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On the Computability of the Steenrod Squares. 

P E D R O  R E A L  (*) 

SUNTO - In questo lavoro offriamo in modo esplicito le formule di una serie de morfismi 
che controUano la mancanza di commutativit~ del prodotto cup a livello di cocateni, 
supponendo di lavorare con insiemi sempliciali; queste formule si stabliliscono in 
termini di morfismi componenti di una contrazione di Eilenberg-Zilber data. Di con- 
seguenza, nel caso in cui l'insieme sempliciale sia finito in ogni dimensione, otterre- 
mo un algoritmo di calcolo di quadrati di Steenrod. 

ABSTRACT - We give explicitely the formulas of a sequence of morphisms which mea- 
sure the failure of commutativity of the cup product on the cochain level, provided 
that we work with simplicial sets; these formulas are established in terms of the 
component morphisms of a given Eilenberg-Zilber contraction. As a consequence, 
in the case in which the simplicial set is finite in each dimension, we obtain an algo- 
rithm for calculating Steenrod squares. 

1.  - I n t r o d u c t i o n .  

Recently,  m a n y  authors have tr ied to reformulate  several  concepts f rom 
Algebraic Topology in an effective way, achieving methods  to provide algo- 
r i thms computing those concepts ([13], [14], [12], [9]). We are interested here  
in exhibiting an effective solution to the construction and computation of the 
Steenrod squares  operations [16]. 

I t  is well-known that  a classical procedure  to define the Steenrod squares  
is based on the construction of a family of morphisms tha t  measure  the fail- 
ure of commutat iv i ty  of the cup product  on the cochain level [2, sect. 6.2A]. 
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From now on, following [1], this sequence of morphisms will be called higher 
diagonal approximation. In the literature, the existence of this higher diago- 
nal approximation is always guaranteed by the acyclic models method [4]. In 
a semi-simplicial context [8], the technique of acyclic models can be consid- 
ered as an actual algorithmic method (see [11]). In consequence, for each sim- 
plicial set X, we can determine a higher diagonal approximation in this way. 

In this paper, we develop another method to explicitely give the general 
formulas of a higher diagonal approximation, provided that we work with 
simplicial sets. Concretely, these formulas are established in terms of the 
component morphisms of a given Eilenberg-Zilber contraction. Therefore, in 
the case in which the simplicial set X is finite in each dimension, we obtain an 
algorithm for calculating cochains of X by the Steenrod squares. Finally we 
conclude that the problem of the computability of cochains by these cohomol- 
ogy operations exhibit in general an exponential complexity. 

In view of the plentiful literature existing about methods for defining 
Steenrod operations (see [6] for obtaining a non-exhaustive list), a remark 
seems us necessary. Our elementary presentation can be useful for a major 
understanding of the underlying structures which allow us to determine the 
homotopy type of spaces, as the same time as it can be a starting point for an 
algorithmic approach to cohomogical operations. 

2 .  - P r e l i m i n a i r e s .  

First, we will assume that we are working over a ground ring R which is 
commutative with unit. We will use the letters A, B . . . .  to designate differ- 
ential graduated modules over R or DG-modules, and the letters X, Y, ... to 
denote simplicial sets; the face and degenerancy operators of a simplicial set 
will be denoted by 3i and si, respectively. Finally, C .  (X) and C* (X) will be 
the normalized chains and cochains of the simplicial set X respectively. 

Eilenberg and MacLane defined in [5] a contraction of a DG-module A on- 
to a DG-module B as a triple (f ,  g, q~) in which f :  A - ,  B (the projection of 
the contraction) and g: B o A  (the injection of the contraction) are mor- 
phisms of DG-modules while ~b: A --*A is a morphism of graduated modules 
of degree 1 (raising dimensions by 1). It is required that 

(cl) fg = 1B; 

(C2) f~b = 0; 

(C3) ~bg = 0; 

(C4) ~d + d~ = g f  - 1A ; 

(c5) ~ = o. 
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An Eilenberg-Zilber contraction is a contraction of C , ( X  x Y) onto 
C , ( X )  | C,(Y) ,  where X and Y are simplicial sets. There exists at least 
one: 

THEOREM 1 [3]. Let X and Y be simplicial sets. The Alexander-Whitney 
operator AW: C ,  (X x Y) --> C,  (X) | C ,  (Y), the Eilenberg-MacLane opera- 
tor EM: C ,  (X) | C ,  (Y) -~ C,  (X x Y) and the Shih operator 
SHI: C , ( X  x Y) - - ~ C . + i ( X x  Y) of X and Y are defined by the following 
formulas: 

AW(xn x y~) = ~ ~ + 1"" ~n Xn @ ~0." ~i - lYn , 

i = 0  

EM(xp |  = ~ (-1)sg(a,~)(S~q...s~lXp x s ,p . . . s ,  lyq) , 
(a ,  t~) ~ {(P, q) - shuffles} 

SHI(x~ x y~) = 

n-p-q+sg(a, fl) 
= - ~(-1) (Sflq + n - p - q ' "  S f l l+n-p -qSn-p -q - I  ~ n - q + l " "  ~nXn X 

X Sap +1 ~-Tt-P-q ~176 Sal ~-~-P-q ~-P-q '~  ~n-q-1 Y~),  

where the last sum is taken over all the indices 0 <<. q <<. n - 1, 0 ~< p <~ n - 
- q - 1, (a,  fl) e {(p + 1, q) - shuffles} and sg(a, fl) = ~ (ai - (i - 1)). 

The triple (AW, EM, SHI)  is a contraction of C , ( X x  Y) onto 
C,  (X) | C ,  (Y). 

The explicit formula for the Shih operator is given in [10]. 

3. - The  d e t e r m i n a t i o n  o f  a h igher  d iagona l  a p p r o x i m a t i o n .  

It  is well-known that  it is no t  possible to construct an Eilenberg-Zilber 
contraction with commutative projection (see, for example, [7, sect. 8.5]). We 
present in this section a new relation between the lack of commutativity of 
the Alexander-Whitney operator and the construction of a ~,higher coprod- 
uct,, which allows us to define the Steenrod squares. We will obtain this re- 
sult, by proving the following theorem: 

THEOREM 3.2. Let A and B be two DG-modules. Let (fi g, ~) be a con- 
traction of A onto B. Let h: A -~ A be an idempotent morphism of DG-mod- 
ules. Let us suppose that the following relation holds 

(1) ~phg = O. 
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Then there exists a sequence of morphisms { fi }i ~ o , fi : A ~ B of degree i~ 
such that 

(2) f o = f ,  d B j ~ - ( - 1 ) i f i d A = h ' f i _ l  + ( - 1 ) i f i _ l h  i f  i ~  l 

where h ' = fhg. 
Moreover, an explicit formula for the morphisms fi can be given 

( 3 )  f~ = f ( h ~ )  ~ Vi >10. 

Now, we apply this theorem to the case in which the data are the Eilen- 
berg-Zilber contraction (AW, EM, SHI) and the automorphism of transposi- 
tion 

t , :  C , ( X  x X ) ~ C , ( X  x X) 

where t(x x y) = (y x x). 
From now on, we will denote the differentials of C, (X), C,  (X x )X and 

C,  (X) |  C , (X)  by d, d• and d| respectively. 
We easily can establish that S H I t ,  E M  = 0; we obtain, thus, a sequence 

of morphisms {~}i~0 

fii : C,  (X x X) ~ C,  (X) | C ,  (X) 

of degree i. with f~=(AW)  ( t , S H I P .  verifying 

( 4 )  d |  - ( - 1)~j~ d • = Tj~ _ 1 + ( - 1)~j~ _ 1 t , ,  i f i ~ > l ,  

where T: C,  (X) | C,  (X) ~ C,  (X) @ C,  (X) is defined by 

T(a|  = ( -1 )Pqb |  

with a e Cp (X), b e Cq (X). N o w ,  we can construct the higher diagonal approx- 
imation {Ai}i~0. where the morphism Ai: C,(X) - - - - )C , (X) |  is 
given by 

(5) A~ = A  oA . 

and the morphism A: C , ( X ) - - > C , ( X  x X) is defined by A(a)=  a x a, 
Va ~ X. The morphism A 1 is a morphism of DG-modules (the Alexander- 
Whitney diagonal approximation) and the maps A i (i >>-2) satisfy rela- 
tions: 

( 6 )  d~Ai  - ( - 1 ) i A i d  = TAi-1  + ( - 1 ) i A i -  1 �9 

It is well-known that a family of morphisms verifying (6) are used to 
construct the U-products and the Steenrod squaring operations (see, for 
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example, [15, sect. 5.9]). Now, the definition of the cohomology operation 
Sqi: Hq(X)  "-> H q §  is: 

(7) {~ | 2 1 5  s i i < q ,  

Sqi(c)(x)  = si i > q, 

where c e Hom(  Cq (X), Ze ) et x e Xq + i . 
Then, it is clear that, at least in the case in which X is finite in each dimen- 

sion, this explicit formulation constitutes an actual algorithm. Moreover, this 
definition shows that the computation of cochains by Sq~ carries always the 
use of the Shih operator, which requires, in general, exponential time to give 
an answer. In fact, the sum that defines this operator is taken over the shuf- 
fles (special type of permutation). Roughly speaking, this morphism reflects 
in this case the passing from Geometry to Algebra. 

To sum up, computing Steenrod squares is a genuinely computationally 
difficult problem. We conjecture that the measure of the complexity of the 
computation of these cohomology operations is exponential. 

4 .  - Proof  of the Theorem 2. 

To prove the result, it suffices to verify the following condition: 

(8) ~dA hCphd~ = - ~h~hdA ~b . 

In fact, if the condition (8) is true, we can easily deduce the equali- 
ty: 

(9) ~ d A ( h ~  = ( - l ~ - l ( ~ b h ~ d A ~ ,  Vj >I 1,  

and this relation will allows us to show (2). 
Here, we firstly prove the equalities (2), supposing true the formulas (9); 

finally, we will establish the relation (8). 
For i = 1, we do not need the relation (9) to obtain (2)1. Using the proper- 

ty (c4) of a contraction, we have 

dBfh~ + fh~dA = ds]h~ + f h ( g f -  1A - dAr  = 

Since f and h are morphisms of DG-modules, 

= d s f h ~  + f h g f - f h  - fhdn~b =fhdAr + ( f h g ) f - f h  - fhdAr = ( f h g ) f - f h  
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Now, we have to prove the relation (2)i, if i I> 2. First, we use the defini- 
tion (3), 

dBf i  -- ( - - 1 ) i f i d A  = dBf(hd~) i + ( - 1 )  i+ l f (hdp)idA = 

= d B f ( h ~ ) ) i  + ( _ 1) i  + i f h ( ~ h ) i  - 1 ~)dA = 

We make use of the property (c4) of a contraction, 

= dBf(hCp)i + ( _ 1)i + ifh(r - 1 ( e l __  1A -- dA d~) = 

By (1) and (9), we have 

= d B f ( h ~ ) i  + (_ l ) i  + l fh(~h)i  - i g f +  ( _ l  )i f h (  r  )i - 1 + (_ l ) i fh(~h) i  - 1 dA r = 

= f h d A  dfl( hdp )i - 1 + (_  l )i f (  h~ )i - 1 h + fhd~dA ( h r  ) i - 1 = 

= f h ( d A d  p + r + ( _ l ) i f ( h g p ) i - 1  h = 

We consider now the properties (c3) and (c4) of a contraction, the idem- 
potency of the DG-morphism h and the formulas (3); 

= f h ( g f -  1A ) ( h ~ )  i - ~ + ( - 1)i2~ _ i h = 

= ( fag)  f(hd~) i - 1 _ f ~  h ~ (h ~ )~  - 2 + ( _ 1)ifi  _ i h = 

= h ' f i - 1  + ( - 1 ) i j ~ - i  h .  

This completes the proof of (2)i, i I> 1. 
Now we shall show that  the relation (8) holds. First,  using the property 

(c4) of the definition of contraction and the idempotency of the morphism h, 
we have 

h ( g f  - dA ~) -- ~ d A  ) h = 1A ; 

and, hence, we find 

hg fh  - hdA ~ h  - h~dA  h = 1A 

Composing this equality on the left and on the right with the homotopy 
operator q~, it turn out 

~ h g f h ~  - ~hdA ~ h ~  - ~h~d.4  h ~  = ~ 
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Since h is a morph ism of DG-modules and keeping in mind the relations 
(1) and (c5), we conclude 

~)dA hCphdp = - ~bh~hdA r . 
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