
performing the same closed-loop simulations and using the same MPC ingredients
that were used in Section 5.8.2. However, we are only interested in the sample
times in which there are active constraints in the optimal solutions, since, we
recall, Algorithm 16 converges in 1 iteration otherwise. Therefore, we only show
the results of the first 11 sample times of the ball and plate system (c.f., Figure 5.8)
and first 8 or 9 sample times of the oscillating masses system. For clarity, we
include the first sample time without active constraints in the optimal solution.
Obviously, there is no point in showing the results for the chemical plant system
described in Section 5.7.1, since the non-restarted FISTA algorithm converged in
1 iteration in all the sample times of the closed loop test shown in Section 5.8.2.

We use ‖G(yk−1)‖W−1 ≤ 10−4 as the exit tolerance of the FISTA and MFISTA
algorithms, instead of taking the exit condition of Algorithm 16. We stop the
restart schemes as soon as an iterate yk−1 satisfying this condition is found.

Figure 5.14 shows the number of iterations of the restart schemes during the
first sample times of the ball and plate system closed-loop test. Figure 5.14a shows
the results for the laxMPC formulation (5.16) and Figure 5.14b for the equMPC
formulation (5.15). Table 5.17 show an analysis of the number of iterations of
each restart scheme during the sample times shown in Figure 5.14 (excluding the
last ones, in which all schemes converged in 1 iteration). Figures 5.15 and 5.16
show the evolution of the iterates of FISTA for each restart scheme during the first
sample time of the closed-loop simulations depicted in Figures 5.14a and 5.14b,
respectively.

Figure 5.17 shows the number of iterations of the restart schemes during the
first sample times of the oscillating masses system closed-loop test. Figure 5.17a
shows the results for the laxMPC formulation (5.16) and Figure 5.17b for the
equMPC formulation (5.15). Table 5.18 show an analysis of the number of it-
erations of each restart scheme during the sample times shown in Figure 5.17
(excluding the last ones, in which all schemes converged in 1 iteration). Fig-

5.8. Numerical results 129

0 1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

(a) MPC without terminal constraint.

0 1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

(b) MPC with terminal equality constraint.

Figure 5.14: Number of iterations of FISTA applied to the standard MPC formulations
using different restart schemes. Closed loop results on the ball and plate.

la
x
M

P
C

Restart scheme None Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 374.2 494.7 612.6 514.3 425.9 583.8 679.7

Med. Iter. 354 504 614 508 427 590 667

Max. Iter. 501 764 796 786 517 773 856

Min. Iter. 227 276 255 278 276 237 579

eq
u

M
P

C

Restart scheme None Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 396.1 506.9 603.5 549 469.2 615.2 651.3

Med. Iter. 400 511 589 553 475 609 633

Max. Iter. 491 816 715 639 622 838 775

Min. Iter. 202 237 513 410 344 440 548

Table 5.17: Analysis of the number of iterations of FISTA with different restart schemes
during the sample times shown in Figure 5.14. Application to the ball and plate.

130 Chapter 5. Sparse solvers for model predictive control

0 80 160 240 320 400 480 560 640 720 800
10

-4

10
-3

10
-2

10
-1

10
0

(a) Dual norm of the composite gradient mapping.

0 80 160 240 320 400 480 560 640 720 800
10

-7

10
-5

10
-3

10
-1

(b) Distance to the optimum in terms of the objective function value.

Figure 5.15: Evolution of the iterates of FISTA for different restart schemes during the
first iteration of Figure 5.14a, i.e., applied to laxMPC for the ball and plate.

5.8. Numerical results 131

0 70 140 210 280 350 420 490 560 630 700
10

-4

10
-3

10
-2

10
-1

10
0

(a) Dual norm of the composite gradient mapping.

0 70 140 210 280 350 420 490 560 630 700
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Distance to the optimum in terms of the objective function value.

Figure 5.16: Evolution of the iterates of FISTA for different restart schemes during the
first iteration of Figure 5.14b, i.e., applied to equMPC for the ball and plate.

132 Chapter 5. Sparse solvers for model predictive control

0 1 2 3 4 5 6 7 8
0

200

400

600

800

1000

1200

(a) MPC without terminal constraint.

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

(b) MPC with terminal equality constraint.

Figure 5.17: Number of iterations of FISTA applied to the standard MPC formulations
using different restart schemes. Closed loop results on the oscillating masses.

la
x
M

P
C

Restart scheme None Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 182.9 107.4 328.3 104.6 235.5 212 338.4

Med. Iter. 114.5 92.5 232 82.5 110 91.5 211

Max. Iter. 472 195 904 228 1166 1101 1151

Min. Iter. 67 39 112 40 38 35 106

eq
u

M
P

C

Restart scheme None Alg. 7 Alg. 8 Alg. 10 Ef Eg E∗f
Avg. Iter. 396.1 506.9 603.5 549 469.2 615.2 651.3

Med. Iter. 400 511 589 553 475 609 633

Max. Iter. 491 816 715 639 622 838 775

Min. Iter. 202 237 513 410 344 440 548

Table 5.18: Analysis of the number of iterations of FISTA with different restart schemes
during the sample times shown in Figure 5.17. Application to the oscillating masses.

5.8. Numerical results 133

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-3

10
-2

10
-1

10
0

(a) Dual norm of the composite gradient mapping.

0 50 100 150 200 250 300 350 400 450 500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b) Distance to the optimum in terms of the objective function value.

Figure 5.18: Evolution of the iterates of FISTA for different restart schemes during the
first iteration of Figure 5.17a, i.e., applied to laxMPC for the oscillating masses.

134 Chapter 5. Sparse solvers for model predictive control

0 50 100 150 200 250 300 350 400 450 500
10

-4

10
-3

10
-2

10
-1

10
0

(a) Dual norm of the composite gradient mapping.

0 50 100 150 200 250 300 350 400 450 500
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b) Distance to the optimum in terms of the objective function value.

Figure 5.19: Evolution of the iterates of FISTA for different restart schemes during the
first iteration of Figure 5.17b, i.e., applied to equMPC for the oscillating masses.

5.9. Conclusions and future lines of work 135

ures 5.18 and 5.19 show the evolution of the iterates of FISTA for each restart
scheme during the first sample time of the closed-loop simulations depicted in
Figures 5.17a and 5.17b, respectively.

Curiously, the results indicate that the application of restart schemes for the
application of FISTA to MPC optimization problems is not always beneficial.
In the case of the oscillating masses system, the results show that some of the
restart schemes perform better that the non-restarted version, but others provide
little to no benefit, with a few moments of significantly worse performance (see
Figure 5.17b). The results shown in Table 5.18 show that Algorithms 7 and 10
performed better that the other alternatives, although the extra computational
burden required to evaluate their restart conditions may make them less effective
in practice than the non-restarted variant. In the case of the ball and plate
system, however, the non-restarted version of FISTA performed better that any
of the other alternatives.

5.9 Conclusions and future lines of work

The numerical results shown in Section 5.8 indicate that the proposed solvers are
suitable for their implementation in embedded systems. Their computation times
are in the range of milliseconds in all the case studies shown in this dissertation
and in the results shown in [12], which were obtained using a Raspberry Pi model
4B. The computation times obtained in the PLC are larger. However, these results
were obtained with a less refined version of the solvers and were obtained using a
very low resource PLC device.

The result show that the proposed solvers, which are applied to relevant MPC
formulations, perform well when compared to other state-of-the-art solvers.

The application of the restart schemes to solving the MPC optimization prob-
lems have, for the most part, not provided benefits in terms of the number of
iterations of the algorithm. Additional research is required to determine why this
is the case. One possibility is that the matrix W that we use leaves little room
for improving the non-restarted variant. A future line of work is to study the
application of restart schemes to MPC in further detail.

The solvers we present are for the most part only applicable in an academic
environment. Their application to a real system would require the inclusion of
additional ingredients such as a state estimator or a steady state target optimizer.
In [8] we included some of these ingredients in the PLC, achieving an offset-
free control of the non-linear system. Additionally, the solvers themselves can
be improved further by studying aspects such as: numerical conditioning, the
inclusion of soft constraints, certification of the number of iterations, etc. These
aspects are all possible future lines of work.

The solvers we present here have been included in the SPCIES toolbox [4]. It
takes the model of the system, the parameters of the desired MPC formulation
and the options of the solver, and automatically generates the library-free code of

136 Chapter 5. Sparse solvers for model predictive control

the solver for the target embedded system. Currently, the toolbox only considers
the generation of plain C-code and MEX files for Matlab. A future line of work is
to maintain the development of this toolbox, including additional programming
languages (Python, Julia, etc.) and embedded systems (PLCs, FPGAs, etc.), and
adding the above mentioned improvements.

137

Chapter 6

Harmonic based model
predictive control for tracking

This chapter considers system (4.1) subject to the coupled input-state con-
straints (4.4).

As discussed in Section 4.2, MPC formulations often make use of a terminal
admissible invariant set Xt ⊆ Rn (4.7e) to guarantee the asymptotic stability of
the closed-loop system to the desired reference (xr, ur) ∈ Rn × Rm. However,
the use of this terminal set leads to two downsides when the reference to be
tracked can change online. The first issue is that the terminal set depends on
the value of the reference. If there are a known-before-hand, finite number of
references, then a terminal set can be computed offline for each one of them and
used online when necessary. Otherwise, the terminal set must be recomputed each
time the reference changes, which is typically very computationally demanding.
The second issue is that recursive feasibility of the MPC controller can be lost
in the event of a reference change, i.e., there may not be a feasible solution of
the MPC optimization problem for the current state if the reference has changed
since the previous sample time. This second issue is related to the domain of
attraction of the MPC controller (Definition 4.6), since feasibility is lost when the
current state is no longer within the domain of attraction of the MPC controller
due to the reference change. The terminal constraint is the main contributor to
this issue when the prediction horizon is not large enough. To see this, note that
the predicted state must be able to reach the terminal set within the prediction
horizon window, and that systems are typically subject to input constraints.

These issues are particularly relevant when dealing with the online imple-
mentation of MPC in embedded systems, since their limited computational and
memory resources make them unsuitable for large prediction horizons and the
on-line computation of admissible invariant sets.

One possible solution to avoid having to recompute an admissible positive
invariant set is to use a terminal equality constraint, i.e., to employ an MPC

138 Chapter 6. Harmonic based model predictive control for tracking

formulation (5.15). However, as discussed in Section 5.4, this formulation severely
suffers from small domains of attraction if the prediction horizon is not large
enough.

Another option is to employ the MPC for tracking formulation (5.41) discussed
in Section 5.6. This formulation also uses a terminal equality constraint (5.41i),
thus not requiring the computation of a new terminal set each time the reference
changes. Moreover, its domain of attraction is significantly larger when compared
to other standard MPC formulations, especially for small prediction horizons,
although it can be further enlarged if soft constraints are considered [148]. Finally,
its recursive feasibility and asymptotic stability are guaranteed even in the event
of a reference change. However, as we will show further ahead, the closed-loop
performance of this formulation may suffer in certain systems if the prediction
horizon is too small.

This section presents a novel MPC formulation, originally presented in [13]
and [14], which we call harmonic MPC and label by HMPC. The intent behind
its development is to obtain an MPC formulation that is suitable for its imple-
mentation in embedded systems whilst solving the above issues. In particular, we
are interested in an MPC formulation that (i) does not require the computation
of a terminal set each time the reference changes, (ii) provides recursive feasibility
and asymptotic stability even in the event of a reference change, (iii) has a large
domains of attraction and a good closed-loop performance even when using small
prediction horizons, and (iv), that the previous three points do not come at the
expense of an overly complicated optimization problem, i.e., one that would be
more complex to solve online than to simply increase the prediction horizon of
the other MPC formulations discussed above.

In short, the objective is to develop an MPC formulation with similar proper-
ties to the MPCT formulation (5.41) but with an increased domain of attraction
and performance for small prediction horizons. In fact, the HMPC formulation
can be viewed as an extension of the MPCT formulation (5.41).

6.1 The harmonic MPC formulation

The idea behind the HMPC formulation is to substitute the artificial reference
(xs, us) of the MPCT formulation (5.41) by the artificial harmonic reference se-
quences {xhj}, {uhj}, j ∈ Z, given by

xhj = xe + xs sin(w(j−N)) + xc cos(w(j−N)), (6.1a)

uhj = ue + us sin(w(j−N)) + uc cos(w(j−N)), (6.1b)

where N ∈ Z>0 is the prediction horizon of the MPC controller and w ∈ R≥0 is
the base frequency . The harmonic sequences {xhj} and {uhj} are parameterized
by decision variables xe ∈ Rn, xs ∈ Rn, xc ∈ Rn, ue ∈ Rm, us ∈ Rm, and uc ∈ Rm.

6.1. The harmonic MPC formulation 139

To simplify the text, we use the following notation,

xH
.
= (xe, xs, xc) ∈ Rn × Rn × Rn,

uH
.
= (ue, us, uc) ∈ Rm × Rm × Rm,

ye
.
= Exe + Fue, ys

.
= Exs + Fus, yc

.
= Exc + Fuc, (6.2)

where we recall that the matrices E ∈ Rp×n and F ∈ Rp×m define, along with y
and y, the constraint set Y (4.4).

For a given prediction horizon N and base frequency w, the HMPC control law
for a given state x(t) and reference (xr, ur) is derived from the following second
order cone programming problem labeled by H(x;xr, ur),

H(x;xr, ur)
.
= min

x,u,xH ,uH
Jh(x,u,xH ,uH ;xr, ur) (6.3a)

s.t. xj+1 = Axj +Buj , j ∈ ZN−1
0 (6.3b)

y ≤ Exj + Fuj ≤ y, j ∈ ZN−1
0 (6.3c)

x0 = x(t) (6.3d)

xN = xe + xc (6.3e)

xe = Axe +Bue (6.3f)

xs cos(w)− xc sin(w) = Axs +Bus (6.3g)

xs sin(w) + xc cos(w) = Axc +Buc (6.3h)√
y2
s(i) + y2

c(i) ≤ ye(i) − y(i)
− εy(i), i ∈ Zp1 (6.3i)√

y2
s(i) + y2

c(i) ≤ y(i) − εy(i) − ye(i), i ∈ Zp1, (6.3j)

where εy ∈ Rp is a vector with arbitrarily small positive components, and the cost
function

Jh(x,u,xH ,uH ;xr, ur) = `h(x,u,xH ,uH) + Vh(xH ,uH ;xr, ur)

is composed of two terms: the summation of stage costs

`h(·) =
N−1∑
j=0

‖xj − xhj‖2Q + ‖uj − uhj‖2R, (6.4)

and the offset cost function

Vh(·) = ‖xe − xr‖2Te + ‖ue − ur‖2Se + ‖xs‖2Th + ‖xc‖2Th + ‖us‖2Sh + ‖uc‖2Sh , (6.5)

where we consider the following assumption.

Assumption 6.1. Let Assumtion 4.2 hold and assume that:

(i) y + εy < y − εy.

(ii) Q ∈ Sn++, R ∈ Sm++, T ∈ Dn++ and S ∈ Dm++.

140 Chapter 6. Harmonic based model predictive control for tracking

We denote the optimal value of optimization problem (6.3) for a state x(t) and
a given reference (xr, ur) by H∗(x(t);xr, ur)=Jh(x∗,u∗,x∗H ,u

∗
H ;xr, ur), where x∗,

u∗, x∗H , u∗H are the arguments that minimize (6.3). Furthermore, for every j ∈ Z,
we denote by

x∗hj = x∗e + x∗s sin(w(j −N)) + x∗c cos(w(j −N)), (6.6a)

u∗hj = u∗e + u∗s sin(w(j −N)) + u∗c cos(w(j −N)), (6.6b)

the harmonic signals parameterized by (x∗H ,u
∗
H). At each discrete time instant t,

the HMPC control law is given by u(t) = u∗0.
The use of the harmonic artificial reference is heavily influenced by the ex-

tensions of the MPCT formulation to the problem of tracking periodic references
[149, 150, 151]. However, in this case, even though the artificial harmonic refer-
ence (6.1) is periodic, the reference (xr, ur) to be tracked is a (piecewise) constant
set-point.

Periodic MPC for tracking formulations are used to track a generic periodic
signal with period T ∈ Z>0, i.e., a reference xr(t), t ∈ Z, that satisfies xr(t) =
xr(t+T) ∀t, by employing artificial periodic reference signals {xsj}, {usj}, j ∈ Z,
with period T . The decision variables xs0 to xsT and us0 to usT must satisfy the
system dynamics (equality constraints) and constraints (inequality constraints).
Therefore, the amount of decision variables and constraints grows with T .

Let us now focus on the problem of tracking a set-point (xr, ur), and note that
this reference can be viewed as a (constant) periodic reference signal whose period
is any arbitrary T ∈ Z>0. Therefore, a periodic MPC for tracking formulation can
be used, where the selection of the period T now becomes a tuning parameter of
the controller. It is rather intuitive that the selection of T will have an effect on
both the performance and domain of attraction of the controller. Its effect on the
performance of the controller is not clear, but it seems reasonable to assume that
larger periods T would result in a larger domain of attraction, since we are allowing
for more degrees of freedom. However, as discussed above, this would come at the
expense of an increase in the number of decision variables and constraints.

The idea behind the HMPC formulation is to use an artificial periodic reference
signal whose period does not affect the complexity of the optimization problem,
and which can therefore be selected to improve the properties of the controller. In
particular, the period of the artificial harmonic reference (6.1) is determined by
the design parameter w. However, the constraints required to impose the system
dynamics and constraints do not depend on the value of w. Indeed, constraints
(6.3f)-(6.3h) impose the system dynamics (4.1) and constraints (6.3i)-(6.3j) impose
the constraints (4.4), as we prove further ahead (see Corollaries 6.5 and 6.8).

Constraint (6.3e) imposes that the predicted state xN reaches the harmonic
artificial reference at the end of the prediction horizon, since xhN = xe + xc.
Then, noting that the artificial harmonic reference satisfies the system dynamics
and constraints, it acts as an admissible invariant set of (4.1) under (4.4). That
it, the system would be able to remain in a stable admissible trajectory for all
j > N by applying the admissible control actions (6.6b).

6.1. The harmonic MPC formulation 141

Problem (6.3) is a second order cone programming problem due to the inclu-
sion of the constraints (6.3i)-(6.3j), instead of the QP problem typically derived
from most linear MPC formulations. However, this class of convex optimization
problem is a well studied problem in the literature for which several efficient
solvers are available, such as COSMO [152] or ECOS [153].

Remark 6.2. Note that the constraints (6.3b)-(6.3j) do not depend on the ref-
erence. Therefore, the feasibility region (Definition 4.5) of the HMPC controller
is independent of the reference. As such, feasibility is never lost in the event of
reference changes.

The following proposition relates constraints (6.3e)-(6.3h) to the satisfaction
of the system dynamics. Its proof makes use of the following lemma.

Lemma 6.3. Let the elements v` ∈ Rnv of a sequence {v`} be given by

v` = ve + vs sin(w`) + vc cos(w`), ∀` ∈ Z,

where w ∈ R and ve ∈ Rnv , vs ∈ Rnv , and vc ∈ Rnv . Then,

(i) v`+1 = ve + v+
s sin(w`) + v+

c cos(w`), ∀` ∈ Z,

(ii)
(
v+
s(i)

)2
+
(
v+
c(i)

)2
= v2

s(i) + v2
c(i), i ∈ Znv1 ,

where v+
s = vs cos(w)− vc sin(w) and v+

c = vs sin(w) + vc cos(w).

Proof: The proof relies on the following well-known trigonometric identities

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β).

From these expressions we obtain

sin(w(`+ 1)) = sin(w) cos(w`) + cos(w) sin(w`)

cos(w(`+ 1)) = cos(w) cos(w`)− sin(w) sin(w`).

Therefore,

v`+1 = ve + vs sin(w(`+ 1)) + vc cos(w(`+ 1))

= ve+vs [sin(w) cos(w`)+ cos(w) sin(w`)] +vc [cos(w) cos(w`)− sin(w) sin(w`)]

= ve + [vs cos(w)− vc sin(w)] sin(w`) + [vs sin(w) + vc cos(w)] cos(w`)

= ve + v+
s sin(w`) + v+

c cos(w`),

which proves claim (i). Denote now

Hw
.
=

[
cos(w) − sin(w)
sin(w) cos(w)

]
.

142 Chapter 6. Harmonic based model predictive control for tracking

With this notation, (
v+
s(i), v

+
c(i)

)
= Hw

(
vs(i), vc(i)

)
, i ∈ Znv1 .

From the identity sin2(w) + cos2(w) = 1 we obtain H>wHw = I2. We are now in
a position to prove claim (ii):(

v+
s(i)

)2
+
(
v+
c(i)

)2
=
∥∥∥(v+

s(i), v
+
c(i)

)∥∥∥2

2
=
(
vs(i), vc(i)

)>
H>wHw

(
vs(i), vc(i)

)
=
(
vs(i), vc(i)

)> (
vs(i), vc(i)

)
= v2

s(i) + v2
c(i).

�

Proposition 6.4. Given the system xj+1 = Axj +Buj , suppose that

uN+` = ue + us sin(w`) + uc cos(w`), ∀` ∈ Z>0,

xN = xe + xc,

xe = Axe +Bue,

xs cos(w)− xc sin(w) = Axs +Bus,

xs sin(w) + xc cos(w) = Axc +Buc.

Then
xN+` = xe + xs sin(w`) + xc cos(w`), ∀` ∈ Z>0.

Proof: Since xN = xe+xc, the claim is trivially satisfied for ` = 0. Suppose now
that the claim is satisfied for ` ≥ 0, we show that it is also satisfied for `+ 1:

xN+`+1 = AxN+` +BuN+`

= A [xe + xs sin(w`) + xc cos(w`)] +B [ue + us sin(w`) + uc cos(w`)]

= Axe +Bue + (Axs +Bus) sin(w`) + (Axc +Buc) cos(w`)

= xe + [xs cos(w)− xc sin(w)] sin(w`) + [xs sin(w) + xc cos(w)] cos(w`)

(∗)
= xe + xs sin(w(`+ 1)) + xc cos(w(`+ 1)),

where (∗) is due to Lemma 6.3. �

From Proposition 6.4 we derive the following corollary.

Corollary 6.5. The artificial harmonic reference {xhj} and {uhj} (6.1) obtained
from any feasible solution of (6.3) satisfies the system dynamics (4.1). That is,

xhj+1 = Axhj +Buhj , ∀j ∈ Z.

The following proposition relates the constraints (6.3i)-(6.3j) to the satisfaction
of the system constraints. Its proof makes use of the following lemma.

6.1. The harmonic MPC formulation 143

Lemma 6.6. Let the elements v` ∈ Rnv of a sequence {v`} be given by

v` = ve + vs sin(w`) + vc cos(w`), ∀` ∈ Z,

where w ∈ R and ve ∈ Rnv , vs ∈ Rnv , and vc ∈ Rnv . Then, for every ` ∈ Z and
i ∈ Znv1 , we have,

v`(i) ≤ ve(i) +
√
v2
s(i) + v2

c(i), (6.7a)

v`(i) ≥ ve(i) −
√
v2
s(i) + v2

c(i). (6.7b)

Proof: We prove inequality (6.7a). The proof for (6.7b) is similar. For every
` ∈ Z and i ∈ Znv1 , we have that

v`(i) = ve(i) + vs(i) sin(w`) + vc(i) cos(w`) = ve(i) +
(
vs(i), vc(i)

)
(sin(w`), cos(w`))>

(∗)
≤ ve(i) +

∥∥(vs(i), vc(i))∥∥2
‖(sin(w`), cos(w`))‖2 = ve(i) +

√
v2
s(i) + v2

c(i),

where (∗) is due to the Cauchy-Schwarz inequality. �

Proposition 6.7. Let Assumtion 6.1 hold. Consider the sequences {xhj} and
{uhj} given by (6.1) and assume that√

y2
s(i) + y2

c(i) ≤ ye(i) − y(i)
− εy(i), i ∈ Zp1, (6.8a)√

y2
s(i) + y2

c(i) ≤ y(i) − εy(i) − ye(i), i ∈ Zp1, (6.8b)

where ye ∈ Rp, ys ∈ Rp and yc ∈ Rp are given by (6.2). Then,

y + εy ≤ Exhj + Fuhj ≤ y − εy, ∀j ∈ Z.

Proof: Let us define the sequence {yj}, j ∈ Z, where yj ∈ Rp is given by

yj
.
= Exhj + Fuhj

= Exe + Fue + (Exs + Fus) sin(w(j −N)) + (Exc + Fuc) cos(w(j −N))

(6.2)
= ye + ys sin(w(j −N)) + yc cos(w(j −N)).

From Lemma 6.6, we have that, ∀j ∈ Z,

yj(i) ≤ ye(i) +
√
y2
s(i) + y2

c(i), ∀i ∈

yj(i) ≥ ye(i) −
√
y2
s(i) + y2

c(i), ∀i ∈ Zp1,

which, taking into account (6.8a) and (6.8b), leads to

yj(i) ≤ ye(i) + y(i) − εy(i) − ye(i) = y(i) − εy(i),

yj(i) ≥ ye(i) + y
(i)

+ εy(i) − ye(i) = y
(i)

+ εy(i), ∀j ∈ Z, ∀i ∈ Zp1,

144 Chapter 6. Harmonic based model predictive control for tracking

which along with Assumtion 6.1.(i) lets us conclude that

y ≤ y + εy ≤ yj ≤ y − εy ≤ y, ∀j ∈ Z.

�

From Proposition 6.7 we derive the following corollary, which states the satis-
faction of the system constraints by the artificial harmonic reference (6.1) obtained
from any feasible solution of (6.3).

Corollary 6.8. The artificial harmonic reference {xhj} and {uhj} (6.1) obtained
from any feasible solution of (6.3) satisfies the system constraints (4.4). That is,

y ≤ Exhj + Fuhj ≤ y, ∀j ∈ Z.

6.2 Recursive feasibility of the HMPC formulation

The following theorem states the recursive feasibility of the HMPC formulation
(6.3). That is, suppose that a state x ∈ Rn belongs to the feasibility region
(Definition 4.5) of the HMPC controller. Then, for any feasible solution x, u,
xH and uH of H(x(t);xr, ur), we have that the successor state Ax(t) + Bu0 also
belongs to the feasibility region of the HMPC formulation. The proof of the
theorem follows the standard approach for proving the recursive feasibility of
MPC formulations: it shows that a feasible solution of H(Ax(t) + Bu0;xr, ur)
can always be constructed from a feasible solution of H(x(t);xr, ur). Note that
the theorem states that recursive feasibility is maintained even if the reference is
changed, as we highlighted in Remark 6.2.

Theorem 6.9 (Recursive feasibility of the HMPC formulation). Suppose that
x(t) ∈ Rn belongs to the feasibility region of the HMPC formulation (6.3). Let
x = {x0, x1, . . . , xN−1}, u = {u0, u1, . . . , uN−1}, xe, xs, xc, ue, us, uc be a feasible
solution of H(x(t);xr, ur) for a given (xr, ur) ∈ Rn × Rm. Then, the successor
state Ax(t) + Bu0 belongs to the feasibility region of the HMPC formulation for
any (x̂r, ûr) ∈ Rn × Rm.

Proof: In the following, we will show that x+ = {x+
0 , x

+
1 , . . . , x

+
N−1}, u+ =

{u+
0 , u

+
1 , . . . , u

+
N−1}, x+

e , x+
s , x+

c , u+
e , u+

s , u+
c given by

u+
j
.
= uj+1, j ∈ ZN−2

0 , (6.9a)

u+
N−1

.
= ue + uc, (6.9b)

x+
0
.
= Ax+Bu0, (6.9c)

xj+1
.
= Ax+

j +Bu+
j , j ∈ ZN−1

0 , (6.9d)

u+
e
.
= ue, (6.9e)

u+
s
.
= us cos(w)− uc sin(w), (6.9f)

6.2. Recursive feasibility of the HMPC formulation 145

u+
c
.
= us sin(w) + uc cos(w), (6.9g)

x+
e
.
= Axe +Bue, (6.9h)

x+
s
.
= Axs +Bus, (6.9i)

x+
c
.
= Axc +Buc, (6.9j)

is a feasible solution of H(Ax(t) + Bu0; x̂r, ûr) by showing that they satisfy the
constraints (6.3b)-(6.3j). That is, we prove in what follows that

x+
j+1 = Ax+

j +Bu+
j , j ∈ ZN−1

0 , (6.10a)

y ≤ Ex+
j + Fu+

j ≤ y, j ∈ ZN−1
0 , (6.10b)

x+
0 = Ax+Bu0, (6.10c)

x+
N = x+

e + x+
c , (6.10d)

x+
e = Ax+

e +Bu+
e , (6.10e)

x+
s cos(w)− x+

c sin(w) = Ax+
s +Bu+

s , (6.10f)

x+
s sin(w) + x+

c cos(w) = Ax+
c +Bu+

c , (6.10g)√
(y+
s(i))

2 + (y+
c(i))

2 ≤ y+
e(i) − y(i)

− εy(i), i ∈ Zp1, (6.10h)√
(y+
s(i))

2 + (y+
c(i))

2 ≤ y(i) − εy(i) − y+
e(i), i ∈ Zp1, (6.10i)

where y+
e , y+

s and y+
c are given by

y+
e
.
= Ex+

e + Fu+
e , y+

s
.
= Ex+

s + Fu+
s , y+

c
.
= Ex+

c + Fu+
c .

Equalities (6.10a) and (6.10c) are trivially satisfied by construction, as evident
from (6.9c) and (6.9d). Since x+

0 = Ax + Bu0 = x1, and u+
j = uj1 , j ∈ ZN−2

0

(6.9a), we have
(x+
j , u

+
j) = (xj+1, uj+1), j ∈ ZN−2

0 . (6.11)

Therefore, from (6.3c) we obtain

y ≤ Ex+
j + Fu+

j ≤ y, j ∈ ZN−2
0 . (6.12)

We now compute the value of x+
N−1:

x+
N−1 = Ax+

N−2 +Bu+
N−2 = AxN−1 + uN−1 = xN = xe + xc = xhN . (6.13)

Additionally, u+
N−1 = ue + uc = uhN . That is, (x+

N−1, u
+
N−1) belongs to the

artificial harmonic reference obtained from a feasible solution of (6.3). Therefore,
from Corollary 6.8, we have that

y ≤ Ex+
N−1 + Fu+

N−1 ≤ y,

which along with (6.12) proves (6.10b). The value of x+
N can be computed from

x+
N−1

(6.13)
= xN and u+

N−1

(6.9b)
= ue + uc as follows:

x+
N = Ax+

N−1 +Bu+
N−1 = AxN +B(ue + uc)

= A(xe + xc) +B(ue + uc)
(6.9h),(6.9j)

= x+
e + x+

c ,

146 Chapter 6. Harmonic based model predictive control for tracking

which proves (6.10d). From x+
e

(6.9h)
= Axe +Bue

(6.3f)
= xe and u+

e
(6.9e)

= ue we have

x+
e = Axe +Bue = Ax+

e +Bu+
e ,

which proves (6.10e). We now prove (6.10f):

Ax+
s +Bu+

s = A(Axs +Bus) +Bu+
s

= A(xs cos(w)− xc sin(w) +B(us cos(w)− uc sin(w))

= (Axs +Bus) cos(w)− (Axc +Buc) sin(w)

= x+
s cos(w)− x+

c sin(w).

We prove (6.10g) in a similar way:

Ax+
c +Bu+

c = A(Axc +Buc) +Bu+
c

= A(xs sin(w) + xc cos(w)) +B(us sin(w) + uc cos(w))

= (Axs +Bus) sin(w) + (Axc +Buc) cos(w)

= x+
s sin(w) + x+

c cos(w).

Next, we express y+
e , y+

s and y+
c in terms of ye, ys and yc:

y+
e = Ex+

e + Fu+
e = Exe + Fue = ye,

y+
s = Ex+

s + Fu+
s = E(Axs +Bus) + Fu+

s

= E(xs cos(w)− xc sin(w)) + F (us cos(w)− uc sin(w))

= (Exs + Fus) cos(w)− (Exc + Fuc) sin(w)

= ys cos(w)− yc sin(w),

y+
c = Ex+

c + Fu+
c = E(Axc +Buc) + Fu+

c

= E(xs sin(w) + xc cos(w)) + F (us sin(w) + uc cos(w))

= (Exs + Fus) sin(w) + (Exc + Fuc) cos(w)

= ys sin(w) + yc cos(w),

which, in view of Lemma 6.3.(ii), leads to√(
y+
s(i)

)2
+
(
y+
c(i)

)2
=
√
y2
s(i) + y2

c(i), i ∈ Zp1,

from where we conclude that (6.10h)-(6.10i) are directly inferred from (6.3i)-(6.3j).
The fact that the reference (x̂r, ûr) does not have to be the same as (xr, ur) is
inferred from it not affecting the constraints (6.3b)-(6.3j). �

6.3. Asymptotic stability of the HMPC formulation 147

6.3 Asymptotic stability of the HMPC formulation

In this section we prove the asymptotic stability of the HMPC formulation to the
optimal artificial harmonic reference, which we now define.

Definition 6.10 (Optimal artificial harmonic reference). Given a reference
(xr, ur) ∈ Rn × Rm, we define the optimal artificial harmonic reference of the
HMPC formulation (6.3) as the harmonic sequences {x◦hj}, {u◦hj}, j ∈ Z, pa-
rameterized by the unique solution (x◦H ,u

◦
H) of the strongly convex optimization

problem

(x◦H ,u
◦
H) = arg min

xH ,uH
Vh(xH ,uH ;xr, ur) (6.14)

s.t. (6.3f)-(6.3j).

Additionally, we denote by V ◦h (xr, ur)
.
= Vh(x◦H ,u

◦
H ;xr, ur) the optimal value of

problem (6.14).

The following proposition characterizes the optimal artificial harmonic refer-
ence by stating that it is an admissible steady state, i.e., that x◦hj = x◦e and
u◦hj = u◦e for all j ∈ Z.

Proposition 6.11 (Characterization of the optimal artificial harmonic reference).
Consider optimization problem (6.14). Then, for any (xr, ur) ∈ Rn × Rm, its
optimal solution is the admissible steady state (x◦e, u

◦
e) ∈ Ẑ of (4.1) under

y + εy ≤ Ex◦e + Fu◦e ≤ y − εy (6.15)

that minimizes the cost ‖x◦e−xr‖2Te + ‖u◦e−ur‖2Se . That is, x◦H = (x◦e,0n,0n) and
u◦H = (u◦e,0m,0m).

Proof: We prove the lemma by contradiction. Assume that x̂◦H = (x◦e, x
◦
s, x
◦
c),

û◦H = (u◦e, u
◦
s, u
◦
c), is the optimal solution of (6.14) and that at least some (if

not all) of x◦s, x
◦
c , u

◦
s, u

◦
c 6= 0. First, we show that x◦H = (x◦e,0n,0n), u◦H =

(u◦e,0m,0m) satisfy (6.3f)-(6.3j). Constraints (6.3g) and (6.3h) are trivially satis-
fied and (6.3f) is satisfied since (x̂◦H , û

◦
H) is assumed to be the solution of (6.14).

Moreover, since

0 ≤
√

(y◦s(i))
2 + (y◦c(i))

2, ∀i ∈ Zp1,

we have that (6.3i) and (6.3j) are also satisfied for (x◦H ,u
◦
H). Finally, it is clear

from the initial assumption and (6.5) that

Vh(x◦H ,u
◦
H ;xr, ur) < Vh(x̂◦H , û

◦
H ;xr, ur),

contradicting the optimality of (x̂◦H , û
◦
H). Finally (6.15) follows from the satisfac-

tion of (6.3i)-(6.3j) along with Proposition 6.7. �

148 Chapter 6. Harmonic based model predictive control for tracking

To prove the asymptotic convergence of the HMPC formulation to (x◦e, u
◦
e), we

make use of the following well known asymptotic stability theorem [64, Appendix
B.3].

Theorem 6.12 (Lyapunov asymptotic stability). Consider an autonomous dis-
crete time system z(t + 1) = f(z(t)), t ∈ Z, with states z(t) ∈ Rn and where
the function f : Rn → Rn is continuous and satisfies f(0n) = 0n. Let Z be an
invariant set of the system and Ω ⊆ Z be a compact set, both including the origin
as an interior point. If there exists a continuous function W : Rn → R≥0 and
suitable functions α1 ∈ K∞ and α2 ∈ K∞ such that,

(i) W (z(t)) ≥ α1(‖z(t)‖2), ∀z(t) ∈ Z,

(ii) W (z(t)) ≤ α2(‖z(t)‖2), ∀z(t) ∈ Ω,

(iii) W (z(t+ 1)) < W (z(t)),∀z(t) ∈ Z \ {0n},
and W (z(t+ 1)) = W (z(t)) if z(t) = 0n,

then W is a Lyapunov function for z(t + 1) = f(z(t)) in Z and the origin is
asymptotically stable for all initial states in Z.

The following theorem states the asymptotic stability of the HMPC formula-
tion to the optimal artificial harmonic reference (x◦e, u

◦
e). Its proof is inspired in

the proof of the asymptotic stability of the MPCT formulation [154, Theorem 1],
and makes use of the following lemma, whose proof is inspired by [154, Lemma 1].
However, in contrast to the proof presented in [154], we directly derive a Lyapunov
function that satisfies the conditions of Theorem 6.12.

Definition 6.13. Consider a controllable system (4.1). Its controllability index
is the smallest integer j > 0 for which rank

(
[B, AB, A2B, . . . , Aj−1B]

)
= n.

Lemma 6.14. Consider a system (4.1) subject to (4.4) controlled with the HMPC
formulation (6.3). Let Assumtion 6.1 hold and assume that N is greater or equal
to the controllability index of (4.1). Let (xr, ur) ∈ Rn × Rm be a given reference
and x ∈ Rn be a state belonging to the feasibility region of the H(x;xr, ur).
Then, x = x∗h0 if and only if x = x◦e, where x∗h0 is given by (6.6a) and x◦e by
Proposition 6.11.

Proof: Let V ∗h
.
= Vh(x∗H ,u

∗
H ;xr, ur) and V ◦h

.
= Vh(x◦H ,u

◦
H ;xr, ur). First, we

prove the implication x = x∗h0 =⇒ x = x◦e. Assume that x = x∗h0. Then, we have
that H∗(x;xr, ur) = V ∗h , i.e., the optimal solution of H(x;xr, ur) is given by

x∗j = x∗hj , u∗j = u∗hj , ∀j ∈ ZN−1
0 , (6.16)

where x∗hj and u∗hj are given by (6.6). Indeed, the summation of stage costs
(6.4) satisfies `h(x,u,x∗H ,u

∗
H) = 0, which, under Assumtion 6.1.(ii) is its smallest

6.3. Asymptotic stability of the HMPC formulation 149

possible value. Additionally, from Corollaries 6.5 and 6.8 it is clear that (6.16) is
a feasible solution of (6.3b)-(6.3j).

Next, we prove that V ∗h = V ◦h by contradiction. Assume that V ∗h > V ◦h . Under
Assumtion 6.1, problem (6.14) is strongly convex. Therefore, (x◦H ,u

◦
H) is the

unique minimizer of Vh(xH ,uH ;xr, ur) for all (xH ,uH) that satisfy (6.3f)-(6.3j),
which implies that (x∗H ,u

∗
H) 6= (x◦H ,u

◦
H).

Let x̂H and ûH be defined as

x̂H = (x̂e, x̂s, x̂c) = λx∗H+(1−λ)x◦H = λ(x∗e, x
∗
s, x
∗
c)+(1−λ)(x◦e,0n,0n), λ ∈ [0, 1],

ûH = (ûe, ûs, ûc) = λu∗H+(1−λ)u◦H = λ(u∗e, u
∗
s, u
∗
c)+(1−λ)(u◦e,0m,0m), λ ∈ [0, 1].

Then, since N is assumed to be greater or equal than to the controllability index
of the system, Y is convex, and (x∗hj , u

∗
hj) ∈ ri(Y) for all j ∈ Z, there exists

a λ̂ ∈ [0, 1) such that for any λ ∈ [λ̂, 1] there is a dead-beat control law udb for
which the predicted trajectory xdb satisfying xdb

0 = x∗h0 and xdb
N = x̂h0 is a feasible

solution (xdb,udb, x̂H , ûH) of problem H(x∗h0;xr, ur).
Taking into account the optimality of (6.16), and noting that there exists a

matrix P ∈ Sn++ such that

N−1∑
j=0

‖xdb
j − x̂hj‖2Q + ‖udb

j − ûhj‖2R ≤ ‖xdb
0 − x̂h0‖2P ,

we have that

V ∗h = Jh(x∗,u∗,x∗H ,u
∗
H ;xr, ur) ≤ Jh(xdb,udb, x̂H , ûH ;xr, ur)

= `h(xdb,udb, x̂H , ûH) + Vh(x̂H , ûH ;xr, ur)

≤ ‖x∗h0 − x̂h0‖2P + Vh(x̂H , ûH ;xr, ur)

(∗)
= (1− λ)2‖x∗h0 − x◦e‖2P + Vh(x̂H , ûH ;xr, ur), (6.17)

where step (∗) is using

x∗h0 − x̂h0 = x∗h0 − [λx∗h0 + (1− λ)x◦h0]

= (1− λ)(x∗h0 − x◦h0) = (1− λ)(x∗h0 − x◦e).

From the convexity of Vh we have that

Vh(x̂H , ûH ;xr, ur) ≤ λV ∗h + (1− λ)V ◦h , λ ∈ [0, 1],

which combined with (6.17) leads to,

V ∗h ≤ θ(λ), λ ∈ [λ̂, 1], (6.18)

where
θ(λ)

.
= (1− λ)2‖x∗h0 − x◦e‖2P + λ(V ∗h − V ◦h) + V ◦h .

150 Chapter 6. Harmonic based model predictive control for tracking

The derivative of θ(λ) (w.r.t. λ) is

θ′(λ) = −2(1− λ)‖x∗h0 − x◦e||2P + (V ∗h − V ◦h).

Taking into account the initial assumption V ∗h − V ◦h > 0, we have that θ′(1) > 0.

Therefore, there exists a λ ∈ [λ̂, 1) such that θ(λ) < θ(1) = V ∗h , which together
with (6.18) leads to the contradiction V ∗h < V ∗h . Therefore, we have that V ∗h ≤ V ◦h .
Moreover, since (x◦H ,u

◦
H) is the unique minimizer of Vh(xH ,uH ;xr, ur) for all

(xH ,uH) that satisfy (6.3f)-(6.3j), we conclude that x∗h0 = x◦e.

The reverse implication is straightforward. Assume now that x = x◦e. Then,

x∗H = x◦H , u∗H = u◦H , x
∗
j = x◦e, u

∗
j = u◦e, ∀j ∈ ZN−1

0 (6.19)

is a feasible solution of H(x;xr, ur), since (x◦H ,u
◦
H) satisfies (6.3f)-(6.3j) and

(x◦e, u
◦
e) is a steady state of the system (4.1). Moreover, (6.19) is the optimal solu-

tion of H(x;xr, ur). Indeed, note that `h(x∗,u∗,x∗H ,u
∗
H) = 0 and that V ∗h = V ◦h ,

which, once again, is its minimum value for all (xH ,uH) satisfying (6.3f)-(6.3j).
Therefore, due to the strict convexity of Vh, we conclude that x∗H = x◦H , implying
x∗h0 = x◦e. �

Theorem 6.15. Consider a system (4.1) subject to (4.4) controlled with the
HMPC formulation (6.3). Let Assumtion 6.1 hold and assume that N is greater
or equal to the controllability index of (4.1). Then, for any reference (xr, ur) ∈
Rn × Rm and any initial state x(t) ∈ Rn belonging to the feasibility region of
H(x(t);xr, ur), the system controlled by the HMPC formulation’s control law is
stable, fulfills the system constraints at all future time instants, and asymptot-
ically converges to the optimal artificial harmonic reference (x◦e, u

◦
e) ∈ Rn × Rm

given by Proposition 6.11.

Proof: The proof is based on finding a function that satisfies the Lyapunov con-
ditions for asymptotic stability given in Theorem 6.12. Let x∗, u∗, x∗H , u∗H be
the optimal solution of H(x(t);xr, ur), H∗(x(t);xr, ur)

.
= Jh(x∗,u∗,x∗H ,u

∗
H) be its

optimal value, V ∗h
.
= Vh(x∗H ,u

∗
H ;xr, ur) and V ◦h

.
= Vh(x◦H ,u

◦
H ;xr, ur).

We will now show that the function

W (x(t);xr, ur) = H∗(x(t);xr, ur)− V ◦h

is a Lyapunov function for x(t) − x◦e by finding suitable α1(‖x(t) − x◦e‖2) ∈ K∞
and α2(‖x(t) − x◦e‖2) ∈ K∞ functions satisfying the conditions of Theorem 6.12.
For convenience, we will drop the (xr, ur) from the notation.

Let x+ .
= Ax(t)+Bu∗0 be the successor state and consider the shifted sequence

x+, u+, x+
H , u+

H be defined as in (6.9) but taking x∗, u∗, x∗H , u∗H in the right-
hand-side of the equations. It is clear from the proof of Theorem 6.9 that this
shifted sequence is a feasible solution of H(x+).

6.3. Asymptotic stability of the HMPC formulation 151

The satisfaction of Theorem 6.12.(i) for any x(t) belonging to the domain of
attraction of the HMPC formulation follows from

W (x(t)) =
N−1∑
j=0

‖x∗j − x∗hj‖2Q + ‖u∗j − u∗hj‖2R + V ∗h − V ◦h

(∗)
≥ ‖x∗0−x∗h0‖2Q +

σ̂

2
‖x∗h0 − x◦e‖22

≥ min{λmin(Q),
σ̂

2
}
(
‖x(t)− x∗h0‖22 + ‖x∗h0 − x◦e‖22

)
(∗∗)
≥ 1

2
min{λmin(Q),

σ̂

2
}‖x(t)− x◦e‖22,

where (∗∗) is due to the parallelogram law and (∗) follows from the fact that

V ∗h − V ◦h ≥
σ̂

2
‖x∗h0 − x◦e‖22 (6.20)

for some σ̂ > 0. To show this, note that, under Assumtion 6.1, Vh is a strongly
convex function. Therefore, it satisfies for some σ > 0 [18, Theorem 5.24], [23,
§9.1.2],

Vh(z)− Vh(y) ≥ 〈∇Vh(y), z − y〉+
σ

2
‖z − y‖22,

for all z, y ∈ Rn × Rn × Rn × Rm × Rm × Rm. Particularizing for z = (x∗H ,u
∗
H)

and y = (x◦H ,u
◦
H) we have,

V ∗h − V ◦h ≥ 〈∇V ◦h , (x∗H ,u∗H)− (x◦H ,u
◦
H)〉+

σ

2
‖(x∗H ,u∗H)− (x◦H ,u

◦
H)‖22.

From the optimality of (x◦H ,u
◦
H) we have that [1, Proposition 5.4.7], [23, §4.2.3],

〈∇V ◦h , (xH ,uH)− (x◦H ,u
◦
H)〉 ≥ 0

for all (xH ,uH) satisfying (6.3f)-(6.3j). Since (x∗H ,u
∗
H) satisfies (6.3f)-(6.3j), this

leads to

V ∗h − V ◦h ≥
σ

2
‖(x∗H ,u∗H)− (x◦H ,u

◦
H)‖22

=
σ

2

(
‖x∗H − x◦H‖22 + ‖u∗H − u◦H‖22

)
≥ σ

2
(‖x∗e − x◦e‖22 + ‖x∗s‖2 + ‖x∗c‖22)

≥ σ

2
(‖x∗e − x◦e‖22 + ‖x∗s sin(−wN)‖22+‖x∗c cos(−wN)‖22).

Finally, making use of the parallelogram law, inequality (6.20) follows from the
fact that there exists a scalar σ̂ > 0 such that

σ

2
(‖x∗e − x◦e‖22 + ‖x∗s sin(−wN)‖22 + ‖x∗c cos(−wN)‖22)

≥ σ̂

2
‖x∗e − x◦e + x∗s sin(−wN) + x∗c cos(−wN)‖22

=
σ̂

2
‖x∗h0 − x◦e‖22.

152 Chapter 6. Harmonic based model predictive control for tracking

Since (x◦e, u
◦
e) ∈ ri(Y) (see Proposition 6.11), the system is controllable and N

is greater than its controllability index, there exists a sufficiently small compact
set Ω containing the origin in its interior such that, for all states x(t) that satisfy
x(t)− x◦e ∈ Ω, the dead-beat control law

udb
j = Kdb(xdb

j − x◦e) + u◦e

provides an admissible predicted trajectory xdb of system (4.1) subject to (4.4),
where xdb

j+1 = Axdb
j + Budb

j , j ∈ ZN−1
0 , xdb

0 = x(t) and xdb
N = x◦e. Then, taking

into account the optimality of x∗, u∗, x∗H , u∗H , we have that,

W (x) = `h(x∗,u∗,x∗H ,u
∗
H) + V ∗h − V ◦h

≤ `h(xdb,udb,x◦H ,u
◦
H) + V ◦h − V ◦h

=
N−1∑
j=0

‖xdb
j − x◦e‖2Q + ‖udb

j − u◦e‖2R.

Therefore, there exists a matrix P ∈ Sn++ such that

W (x(t)) ≤ λmax(P)‖x(t)− x◦e‖22

for any x− x◦e ∈ Ω, which proves the satisfaction of Theorem 6.12.(ii).
Next, let ∆W (x(t))

.
= W (x+) −W (x(t)) and note that, as shown by (6.9b),

(6.9h)-(6.9j), (6.11), (6.13) and Lemma 6.3.(i), we have that x+
j = x∗j+1 for j ∈

ZN−1
0 , u+

j = u∗j+1 for j ∈ ZN−1
0 , and that x+

hj = x∗hj+1 and u+
hj = u∗hj+1 for j ∈ Z.

Then,

∆W (x(t)) = H∗(x+)− V ◦h −H∗(x(t)) + V ◦h ≤ H(x+)−H∗(x(t))

=

N−1∑
j=0

(
‖x+

j − x
+
hj‖

2
Q + ‖u+

j − u
+
hj‖

2
R − ‖x∗j − x∗hj‖2Q − ‖u∗j − u∗hj‖2R

)
+ Vh(x+

H ,u
+
H ;xr, ur)− V ∗h

(∗)
=

N−1∑
j=1

(
‖x∗j − x∗hj‖2Q + ‖u∗j − u∗hj‖2R − ‖x∗j − x∗hj‖2Q − ‖u∗j − u∗hj‖2R

)
+ ‖x∗N − x∗hN‖2Q + ‖u∗N − u∗hN‖2R

= −‖x∗0 − x∗h0‖2Q − ‖u∗0 − u∗h0‖2R
≤ −λmin(Q)‖x(t)− x∗h0‖22,

where in step (∗) we are making use of the fact that

Vh(x+
H ,u

+
H ;xr, ur) = V ∗h .

Indeed, note that x+
e = x∗e and u+

e = u∗e. Therefore, the first two terms of
Vh(x+

H ,u
+
H ;xr, ur) (6.5) are the same as those of V ∗h . We now show that, since Th

6.4. Selection of the base frequency 153

and Sh are diagonal matrices, the terms ‖xs‖2Th +‖xc‖2Th are also the same (terms

‖us‖2Sh + ‖uc‖2Sh follow similarly):

‖x+
s ‖2Th + ‖x+

c ‖2Th = ‖x∗s cos(w)− x∗c sin(w)‖2Th + ‖x∗s sin(w) + x∗c cos(w)‖2Th
= (sin(w)2 + cos(w)2)‖x∗s‖2Th + (sin(w)2 + cos(w)2)‖x∗c‖2Th

+ 2 cos(w) sin(w)〈x∗s, Thx∗c〉 − 2 cos(w) sin(w)〈x∗s, Thx∗c〉
= ‖x∗s‖2Th + ‖x∗c‖2Th .

The satisfaction of Theorem 6.12.(iii) now follows from noting that inequality

W (x+)−W (x(t)) ≤ −λmin(Q)‖x(t)− x∗h0‖22,

along with Lemma 6.14 leads to

W (x+) < W (x(t)), ∀x(t) 6= x◦e,

W (x+) = W (x(t)), if x(t) = x◦e.

�

6.4 Selection of the base frequency

The ingredients of the HMPC formulation (6.3) are similar to the ones of the
MPCT formulation (5.41): the cost function matrices Q and R play the same
role, and matrices Th and Sh have a similar effect that the matrices T and S of
MPCT. However, the base frequency w of the artificial harmonic reference (6.1)
plays a key role on the performance of the controller. This section discusses and
provides an intuitive approach to the selection of this parameter.

It is important to note that the stability and recursive feasibility properties
(Theorems 6.9 and 6.15) of the HMPC formulation are satisfied for any value of
w. However, its proper tuning is still an important aspect of the performance and
domain of attraction of the controller. For instance, note that for w = 2π, the
HMPC formulation is equivalent to the MPCT formulation.

There are two main considerations to be made. The first is related to the
phenomenon of aliasing and to the selection of the sampling time of continuous-
time systems, which will provide an upper bound to w. The second relates to
the frequency response of linear systems, which will provide some insight into the
selection of an initial, and well suited, value of w. Subsequent fine tuning may
provide better results, but this initial value of w should work well in practice and
provide a good starting point.

154 Chapter 6. Harmonic based model predictive control for tracking

Upper bound of the base frequency

The artificial harmonic reference parametrized by any feasible solution (xH ,uH)
of (6.3) satisfies the discrete-time system dynamics, as stated in Corollary 6.5.
However, w should be selected so that it also correctly describes the underlying
continuous-time model. That is, it should be selected small enough to prevent the
aliasing phenomenon.

To do so, w must be chosen below the Nyquist frequency for anti-aliasing, i.e.,
w < π [155]. However, since the inputs are applied using a zero-order holder, w
should satisfy

w ≤ π

2
.

Selection of a suitable base frequency

There are three additional considerations to be made for selecting an adequate
w: (i) high frequencies equate fast system responses, (ii) high frequencies tend to
have small input-to-state gains, and (iii) the presence of state constraints.

At first glance, it would seem that selecting a high value of w would lead
to fast system responses. However, this need not be the case, since the gain of
the system tends to diminish as the frequency of the input increases, i.e., if w is
selected in the high frequency band of the system. If the gain is low, then {xhj}
is very similar to a constant signal of value xe, which results in HMPC controller
behaving very similarly to the MPCT controller. Therefore, w should be selected
taking into account the gain of the system for that frequency.

A tentative lower bound for w is then the highest frequency of the low frequency
band of the system. However, a final consideration can be made with regard to
the system constraints as follows: the presence of constraints can override the
desire for frequencies with large system gains. For instance, take as an example
a system with a static gain of 4 with an input u subject to |u| ≤ 1 and a state
x subject to |x| ≤ 2. Then, selecting a w whose Bode gain is close to the static
gain of the system is not desirable because the amplitude of {uhj} will be limited
by the constraints on {xhj}. Therefore, we can select a higher frequency. In this
case, a proper selection might be to chose w as the frequency whose Bode gain
is 2.

Remark 6.16. If the system has multiple states/inputs, then the above consider-
ations should be made extrapolating the idea to the frequency response of MIMO
systems. One approach in this case is to focus on the slow dynamics (states) of the
system, which are the most restrictive, in that they may require higher prediction
horizons in order to be able to reach steady states. Additionally, it is also useful
to identify if the system has any integrator states and to take into account their
constraints as described in the above discussion.

6.5. Advantages of the HMPC formulation 155

6.5 Advantages of the HMPC formulation

One of the issues of standard MPC formulations that use a terminal admissible
invariant set Xt (4.7e) is that the system must be able to reach it within the
prediction horizon N . Moreover, this set must contain xr, or else the closed-loop
system cannot converge to the reference. Therefore, the distance to the current
reference is one of the mayor determining factors on the domain of attraction. This
has an important effect on both the domain of attraction and the performance of
the controller that is more pronounced for small prediction horizons and/or if a
terminal equality constraint is used.

A similar phenomenon happens in the case of the MPCT formulation. In
this case, the effect on the domain of attraction is not as pronounced, since the
predicted state need only be able to reach any admissible steady state of the
system, which is a less strict imposition than it having to reach the terminal set
Xt. However, this may still affect the performance of the controller, particularly
so in the presence of integrator states and/or slew-rate input constraints due to
them affecting the “speed” at which the system can move.

The HMPC formulation can provide significant advantages in both these as-
pects. First, the harmonic artificial reference is not necessarily an admissible
steady state of the system. Instead, it defines an admissible periodic trajectory of
the system that is, effectively, a decision variable of the formulation. Second, the
reference does not need to belong to the artificial harmonic reference. Thus, the
distance to the reference should have little impact on the domain of attraction of
the controller.

These two advantages provide the formulation with performance and domain
of attraction advantages when compared to the aforementioned alternatives, as
we illustrate in the following with two case studies.

6.5.1 Performance advantages of the HMPC formulation

This section presents the potential performance advantages that can be obtained
using the HMPC formulation (6.3) by comparing it to the one obtained by the
MPCT formulation (5.41) to control the ball and plate system described in Sec-
tion 5.7.2.

We initialize the system at the origin (i.e., with the ball positioned in the
central point of the plate) and set the reference to

xr = (1.8, 0, 0, 0, 1.4, 0, 0, 0), ur = (0, 0).

The HMPC controller is solved using version v0.7.5 of the COSMO solver
[152], while the MPCT controller is solved using version 0.6.0 of the OSQP
solver [35]. These two solvers employ the same operator splitting approach, based
on the ADMM algorithm [21]. In fact, their algorithms are very similar, with
OSQP being particularized to QP problems. The options of both solvers are set

156 Chapter 6. Harmonic based model predictive control for tracking

0 10 20 30 40 50
0

0.5

1

1.5

2

(a) Position of ball on axis 1.

0 10 20 30 40 50

0

0.2

0.4

0.6

(b) Velocity of ball on axis 1.

0 10 20 30 40 50
-0.4

-0.2

0

0.2

0.4

(c) Control input on axis 1.

-0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

(d) Position of ball on the plate.

Figure 6.1: Closed-loop comparison between HMPC and MPCT.

Figure 6.2: Computation times of the COSMO and OSQP solvers.

to their default values, with the exception of the tolerances eps abs, eps rel,
eps prim inf and eps dual inf, which are set to 10−4.

The parameters of the controllers, which where manually tuned to provide an
adequate closed-loop performance, are described in Table 6.11. We compare the
HMPC controller with N = 5 to three MPCT controllers with prediction horizons
N = 5, 8, 15. The prediction horizon N = 15 was chosen by finding the lowest
value for which the MPCT performed well. We measure performance as

Φ
.
=

Niter∑
k=1

‖xk − xr‖2Q + ‖uk − ur‖2R,

where xk, uk are the states and control actions throughout the simulation and
Niter = 50 is the number of sample times. Table 6.2 shows the performance index
for each one of the controllers.
1Notice that they are the same as the ones used in Section 5.8.6 for the MPCT case study.

6.5. Advantages of the HMPC formulation 157

0 10 20 30 40 50
-0.5

0

0.5

(a) HMPC: Velocity of ball on axis 1.

-0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

(b) HMPC: Position of ball on plate.

0 10 20 30 40 50
-0.1

0

0.1

0.2

0.3

(c) MPCT: Velocity of ball on axis 1.

-0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

(d) MPCT: Position of ball on plate.

Figure 6.3: Snapshot of HMPC and MPCT at iteration 15.

Figure 6.1 shows the closed-loop simulation results. Figures 6.1a and 6.1b
show the position and velocity of the ball on axis 1, i.e. p1 and ṗ1, respectively.
Figure 6.1c shows the control input on axis 1, i.e. θ̈1. Finally, Figure 6.1d shows
the trajectory of the ball on the plate. The markers indicate the position of the
ball at sample times 10, 20 and 30 for each one of the controllers. The computa-
tion times of the HMPC controller and the MPCT controller with the prediction
horizon N = 15 are shown in Figure 6.2. As can be seen, the COSMO solver ap-
plied to the HMPC problem provides computation times that are reasonable when
compared to the results of the OSQP solver applied to the MPCT problem, in
spite of the fact that the OSQP solver is particularized to QP problems, whereas
the COSMO solver is not particularized to the second order cone programming
problem (6.3). Our intent with this figure is to show that, even though (6.3) is
a more complex problem than (5.41) due to the inclusion of second order cone
constraints, it can still be solved in reasonable times using state of the art solvers.
We note that COSMO runs on the Julia programming language, while OSQP is
programmed in C and executed using its Matlab interface.

Notice that the velocities obtained with the MPCT controllers with small pre-
diction horizons are far away from its upper bound of 0.5. The HMPC controller,
on the other hand, reached much higher velocities even though its prediction
horizon is also small. This results in a much faster convergence of the HMPC
controller, as can be seen in Figures 6.1a and 6.1d. If the prediction horizon of
the MPCT controller is sufficiently large (e.g. N = 15), then this issue no longer
persists.

To understand why this happens, let us compare the solution of the HMPC
controller with the MPCT controller with N = 8. Figure 6.3 shows a snapshot of

158 Chapter 6. Harmonic based model predictive control for tracking

Table 6.1: Parameters of the controllers

Parameter Value

Q diag(10, 0.05, 0.05, 0.05, 10, 0.05, 0.05, 0.05)
Te diag(600, 50, 50, 50, 600, 50, 50, 50)

Parameter Value Parameter Value

R diag(0.5, 0.5) Se diag(0.3, 0.3)
Th Te Sh 0.5Se
Ta Te Sa Se
N 5 (HMPC), 8 and 15 ε (10−4, 10−4, 10−4)
w 0.3254

Table 6.2: Performance comparison between controllers

Controller MPCT HMPC

Prediction horizon (N) 5 8 15 5

Performance (Φ) 2014.03 844.16 488.88 511.09

sample time 15 of the same simulation shown in Figure 6.1. Lines marked with
an asterisk are the past states from sample time t = 0 to the current state at
sample time t = 15, those marked with circumferences are the predicted states x
for j ∈ ZN0 , and those marked with dots are the artificial reference. The position
of the markers line up with the value of the signals at each sample time, e.g. each
asterisk marks the value of the state at each sample time t ∈ Z15

0 . Figures 6.3a
and 6.3c show the velocity ṗ1 of the ball on axis 1 for the HMPC and MPCT
controllers, respectively. Figures 6.3b and 6.3d show the position of the ball on
the plate.

The reason why the velocity does not exceed ≈0.2 with the MPCT controller
can be seen in Figure 6.3c. The predicted states of the MPCT controller must
reach a steady state at j = N (see constraint (5.41i)). In our example this
translates into the velocity having to be able to reach 0 within a prediction window
of length N = 8. This is the reason that is limiting the velocity of the ball. A
velocity of 0.5 is not attainable with an MPCT controller with a prediction horizon
of N = 8 because there are no admissible control input sequences u capable of
steering the velocity from 0.5 to 0 in 8 sample times. This issue does not occur
with the HMPC controller because it does not have to reach a steady state at
the end of the prediction horizon, as can be seen in Figure 6.3a. Instead, it must
reach an admissible harmonic reference, which can have a non-zero velocity.

Remark 6.17. It is clear from this discussion, and the results of the MPCT
controller with N = 15, that this issue will become less pronounced as the predic-
tion horizon is increased. However, for low values of the prediction horizon, the

6.5. Advantages of the HMPC formulation 159

(a) N = 2. (b) N = 4. (c) N = 8.

Figure 6.4: Effect of N on the domain of attraction for w = 4π
64 . VHMPC in green, VMPCT

in blue and VequMPC in white. The red line is the set of equilibrium points of the system.

(a) w = π/64. (b) w = 4π/64. (c) w = 11π/64.

Figure 6.5: Effect of w on the domain of attraction for N = 2. VHMPC in green, VMPCT

in blue and VequMPC in white. The red line is the set of equilibrium points of the system.

HMPC controller can provide a significantly better performance than the MPCT
controller, as shown in the above example.

6.5.2 Domain of attraction

This section presents the potential advantages in terms of the domain of attrac-
tion that can be obtained using the HMPC formulation (6.3) in comparison with
the MPCT formulation (5.41) and the standard MPC formulation with termi-
nal constraints (5.15), which we denote by equMPC in the following. We denote
by VHMPC, VMPCT and VequMPC the volumes of the domain of attraction of the
HMPC, MPCT and SMPC formulations, respectively.

In order to be able to represent the domains of attraction, we consider an
academic example where the model (4.1) and constraints (4.4) are given by:

A =

[
0.9 0.8
0 1

]
, B =

[
0.8
1

]
, E =

[
1 0
0 0

]
, F =

[
0
1

]
,

y = (−10,−0.5), y = (10, 0.5).

We note that the above constraints can also be expressed as box constraints (4.3).
The optimization problems of the three MPC formulations are programmed

using the YALMIP Matlab toolbox [103] and are solved using the CPLEX solver.
The values of VHMPC, VMPCT and VequMPC (which in this example are areas due

160 Chapter 6. Harmonic based model predictive control for tracking

2.873

2.244

1.775
1.491 1.265 1.114 1.024

2 3 4 5 6 7 8
0

30

60

90

120

150

180

(a) Volumes of the domains of attraction for increasing N . w = 4π/64.

 1

1.48

1.98

2.46

2.87
2.73

2.53
2.37

2.23
2.12

2.03
1.95

(b) Volumes of the domains of attraction for increasing w. N = 2.

Figure 6.6: Volumes of the domains of attraction for different values of N and w. The
numbers above the bars show the value of VHMPC/VMPCT.

to x ∈ R2) are computed using the MPT3 toolbox for Matlab [147]. The value
of the cost function matrices are Q = 5I2, R = 5, T = Te = Th = 10I2 and
S = Se = Sh = 0.1.

Figure 6.4 shows the comparison between the domains of attraction of the
MPC formulations for three values ofN with a fixed value of w = 4π/64. Note how
the domains of attraction approach a maximum size as N increases. Figure 6.6a
shows the volume of the domains of attraction for increasing values of N . The
numbers above the bars show the value of VHMPC/VMPCT.

Since the number of decision variables of the HMPC controller with prediction
horizon N is equal to the number of decision variables of the MPCT controller
with prediction horizon N + 2, a reasonable comparison (in terms of the expected
iteration complexity of the solvers) is to compare if VHMPC for N is larger than
VMPCT for N + 2. Figure 6.6a shows this to be the case for the values of N ∈ Z6

2

6.5. Advantages of the HMPC formulation 161

(a) State trajectory for xr1

0 10 20 30 40 50
Sample time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

u

HMPC
MPCT

(b) Control input for xr1

(c) State trajectory for xr2

0 10 20 30 40 50
Sample time

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

u

HMPC
MPCT

(d) Control input for xr2

Figure 6.7: Closed loop trajectories and control inputs for the reference (xr, ur). The
black line is the set of equilibrium points of the system. The red lines are the state and
input bounds.

in this particular example. A similar argument can be made for a comparison
between VHMPC with VequMPC.

Figure 6.5 shows a comparison between the domains of attraction of the three
controllers for different values of w with a fixed value of N = 2. Figure 6.6b shows
the value of VHMPC for increasing values of w. The numbers above the bars show
the value of VHMPC/VMPCT. Notice that the HMPC formulation with w = 0 has
the same domain of attraction as the MPCT formulation, which is not surprising,
since in that case the HMPC and MPCT formulations are equivalent.

Finally, we show a comparison between the closed-loop results using the HMPC
and MPCT formulations.

We select w = 4π/64 and N = 2. Two tests are shown, both of which are
initialized at the origin. The reference of each test is given by,

xr1 = (8, 1), xr2 = (11.4286, 1.4286), ur = 0.

Reference (xr1, ur) is admissible, whereas (xr2, ur) is not.
Figures 6.7a and 6.7b show the state and control input trajectories for the

reference (xr1, ur), whereas Figures 6.7c and 6.7d shows them for the reference

162 Chapter 6. Harmonic based model predictive control for tracking

(xr2, ur). The red circles indicate the reference; the vertical red line in Figures 6.7a
and 6.7c represents the bounds on x; and the horizontal red lines in Figures 6.7b
and 6.7d represent the bounds on u.

As can be seen in Figure 6.7c, if the reference is non-admissible the MPCT
and HMPC controllers steer the system to the closest admissible steady state to
the reference for the criterion of closeness determined by their terminal costs. In
this case, this state happens to be the closest steady state to the reference in the
standard Euclidean sense.

6.6 Conclusions and future lines of work

The results shown in Section 6.5 indicate that the HMPC formulation can outper-
form the MPCT and standard MPC formulations subject to terminal constraints
in terms of performance and domain of attraction, particularly so for small pre-
diction horizons. We find the performance advantage to be particularly noticeable
in systems with integrators and/or slew rate constraints. This is because these
systems tend to suffer from the problem we highlight in Figure 6.3.

The fact that these advantages are obtained without requiring the computation
of an admissible invariant set, along with the proven recursive feasibility and
asymptotic stability of the formulation, make it an interesting candidate for future
study on its implementation in embedded systems. The preliminary results we
show in Figure 6.2 suggest that the development of a sparse solver for the HMPC
formulation could make it suitable for its implementation in these devices. A
preliminary solver for the HMPC formulation, loosely based on the COSMO solver
[152], shows promising results. However, the development of this solver is still in
early stages and was thus omitted this dissertation.

A possible future line of work is to expand the HMPC formulation to artificial
harmonic signals with more harmonics, i.e., taking {xhj} and {uhj}, j ∈ Z, as

xhj = xe +

p∑
i=1

xsi sin(wi(j−N)) + xci cos(wi(j−N)),

uhj = ue +

p∑
i=1

usi sin(wi(j−N)) + uci cos(wi(j−N)),

for some p ∈ Z>0, where wi = iw for i ∈ Zp1, and w ∈ R>0 is the base frequency.
The question is whether any benefits are obtained from the addition of more
harmonics compared to the single harmonic version we present in this dissertation.

Finally, another line of future work is to study the use of the HMPC formu-
lation, or a variant of it, to tracking periodic references. The idea would be to
determine if we can generic periodic references in such a way in which the number
of constraints required by the artificial reference does not grow with the period of
the reference signal.

Bibliography

[1] D. P. Bertsekas, Convex Optimization Theory. Athena Scientific Belmont,
2009.

[2] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis.
Springer Science & Business Media, 2004.

[3] Y. Nesterov, Introductory Lectures on Convex Optimization: A basic course,
vol. 87. Springer Science & Business Media, 2013.

[4] P. Krupa, D. Limon, and T. Alamo, “Spcies: Suite of Predictive Con-
trollers for Industrial Embedded Systems.” https://github.com/GepocUS/

Spcies, Dec 2020.

[5] T. Alamo, P. Krupa, and D. Limon, “Restart FISTA with global linear
convergence,” in Proceedings of the European Control Conference (ECC),
pp. 1969–1974, IEEE, 2019. Extended version available at arXiv:1906.09126.

[6] T. Alamo, P. Krupa, and D. Limon, “Gradient based restart FISTA,” in
Proceedings of the Conference on Decision and Control (CDC), pp. 3936–
3941, IEEE, 2019.

[7] T. Alamo, P. Krupa, and D. Limon, “Restart of accelerated first order meth-
ods with linear convergence for non-strongly convex optimization,” arXiv
preprint: 2102.12387, 2021. Submitted to Transactions on Automatic Con-
trol.

[8] P. Krupa, D. Limon, and T. Alamo, “Implementation of model predictive
control in programmable logic controllers,” IEEE Transactions on Control
Systems Technology, vol. 29, no. 3, pp. 1117–1130, 2021.

[9] P. Krupa, D. Limon, and T. Alamo, “Implementation of model predictive
controllers in programmable logic controllers using IEC 61131-3 standard,”
in Proceedings of the European Control Conference (ECC), pp. 288–293,
IEEE, 2018.

[10] P. Krupa, I. Alvarado, D. Limon, and T. Alamo, “Implementation of model
predictive control for tracking in embedded systems using a sparse extended

163

https://github.com/GepocUS/Spcies
https://github.com/GepocUS/Spcies

164 Bibliography

ADMM algorithm,” arXiv preprint: 2008.09071, 2020. Submitted to Trans-
actions on Control Systems Technology.

[11] P. Krupa, J. Camara, I. Alvarado, D. Limon, and T. Alamo, “Real-time
implementation of MPC for tracking in embedded systems: Application to
a two-wheeled inverted pendulum,” in Proceedings of the European Control
Conference (ECC), 2021. Preprint available at arXiv:2103.14571.

[12] P. Krupa, R. Jaouani, D. Limon, and T. Alamo, “A sparse ADMM-based
solver for linear MPC subject to terminal quadratic constraint,” arXiv
preprint: 2105.08419, 2021. Submitted to Automatica.

[13] P. Krupa, D. Limon, and T. Alamo, “Harmonic based model predictive
control for set-point tracking,” IEEE Transactions on Automatic Control,
2020.

[14] P. Krupa, M. Pereira, D. Limon, and T. Alamo, “Single harmonic based
model predictive control for tracking,” in Proceedings of the Conference on
Decision and Control (CDC), pp. 151–156, IEEE, 2019.

[15] P. Krupa, N. Saraf, D. Limon, and A. Bemporad, “PLC implementation of a
real-time embedded MPC algorithm based on linear input/output models,”
IFAC-PapersOnLine, vol. 53, no. 2, pp. 6987–6992, 2020.

[16] I. Alvarado, P. Krupa, D. Limon, and T. Alamo, “Tractable robust MPC
design based on nominal predictions,” arXiv preprint: 2104.06088, 2021.
Submitted to Journal of Process Control.

[17] P. Krupa, C. Danielson, C. Laughman, S. A. Bortoff, D. J. Burns,
S. Di Cairano, and D. Limon, “Modelica implementation of centralized MPC
controller for a multi-zone heat pump,” in Proceedings of the European Con-
trol Conference (ECC), 2019.

[18] A. Beck, First-order methods in optimization, vol. 25. SIAM, 2017.

[19] Y. Nesterov, Lectures on convex optimization, vol. 137. Springer, 2018.

[20] A. Cauchy et al., “Méthode générale pour la résolution des systemes
d’équations simultanées,” Comp. Rend. Sci. Paris, vol. 25, no. 1847,
pp. 536–538, 1847.

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” vol. 3, no. 1, pp. 1–122, 2011.

[22] G. Stathopoulos, H. A. Shukla, A. Szuecs, Y. Pu, and C. N. Jones, “Oper-
ator splitting methods in control,” Foundations and Trends in Systems and
Control, vol. 3, no. ARTICLE, pp. 249–362, 2016.

Bibliography 165

[23] S. Boyd, Convex Optimization. Cambridge University Press, 7 ed., 2009.

[24] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate O(1/k2),” Sov. Math. Dokl., vol. 27, no. 2, pp. 372–376,
1983.

[25] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathemati-
cal programming, vol. 103, no. 1, pp. 127–152, 2005.

[26] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2,
no. 1, pp. 183–202, 2009.

[27] Y. Nesterov, “Gradient methods for minimizing composite functions,” Math-
ematical Programming, vol. 140, no. 1, pp. 125–161, 2013.

[28] P. Tseng, “On accelerated proximal gradient methods for convex-concave
optimization,” tech. rep., Dept. Math., Univ. Washington, Seattle, WA,
USA, 2008.

[29] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in
optimization, vol. 1, no. 3, pp. 127–239, 2014.

[30] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating
direction optimization methods,” SIAM Journal on Imaging Sciences, vol. 7,
no. 3, pp. 1588–1623, 2014.

[31] P. Combettes and J. Pesquet, Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, vol. 49, ch. Proximal Splitting Methods in Sig-
nal Processing, pp. 185–212. Springer Optimization and its Applications,
2011.

[32] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator
Theory in Hilbert Spaces. Springer, 2011.

[33] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan, “A gen-
eral analysis of the convergence of ADMM,” in International Conference on
Machine Learning, pp. 343–352, PMLR, 2015.

[34] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility detection in
the alternating direction method of multipliers for convex optimization,”
Journal of Optimization Theory and Applications, vol. 183, no. 2, pp. 490–
519, 2019.

[35] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An
operator splitting solver for quadratic programs,” Mathematical Program-
ming Computation, vol. 12, no. 4, pp. 637–672, 2020.

166 Bibliography

[36] X. Cai, D. Han, and X. Yuan, “On the convergence of the direct extension
of ADMM for three-block separable convex minimization models with one
strongly convex function,” Computational Optimization and Applications,
vol. 66, no. 1, pp. 39–73, 2017.

[37] C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM for
multi-block convex minimization problems is not necessarily convergent,”
Mathematical Programming, vol. 155, no. 1-2, pp. 57–79, 2016.

[38] C. Chen, Y. Shen, and Y. You, “On the convergence analysis of the alter-
nating direction method of multipliers with three blocks,” in Abstract and
Applied Analysis, vol. 2013, Hindawi, 2013.

[39] T.-Y. Lin, S.-Q. Ma, and S.-Z. Zhang, “On the sublinear convergence rate of
multi-block ADMM,” Journal of the Operations Research Society of China,
vol. 3, no. 3, pp. 251–274, 2015.

[40] B. He, M. Tao, and X. Yuan, “Alternating direction method with Gaussian
back substitution for separable convex programming,” SIAM Journal on
Optimization, vol. 22, no. 2, pp. 313–340, 2012.

[41] M. Li, D. Sun, and K.-C. Toh, “A convergent 3-block semi-proximal ADMM
for convex minimization problems with one strongly convex block,” Asia-
Pacific Journal of Operational Research, vol. 32, no. 04, p. 1550024, 2015.

[42] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained
total variation image denoising and deblurring problems,” IEEE Transac-
tions on Image Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[43] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parame-
ter selection for the alternating direction method of multipliers (ADMM):
quadratic problems,” IEEE Transactions on Automatic Control, vol. 60,
no. 3, pp. 644–658, 2014.

[44] B. He, H. Yang, and S. Wang, “Alternating direction method with self-
adaptive penalty parameters for monotone variational inequalities,” Journal
of Optimization Theory and Applications, vol. 106, no. 2, pp. 337–356, 2000.

[45] B. O’Donoghue and E. Candes, “Adaptive restart for accelerated gradi-
ent schemes,” Foundations of computational mathematics, vol. 15, no. 3,
pp. 715–732, 2015.

[46] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first or-
der methods for non-strongly convex optimization,” Mathematical Program-
ming, pp. 1–39, 2018.

[47] P. Giselsson and S. Boyd, “Monotonicity and restart in fast gradient meth-
ods,” in 53rd IEEE Conference on Decision and Control, pp. 5058–5063,
IEEE, 2014.

Bibliography 167

[48] G. Lan and R. D. Monteiro, “Iteration-complexity of first-order penalty
methods for convex programming,” Mathematical Programming, vol. 138,
no. 1, pp. 115–139, 2013.

[49] Q. Lin and L. Xiao, “An adaptive accelerated proximal gradient method
and its homotopy continuation for sparse optimization,” Computational Op-
timization and Applications, vol. 60, no. 3, pp. 633–674, 2015.

[50] O. Fercoq and Z. Qu, “Adaptive restart of accelerated gradient methods un-
der local quadratic growth condition,” IMA Journal of Numerical Analysis,
vol. 39, no. 4, pp. 2069–2095, 2019.

[51] D. Kim and J. A. Fessler, “Adaptive restart of the optimized gradient
method for convex optimization,” Journal of Optimization Theory and Ap-
plications, vol. 178, no. 1, pp. 240–263, 2018.

[52] P. Tseng, “On accelerated proximal gradient methods for convex-concave
optimization,” submitted to SIAM Journal on Optimization, vol. 1, 2008.

[53] S. Richter, Computational complexity certification of gradient methods for
real-time model predictive control. ETH Zurich, 2012.

[54] D. Drusvyatskiy and A. S. Lewis, “Error bounds, quadratic growth, and
linear convergence of proximal methods,” Mathematics of Operations Re-
search, vol. 43, no. 3, pp. 919–948, 2018.

[55] D. Kim and J. A. Fessler, “Optimized first-order methods for smooth con-
vex minimization,” Mathematical programming, vol. 159, no. 1, pp. 81–107,
2016.

[56] Z.-Q. Luo and P. Tseng, “Error bounds and convergence analysis of feasi-
ble descent methods: a general approach,” Annals of Operations Research,
vol. 46, no. 1, pp. 157–178, 1993.

[57] P.-W. Wang and C.-J. Lin, “Iteration complexity of feasible descent meth-
ods for convex optimization,” The Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1523–1548, 2014.

[58] P. Patrinos, L. Stella, and A. Bemporad, “Douglas-Rachford splitting: Com-
plexity estimates and accelerated variants,” in 53rd IEEE Conference on
Decision and Control, pp. 4234–4239, IEEE, 2014.

[59] Y. Pu, M. N. Zeilinger, and C. N. Jones, “Complexity certification of the fast
alternating minimization algorithm for linear MPC,” IEEE Transactions on
Automatic Control, vol. 62, no. 2, pp. 888–893, 2016.

[60] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins
University Press, 3 ed., 1996.

168 Bibliography

[61] J.-F. Aujol, C. Dossal, H. Labarrière, and A. Rondepierre, “FISTA restart
using an automatic estimation of the growth parameter,” preprint, 2021.

[62] L. Ljung, “System identification,” Wiley encyclopedia of electrical and elec-
tronics engineering, pp. 1–19, 1999.

[63] E. F. Camacho and C. B. Alba, Model Predictive Control. Springer Science
& Business Media, 2013.

[64] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: The-
ory, Computation, and Design. Nob Hill Publishing, 2 ed., 2017.

[65] J. R. Salvador, D. M. de la Peña, D. Ramirez, and T. Alamo, “Predictive
control of a water distribution system based on process historian data,”
Optimal Control Applications and Methods, vol. 41, no. 2, pp. 571–586,
2020.

[66] M. Pereira, D. M. de la Peña, and D. Limon, “Robust economic model
predictive control of a community micro-grid,” Renewable Energy, vol. 100,
pp. 3–17, 2017.

[67] J. G. Ordonez, F. Gordillo, P. Montero-Robina, and D. Limon, “Suboptimal
multirate MPC for five-level inverters,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 13424–13429, 2020.

[68] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and model
predictive control for aerospace and automotive applications,” in 2018 an-
nual American control conference (ACC), pp. 2392–2409, IEEE, 2018.

[69] A. Bemporad, D. Bernardini, R. Long, and J. Verdejo, “Model predictive
control of turbocharged gasoline engines for mass production,” in WCXTM:
SAE World Congress Experience, 2018.

[70] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive control
and weather forecasts for energy efficient building climate control,” Energy
and Buildings, vol. 45, pp. 15–27, 2012.

[71] A. Carnerero, D. Ramirez, D. Limon, and T. Alamo, “Particle based opti-
mization for predictive energy efficient data center management,” in 2020
59th IEEE Conference on Decision and Control (CDC), pp. 2660–2665,
IEEE, 2020.

[72] J. Nadales, J. G. Ordonez, J. F. Coronel, and D. Limon, “Energy-efficiency-
oriented gradient-based economic predictive control of multiple-chiller cool-
ing systems,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6656–6661, 2020.

Bibliography 169

[73] D. J. Burns, C. Danielson, J. Zhou, and S. Di Cairano, “Reconfigurable
model predictive control for multievaporator vapor compression systems,”
IEEE Transactions on Control Systems Technology, vol. 26, no. 3, pp. 984–
1000, 2017.

[74] U. Maeder, F. Borrelli, and M. Morari, “Linear offset-free model predictive
control,” Automatica, vol. 45, no. 10, pp. 2214–2222, 2009.

[75] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From linear
to nonlinear MPC: bridging the gap via the real-time iteration,” Interna-
tional Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.

[76] K. M. M. Rathai, M. Alamir, O. Sename, and R. Tang, “A parameterized
NMPC scheme for embedded control of semi-active suspension system,”
IFAC-PapersOnLine, vol. 51, no. 20, pp. 301–306, 2018.

[77] M. Diehl, R. Findeisen, F. Allgöwer, H. G. Bock, and J. P. Schlöder, “Nom-
inal stability of real-time iteration scheme for nonlinear model predictive
control,” IEE Proceedings-Control Theory and Applications, vol. 152, no. 3,
pp. 296–308, 2005.

[78] M. Diehl, R. Findeisen, and F. Allgöwer, “A stabilizing real-time im-
plementation of nonlinear model predictive control,” in Real-Time PDE-
Constrained Optimization, pp. 25–52, SIAM, 2007.

[79] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and optimal
control,” Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36,
2019.

[80] G. Torrisi, D. Frick, T. Robbiani, S. Grammatico, R. S. Smith,
and M. Morari, “FalcOpt: First-order Algorithm via Linearization of
Constraints for OPTimization.” https://github.com/torrisig/FalcOpt,
May 2017.

[81] D. M. de la Peña, T. Alamo, D. R. Ramirez, and E. F. Camacho, “Min–max
model predictive control as a quadratic program,” IET Control Theory &
Applications, vol. 1, no. 1, pp. 328–333, 2007.

[82] T. Alamo, D. M. de la Peña, D. Limon, and E. F. Camacho, “Constrained
min-max predictive control: Modifications of the objective function lead-
ing to polynomial complexity,” IEEE Transactions on Automatic Control,
vol. 50, no. 5, pp. 710–714, 2005.

[83] D. M. de la Peña, D. R. Ramirez, E. F. Camacho, and T. Alamo, “Applica-
tion of an explicit min-max MPC to a scaled laboratory process,” Control
Engineering Practice, vol. 13, no. 12, pp. 1463–1471, 2005.

https://github.com/torrisig/FalcOpt

170 Bibliography

[84] A. Bemporad, “Explicit model predictive control,” in Encyclopedia of Sys-
tems and Control (J. Baillieul and T. Samad, eds.), pp. 1–7, London, UK:
Springer, 2019.

[85] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-
parametric quadratic programming and explicit MPC solutions,” Automat-
ica, vol. 39, no. 3, pp. 489–497, 2003.

[86] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[87] S. Summers, C. N. Jones, J. Lygeros, and M. Morari, “A multiresolution
approximation method for fast explicit model predictive control,” IEEE
Transactions on Automatic Control, vol. 56, no. 11, pp. 2530–2541, 2011.

[88] G. Valencia-Palomo and J. Rossiter, “Efficient suboptimal parametric solu-
tions to predictive control for plc applications,” Control Engineering Prac-
tice, vol. 19, no. 7, pp. 732–743, 2011.

[89] G. Valencia-Palomo and J. Rossiter, “Novel programmable logic controller
implementation of a predictive controller based on Laguerre functions and
multiparametric solutions,” IET control theory & applications, vol. 6, no. 8,
pp. 1003–1014, 2012.

[90] J. Velagić and B. Šabić, “Design, implementation and experimental vali-
dation of explicit MPC in programmable logic controller,” in 2014 IEEE
23rd International Symposium on Industrial Electronics (ISIE), pp. 93–98,
IEEE, 2014.

[91] A. Raha, A. Chakrabarty, V. Raghunathan, and G. T. Buzzard, “Embed-
ding approximate nonlinear model predictive control at ultrahigh speed and
extremely low power,” IEEE Transactions on Control Systems Technology,
2019.

[92] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp. 1–
27, 2012.

[93] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES: A
parametric active-set algorithm for quadratic programming,” Mathematical
Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

[94] H. Ferreau, A. Potschka, and C. Kirches, “qpOASES: A parametric active-
set algorithm for quadratic programming.” https://github.com/coin-or/

qpOASES, 2014.

https://github.com/coin-or/qpOASES
https://github.com/coin-or/qpOASES

Bibliography 171

[95] G. Cimini, A. Bemporad, and D. Bernardini, “ODYS QP Solver.” ODYS
S.r.l. (https://odys.it/qp), Sept. 2017.

[96] F. Ullmann, “FiOrdOs: A Matlab toolbox for C-code generation for first
order methods,” MS thesis, 2011.

[97] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones,
“Efficient interior point methods for multistage problems arising in receding
horizon control,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), pp. 668–674, IEEE, 2012.

[98] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming
method for dynamic optimization problems,” Mathematical Programming
Computation, vol. 7, no. 3, pp. 289–329, 2015.

[99] B. Huyck, L. Callebaut, F. Logist, H. J. Ferreau, M. Diehl, J. De Bra-
banter, J. Van Impe, and B. De Moor, “Implementation and experimental
validation of classic MPC on programmable logic controllers,” in 2012 20th
Mediterranean Conference on Control & Automation (MED), pp. 679–684,
IEEE, 2012.

[100] D. K. M. Kufoalor, B. Binder, H. J. Ferreau, L. Imsland, T. A. Johansen,
and M. Diehl, “Automatic deployment of industrial embedded model predic-
tive control using qpOASES,” in 2015 European Control Conference (ECC),
pp. 2601–2608, IEEE, 2015.

[101] D. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari, and G. O.
Eikrem, “Embedded model predictive control on a PLC using a primal-dual
first-order method for a subsea separation process,” in 22nd Mediterranean
Conference on Control and Automation, pp. 368–373, IEEE, 2014.

[102] B. Binder, D. K. M. Kufoalor, and T. A. Johansen, “Scalability of QP solvers
for embedded model predictive control applied to a subsea petroleum pro-
duction system,” in 2015 IEEE Conference on Control Applications (CCA),
pp. 1173–1178, IEEE, 2015.

[103] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in MAT-
LAB,” in In Proceedings of the CACSD Conference, (Taipei, Taiwan), 2004.

[104] P. Zometa, M. Kögel, and R. Findeisen, “µAO-MPC: a free code generation
tool for embedded real-time linear model predictive control,” in American
Control Conference (ACC), 2013, pp. 5320–5325, IEEE, 2013.

[105] R. Quirynen and S. Di Cairano, “PRESAS: Block-structured precondition-
ing of iterative solvers within a primal active-set method for fast model pre-
dictive control,” Optimal Control Applications and Methods, vol. 41, no. 6,
pp. 2282–2307, 2020.

https://odys.it/qp

172 Bibliography

[106] G. Frison, H. H. B. Sørensen, B. Dammann, and J. B. Jørgensen, “High-
performance small-scale solvers for linear model predictive control,” in 2014
European Control Conference (ECC), pp. 128–133, IEEE, 2014.

[107] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic pro-
gramming framework for model predictive control,” arXiv preprint
arXiv:2003.02547, 2020.

[108] M. Kögel and R. Findeisen, “Fast predictive control of linear systems com-
bining Nesterov’s gradient method and the method of multipliers,” in 2011
50th IEEE Conference on Decision and Control and European Control Con-
ference, pp. 501–506, IEEE, 2011.

[109] I. Necoara and D. Clipici, “Efficient parallel coordinate descent algorithm
for convex optimization problems with separable constraints: Application to
distributed MPC,” Journal of Process Control, vol. 23, no. 3, pp. 243–253,
2013.

[110] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection al-
gorithm for embedded linear model predictive control,” IEEE Transactions
on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[111] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C. Kerrigan,
and M. Morari, “Embedded online optimization for model predictive control
at megahertz rates,” IEEE Transactions on Automatic Control, vol. 59,
no. 12, pp. 3238–3251, 2014.

[112] M. Pereira, D. Limon, D. M. de la Peña, and T. Alamo, “MPC implemen-
tation in a PLC based on Nesterov’s fast gradient method,” in 2015 23rd
Mediterranean Conference on Control and Automation (MED), pp. 371–376,
IEEE, 2015.

[113] H. A. Shukla, B. Khusainov, E. C. Kerrigan, and C. N. Jones, “Software and
hardware code generation for predictive control using splitting methods,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 14386–14391, 2017.

[114] G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the infinite-horizon
constrained LQR problem using accelerated dual proximal methods,” IEEE
Transactions on Automatic Control, vol. 62, no. 4, pp. 1752–1767, 2016.

[115] J. R. Sabo and A. A. Adegbege, “A primal-dual architecture for embedded
implementation of linear model predictive control,” in 2018 IEEE Confer-
ence on Decision and Control (CDC), pp. 1827–1832, IEEE, 2018.

[116] S. Lucia, D. Navarro, Ó. Lućıa, P. Zometa, and R. Findeisen, “Optimized
FPGA implementation of model predictive control for embedded systems
using high-level synthesis tool,” IEEE transactions on industrial informat-
ics, vol. 14, no. 1, pp. 137–145, 2018.

Bibliography 173

[117] N. Saraf and A. Bemporad, “A bounded-variable least-squares solver based
on stable QR updates,” IEEE Transactions on Automatic Control, vol. 65,
no. 3, pp. 1242–1247, 2019.

[118] F. Rey, P. Hokayem, and J. Lygeros, “ADMM for exploiting structure in
MPC problems,” IEEE Transactions on Automatic Control, 2020.

[119] C. Danielson, “An alternating direction method of multipliers algorithm
for symmetric model predictive control,” Optimal Control Applications and
Methods, vol. 42, no. 1, pp. 236–260, 2021.

[120] H. J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Domahidi,
J. L. Jerez, G. Stathopoulos, and C. N. Jones, “Embedded optimization
methods for industrial automatic control,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 13194–13209, 2017.

[121] T. A. Johansen, “Toward dependable embedded model predictive control,”
IEEE Systems Journal, vol. 11, no. 2, pp. 1208–1219, 2014.

[122] D. Kouzoupis, A. Zanelli, H. Peyrl, and H. J. Ferreau, “Towards proper
assessment of QP algorithms for embedded model predictive control,” in
2015 European Control Conference (ECC), pp. 2609–2616, IEEE, 2015.

[123] I. McInerney, G. A. Constantinides, and E. C. Kerrigan, “A survey of
the implementation of linear model predictive control on FPGAs,” IFAC-
PapersOnLine, vol. 51, no. 20, pp. 381–387, 2018.

[124] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for
convex minimization and applications,” Operations Research Letters, vol. 42,
no. 1, pp. 1–6, 2014.

[125] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[126] D. Limon, T. Alamo, F. Salas, and E. F. Camacho, “On the stability of
constrained MPC without terminal constraint,” IEEE transactions on au-
tomatic control, vol. 51, no. 5, pp. 832–836, 2006.

[127] E. C. Kerrigan, Robust constraint satisfaction: Invariant sets and predictive
control. PhD thesis, University of Cambridge, 2001.

[128] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based
MPC for tracking of constrained linear systems with additive disturbances,”
Journal of Process Control, vol. 20, no. 3, pp. 248–260, 2010.

[129] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive con-
trol of constrained linear systems with bounded disturbances,” Automatica,
vol. 41, no. 2, pp. 219–224, 2005.

174 Bibliography

[130] M. Fiacchini, T. Alamo, and E. F. Camacho, “On the computation of convex
robust control invariant sets for nonlinear systems,” Automatica, vol. 46,
no. 8, pp. 1334–1338, 2010.

[131] Z. Wan and M. V. Kothare, “An efficient off-line formulation of robust model
predictive control using linear matrix inequalities,” Automatica, vol. 39,
no. 5, pp. 837–846, 2003.

[132] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix in-
equalities in system and control theory. SIAM, 1994.

[133] K. Huang and N. D. Sidiropoulos, “Consensus-ADMM for general quadrat-
ically constrained quadratic programming,” IEEE Transactions on Signal
Processing, vol. 64, no. 20, pp. 5297–5310, 2016.

[134] G. Torrisi, S. Grammatico, R. S. Smith, and M. Morari, “A projected gradi-
ent and constraint linearization method for nonlinear model predictive con-
trol,” SIAM Journal on Control and Optimization, vol. 56, no. 3, pp. 1968–
1999, 2018.

[135] Y.-H. Dai, “Fast algorithms for projection on an ellipsoid,” SIAM Journal
on Optimization, vol. 16, no. 4, pp. 986–1006, 2006.

[136] W.-H. Chen, D. Ballance, and J. O’Reilly, “Optimisation of attraction do-
mains of nonlinear MPC via LMI methods,” in Proceedings of the 2001
American Control Conference.(Cat. No. 01CH37148), vol. 4, pp. 3067–3072,
IEEE, 2001.

[137] S. Tarbouriech, G. Garcia, J. M. G. da Silva Jr, and I. Queinnec, Stabil-
ity and stabilization of linear systems with saturating actuators. Springer
Science & Business Media, 2011.

[138] A. Ferramosca, D. Limon, I. Alvarado, T. Alamo, and E. Camacho, “MPC
for tracking with optimal closed-loop performance,” Automatica, vol. 45,
no. 8, pp. 1975–1978, 2009.

[139] D. Limon, I. Alvarado, T. Alamo, and E. F. Camacho, “MPC for tracking
piecewise constant references for constrained linear systems,” Automatica,
vol. 44, no. 9, pp. 2382–2387, 2008.

[140] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd,
“OSQP: An operator splitting solver for quadratic programs,” arXiv
preprint:1711.08013v4, 2020.

[141] P. D. Christofides, J. Liu, and D. M. de la Peña, Networked and dis-
tributed predictive control: Methods and nonlinear process network appli-
cations. Springer Science & Business Media, 2011.

Bibliography 175

[142] Y. Wang, M. Sun, Z. Wang, Z. Liu, and Z. Chen, “A novel disturbance-
observer based friction compensation scheme for ball and plate system,”
ISA transactions, vol. 53, no. 2, pp. 671–678, 2014.

[143] M. Kögel and R. Findeisen, “A fast gradient method for embedded linear
predictive control,” IFAC Proceedings Volumes, vol. 44, no. 1, pp. 1362–
1367, 2011.

[144] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3-a MATLAB software
package for semidefinite programming,” Optimization methods and software,
vol. 11, no. 1-4, pp. 545–581, 1999.

[145] S. Paternain, M. Morari, and A. Ribeiro, “Real-time model predictive con-
trol based on prediction-correction algorithms,” in 2019 IEEE 58th Confer-
ence on Decision and Control (CDC), pp. 5285–5291, IEEE, 2019.

[146] A. Nurkanović, A. Zanelli, S. Albrecht, and M. Diehl, “The advanced step
real time iteration for NMPC,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 5298–5305, IEEE, 2019.

[147] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in Proc. of the European Control Conference, (Zürich, Switzer-
land), pp. 502–510, July 17–19 2013. http://control.ee.ethz.ch/~mpt.

[148] M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model pre-
dictive control with robust stability guarantees,” IEEE Transactions on Au-
tomatic Control, vol. 59, no. 5, pp. 1190–1202, 2014.

[149] D. Limon, M. Pereira, D. M. de la Peña, T. Alamo, C. N. Jones, and M. N.
Zeilinger, “MPC for tracking periodic references,” IEEE Transactions on
Automatic Control, vol. 61, no. 4, pp. 1123–1128, 2016.

[150] J. Köhler, M. A. Müller, and F. Allgöwer, “MPC for nonlinear periodic
tracking using reference generic offline computations,” IFAC-PapersOnLine,
vol. 51, no. 20, pp. 556–561, 2018.

[151] T. J. Broomhead, C. Manzie, R. C. Shekhar, and P. Hield, “Robust periodic
economic MPC for linear systems,” Automatica, vol. 60, pp. 30–37, 2015.

[152] M. Garstka, M. Cannon, and P. Goulart, “COSMO: A conic operator split-
ting method for large convex problems,” in European Control Conference,
pp. 1951–1956, 2019.

[153] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for embed-
ded systems,” in 2013 European Control Conference (ECC), pp. 3071–3076,
IEEE, 2013.

http://control.ee.ethz.ch/~mpt

176 Bibliography

[154] D. Limon, A. Ferramosca, I. Alvarado, and T. Alamo, “Nonlinear MPC
for tracking piece-wise constant reference signals,” IEEE Transactions on
Automatic Control, vol. 63, no. 11, pp. 3735–3750, 2018.

[155] C. E. Shannon, “Communication in the presence of noise,” Proceedings of
the IRE, vol. 37, no. 1, pp. 10–21, 1949.

List of Algorithms

1 Proximal gradient method . 15
2 Alternating direction method of multipliers algorithm 16
3 Extended ADMM . 18
4 FISTA . 19
5 MFISTA . 23

6 General restart procedure for AFOMs. 27
7 Restart FISTA based on objective function values 36
8 Gradient Based Restart FISTA . 42
9 Delayed exit condition on A . 49
10 Restart scheme for AFOMs based on Ad 52

11 Sparse solver for Wz = w under Assumtion 5.1 79
12 Solver for equality-constrained QP 81
13 Solver for box-constrained QP . 82
14 FISTA for solving QP problem (5.5) 86
15 ADMM for solving QP problem (5.12) 87
16 Sparse FISTA solver for standard MPC formulations 92
17 Sparse ADMM solver for standard MPC formulations 93
18 Sparse ADMM-based solver for (5.19) 100
19 Extended ADMM for MPCT . 107

177

178 List of Algorithms

Index

K∞-class function, vii

accelerated FOM (AFOM), 10, 18,
25, 26

adaptive restart scheme, 30
admissible invariant set, v, 73, 94
admissible steady state, 70
ADMM, 16, 87
affine hull, v
artificial harmonic reference, 138
artificial reference, 102, 138
augmented Lagrangian, 16

base frequency, 138
bounded set, v

Cauchy-Schwarz inequality, viii
chemical plant system, 108
closed function, vii
closed set, v
compact set, v
composite gradient mapping, 12
concave function, vii
controllability index, 148
convex function, vi
convex set, v
cost function, 72
cost function matrix, 89

descent lemma, vii, 11
domain of a function, vi
domain of attraction, 72
dual function, 83
dual norm, iv

dual optimal solution, 83
dual optimal value, 83
dual problem, 83

ellipsoid, v, 94
embedded system, 69
engineering units, 71
epigraph, vi
explicit MPC, 73
extended ADMM (EADMM), 17,

103
extended real-valued, vi

feasibility region, 72
first order method (FOM), 9
FISTA, 18, 83
fixed-rate restart scheme, 28

gradient alignment restart scheme,
31

gradient descent, 9

Hessian, 83
HMPC, 138

incremental units, 71
indicator function, viii
inner product, iii
interior, v
iteration complexity, 27

Jensen’s inequality, viii

linear convergence, 28
Lipschitz constant, vi

179

180 Index

Lipschitz continuity, vi
Lipschitz function, vii
LMI, 95, 100

MFISTA, 23
MPC, 71
MPCT, 102

objective function value restart
scheme, 30

open set, v
operating point, 71
optimal artificial harmonic

reference, 147
optimal set, 11, 15

Parallelogram law, viii
PLC, 69
prediction horizon, 72
prediction model, 72
primal optimal solution, 83
primal optimal value, 83
projection, viii
proper function, vi
proximal gradient method, 10, 15
proximal operator, viii, 10

QCQP, 95

QP, 25, 82

quadratic functional growth, 29, 34,
47

real valued, vi

relative interior, v

restart condition, 26

restart scheme, 26

scaling matrices, 71

second order cone programming, 139

smooth function, vii

stage cost, 72

strictly admissible, 70

strictly convex, vi

strongly convex, vii

subdifferential, vii

subgradient, vii

terminal constraint, 72

terminal control law, 73

terminal cost, 72

terminal set, 72

Triangle inequality, viii

	Contents
	Acknowledgements
	Notation, conventions and definitions
	Introduction
	Motivation and objectives
	Outline of the dissertation
	Publications

	I Restart schemes for accelerated first order methods
	Preliminaries: Accelerated first order methods
	First order methods
	Proximal gradient method
	Alternating direction method of multipliers
	The extended alternating direction method of multipliers

	Accelerated first order methods
	Fast proximal gradient method (FISTA)
	A monotone variant of FISTA

	Conclusions

	Restart schemes for accelerated first order methods
	A brief review of the literature
	Fixed-rate restart schemes
	Adaptive restart schemes

	Implementable restart schemes with linear convergence
	A restart scheme for FISTA
	A gradient based restart scheme for FISTA
	Restart scheme for accelerated first order methods

	Numerical results
	Application to Lasso problems
	Application to QP problems

	Conclusions and future lines of work

	II Implementation of MPC in embedded systems
	Preliminaries
	Problem formulation
	A brief introduction to model predictive control
	A brief state of the art

	Sparse solvers for model predictive control
	Various structure-exploiting solvers
	Solving systems of equations with banded decomposition
	Solving equality-constrained QPs with banded structure
	Solving box-constrained separable QPs

	Solving QPs with FISTA through duality
	QP problem's dual formulation
	Solving the QP's dual problem with FISTA

	Solving QPs with ADMM
	Simple standard MPC formulations
	FISTA-based solver for standard MPC
	ADMM-based solver for standard MPC

	MPC with terminal quadratic constraint
	ADMM solver for MPC with terminal quadratic constraint
	Computation of admissible ellipsoidal invariant sets

	MPC for tracking
	Recasting the MPCT formulation for EADMM
	EADMM-based solver for the MPCT formulation

	Test Benches
	Chemical plant: double reactor and separator
	Ball and plate
	Oscillating masses

	Numerical results
	Comparison between the proposed ADMM-based solvers
	Comparison between the ADMM- and FISTA-based solvers
	Standard MPC subject to terminal equality constraint
	Standard MPC without terminal constraint
	MPC subject to terminal quadratic constraint
	MPC for tracking
	Restart methods applied to the FISTA-based solvers

	Conclusions and future lines of work

	Harmonic based model predictive control for tracking
	The harmonic MPC formulation
	Recursive feasibility of the HMPC formulation
	Asymptotic stability of the HMPC formulation
	Selection of the base frequency
	Advantages of the HMPC formulation
	Performance advantages of the HMPC formulation
	Domain of attraction

	Conclusions and future lines of work

	Bibliography
	List of Algorithms
	Index

