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Abstract: The change from face-to-face work to teleworking caused by the pandemic has induced
multiple workers to spend more time than usual in front of a computer; in addition, the sudden
installation of workstations in homes means that not all of them meet the necessary characteristics for
the worker to be able to position himself/herself comfortably with the correct posture in front of their
computer. Furthermore, from the point of view of the medical personnel in charge of occupational
risk prevention, an automated tool able to quantify the degree of incorrectness of a postural habit in
a worker is needed. For this purpose, in this work, a system based on the postural detection of the
worker is designed, implemented and tested, using a specialized hardware system that processes
video in real time through convolutional neural networks. This system is capable of detecting the
posture of the neck, shoulders and arms, providing recommendations to the worker in order to
prevent possible health problems, due to poor posture. The results of the proposed system show
that this video processing can be carried out in real time (up to 25 processed frames/sec) with a low
power consumption (less than 10 watts) using specialized hardware, obtaining an accuracy of over
80% in terms of the pattern detected.

Keywords: convolutional neural network; skeleton; posture; telework; e-health

1. Introduction

Year 2020 became a turning point worldwide, forcing the entire population to make
changes in their daily habits due to the pandemic, in which we are still immersed. Among
these changes, those that concern employment have a special repercussion: many jobs were
lost in the last year, which was a tragedy for the world economy. However, even among
the population that kept their jobs, there have been substantial changes in the way they
work, leading to a notable increase in teleworking [1].

According to the Eurofund study performed in July 2020 [2], 33.7% of EU employees
work at home full-time, while an additional 14.2% of EU employees work at home part-
time. In 2018, less than 5% of EU employees were full-time teleworkers (and less than 10%
were part-time teleworkers) [3]; therefore, the impact of the pandemic led to an increase of
more than 650% among full-time teleworkers. This study also reveals that almost half of
these employees have never teleworked before.

On the other hand, working with a computer for many hours a day can cause injuries
mainly to the spine, but also to the shoulders, neck, arms and/or wrists; those injuries
are usually caused by incorrect postures in front of the computer. These problems are
documented in multiple studies [4–7] and reveal the need to maintain good postural
hygiene to avoid these injuries. Moreover, the probability of adopting wrong postures
increases when most of the latest teleworkers have never worked this way before.
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We can define the posture as the position that each person adopts when performing
his/her activities, when walking, sitting, standing or sleeping. Regarding the term postural
hygiene, it can be defined as the set of rules that aims to maintain the correct position
of the body, either in stillness or in movement, and thus avoiding possible injuries. A
proper posture maintains symmetrical body alignment around the head–spine–pelvis
axis with the total weight distributed equitably, while a bad posture does not respect this
alignment. Among the factors that affect posture, we can enumerate some of them: genetic
and anatomical factors, mood, tension, stress, sport, overweight, sedentary lifestyle, bad
nutrition, physiological state of the musculoskeletal system, excessive muscle activity and,
last but not least, the objects that are used or carried on a day-to-day basis (bed, sofa, bags,
work chair, etc.).

So, according to the previous explanations, the continuous use of the work chair in
front of a computer can provoke asymmetries in the body alignment that, finally, may
lead to spinal injuries such as hyperlordosis (very marked curvature of the spine in the
lower back), hyperkyphosis (increase in the anterior curvature of the spine vertebral and
dorsal), scoliosis (structural malformation of the spine) or rectifications (reduction of
normal curvature of the spine) [8]. That is why recommendations on postural hygiene
when working in a chair are important to take into account [9].

To verify the correct spine posture while the user is sitting on a chair, the parameters
that are usually used measure the angle at which the spine, shoulders and neck are
positioned and moved. In this way, it is useful to measure certain parameters, such as
the lateral back bend, back flexion/extension, shoulder adduction/abduction, lateral neck
bend, and neck flexion/extension, among others [10]. The recommended angles for those
parameters used to measure the correct postures have been detailed in ergonomic and
biomechanic studies [11,12], obtaining four ranges of motion zones (0 to 3), according to
the strain put on the joints. This range study is summarized in Table 1.

Table 1. Range (in degrees) of motion zones (0 to 3) for some of the parameters used to quantify the
body posture.

Parameter Range 0 Range 1 Range 2 Range 3

Back—Lateral bend 0–5 6–10 11–20 21+
Back—Flexion 0–10 11–25 26–45 46+

Back—Extension 0–5 6–10 11–20 21+
Shoulder—Alignment 0–5 6–10 11–20 21+

Shoulder—Arms adduction 0–5 6–12 13–24 25+
Shoulder—Arms abduction 0–13 14–34 35–67 68+

Neck—Lateral bend 0–5 6–12 13–24 25+
Neck—Flexion 0–9 10–22 23–45 46+

Neck—Extension 0–6 7–15 16–30 31+

As can be observed in Table 1, each parameter is divided into four ranges, according
to the danger to the joints when maintaining those angles over a long period of time.
Movements inside Zone 0 have a very low chance to damage the joints; these chances
increase for Zone 1 (low), Zone 2 (medium) and Zone 3 (high). These ergonomic studies
offer the possibility of developing recommendation systems in order to help the user
to correct his/her posture; in fact, there are several works that obtained user’s posture
information by using a wide variety of sensors and systems [13–18]. However, only a few
of them indicated recommendations to the user and, moreover, the information obtained
was processed (or studied by the specialist) offline and do not provide any information to
the user in real time [19–22].

On the other hand, to correct incorrect posture habits, the current procedures include
an assessment by the specialist and an action plan based on physical exercises and adap-
tation of the workspace [23]. Although this process is effective, on many occasions, the



Sensors 2021, 21, 5236 3 of 16

specialist is consulted long after, when there is already some damage to the neck, shoulders
or spine.

Because of that, the early detection of bad posture before they cause damage to the
user is crucial. In this area, the occupational risk prevention services of most companies
usually conduct courses for employees to adapt their posture habits in front of the computer.
However, with the 2020 epidemiological crisis, there was a massive migration of workers
from the company buildings to their homes to telework, so the control of the employees’
workspace and posture habits was completely lost. This problem makes it more important
to devise mechanisms capable of automatically detecting employees’ posture and offering
recommendations to avoid the health problems indicated above.

Regarding the tools and mechanisms used so far to develop recommendation systems
and to prevent anomalies and/or physical problems, the use of Machine Learning (ML)
and Deep Learning (DL) techniques has become very important. In recent years, these
techniques can be found in multiple works related to the health field, both for medical
image analysis (such as [24–26]) and to detect patterns through physiological sensors (such
as [27–29]). Moreover, some of them are related to detecting the correct posture in certain
circumstances to avoid joint pain and severe bone diseases (such as [30–32]).

In addition, there are some works, developed in recent years, that are focused on the
detection of the user’s skeleton through video processing [33,34]. These works usually use
DL-based processing techniques with convolutional neural networks (CNN) to estimate
the situation of the user’s various joints. With these previous works, it is feasible to design
a skeleton detection and tracking system using CNN and, with this information, to design
a recommendation system, aiming for the proper posture of the worker in front of the
computer. However, video processing using CNNs requires significant computational
resources to provide a real-time response. It would be much more comfortable and trans-
parent for the worker if the system was integrated in the monitor (both the vision sensor
and the processing system).

Thus, in this work, we aim to design, develop and test a skeletal detection system using
CNNs that subsequently estimates the user’s posture and makes postural recommendations
for the neck, shoulders and arms. This system is tested in real time, using various embedded
systems, to measure both its effectiveness in detection and its response in real time as well
as its energy consumption.

The rest of the manuscript is divided as follows: first, in the Materials and Methods
Section, the characteristics of the posture detection system, the skeleton processing proce-
dure and the system evaluation mechanism are presented. Next, the results after testing
the system and evaluating the different hardware platforms are detailed and explained in
the Results and Discussion Section. Finally, conclusions are presented.

2. Materials and Methods

The system is prepared to be placed on the computer screen or on a holder on top of
it. The image acquisition device, a webcam or other type of camera, has to be pointing
at the person to be able to capture them from the head to arms. This device is connected
to an embedded system where the video is processed in two steps: first, the user’s joints’
positions are estimated, using a neural network classifier, and then the user’s whole posture
is processed and validated in order to provide recommendations attending to some of the
parameters described in Table 1. In Figure 1, a global system overview is presented.

The most computationally expensive task in the proposed system is the execution of
the neural network that estimates the user’s joints. This type of algorithm needs sufficiently
powerful hardware to run smoothly. Therefore, in this work, several embedded systems
are evaluated in terms of execution time, power consumption and efficiency. The neural
network used in this work requires supervised training, which means that it needs a
training phase in which its internal parameters are adjusted to learn a specific task. This
process is performed outside the embedded system due to its high computational workload,
but the real-time classification is evaluated in the embedded system.
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Figure 1. Application environment and global system overview.

Summarizing, the full system has two main blocks: the first one is the skeleton
estimator used to obtain the joints’ points; the second one is the recommendation system
used to calculate the joints’ angles, classify them inside the four-range space and notify
the position to the user. The first subsystem (skeleton estimator) is based on a pre-trained
model that is embedded in a specialized hardware. So the information used to train this
subsystem is based on a third-part dataset (COCO dataset) that contains 66,808 images
with, at least, one person each. This dataset contains people of both genders, and all kinds
of races and ages. The second subsystem (recommendation system) uses the information
obtained from the output of the skeleton estimation subsystem (points’ list about the
location of the joints) to calculate the different angles of the features used in this work and
gives a notification to the user placed in front of the computer. The collected data for this
work are used to test this second subsystem.

Next, the different parts of the processing system are described in depth. First, the
embedded system that performs the posture detection process is detailed; secondly, the
skeleton processing mechanism is presented; and, finally, the evaluation metrics used to
test the system are shown.

2.1. Posture Detection System

To develop the posture detection system, a real-time pose estimation software called
TRT_Pose was used [35]. This software is designed to run on NVIDIA devices, not only in
desktop GPUs but also in embedded devices, that is, the NVIDIA Jetson family. So, this
software is configured, executed and tested on different NVIDIA hardware devices that
belong to that family. The main purpose of this evaluation is to obtain the performance
metrics of those hardware boards in order to determine the best platform for this work.
It is important to mention that, to obtain those evaluation metrics, the pose detection
network was trained offline with the MSCOCO dataset [36], specifically on the “Keypoints”
task (https://cocodataset.org/keypoints-2020 (last accessed on 20 June 21)). This public
dataset contains 66,808 images with, at least, one person each. It contains people of both
genders, and all kinds of races and ages; it is important to mention that the people tagged
in this dataset are dressed in all kinds of attire (not just tight one), so bulkier garments are
contemplated too, and the clothing factor does not affect the trained systems.

In Table 2, the hardware platforms used in this research are shown, detailing their
computational performance, power consumption and other hardware characteristics and

https://cocodataset.org/keypoints-2020
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capacities. In this table, we can see the architectural differences of each device: from the
most powerful one (NVIDIA GeForce GTX 1660 Super) to the less powerful (Jetson Nano).
It is important to mention that the graphical board “NVIDIA GeForce GTX 1660 Super”
is the only one that needs a desktop computer to be used (that is why columns “CPU”
and “AI Performance” are not filled in Table 2); the rest of the hardware platforms are
completely autonomous and do not need any other additional device to run. The main
objective of using a classical GPU is to serve as a reference for the other devices.

As can be observed, the hardware devices are ordered from smallest (top) to largest
(bottom) computing capacity, according to the GPU column. It is important to remark that,
except for the first hardware device (Jetson Nano), the rest of them have more internal
memory than the classic graphics card; this circumstance is due to the fact that, in a desktop
computer, if the graphics card requires more memory, it usually uses the computer’s
memory. However, for this work, this characteristic does not affect the boards’ performance.

Table 2. NVIDIA Jetson devices comparison. Data obtained from https://developer.nvidia.com/ (last accessed on
28 May 2021).

Device GPU CPU Memory Consumption
(Min/Max)

AI Performance
(TFLOPS)

Jetson Nano 128-core Maxwell
GPU 921 MHz

Quad-Core
ARM Cortex-A57

1.43 GHz

4 GB 64-bit LPDDR4
Dual Channel

1.6 GHz (25.6 GB/s)
5 W/10 W 0.472

Jetson TX2 256-core Pascal
GPU 1.36 GHz

Dual-Core Denver2
64-Bit CPU and

Quad-Core ARM
Cortex-A57 2 GHz

8 GB 128-bit LPDDR4
1.866 GHz (59.7 GB/s) 7.5 W/15 W 1.33

Jetson Xavier NX
384-core Volta
GPU 48 Tensor
Cores 1.1 GHz

6-core Carmel
ARMv8.2 64-bit

CPU 1.9 GHz

8 GB 128-bit LPDDR4 x
1.6 GHz (51.2 GB/s) 10 W/15 W 21

Jetson AGX Xavier
512-core Volta
GPU 64 Tensor
Cores 1.4 GHz

8-core Carmel
Armv8.2 64-bit
CPU 2.3 GHz

32 GB 256-bit LPDDR4 x
2.133 GHz (136.5 GB/s) 10 W/30 W 32

NVIDIA GeForce
GTX 1660 Super

1408-Core Turin
GPU 1.785 GHz N/A 6 GB GDDR6 192-bit

14 Gbps (336 GB/s) 10 W/125 W N/A

Once the hardware devices used for the performance test are presented, the protocol
used for capturing the user’s pose and obtaining the video streams used to test the system
is detailed. As there is no available dataset that contains the information needed to this
work (to the authors’ knowledge) we collected around 80 videoclips from 5 different users
performing working tasks in front of a computer.

To capture the frames from each video stream, a webcam was placed on the computer’s
screen frame, calibrated for each user at the same height as the line of sight. Each user was
sitting on a height-configurable chair in front of the computer (so a full vision of the upper
side of the human body is obtained) and he/she was instructed to compose a few lines in
a text document. As we needed incorrect user’s poses to test our system, each user was
ordered to perform the actions in different ways: first, those actions were performed in
his/her natural pose; second, the user was forced to adopt an incorrect neck pose; third,
the user was forced to adopt an incorrect shoulder balance; and, fourth, the user was forced
to adopt an incorrect arm elevation pose.

The collected dataset was analyzed one by one by selecting several frames from each
video clip to obtain the ground truth about the user pose adopted in each video. So, the
entire dataset was divided into three subsets: neck poses, shoulder poses and arm poses.
Additionally, each subset was labeled from range 0 to range 3, according to the degrees
of variation adopted by the user on each video clip (the thresholds are shown in Table 1),

https://developer.nvidia.com/
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which was analyzed offline. Some captures about the system setup when capturing the
dataset’s video clips can be observed in Figure 2.

Figure 2. Setup with the webcam on the screen monitor.

The final classification results of the system corresponds to the percentage of coinci-
dence of the ranges estimated by the system in real time with respect to the established
labels. Next, the skeleton processing stage, which allows to obtain the user’s joint points in
real time, is described.

2.2. Skeleton Processing

As mentioned in the previous section, for the real-time skeleton detection in this work,
we used the software called TRT_Pose. Specifically, we used a modified version of the
original repository, which is called TRT_Pose_Demo [37].

The processing framework is based on a CNN model implemented in Pytorch [38],
whose name is ResNet [39]. More concretely, we used a modified version of that model
called ResNet18 [40,41]. The benefits of using a “ResNet” arise with an idea similar to long
short-term memory (LSTM) networks (recurrent neural networks) in which the temporal
factor is taken into account to perform the classification. “ResNet” makes use of internal
connections between layers that are not contiguous to communicate information from
later (or earlier) moments in time with a specific moment. In this way, to perform the
classification, not only can the information of the current frame be taken into account, but
also the information of subsequent and/or previous frames (using connections similar to
the bypasses that can be seen in the internal pipeline of a processor). About the variant
ResNet18, the end number indicates the number of layers of the model.

The final result of the deep learning model is a set of points related to the user joints
detected, being able to detect more than one user in each frame. For this model, an user
skeleton is defined by 18 points (this number is not related to the ResNet variant, as it is
just a coincidence); the location of these points determines the person’s adopted pose. A
global vision of the 18 points that this model detects, and their locations placed over the
original image, is shown in Figure 3a.

Figure 3b shows an example of the real-time execution of the skeleton estimation
system. As can be seen in both figures, the shape or pose of a person is delimited by the 18
points indicated above connected to each other in a specific way.

Once the skeleton estimation model task is defined, it should be noted that, although
the network is trained and defined in PyTorch, a series of optimizations are performed
prior to the execution of the model in real-time hardware (pre-processing step) for the new
NVIDIA platforms that have tensor cores. So, the network previously passed through
an optimization process that converts it for its execution on those specialized hardware.
With these optimizations, besides allowing to be executed in that hardware, the data
representation model is changed from a 32-bit Floating Point to a 16-bit Floating Point
number representation.
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Those optimizations are included because it is intended that the execution in the
different embedded systems is as efficient as possible, always looking for the lowest
possible consumption.

(a) (b)

Figure 3. Output of the first subsystem: (a) structure and location of the skeleton’s keypoints that
represent the joints; (b) execution example.

The performed pre-processing consists of converting the model trained in PyTorch
format to a format compatible with NVIDIA’s Tensor RT [42] (TRT) library, which is designed
with the aim of accelerating the neural network estimation process. For this purpose, a tool
called Torch2TRT [43] was used, which precisely converts the trained PyTorch model into a
version compatible with the Tensor RT libraries. The number precision reduction from 32-
bit floating point to half precision (Float16) during optimization reduces the computation
time as well as energy consumption, at the cost of reducing the final accuracy of the model
by less than 2%, according to previous studies [44]. This is a technique widely used when
tuning models for execution in embedded and/or edge-computing systems since, usually,
the loss of accuracy is minimal compared to the gain in performance.

Finally, in the last subsection, the processing and metrics performed to evaluate the
implemented system are detailed.

2.3. System Evaluation

In this section, we detail how our system recognizes a correct posture, how we are
going to evaluate the ground-truth postures collected and the metrics used to evaluate the
performance of the system.

2.3.1. Posture Recognition

Given a posture, there are multiple ways in which we can assess whether or not it is
correct. This ultimately means that there are a lot of different factors that apply, as we can
see in [10] and in Table 1, so evaluating a specific posture is a non-trivial task and can be
solved using different methods and metrics. To keep things simple while at the same time
being able to solve the problems related to the current teleworking needs, we have decided
to analyze three aspects of the posture: the neck lateral bend, the shoulders alignment
and the arms abduction (also related to the shoulders). These parameters can be seen
marked in Figure 4. Each of these parameters has four possible zones in which they can be,
ranging from good posture (healthy) to bad posture (very unhealthy) progressively. The
first zone, denoted as “Range 0” in Table 1, corresponds to the best posture and therefore
the healthiest, while the fourth zone, “Range 3” in the table, corresponds to the worst
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possible posture. With this in mind, we take into account the already mentioned parameters
for each image evaluated and classify them using Table 1’s criteria.

Figure 4. Evaluable parameters from test dataset. Parameters are marked over the CNN output skele-
ton with different colors: neck lateral bend (yellow), shoulder alignment (red) and arms abduction
(cyan).

2.3.2. Posture Evaluation

Once we know how to recognize a good posture, we need to apply it to the postures
collected during the work. For that, we can take advantage of the skeleton processing
system’s output to evaluate the angle of rotation of each evaluable parameter and classify
it as described before. In order to do this, that output needs to consist not only of a video
with the estimated skeleton, but also a collection of data that gives details about which
keypoints are estimated at each step of time. Given this information, we can relate the
timestamp of a specific frame with the timestamp of the data collection described earlier
to obtain the pertinent keypoints and perform the required calculations. This is an offline
procedure performed to manually tag the dataset collected. In this work, the accuracy of
the collected dataset is evaluated, performing a proof of concept of the final system. After
evaluating it, in future works, it will be adapted to a real-time application.

Calculations are performed, taking into account the following: we only have two
points per parameter and we need to calculate the angle of the line expressed by those two
points to classify it inside the mobility range (ranges detailed in Table 1). The points used
for evaluating each parameter are detailed in Table 3.

Table 3. Points used to evaluate each parameter.

Parameter Point 1 (x) Point 2 (y)

Shoulder—Alignment Left Shoulder Right Shoulder
Right Arm adduction Right Shoulder Right Elbow
Left Arm abduction Left Shoulder Left Elbow
Neck—Lateral bend Nose Neck
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These two points form the part of the skeleton that was estimated by the CNN and are
taken from the data collection mentioned before, while the angle calculation is performed
with the atan2 function. This function is evaluated as shown in Equation (1).

atan2(y, x) =



arctan( y
x ) if x > 0

arctan( y
x ) + π if x < 0 and y ≥ 0

arctan( y
x )− π if x < 0 and y < 0

+π
2 if x = 0 and y > 0

−π
2 if x = 0 and y < 0

undefined if x = 0 and y = 0

(1)

2.3.3. Metrics

The main goal of the system is to classify a series of angles extracted from the keypoints
shown in Table 3 estimated by the CNN. So, in order to evaluate the results obtained after
the estimations, we compare the tag stored during the recording process with the results
obtained after obtaining the mobility ranges extracted with the degrees resulting from
Equation (1). Therefore, we may define the accuracy of the system, A, as the ratio between
the correct predicted outputs and the total predicted outputs per zone or class, denoted
by Equation (2). TP and TN mean true positives and true negatives, while FP and FN mean
false positives and false negatives. These parameters compose the output of the system, and
tell us how the system predicted each and every of its inputs, whether they were correct
or not. For each class, the information concerning the classification results is extracted by
looking at that class independently. Another way is to see the global ranking only, but that
provides much less information.

Atotal =
TP + TN
TOTAL

, where : TOTAL = TP + TN + FP + FN (2)

After presenting the implemented system and how it will be evaluated, in the next
section, the results obtained by the pose detection system are detailed.

3. Results and Discussion

In this section, we detail the dataset collected and the performed results of the postural
study, as well as a comparison with other related studies.

3.1. Collected Data

For this work, and after a second data collection process, 12 people have participated
to record the dataset used. A series of recordings were performed for each person, in which
each one held a different posture for each recording, so that we may have a variety of data
to process and classify. Finally, a total amount of 151 correct recordings were made, and a
total of 148 frames were processed (some of them were discarded due to recording errors).

The final dataset contains information about 12 users in their early 20’s to early 50’s,
from both genders and both dominant hands.

The aim of this work is to evaluate the system, which is why random frames were
extracted from the video recordings instead of evaluating the whole videos (this way, the
tag process and the evaluation are more accurate); however, the system can work in real
time, processing frame by frame.

3.2. Results

The system achieved a total accuracy of 84.1%, as can be seen in Table 4. As can be
observed, the accuracy of each parameter is similar, obtaining the worst result (81.4%)
with “Left Arm Abduction” and the best result (87.7%) with “Shoulder Alignment”. It is
important to remark that the dataset includes subjects of both genders, ages from early 20’s
to early 50’s, both dominant hands and different clothes.
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Table 4. Accuracy results for each parameter.

Right Arm Left Arm Neck Shoulder Mean

Accuracy 0.860 0.814 0.816 0.877 0.841

The system’s predictions per class can be visualized in Figure 5, which are the confu-
sion matrices for each class. In them, the proportion of predictions against ground truth
values is displayed, being that the main diagonal of the matrix is the correct predictions
of the system. With these matrices, TP, TN, FP and FN values can be obtained per class,
while also having a compact representation.

It can be observed that the best results, as shown in Table 4, are presented for the
“Shoulder Alignment” parameter (Figure 5-top-right). On the other hand, we can observe
two peculiar cases: one of them in “Left Arm Abduction”, where a range 0 case is classified
as range 2; and the other one in “Shoulder Alignment” parameter, where a range 1 case
is classified as range 3. Apart from those two errors, the rest of the errors occur from one
range to a contiguous one.

Figure 5. Confusion matrices for right arm abduction (top left) left arm abduction (top right) neck
lateral bend (bottom left) and shoulder alignment (bottom right).

Moreover, knowing that the dangerous ranges are 2 and 3, a critical error would
be produced if a dangerous pose (range 2 or 3) is classified as a safe pose (range 0 or 1).
Evaluating only those two classes (critical and safe) for each parameter, the accuracy is
improved. The results obtained after this group can be observed in Table 5.
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Table 5. Accuracy results for each parameter using a 2-class classifier: safe (range 0–1) and dangerous
(range 2–3).

Right Arm Left Arm Neck Shoulder Mean

Accuracy 0.906 0.860 0.938 0.979 0.924

As can be observed in Table 5, the mean accuracy in this case is 92.4%. The worst case
is shown with “Left Arm Abduction”, obtaining a 86% accuracy; the best case is obtained
for “Shoulder Alignment” with a 97.9% accuracy.

The dataset collected is not very large, but there is a great deal of variability among
the participants. For this reason, an exhaustive study of the testing dataset was carried
out, using bootstrap re-sampling. In this case, we have generated 15 random testing
subsets, each one of them taking 50% of the samples from the full dataset. Each of these
15 subsets was evaluated independently, obtaining the classification accuracy for each of
the parameters studied (neck, shoulders, right arm and left arm) and testing the 4-classes
classification (range 0–3) and the 2-classes classification (ranges 0–1 and 2–3). The results
obtained can be seen in Table 6.

Table 6. Bootstrap re-sampling evaluation with 15 random subsets.

4 Classes 2 Classes

Set Neck Shoulder R.Arm L.Arm Neck Shoulder R.Arm L.Arm

1 0.909 0.909 0.917 0.70 1 1 0.917 0.70
2 0.826 0.909 0.857 0.809 0.956 1 0.905 0.857
3 0.818 1 0.809 0.773 0.864 1 0.905 0.864
4 0.955 0.955 0.952 0.857 1 1 0.952 0.857
5 0.864 0.955 0.809 0.857 0.955 1 0.905 0.905
6 0.955 1 0.864 0.727 1 1 0.909 0.818
7 0.864 0.955 0.773 0.773 0.955 1 0.864 0.818
8 0.955 0.909 0.952 0.809 1 1 0.952 0.857
9 0.818 0.955 0.809 0.857 0.955 1 0.905 0.905

10 1 0.909 0.864 0.762 1 1 0.864 0.809
11 0.864 0.955 0.818 0.818 0.955 1 0.909 0.909
12 0.864 0.955 0.809 0.773 1 1 0.857 0.909
13 0.909 1 0.773 0.773 1 1 0.818 0.818
14 0.818 0.955 0.809 0.857 0.955 1 0.857 0.905
15 0.864 1 0.809 0.818 0.955 1 0.905 0.864

MIN 0.818 0.909 0.773 0.70 0.864 1 0.818 0.70
MAX 1 1 0.917 0.857 1 1 0.952 0.909

MEAN 0.885 0.955 0.842 0.797 0.969 1 0.895 0.853
STD 0.049 0.024 0.047 0.041 0.028 0 0.028 0.040

Improve 9.54% 4.76% 6.31% 6.94%

As can be seen in Table 6, the evaluation by re-sampling the dataset confirms some of
the points previously indicated in the overall evaluation. On the one hand, the parameter
for which the worst accuracy is obtained is the left arm, although, in this evaluation,
a greater closeness with the right arm is observed (difference of less than 5%), which
means that the detection of the position of the arms seems to be more complex than the
detection of the remaining parameters. Secondly, it is confirmed that the most accurate
parameter is the shoulders, obtaining a significant difference with respect to the others.
Finally, neck detection is the second parameter in terms of classification perception. In
short, qualitatively, it is similar to the global results but with slightly varying classification
percentages (which depends on the random sample that was classified in each case).

With respect to the standard deviation after the classification of the 15 subsets, it can
be seen that the shoulders are the ones with the lowest deviation, while the remaining
parameters have a similar standard deviation.
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If we consider the second part of Table 6, where results regarding the classification for
the 2-class case are presented instead of the 4-class case, significant improvements can be
observed. However, the relative accuracy remains the same, with the shoulders being the
best ranked parameter, the neck the second-best ranked parameter and, in last position, the
arms (with a slight variation between the right and the left arm, which is the one with the
worst accuracy). As for the standard deviation, they are significantly reduced, except in the
case of the left arm, which maintains practically the same value.

Therefore, with these data, we can assume that the complete dataset has consistent
results and that all the samples follow the same pattern by having a standard deviation in
all cases lower than 5%. Likewise, the fact that the classification with two classes yields
much better results than those obtained with four classes is corroborated.

3.3. Performance Tests

A performance study on the different hardware platforms presented was also con-
ducted in parallel. In it, we measured the consumption and total throughput of every
device while running the CNN, so that we may give at least a recommendation about
which device would be a good fit for setting up a system, such as that presented, taking
into account the already mentioned parameters. The results can be seen in Figures 6–8.

Figure 6. Consumption in watts for each device and test.

To be able to measure such parameters, three tests were designed. In two of them, the
CNN’s input is a real-time camera but one has a frame rate of 30 FPS and the other one has
60 FPS. The third test consists of the classifying of an offline video, which was made using
only one single repeated frame; this way, the memory and other aspects would not be a
bottleneck and so we could obtain a significant reference value of maximum throughput.

As we can see, almost all the devices presented would be a good fit; however, given
the obtained results, a viable recommendation for building a system like the one presented
would be the NX Xavier, as its efficiency is the maximum achieved, with 7 frames processed
per watt consumed in the offline video test and 6 for the 60 FPS camera test.
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Figure 7. Achieved frame rates per device and test.

Figure 8. Ratio frame processed per watt consumed for each device and test.

4. Conclusions

Due to the pandemic situation of year 2020, the number of teleworkers has increased
significantly. Such an amount of hours in front of a computer in a work space not properly
adapted for that workload can lead to postural problems for the employee. That is why a
system like the one proposed in this work is necessary.

After evaluating several hardware platforms and testing the system with multiple
users, the results obtained in this study show that a postural recommendation system
is more than viable, using the resources presented. Results showed a posture detection
accuracy over 80% for the 4-class original problem, and more than 90% for the 2-class
classification system. On the other hand, the hardware platforms tested allows the system
to run in a real-time environment with low power consumption requirements. With these
two points in favor, we can conclude that the system can work completely autonomously
and without the intervention of a computer, providing information in real time.
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Although this work was implemented and tested in a laboratory environment with a
not very extensive dataset, the results are very promising. Moreover, this only reinforces
the fact that there is still quite a lot to gain from automating and detailing the process.
Future research may include real-time video processing with an automatic recommendation
system, a collection of incorrect poses during real work sessions to improve overall postures,
or even changes to the CNN used in order to obtain a more detailed pattern recognition
that would allow for the checking of other parameters, such as the spine, which requires
more than a single straight segment to be evaluated.

The metrics obtained in the results should be taken as further confirmation of the
hypothesis, as the system is able to recognize correctly most of the inputs it is fed. A bigger
study with more people and/or parameters is also interesting, as it would serve as even
more proof that this kind of work is viable.
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