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Abstract
In this paper, we present the notion of greyscale of a graph, as a colouring of its vertices
that uses colours from the continuous spectrum [0, 1]. Any greyscale induces another
colouring by assigning to each edge the non-negative difference between the colours
of its vertices. These edge colours are ordered in lexicographical increasing order and
make up the contrast vector of the greyscale. The aim of the contrast problem for the
given graph is to find the maximum contrast vector and the greyscales that give rise
to it, namely the maximum contrast greyscales. The NP-completeness of this problem
is stated by means of a functional relation between the chromatic number and the
first component of the maximum contrast vector, named the lightest tone. Thus, we
introduce the notion of lightest tone as a new invariant of the graph. The underlying
structure of values of maximum contrast greyscales is addressed and we prove that
they are linked by rational number sets, which are algorithmically determined. The
restricted maximum contrast problem, that is, greyscales with prefixed extreme tones,
is also defined and solved in polynomial time for different families of bipartite graphs.
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1 Introduction

Graph colouring is one of the most studied problems in combinatorial optimization
because it has a wide range of applications such as the wiring of printed circuits
(Cheng et al. 1992), resource allocation (Kasi et al. 2019; Woo et al. 1991), frequency
assignment problems (Aardal et al. 2007; Chaudhry et al. 2016; Griggs and Král 2009;
Orden et al. 2016), wi-fi channel assignment (Orden et al. 2018, 2019), several kinds
of scheduling problems (Marx 2004; Ganguli and Roy 2017), or computer register
allocation (Chaitin et al. 1981; Demange et al. 2015).

A variety of combinatorial optimization problems on graphs can be formulated
similarly in the following way. Given a graph G(V , E), a mapping f : V −→ Z is
defined and it induces a new mapping ̂f : E −→ Z by ̂f (e) = | f (u) − f (v)| for
every e = {u, v} ∈ E . Then an optimization problem is formulated from several key
elements: mappings f belonging to a subset S, the image of V by f and the image
of E by ̂f . In particular, the classic graph colouring problem, that is, colouring the
vertices of G with as few colours as possible so that adjacent vertices always have
different colours, can be stated in these terms as follows:

χ(G) = min
f ∈S |Im( f )| where S = { f : V → Z such that 0 /∈ ̂f (E)}.

It is well known that this minimum number χ(G) is called the chromatic number of
the graph G and that its computation is an NP-hard problem (Karp 1972).

In this paper, we present the new notion of greyscale of a graph, as a colouring of its
vertices that uses colours from the continuous spectrum [0, 1]. Any greyscale induces
an edge colouring by assigning to each edge the non-negative difference between the
colours of its vertices. These edge colours are ordered in lexicographical increasing
order and make up the contrast vector of the greyscale. We pose the problem of finding
amaximum contrast vector and the greyscales that give rise to it, namely themaximum
contrast greyscales.

Throughout Sect. 3, the close relation between our problem and the classic graph
colouring problem is brought to light. In particular, each maximum contrast greyscale
of G provides a coloring of G with precisely χ(G) colours, that is, a solution of the
graph colouring problem.

It must be stressed that the classic graph colouring problem takes into account the
number of colours used but not which they are. However, there are several works
related to map colouring for which the nature of the colours is essential, whereas the
number of them is fixed. Themaximum differential graph colouring problem (Hu et al.
2011), or equivalently the antibandwidth problem (Leung 1984), colours the vertices
of the graph in order to maximize the smallest colour difference between adjacent
vertices and using all the colours 1, 2, . . . , |V |. Under the above formulation, these
problems are posed as follows:
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max
f ∈S min ̂f (E) for S = { f : V → Z such that Im( f ) = {1, 2, . . . , |V |}},

and therefore the complementary optimization case, the bandwidth problem, is given
by

min
f ∈S max ̂f (E) for S = { f : V → Z such that Im( f ) = {1, 2, . . . , |V |}}.

Note that these problems are concerned with the optimization of a scalar function
and mappings that take values within a discrete spectrum. Dillencourt et al. (2007)
studied a variation of the differential graph colouring problem under the assumption
that all colours in the colour spectrum are available, more precisely, the space of
colours is a three-dimensional subset ofR

3. This makes the problem continuous rather
than discrete, since the mapping f has image in R

3 [see Dillencourt et al. (2007) for
details].

Other colouring problems are included in the examination scheduling problem cat-
egory [see for instance Bullnheimer (1998)]. This problem consists of assigning a
number of exams to a number of potential time periods or slots within the exam-
ination period, taking into account that no student can take two or more exams at
the same time. The graph G associated to the examination scheduling problem has a
vertex for each exam and two vertices are adjacent whenever there is at least one
student taking their corresponding exams. This way, the chromatic number of G
provides the minimum number of slots needed to generate an examination period
schedule.

Regarding this problem, if colours t ∈ [0, 1] are considered to be the time as a con-
tinuous variable, a greyscale provides a colouring with the property that the difference
of colours between any pair of adjacent vertices represents the slot between any two
exams. This way, a maximum contrast greyscale generates a solution of the exam-
ination scheduling problem with maximum difference of slot for adjacent vertices.
Therefore, an optimal time period distribution that benefits every exam candidate is
guaranteed.

When a weight wi is associated to each colour i in a proper colouring of G, and the
sum of those colour weights is minimized, the optimization problem is known to be
the minimum sum colouring problem, whose applications to scheduling problems and
resource allocationswere recently developed [see Lecat et al. (2017) and the references
therein].

In all these approaches the colouring functions are considered to be scalarmappings.
In ourwork, we present an alternativemethod that can solve colouring problems focus-
ing in the optimization of a vector that measures the differences of colours between
adjacent vertices in the graph.

Thus, a new concept related to the colouring of a graph G = G(V , E) is accurately
introduced in Sect. 2: the contrast associated to a greyscale of G. Namely, given the
graphG, a greyscale is amapping that associates a value from the interval [0, 1] to each
vertex v ∈ V . This assignment can be understood as an extension of the colouring
of the vertices of G with grey tones. For the contrast problem, the objective is to
maximize the difference of tones of grey between extremes of any edge.
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Fig. 1 A comparison of three greyscales for the wheel according to their contrasts

When the goal is to minimize the difference of tones of grey between extremes of
any edge, another new problem arises: the gradation problem which is deeply studied
in a work by the same authors of this paper in de Castro et al. (2018).

By using a vectorial function which allocates grey tones in an equitable manner, we
propose a novelway tomaximize the colour differences in the graph.More specifically,
we are not interested inmaximizing the total amount of “contrast” (here contrastmeans
the colour differences between adjacent vertices) neither maximizing the minimum
contrast (scalar function) butmaximizing the vectorwhose components represent local
contrast of adjacent vertices, in ascending order. Figure 1 visually shows the goodness
of our vectorial optimization versus a scalar optimization, based on the total amount
of contrast on edges or alternatively on maximin criterium.

Let us illustrate this fact by considering three colourings of the faces of the map
in Fig. 1. We construct its dual graph avoiding the external face in such a way that
the resulting graph is the wheel. Three greyscales for the wheel are presented. On one
hand, according to the total amount of contrast criterium, Fig. 1c is an optimal solution
(with total amount of contrast equal to 7 vs. 35/6 and 5 in Fig. 1a, b, respectively).
However, in (c) there are some adjacent faces having no contrast. On the other hand, (a)
and (b) are solutions under the scalar maximin criterium (both of them have minimum
contrast on edges equal to 1/3). Nevertheless, only (a) is an optimal solution under our
vectorial criterium. In (a), it is not difficult to check that every pair of adjacent faces
has the maximum possible contrast. This way, the main advantage of our proposal lies
in the possibility of obtaining a local distribution of the maximum contrast for every
vertex in the graph.

We want to emphasize that a maximum contrast greyscale can be used to colour a
map with greytones in such a manner that every pair of adjacent regions are coloured
with best visual contrast, that is an optimal way for a black and white illustration
with a quite good quality. Thus, the solutions to our problem contribute to providing
solutions to the map colouring problem (Bekos et al. 2017).

In this work, we deal with proper vertex colouring but also with edge colourings
of graphs which are not proper in general. Let us remark that although there exists
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a vast literature on different perspectives of the edge colouring problem (Borghini
et al. 2018; Orden et al. 2018, 2016, 2019), and the references therein, the approach
presented here is novel to the best of our knowledge.

Outline of the paper In Sect. 2 the necessary definitions about the contrast problem
on graphs are established. Section 3 contains our first main result, Theorem 1, stating
the NP-completeness of the maximum contrast problem by means of a close relation
between the classical colouring problemand the contrast problem. In fact,we introduce
a new invariant of the graph, the lightest tone, and establish a functional relation with
the chromatic number of the same graph in Theorem 2. The main results of Sect. 4
are addressed to support the definition of maximum contrast vector. Actually, this
maximum exists as it is proven in Theorem 4 and as a consequence, it assures that the
notion of maximum contrast vector is well defined. Besides, the set of possible values
for a maximum contrast greyscale can be bounded by a finite rational set determined
algorithmically as it is collected in Theorem 5. The underlying structure of this set of
values is discovered to be grouped on linked sequences named h-minimum enchained
sets in Theorem 3.

In Sect. 5 we also define restricted versions of the original problem when the grey
tones 0 or 1 of some vertices are a priori known and the aim is to obtain the maximum
contrast vector preserving such fixed grey tones. For the 2-chromatic graphs family,
the set of values of the maximum contrast greyscale for the restricted problem is char-
acterized in Theorem 6. Besides, the restricted maximum contrast problem is solved
in polynomial time for the family of bipartite complete graphs and for subdivisions of
star graphs as is shown in Theorems 7 and 9, respectively. Other contribution of our
work is Theorem 8 which collects the solutions of the restricted problem on particular
cases for trees. The last section contains a brief review of open problems and future
works.

2 Preliminaries

This section is devoted to establishing the basic concepts about contrast on graphs and
formulating the problems to be studied in this paper. Throughout this paper, a graph
is finite, undirected and simple and is denoted by G(V , E), where V and E are its
vertex-set and edge-set, respectively. The number of elements of V and E are denoted
by n andm, respectively. Let N (v) denote the set of neighbours of the vertex v and let
deg(v) denote the degree of v, that is the cardinal of N (v). For further terminology
we follow Harary (1969).

Given a graph G(V , E), a greyscale f of G is a mapping of V to the interval [0, 1]
such that values 0 and 1 belong to Im( f ). For each vertex v of G, we call f (v) the
grey tone of v, or more generally, the colour of v. Notice that two adjacent vertices
may have mapped to the same grey tone. In particular, values 0 and 1 are called the
extreme tones or white and black colours, respectively.

Associated to each greyscale f of the graph G(V , E), the mapping ̂f is defined
on E to the interval [0, 1] as ̂f (e) = | f (u) − f (v)| for each e = {u, v} ∈ E and it
represents the gap or increase between the grey tones of vertices u and v. The value
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Fig. 2 Two greyscales f and f ′ of the graph K4

̂f (e) is also said to be the grey tone of the edge e. Thus, we deal with coloured vertices
and edges by f and ̂f , respectively.

The contrast vector associated to the greyscale f ofG is defined to be cont(G, f ) =
( ̂f (e1), ̂f (e2), . . . , ̂f (em)) where the edges of G are indexed in such a way that
̂f (ei ) ≤ ̂f (e j ) for i < j , that is, in ascending order of their grey tones. For the
sake of clarity and when the graph is fixed, it can be denoted cont(G, f ) = C f . Fig-
ure 2 shows two greyscales of the graph K4, f and f ′, whose corresponding contrast
vectors are C f = (0, 1

2 ,
1
2 ,

1
2 ,

1
2 , 1) and C f ′ = ( 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 , 1), respectively.

Given twogreyscales f and f ′ of a graphG,we say that f hasbetter contrast than f ′
if their corresponding contrast vectors verify C f > C f ′ , following the lexicographical
order. Thus, the ascending order of contrast vectors determines the goodness in terms
of contrast. In Fig. 2, the greyscale f ′ has better contrast than f .

The maximum contrast vector is defined as

contmax (G) = max{cont(G, f ) such that f is a greyscale of G}.

If f is a greyscale of G which gives rise to the vector contmax (G), we will say that f
is a maximum contrast greyscale of G and the first component of contmax (G) will be
called the lightest tone of G and denoted lt(G).

The following problem arises naturally in the context of contrast. It is posed for
connected graphs, but general graphs can be also considered and analogous results
hold when working with each one of their connected components.

Maximum contrast on graphs (macg)

Instance: Connected graph G(V , E).

Question: Is it possible to find a greyscale of G such that its contrast vector is maxi-
mum?

We also deal with the restricted version of this problem, namely when the grey tones
of some vertices are a priori known and the aim is to obtain the maximum contrast
vector preserving these fixed grey tones.

Given a graph G(V , E) and a nonempty proper subset Vc of V , an incomplete
Vc-greyscale of G is a mapping of Vc to the interval [0, 1]. The vertices of Vc are
named initially coloured vertices. A greyscale f is compatible with an incomplete
Vc-greyscale g if f (u) = g(u) for all u ∈ Vc. The process of obtaining such an f is
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called extending the incomplete greyscale g. We focus on a particular case, namely
when only white and black tones are fixed. The problem is established as follows and
it will be formally studied in Sect. 5.

{0, 1}-Restricted maximum contrast on graphs ({0, 1}-rmacg)
Instance: Connected graph G(V , E) and an incomplete Vc-greyscale g, where Vc =
V0 ∪ V1 ⊂ V with V0 and V1 disjoint subsets and such that g(v) = 0 for v ∈ V0 and
g(v) = 1 for v ∈ V1.

Question: Is it possible to find a greyscale f of G compatible with g such that its
contrast vector is maximum in the set of contrast vectors of all possible greyscales
compatible with g defined on G?

If a greyscale f provides an affirmative answer to the above problem we say that
f is a maximum contrast greyscale for the {0, 1}-rmacg problem. Note that f is
a maximum contrast greyscale compatible with the greyscale given in the instance.
The contrast vector associated to f is named the maximum contrast vector for the
{0, 1}-rmacg problem.

3 Maximum contrast problem

The problem of finding out the maximum contrast of a connected graph, denoted
macg, is tackled in this section. Given a connected graph G, this problem consists
of knowing whether a greyscale whose contrast vector is maximum can be found for
G. A relation between the chromatic number and the lightest tone of G is obtained.
The main consequence of this property is the NP-completeness of the macg problem.
Next, the underlying structure ofmaximumcontrast vectors is studied and some results
related to it are established, which can be useful to develop approximation algorithms
for the macg problem.

The existence of the maximum element among the set of contrast vectors of a given
graph will be guaranteed later, in Sect. 4, due to the necessity of technical tools and
specific results independently from the greyscale notion.

Nonetheless, according to the definition of better contrast, given in Sect. 2, it is
clear that the maximum contrast vector has no component equal to 0. Besides, it is
immediately deduced that a necessary condition for a greyscale f to be a maximum
contrast greyscale of G is that for any vertex v with degree 1, f (v) is an extreme tone.

Next, the NP-completeness of the macg problem is established. The proof of this
result contains interesting relationships between greyscales and colourings of the given
connected graph.

Theorem 1 The macg problem is NP-complete.

Proof The key is to prove that χ(G) = 1+
⌈

1

lt(G)

⌉

, and since the chromatic number

problem is NP-hard (Garey and Johnson 1979), the assertion holds.

For the sake of simplicity, let k denote the natural number
⌈

1
lt(G)

⌉

and let f be

a maximum contrast greyscale of the graph G. The following mapping Φ : V −→
{0, 1, . . . , k} is proven to be a (k + 1)−colouring of G:
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Φ(v) =

⎧

⎪

⎨

⎪

⎩

i if i
k ≤ f (v) < i+1

k for i = 0, . . . , k − 1

k if f (v) = 1

On the contrary, suppose that there is an edge e = {u, v} ∈ E such that Φ(u) =
Φ(v) = i with i �= k. Since i

k ≤ f (u) < i+1
k and i

k ≤ f (v) < i+1
k then ̂f (e) =|

f (u) − f (v) |< 1
k = 1

⌈

1
lt(G)

⌉ ≤ lt(G), which contradicts the definition of lightest

tone. In addition, if Φ(u) = Φ(v) = k then ̂f (e) =| f (u)− f (v) |= 0, contradicting
that contmax (G) has no component equal to 0.

The existence of the (k + 1)−colouring Φ of G ensures that χ(G) ≤ k + 1.
In order to prove the equality, let Ψ : V −→ {0, 1, . . . , r} be a colouring of G with
r+1 = χ(G) colours and we define g : V −→ [0, 1] a greyscale ofG as g(v) = Ψ (v)

r
for all v ∈ V . Hence,

ĝ(e) =| g(u) − g(v) |=
∣

∣

∣

∣

Ψ (u)

r
− Ψ (v)

r

∣

∣

∣

∣

= 1

r
|Ψ (u) − Ψ (v)| ≥ 1

r

for every e = {u, v} ∈ E . Then, lt(G) ≥ 1
r , which implies that

⌈

1
lt(G)

⌉

≤ r and, since

r + 1 = χ(G), we conclude that χ(G) = 1 +
⌈

1
lt(G)

⌉

. 
�

The rest of this section is devoted to the study of the underlying structure of
maximum contrast vectors and the establishment of their properties. Given the NP-
completeness nature of themacg problem, the following results will be useful in order
to design heuristic methods that provide high-quality solutions feasible in reasonable
amounts of time.

The next technical lemma is needed to prove that lt(G) = 1
χ(G)−1 , a more accurate

relationship between lt(G) and χ(G) than the one given in the proof of Theorem 1,
result that will be established in Theorem 2.

Lemma 1 Let G(V , E) be a connected graph and let f be a maximum contrast
greyscale of G. Let v ∈ V be a vertex such that 0 < f (v) < 1, then there exist
u1 and u2 ∈ N (v) satisfying both of the following assertions:

1. f (u1) < f (v) < f (u2).
2. ̂f ({u1, v}) = ̂f ({u2, v}) = min{ ̂f ({u, v}) : u ∈ N (v)}.
Proof Let us consider a = min{ ̂f ({u, v}) : u ∈ N (v)}. Since f is amaximumcontrast
greyscale, then a > 0 trivially and since 0 < f (v) < 1, it is clear that a < 1.

Let us define the set A = {e ∈ E : ̂f (e) = a}, then the maximum contrast vector
has |A| coordinates equal to a, namely C f = (. . . , a, . . . , a

︸ ︷︷ ︸

|A|
, . . . ).

Let us now partition the set N (v) = B ∪ C as follows:

B = {u ∈ N (v) : ̂f ({u, v}) = a} and C = {u ∈ N (v) : ̂f ({u, v}) > a}.
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Let us define b = min{ ̂f ({u, v}) : u ∈ C} if C �= ∅ and b = 1 otherwise. Since
a < b, let us consider ε > 0, such that a+ε < b−ε, 0 < f (v)−ε and f (v)+ε < 1.
Two new greyscales fv+ and fv− are now defined as follows:

fv+(w) =

⎧

⎪

⎨

⎪

⎩

f (w) if w �= v

f (v) + ε if w = v

fv−(w) =

⎧

⎪

⎨

⎪

⎩

f (w) if w �= v

f (v) − ε if w = v

By definition, the greyscales fv± verify ̂fv±({w1, w2}) = ̂f ({w1, w2}) for all edges
{w1, w2} of G with w1, w2 �= v and ̂fv±({w1, v}) = a ± ε < b ± ε ≤ ̂fv±({w2, v})
for all edges {w1, v}, {w2, v} of G with w1 ∈ B and w2 ∈ C.

Let us prove the statements by reductio ad absurdum. By assuming f (u) ≥ f (v) in
the subsetB, we obtain that ̂fv−({u, v}) = a+ε for all u ∈ B, and ̂fv−({u, v}) > a+ε

for all u ∈ C. In an analogous way, the assumption that f (u) ≤ f (v) leads to that
̂fv+({u, v}) = a + ε for all u ∈ B, and ̂fv+({u, v}) > a + ε for all u ∈ C. It is readily
deduced that both contrast vectors associated to these greyscales only differ from C f

in the grey tones of the edges incident in v, and contain |A| − |B| components equal
to a and at least |B| components equal to a + ε:

C fv± =
⎛

⎜

⎝. . . , a, . . . , a
︸ ︷︷ ︸

|A|−|B|
, a + ε, . . . , a + ε
︸ ︷︷ ︸

≥|B|
, . . .

⎞

⎟

⎠ .

In addition, it is straightforward to verify that C f and C fv± both have exactly the
same components smaller than a.

Otherwise, C fv± can contain values not belonging to C f , but they are necessarily
greater than a + ε, as a matter of fact, greater than b − ε.

Obviously, the contrast vectors C fv± are better than C f , contradicting that f is
a maximum contrast greyscale. Consequently, both assumptions f (v) ≤ f (u) and
f (u) ≤ f (v) for all u ∈ B are false and there is at least one vertex u1 ∈ B and one
vertex u2 ∈ B such that f (u1) < f (v) < f (u2) and ̂f ({u1, v}) = ̂f ({u2, v}) = a.


�
The pair of vertices u1 and u2 associated to a vertex v, given by Lemma 1, will

be named pair of neighbours closest to v, the vertex u1 will be named the neighbour
closest to v on the left and the vertex u2 will be named the neighbour closest to v on
the right.

Let us remark that the existence of such pair of vertices u1 and u2, together with
the below-defined notion of incremental path, are the keys to know the underlying
structure ofmaximumcontrast vectors. The study of Im( f ), for anymaximumcontrast
greyscale f ofG, will be addressed in detail in Sect. 4 and, again, the pair of neighbours
closest to a vertex will be determinant in it.

Given a greyscale f ofG, an incremental path of length k ∈ N for f is defined to be
a path of G, Pk = {u0, e1, u1, e2, u2, . . . , ek, uk} with f (ui ) = i

k for i = 0, 1, . . . , k.
Thus, in any incremental path of length k all edges are coloured with the grey tone
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1
k . We show that if f is a maximum contrast greyscale of G, then the lightest tone is
placed in edges defining some incremental paths.

Theorem 2 Let G(V , E) be a connected graph with χ(G) = k + 1 and let f be a
maximum contrast greyscale of G with lightest tone lt(G). The following statements
hold:

1. lt(G) = 1
k .

2. For every e ∈ E with ̂f (e) = lt(G) there is at least one incremental path of length
k containing e.

3. The vector contmax (G) has at least k components equal to lt(G).
4. The set Ik = { ik : i = 0, 1, . . . , k} is a subset of Im( f ).

Proof On one hand, the case of lt(G) = 1 leads to themaximum contrast vector whose
all components are equal to 1, and so Im( f ) = {0, 1}, that is, G is a 2-chromatic
connected graph and k = 1. Then, given an edge e ∈ E with ̂f (e) = lt(G) = 1, the
incremental path of length 1 is precisely the edge e.

On the other hand, let us consider an edge e = {u0, v0} such that ̂f (e) = lt(G) < 1.
In this case, it is clear that { f (u0), f (v0)} �= {0, 1} and at least one of these vertices
has degree at least two since G is connected. Without loss of generality, we suppose
that f (u0) < f (v0).

Firstly, let us consider the case 0 < f (u0) < f (v0) < 1. Lemma 1 applied
to v0 ensures the existence of a neighbour v1 closest to v0 on the right satisfying
̂f ({v0, v1}) = lt(G). Again, by applying Lemma 1 to the vertex v1, it is possible to
obtain a new neighbour v2 closest to v1 on the right such that ̂f ({v1, v2}) = lt(G) and
by iterating this process, a sequence of neighbours closest on the right {v0, v1, . . . , vs}
such that f (vs) = 1 and s =

[

1 − f (v0)

lt(G)

]

is constructed. Analogous reasoning is

applied to the left of u0. In this situation, Lemma 1 ensures the existence of a neighbour
u1 closest to u0 on the left. Again, by iterating this procedure, it is possible to obtain
a sequence of neighbours closest on the left {ur , ur−1, . . . , u0} such that f (ur ) = 0

and r =
[

f (uo)

lt(G)

]

.

Let Pt = {ur , . . . , u0, v0, v1, . . . , vs}, with t = r + s+1, stand for the incremental
path for f . Note that Pt satisfies 0 = f (ur ) < f (ui−1) < · · · < f (u0) < f (v0) <

. . . f (vs) = 1.
Secondly, the case of 0 = f (u0) < f (v0) < 1 leads to a path Pt starting with u0,

that is r = 0. Analogously, in case that 0 < f (u0) < f (v0) = 1 the path Pt finishes
with v0, that is s = 0.

Finally, from the above construction, the interval [0, 1] is divided into t subintervals
of equal length lt(G), hence lt(G) = 1

t with t a natural number. Since χ(G) = k + 1
and according to the proof of the NP-completeness of themacg problem (Theorem 1),

it holds that χ(G) = k + 1 = 1 +
⌈

1
lt(G)

⌉

= 1 + t , and so t = k. Thus, lt(G) = 1
k

and assertions 1 and 2 follow. Observe that the grey tone of the i-th vertex of Pk is
i
k (for i = 0, 1, . . . , k) and consequently all its edges have grey tone equal to lt(G).
Therefore, statements 3 and 4 hold and the proof is finished. 
�

123



884 Journal of Combinatorial Optimization (2020) 39:874–898

The lightest tone of a given connected graph is a new invariant which has been
characterized through its relationship with the chromatic number of the graph. This
fact has directly led to the NP-completeness of themacg problem. Furthermore, some
properties have been established in the context of maximum contrast, in particular
the characterization of the first components of maximum contrast vectors. In the next
section, we will study all possible values of any maximum contrast greyscale and we
will prove that these numbers are evenly distributed along particular paths in a similar
way as the greytones of the edges in maximum contrast vectors along incremental
paths.

4 Characterizing themaximum contrast greyscales

We can set two objectives in this section. Firstly, even if the macg problem is defined
in Sect. 2 and its NP-completeness is demonstrated in Sect. 3, the current problem
would not be well defined until we prove that for any graph G, the set {cont(G, f ) :
f is a greyscale of G} has a maximum, that is, the existence of the maximum contrast
vector contmax (G) for any graphG. This way, it suffices to show that Im( f ) is a finite
set for any graph G(V , E). Thus, Sect. 4 is about the main objective of proving that
the set Im( f ) is finite.

Secondly, Theorem 2 proves that the lightest tone lt(G) is assigned to the edges of
an incremental path, this is, a path among the graph G with all its edges coloured with
a lt(G) greytone and extreme vertices having a greytone 0 and 1. Similarly, from the
existence of pair of neighbours closest to a vertex and statement 2 of Theorem 2, we
observe that for any vertex v with colour other than the extreme tones, there exists a
path of length at least 2 verifying that v is an interior point of that path. Moreover,
the vertices of such path are coloured with an increasing sequence of grey tones and
all edges have the same grey tone. We may guess that Im( f ) consists of the union of
some sets of values corresponding to the colours of such paths and there are certain
relations between those sets.

Consequently, both objectives set out in this section lead us to study the characteri-
zation of maximum contrast greyscales by means of studying the underlying structure
in set Im( f ). We study this fact in a deeper way as follows.

In accordance with Theorem 2, for any connected graph G(V , E), it is known
that the set Ik = { ik : i = 0, 1, . . . , k} with k = 1

lt(G)
is a subset of Im( f ). It

is not difficult to find a graph for which the maximum contrast greyscale f verifies
Ik � Im( f ). In Fig. 1 (top left) a maximum contrast greyscale of the wheel is given:
f ([0, 1, 2, 3, 4, 5]) = [

1, 0, 1
2 , 0,

2
3 ,

1
3

]

, hence I3 � Im( f ).
Now,we introduce some notions and notation thatwill be usefull in order to describe

how Im( f ) is structured. A sequence [y0, y1, . . . , yr ] ⊂ [0, 1], with r ≥ 2, is said to
be an h-step chain of length r in [0, 1] if yi − yi−1 = h for i = 1, . . . , r . A number
yi for i �= 0, r is named interior point and y0 and yr are called extreme points of
the h-step chain. Let us observe that any h-step chain is characterized by its extreme
points y0 and yr and its length r , being h = yr−y0

r .
A set of numbers F ⊂ [0, 1] is said to be an h-minimum-step-enchained set if F

verifies the following assertions:
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(1) There is an h-step chain in F whose extreme points are precisely {0, 1} and there
is no other q-step chain in F with extreme points {0, 1} and q < h.

(2) For every y ∈ F − {0, 1} there exists a p-step chain P in F with extreme points
y1 and y2 and such that y is an interior point in P for some p ≥ h.
If p > h and yi /∈ {0, 1}, for i = 1 or 2, then yi is an interior point of a qi -step
chain with h ≤ qi < p.

An h-minimum-step-enchained set F is maximal if it is not a proper subset of
another h-minimum-step-enchained set.

Let us illustrate these notions with an example. F = {0, 1
4 ,

3
8 ,

1
2 ,

5
8 ,

3
4 , 1} is a 1

4 -
minimum-step-enchained set containing the 1

4 -step chain [0, 1
4 ,

1
2 ,

3
4 , 1], the 3

8 -step
chains [0, 3

8 ,
3
4 ] and [ 14 , 5

8 , 1], and the 1
2 -step chain [0, 1

2 , 1]. F also contains the
1
8 -step chain [ 14 , 3

8 ,
1
2 ,

5
8 ,

3
4 ], which does not contradict the definition of 1

4 -minimum-
step-enchained set.

The next theorem gives a characterization of any maximum contrast greyscale f
of a given graph G, by describing the underlying structure of the set Im( f ).

Theorem 3 Let G(V , E) be a connected graph with chromatic number χ(G) = k+1.
For any maximum contrast greyscale f of G, Im( f ) is a 1

k -minimum-step-enchained
set.

Proof Let us consider an arbitrary maximum contrast greyscale f of G. Firstly, we
show that Im( f ) satisfies assertion (1) in the definition of 1

k -minimum-step-enchained
set. From Theorem 2 it holds that Ik ⊂ Im( f ) is a 1

k -step chain with extreme points
{0, 1}, where k = χ(G) − 1. Suppose there exists a q-step chain with extreme points
{0, 1} and q < 1

k , namely [0, q, ..., 1]. Then, q = f (v) for some v ∈ V and, by
Lemma 1, there exists u1 ∈ N (v), a neighbour closest to v on the left. Hence, f (u1) <

f (v) and ̂f ({u1, v}) ≤ q < 1
k , the lightest tone, which is a contradiction. Therefore,

Ik is the only 1
k -chain with extremes {0, 1} and assertion (1) holds.

In order to prove assertion (2) in the definition of 1
k -minimum-step-enchained set

we use the following auxiliary mapping C : V −→ [0, 1] defined as follows:

C(v) = min
w∈ f −1( f (v))

{ ̂f ({u, w}) : u ∈ N (w)}

In other words, C computes the minimum grey tone over the set of all edges incident
in vertices coloured with the grey tone f (v).

Given a value y ∈ Im( f ) − {0, 1}, let v be a vertex such that y = f (v). Let us
considerC(v) and a vertexw ∈ C−1(C(v)). Since f (w) = y /∈ {0, 1}, the hypotheses
of Lemma 1 are verified and hence there is a pair of neighbours closest to w, namely
u1 and v1 such that f (u1) < f (w) < f (v1) and ̂f ({u1, w}) = ̂f ({v1, w}) = p,
where p = C(v). Therefore, [ f (u1), f (w) = y, f (v1)] is a p-step chain. Moreover,
and since w ∈ N (u1), it is held that C(u1) ≤ ̂f ({u1, w}) = C(w) = C(v) = p (see
Lemma 1); analogously C(v1) ≤ p.

Let us suppose C(u1) = C(w) = p and f (u1) �= 0. A similar reasoning gives
rise to w2 ∈ C−1(C(u1)) and there exists u2, the neighbour closest to w2 on the
left such that f (u2) = f (u1) − p, and the above p-step chain is enlarged on the
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left as follows [ f (u2), f (u1), f (w) = y, f (v1)]. This procedure can be repeated
r1 times until C(ur1) < C(w) = p or else f (ur1) = 0. This way, a left extreme
point for the p-step chain with interior point y is found. In summary, we obtain
[ f (ur1), . . . , f (u2), f (u1), f (w) = y, f (v1)]. The case C(v1) = C(w) = p and
f (v1) �= 1 can be tackled similarly and the p-step chain is completed on the right
in the form: [ f (ur1), . . . , f (u2), f (u1), f (w) = y, f (v1), f (v2), . . . , f (vr2)]whose
extreme points are 0 or 1 or otherwise C reaches a value less than p.

Notice that, from the definition of lightest tone of G, for every vertex u, C(u) ≥ 1
k

holds, in particular C(v) = p ≥ 1
k . Therefore, every y ∈ Im( f )−{0, 1} is an interior

point of a p-step chain with p ≥ 1
k and whose extreme points are f (ur1) = 0 or else

C( f (ur1)) = q1 < p or f (vr2) = 1 or else C( f (vr2)) = q2 < p. In such a case, a
similar construction gives rise to a qi -step chain with qi < p and f (ur1) or f (vr2)
are the corresponding interior points. We conclude that Im( f ) is a 1

k -minimum-step-
enchained set. 
�

Theorem 5 shows that for any fixed natural number k ≥ 2, there exits a unique
maximal 1

k -minimum-step-enchained set, denoted Fk in the following, which is a
finite set. We will postpone the proof of this relevant fact for ease of reading of this
section. Therefore, as an immediate consequence of the finiteness of Fk we reach the
next main result assuring our first goal, that is the notion of maximum contrast vector
is well defined.

Theorem 4 For any graph G with chromatic number χ(G) = k + 1, the set
{cont(G, f ) : f is a greyscale of G} has a maximum. Furthermore, for any maxi-
mum contrast greyscale f of G, Ik ⊂ Im( f ) ⊂ Fk is verified.

Next, let us focus on the study of Fk . We design a recursive procedure that gives a
maximal 1

k -minimum-step-enchained set for each k ≥ 2. Later we will prove that it
is unique y finite. The procedure starts with the set {0, 1} and adds all possible values
y ∈ (0, 1) that guarantee the definition of 1

k -minimum-step-enchained set is verified.
More particularly, the method adds all possible p-step chains, with p ≥ 1

k , in such
a way that its interior and extreme points verify assertion (2) of the definition for
minimum step equal to 1

k .
We define the auxiliary mapping SH ,k which will help us checking assertion (2) of

the definition of minimum-step-enchained set, during the procedure given below.
Let H ⊂ [0, 1] be a finite set of numbers and k ∈ N with k ≥ 2. The function

SH ,k : H −→ [0, 1] is defined by:

SH ,k(y) =

⎧

⎪

⎨

⎪

⎩

min{p ≥ 1
k : y is an interior point for some p − step chain in H

verifying assertion (2) of minimum-step-enchained set}
0 otherwise

The following procedure starts with the set H = {0, 1} and adds possi-
ble values of new p-step chains [y0, . . . , yr ] with p ≥ 1

k recursively whenever
max{SH ,k(y0), SH ,k(yr )} < p is true. These new values are stored in the set H
and SH ,k must be updated in each step. The algorithm ends when it is not possible
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to add a new interior point of a chain that satisfies assertion (2) of the definition of
h-minimum-step-enchained set.

Procedure: maximal enchained set (mes)

Input: A natural number k ≥ 2.

Output: The maximal 1
k -minimum-step-enchained set, Fk .

1. Initialize H , New ← {0, 1}
2. Initialize SH ,k(y) = 0 for all y ∈ H
3. While |New| > 0 do

(a) Initialize New ← ∅
(b) For each {y1, y2} ⊂ H do

i. Initialize r ← 2
ii. Initialize p ← |y2−y1|

r
iii. While p ≥ 1

k do
A. If p > max{SH ,k(y1), SH ,k(y2)} do

I. Make Cr the p-step chain with extremes {y1, y2}.
II. For each y ∈ Cr − {y1, y2} do
α. If y /∈ H then SH ,k(y) = p
β. If SH ,k(y) > p then SH ,k(y) = p
III. Update New ← (New ∪ (Cr − H))

B. Update r ← r + 1
C. Update p ← |y2−y1|

r
(c) Update H ← (H ∪ New)

4. return Fk = H

Since the procedure starts with two fixed numbers, these are {0, 1}, and each step
is deterministic, the uniqueness of its output is straightforwardly deduced. Notice that
this affirmation is true whenever the finiteness of the procedure is proven (Theorem 5).
By construction, the updated H after the execution of Step 3.(c) is a 1

k -minimum-step-
enchained set. The output of the algorithm is the maximal 1k -minimum-step-enchained
set, Fk , due to the fact that every pair of possible values for H are revisited in Step
3.(b) until no new value can be adjoined to H . Moreover, Fk is a rational set since
only rational numbers are adjoined to Cr in Step 3.(b)iii.A.I of the algorithm.

Surprisingly, although the macg problem is defined over the real interval [0, 1],
its solution is obtained by subdividing [0, 1] in equal parts a finite number of times
recursively. This way, the maximum contrast greyscale has all values rational.

We have run the mes procedure for k from 2 to 7. Knowing such sets Fk will allow
us to obtain some examples of maximum contrast of small graphs. The following sets
are obtained:

F2 = {0, 1
2 , 1}, F3 = {0, 1

3 ,
1
2 ,

2
3 , 1}, F4 = {0 1

4 ,
1
3 ,

3
8 ,

1
2 ,

5
8 ,

2
3 ,

3
4 , 1},

F5 = {0, 1
5 ,

1
4 ,

4
15 ,

3
10 ,

1
3 ,

7
20 ,

11
30 ,

3
8 ,

2
5 ,

7
15 ,

19
40 ,

1
2 ,

21
40 ,

8
15 ,

3
5 ,

5
8 ,

19
30 ,

13
20 ,

2
3 ,

7
10 ,

11
15 ,

3
4 ,

4
5 , 1},
F6 = {0, 1

6 ,
1
5 ,

5
24 ,

2
9 ,

1
4 ,

7
27 ,

19
72 ,

4
15 , . . . }, F7 = {0, 1

7 ,
1
6 ,

6
35 ,

5
28 ,

4
21 ,

1
5 ,

17
84 ,

23
112 , . . . }.
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Table 1 Cardinality of some Fk k 2 3 4 5 6 7

|Fk | 3 5 9 25 145 19027

The sets F6 ad F7 are collected in a data file which is available at de Castro et al.
(2016). Table 1 shows the increase of Fk cardinality. Note that the cases for k ≥ 6 are
particularly significant.

The finiteness of Fk (and consequently of the mes procedure) deserves a detailed
analysis, which starts with the following technical lemma. Let us establish some nota-
tion.

Fixed a natural number k ≥ 2, we define a sequence of sets denoted {Ai } for i ≥ 0
by recurrence:

A0 = {0, 1}
Ai = { interior points of p-chains verifying assertion (2) and such that its extremes

belong to ∪i−1
j=0A j }

This way, the set Fk is equivalent to Fk = ∪∞
i=0Ai . For the sake of simplicity,

from now on we will denote Fi
k = ∪i

j=0A j . Let us illustrate these definitions with
an example, for k = 4, it is revealed F4 = ∪∞

i=0Ai , where A0 = {0, 1}, A1 =
{ 14 , 1

3 ,
1
2 ,

2
3 ,

3
4 }, A2 = { 38 , 5

8 }, and A j = ∅ for j ≥ 3, that is, F4 = F2
4 .

Lemma 2 The following statements hold for any Ai with i ≥ 1:

1. Every number y ∈ Ai is an interior point for a p-step chain in Fk with extreme
points y1 < y2 and {y1, y2} ∩ Ai−1 �= ∅, where p = SFi

k ,k
(y).

2. Symetry property: if y ∈ Ai then 1 − y ∈ Ai and SFi
k ,k

(y) = SFi
k ,k

(1 − y).

3. Ai is a finite set.
4. Let be pi = min{SFi

k ,k
(y), : y ∈ Ai }, then pi > pi−1, where p0 = 0.

Proof Statement 1 holds by definition of the set Ai . Statement 2 is demonstrated
by induction over i : it is trivially true for A0 = {0, 1} and let us suppose that it
is also true for A j with j ≤ i . Let us consider y ∈ Ai+1. Then, y is an inte-
rior point of a p-step chain with extreme points y1 < y2, such that ys ∈ Fi

k and
SFi+1

k ,k(y) > max{(SFi
k ,k

(y1), SFi
k ,k

(y2)} for s = 1, 2. From the induction hypothe-

sis, 1− ys ∈ Fi
k and SFi

k ,k
(1− ys) = SFi

k ,k
(ys), for s = 1, 2.Wemake the p-step chain

with extremepoints 1−y2 < 1−y1. Then, 1−y is an interior point and SFi+1
k ,k(1−y) =

SFi+1
k ,k(y) > max{SFi

k ,k
(y1), SFi

k ,k
(y2)} = max{SFi

k ,k
(1− y1), SFi

k ,k
(1− y2)}, there-

fore 1 − y ∈ Ai+1.
Statement 3 is demonstrated by induction over i : it is true for i = 0, since

|A0| = 2. Let us suppose |A j | < +∞ for j ≤ i , then |Fi
k | = | ∪i

j=0 A j | ≤
|A0| + |A1| + · · · + |Ai | < +∞. According to Step 3 (b) iii.A.I. of mes procedure, in

Ai+1 there are atmost
(|Fi

k |
2

)

chainswith length 2, 3, . . . k. Therefore, |Ai+1|has atmost

(1 + 2 + · · · + (k − 1))

(|Fi
k |
2

)

= (k)(k − 1)

2

(|Fi
k |
2

)
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elements, that is, |Ai+1| < +∞.
For the proof of statement 4, let us observe that if y ∈ Ai then there is some h-step

chain with extreme points y1 < y2 and

h = SFi
k ,k

(y) > max{SFi−1
k ,k(y1), SFi−1

k ,k(y2)}

and from statement 2, y1 or y2 belongs to Ai−1, hence SFi−1
k ,k(ys) ≥ pi−1 for some

s = 1, 2. Then,

SFi
k ,k

(y) > max{SFi−1
k ,k(y1), SFi−1

k ,k(y2)} ≥ pi−1,

that is, SFi
k ,k

(y) > pi−1 for each y ∈ Ai . Since |Ai | < +∞, it must be pi =
min{SFi

k ,k
(y), such that y ∈ Ai } > pi−1. 
�

Finally, we are ready to demonstrate the announced theorem of finiteness of the set
Fk .

Theorem 5 Fk is a finite set for every k ≥ 2.

Proof By reductio ad absurdum, let us suppose |Fk | = +∞. Since Fk = ∪∞
i=0Ai and

each set Ai is finite, then it must be Ai �= ∅ for all i , and hence, {pi }+∞
i=0 is an infinite

strictly increasing succession of numbers with trivial upper bound pi < 1
2 . Then, there

exists limi→+∞ pi = p.
Otherwise, for each a ∈ Ai and 0 < a < 1

3 , by the symmetry property, the number
b = 1 − a > 2

3 lies in Ai and c = b
2 = 1−a

2 ∈ Ai+1 because c is an interior point
of the c-step chain [0, c, b] with SFk ,k(c) = c > 1

3 > SFk ,k(b) = SFk ,k(a). Let us

observe that (c − 1
3 ) = 1−a

2 − 1
3 = 1

3−a
2 , that is, for every a ∈ Ai with a < 1

3 there
exists c ∈ Ai+1 with |c − 1

3 | = 1
2 |a − 1

3 |. Under the assumption Fk is an infinite set,
then value 1

3 is an accumulation point in Fk and then, p = limi→+∞ pi = 1
3 .

Now, by definition of limit, for all ε > 0, there is some m such that if i ≥ m
then 1

3 − pi < ε. Let be y ∈ Am+1, then y is an interior point of an h-step chain
with extreme points y1 < y2 and some ys ∈ Am for s = 1, 2, where h ≥ pm+1.
Let us suppose y2 ∈ Am , then y2 is an interior point of a q-step chain with extreme
points y3 < y4, where q ≥ pm . Then 0 < y1 < y < y2 < y4 < 1 and y4 − y1 =
(y4 − y2) + (y2 − y) + (y − y1) ≥ pm+1 + pm+1 + pm > 3( 13 − ε) = 1− 3ε. recall
that y4 − y1 ≥ 1 − 1

k , and then, 1 − 3ε < 1 − 1
k , so ε > 1

3k which is a contradiction.
Therefore, the assumption is false and the set Fk is finite for every k ≥ 2. 
�

As a consequence of Theorem 5, if Hi denotes the set H after i loops in mes
procedure, then the number of loops is finite because Fk is finite. This demonstrates
the finiteness of the procedure. Otherwise, from the proof of statement 3 in Lemma 2,
let us remark that Hi can be computed in O(|Hi |) time complexity. The complexity
would be exponential, independently of the value of k (and such a complexity would
make the method impractical for large values of k).
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Fig. 3 A maximum contrast
greyscale of the graph G with
χ(G) = 5 and Im( f ) = F4

f ([0, 1, . . . , 11]) = [1, 0, 14,
1
2,

3
4, 0,

3
8, 0,

5
8,

2
3,

1
3, 1]

1
2

3

4
5

6

7

8

9

10 11

0

G

A natural question arises: we wonder if the bound set Im( f ) ⊂ Fk for a given
maximum contrast greyscale f is tight or otherwise there exists y ∈ Fk such that no
graphG(V , E)withχ(G) = k+1 and nomaximum contrast greyscale f ofG verifies
y ∈ Im( f ). For k = 2 and the complete graph G = K3, Im( f ) = F2. Figures 1((a)
top) and 3 show two graphs for which Im( f ) = Fk , with k = 3, 4, respectively. A
brute-force algorithm has been implemented for these two graphs in order to check that
a maximum contrast greyscale has precisely these sets of values. Let us remark that in
the latter case, the computation for k = 4 requires at most |F4|n = 129 combinations
of values to test maximum contrast greyscales. In the general case, we guess that
the bound Im( f ) ⊂ Fk is tight but constructing particular examples verifying it is a
difficult task since an amount of vertices |V | ≥ |Fk | is required and we are dealing
with an NP-complete problem.

5 Restrictedmaximum contrast problem on bipartite graphs

In this section we tackle the restricted version of the maximum contrast problem in
which the graph has a set Vc of vertices initially coloured with extreme tones 0 (white)
and 1 (black) and the remaining vertices must be coloured by preserving those initial
colours. It is defined as {0, 1}-Restricted maximum contrast on graphs ({0, 1}-
rmacg) in Sect. 2.

In the previous section, the NP-completeness of the macg problem is proven.
However, for the special case of 2-chromatic graphs the maximum contrast vector
has all components equal to 1 trivially since a 2-colouring with extreme tones is
precisely the maximum contrast greyscale. Nevertheless, in the present section we
expose that the restricted version of this problem turns to be much more complicated
within the same family. Therefore, throughout this section we study the {0, 1}-rmacg
problem for the family of bipartite graphs (equivalently 2-chromatic graphs) solely.
It is well known that the detection of the bipartiteness of a graph with n vertices has
time complexity of orderO(n2). Thus, we will assume that for any bipartite graph its
chromatic classes are given or, equivalently, a 2-colouring is known.

Let us observe that in case that Vc contains adjacent vertices initially coloured with
the same extreme tone, then the first component of the maximum contrast vector is
equal to zero. In this particular case, the solution of the {0, 1}-rmacg problem is
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essentially the same as in the case in which the edges with grey tone equal to zero
are removed from the graph. Hence it is worth to focus on the problem with this extra
condition of no adjacent vertices having the same initial colour in Vc. All along this
section this condition is assumed without any further comment.

It suffices to revisit the proof of Lemma 1 to realize a similar result holds for the
{0, 1}-rmacg problem, included below in order to ease the reading.

Lemma 3 Let G(V , E) be a connected graph and let f be a maximum contrast
greyscale compatible with an incomplete Vc-greyscale g. Let v ∈ V − Vc be a vertex
such that 0 < f (v) < 1, then there exist u1 and u2 ∈ N (v) satisfying both of the
following assertions:

1. f (u1) < f (v) < f (u2).
2. ̂f ({u1, v}) = ̂f ({u2, v}) = min{ ̂f ({u, v}) : u ∈ N (v)}.
Recall that the vertices u1 and u2 given by Lemma 3, are referred as the pair of

neighbours closest to v; u1 is the neighbour closest to v on the left and u2 is the
neighbour closest to v on the right.

The following proposition formulate a simple statement that will let us prove other
results in a more elegant way.

Proposition 1 Let G(V , E) be a connected graph and let f be a maximum contrast
greyscale compatible with an incomplete Vc-greyscale g. If there exists a vertex v ∈ V
such that 0 < f (v) < 1, then the first component of C f is at most

1
2 . Moreover, if the

first component of C f is equal to
1
2 , then Im( f ) = {0, 1

2 , 1}.
Proof If f (v) is neither 0 nor 1 then, from Lemma 1, there exists a pair of neighbours
closest to v, say u1 and u2, with 0 ≤ f (u1) < f (v) < f (u2) ≤ 1 such that
f (v) − f (u1) = f (u2) − f (v) = minu∈N (v) f̂ ({u, v}) ≥ lt(G). Therefore, 1 ≥
f (u2) − f (u1) ≥ 2lt(G) is held and then, lt(G) ≤ 1

2 . In the particular case that
lt(G) = 1

2 we obtain f (u2) − f (u1) = 1, which provides necessarily f (u1) =
0, f (u2) = 1 and f (v) = 1

2 . Consequently, we reach Im( f ) = {0, 1
2 , 1}. 
�

Let us fix some notation that will be used through this section. Any 2-chromatic
graph G has precisely two 2-colourings, say φ and φ, both using colours 0 and 1
such that for any vertex v ∈ V , φ(v) = 1 − φ(v). This way, for a given incomplete
Vc-greyscale g, the set Vc can be partitioned in two subsets A ∪ A, being A the set of
vertices of Vc whose colour coincides with the colour assigned by φ and A = Vc − A
being the vertices of Vc whose colour coincides with the colour assigned by φ.

Remark 1 With the notation introduced above, if f is a maximum contrast greyscale
for the {0, 1}-rmacg problem on a 2-chromatic graph G, it is readily observed that
the following statements are equivalent:

1. Vc = A (equivalently Vc = A)
2. f = φ ( f = φ, respectively)
3. Im( f ) = {0, 1},
4. The contrast vector C f has every component equal to 1.
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We denote Puv the u − v path in G, that is a path joining the vertices u and v as it
is usually collected in the literature [see Harary (1969)].

Lemma 4 Let f be a maximum contrast greyscale for the {0, 1}-rmacg problem on
a 2-chromatic connected graph G and let φ be any 2-colouring of G. Then, for any
pair of vertices u ∈ A, v ∈ A and for any u − v path in G there is a vertex w in this
path such that f (w) /∈ {0, 1}.
Proof Let Puv be a u − v path in G with length l. Since G is a bipartite graph, for the
2-colouring φ it is verified that either l is an even number if and only if φ(u) = φ(v)

or else l is an odd number if and only if φi (u) �= φ(v), for i = 0, 1. Therefore, for
the greyscale f there are only two possibilities: either f (u) = f (v) and l is odd
or else f (u) �= f (v) and l is even. It is straightforwardly checked that there is a
vertex w ∈ Puv such that f (w) /∈ {0, 1}, since otherwise, the first component of the
maximum contrast vector C f is 0. 
�

The following result provides the set of all possible values that a maximum contrast
greyscale for the {0, 1}-rmacg problemon the family of 2-chromatic graphs can reach.

Theorem 6 Let G(V , E) be a 2-chromatic connected graph and let f be a maxi-
mum contrast greyscale for the {0, 1}-rmacg problem on G. Then, it is verified that
Im( f ) ⊆ {0, 1

3 ,
1
2 ,

2
3 , 1}.

Proof Let us consider the set of initially coloured vertices Vc ⊂ V with incomplete
greyscale g and any fixed 2-colouring on G, φ : V → {0, 1}. From Remark 1, we
may assume that the non-trivial cases satisfying A �= ∅ and A �= ∅ are the ones that
need to be analysed.

We define the following greyscale on G:

fφ(v) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

g(v) if v ∈ Vc
2
3 if v /∈ Vc and there is u ∈ Vc ∩ N (v) and φ(u) �= g(u) = 0
1
3 if v /∈ Vc and there is u ∈ Vc ∩ N (v) and φ(u) �= g(u) = 1

and there is no u ∈ Vc ∩ N (v) such that φ(u) �= g(u) = 0

φ(v) otherwise.

It is not difficult to check that fφ is well defined and compatible with g. Besides,
since G is bipartite and equivalently it has no odd cycles, Im(̂fφ) ⊆ { 13 , 2

3 , 1} holds.
Hence, the contrast vector C fφ has first component 1

3 and, therefore, the maximum
contrast vector compatible with g must have first component a ≥ 1

3 .
Assume that f is a maximum contrast greyscale compatible with g and let us

suppose that there is a vertex u ∈ V such that f (u) /∈ {0, 1
3 ,

1
2 ,

2
3 , 1}. From Lemma

3, there exists the pair of neighbours closest to u, u1 and u2, such that f (u1) <

f (u) < f (u2) and f (u) − f (u1) = f (u2) − f (u) = d. We analyse the value d.
Observe that d < 1

2 , since d = 1
2 implies f (u) = 1

2 which is ruled out. Nonetheless,
̂f ({u, u1}) = d ≥ a ≥ 1

3 , thus
1
3 ≤ d < 1

2 .
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Fig. 4 Maximum contrast greyscales for the {0, 1}-rmacg problem on this tree and this grid are given.
Double circles in vertices denote the set Vc of initially coloured vertices

Since d < 1
2 , it is clear that f (u1) �= 0 or f (u2) �= 1. Let us suppose f (u1) �= 0 and

consider the pair of neighbours closest to u1, namely u3 and u4, given by Lemma 3.
Then, f (u3) < f (u1) < f (u4) and 1

3 ≤ f (u1) − f (u3) = f (u4) − f (u1) ≤ d.
Therefore f (u2) − f (u3) ≥ 1

3 + 2d ≥ 1, which implies d = 1
3 and f (u) = 2

3
contradicting our assumption. In a similar manner, if f (u2) �= 1 we reach f (u) = 1

3
which is also impossible.

Then, we conclude Im( f ) ⊆ {0, 1
3 ,

1
2 ,

2
3 , 1} and the proof is finished. 
�

We want to emphasize that the bound set given by Theorem 6 is tight in the sense
that some 2-chromatic connected graphs for which Im( f ) = {0, 1

3 ,
1
2 ,

2
3 , 1} can be

found. (See Fig. 4).
Next, we tackle the {0, 1}-rmacg problem in three families of bipartite graphs

with some constrains in the set A in such a way that Im( f ) = {0, 1
2 , 1} for the

corresponding maximum contrast greyscale f . Recall that from its definition, when
Im( f ) = {0, 1

2 , 1}, C f has as few components equal to 1
2 as possible. The proofs of

the following results include the methods for assigning the greytone 1
2 to the suitable

vertices in order to obtain the maximum contrast greyscale f .

Theorem 7 The {0, 1}-rmacg problem on any complete bipartite graph with an
incomplete Vc-incomplete greyscale is solved with a computational complexity of
orderO(|Vc|n), where n is the number of vertices of G. The maximum contrast vector
has either all components equal to 1 or else all components equal to 1

2 .

Proof Let f be a maximum contrast greyscale compatible with an incomplete Vc-
greyscale on the complete bipartite graph Kr ,s . We can assume Im( f ) �= {0, 1},
otherwise Remark 1 yields Im( f ) = {0, 1} and C f has all components equal to 1.
Consider any fixed 2-colouring φ on Kr ,s . Since Vc has no adjacent vertices with the
same initial extreme tone and by the assumption, the partition Vc = A ∪ A verifies
A �= ∅ and A �= ∅.

From the completeness of Kr ,s , it is deduced that Vc must be a subset of one of
the chromatic classes of the graph Kr ,s . Therefore, all vertices of the other chromatic
class of Kr ,s must have assigned the grey tone 1

2 in order to give a maximum contrast
greyscale for the {0, 1}-rmacg problem on Kr ,s . The remaining uncoloured vertices
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can be coloured using any extreme tone. Hence, its maximum contrast vector has all
the components equal to 1

2 .
The computational cost is obtained by checking the chromatic class to which each

vertex v ∈ Vc belongs. 
�
Immediately, a characterization of the case of 2-chromatic connected graphs with

A or A having precisely one vertex is presented.

Theorem 8 Let f be a maximum contrast greyscale for the {0, 1}-rmacg problem on
a 2-chromatic connected graph G and let φ be any 2-colouring of G, with |A| = 1
and |A| ≥ 1. Then, it is verified that Im( f ) = {0, 1

2 , 1}.
Proof Let f be a maximum contrast greyscale compatible with an incomplete Vc-
greyscale g of G and A = {v0}. From Lemma 4, f takes at least a grey tone different
from 0 and 1, and from Proposition 1, the first component of the vector C f is at most
1
2 .

Next, let us define the following greyscale:

f0(v) =

⎧

⎪

⎨

⎪

⎩

g(v) if v ∈ Vc
1
2 if v ∈ N (v0)

φ(v) otherwise.

It is checked that f0 is well defined. In particular, no pair of adjacent vertices are
coloured with the same grey tone since there are no triangles in the subgraph induced
by N (v0) and φ is a proper colouring on V −N (v0). Hence, the first component of the
contrast vector C f0 is

1
2 . Therefore, since C f ≥ C f0 , then C f has its first component

equal to 1
2 . Finally, from Proposition 1 we reach Im( f ) = {0, 1

2 , 1}. 
�
As another interesting example, we show the computational complexity of the

{0, 1}-rmacg problem in the family of subdivided star graphs with any set of initially
coloured leaves.

Theorem 9 Let T be a subdivision of the star graph K1,n where {v1, . . . , vn} for
n ≥ 3, denote its leaves, u the vertex of degree n in T and g an incomplete greyscale
such that g(vi ) ∈ {0, 1}, for 1 ≤ i ≤ n. The {0, 1}-rmacg problem on T is solved
with a computational complexity of order O(|Vc|n).

Moreover, any maximum contrast greyscale f uses precisely the grey tone 1
2 over

at most � n
2 � vertices, each one of them lying in a different path Puvi and the maximum

contrast vector C f has at most n components equal to 1
2 .

Proof Firstly, let φ be any 2-colouring of T . From Remark 1 we may assume that
Im( f ) �= {0, 1}, otherwise the statement holds.

Next, let us observe that since the paths Puvi intersect only in the vertex u, we
can define a greyscale f ′ that assigns f ′(u) = 1

2 , f ′(vi ) = g(vi ) and extends this
colouring for each Puvi by starting at vi and alternates 0 and 1 until the vertices of
N (u) are reached. C f ′ has precisely its n first components equal to 1

2 and the rest of
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components are equal to 1. Hence, as C f ≥ C f ′ , then C f has at most n components
equal to 1

2 .
Moreover, if f (u) = 1

2 , then C f ′ = C f , therefore u is the only vertex with grey
tone equal to 1

2 . We reach to the assertion since � n
2 � ≥ 1.

Now, let us consider the case inwhich f (u) �= 1
2 .Without loss of generality wemay

suppose φ(u) = 0. Let us denote n0 the number of paths Puvi verifying g(vi ) = φ(vi )

and let us denote n1 the number of paths Puvi verifying g(vi ) = φ(vi ). From the initial
assumption, ni �= 0 for i = 0, 1.

Next, by selecting the colour c for u such that nc = max{n0, n1} and from the
classical pigeonhole principle, it is deduced that nc ≥ � n

2 �. Let φc be the appropriately
selected coloring φ or φ.

Finally, let us define f ′′ a greyscale compatible with g in the following way:

f ′′(v) =

⎧

⎪

⎨

⎪

⎩

g(v) if v = vi for i = 1, . . . , n
1
2 if v ∈ N (vi ) for each vertex vi such that φc(vi ) �= g(vi )

φc(v) in other case.

Thisway, only a vertex of Puvi has grey tone
1
2 , for atmostn−� n

2 � = � n
2 �paths Puvi .

We conclude that since the maximum contrast greyscale compatible with g, f , verifies
C f ≥ C f ′′ , the assertion holds. The computational cost is obtained by checking the
chromatic class to which each vertex vi ∈ Vc belongs and by the comparison between
f ′ and f ′′. 
�
Now,we deal with the family of treeswith precisely three initially coloured vertices.

The relevance of the next result is based on the method of assigning the grey tone 1
2

which is described in the proof.

Theorem 10 The {0, 1}-rmacg problem on a tree T = G(V , E) with an incomplete
Vc-greyscale g and |Vc| = 3 is solvedwith a computational complexity of orderO(n2).
Moreover, if f is a maximum contrast greyscale for the {0, 1}-rmacg problem then it
uses the greytone 1

2 over at most 2 vertices.

Proof Let Vc = {v1, v2, v3} ⊂ V and let us consider the 2-colourings φ and φ on
T . From Remark 1 we may assume Im( f ) �= {0, 1}. Without loss of generality we
may suppose |A| = 2. Recall that |A| = 3 implies Im( f ) = {0, 1}. From Theorem 8,
we get Im( f ) = {0, 1

2 , 1}. Moreover, the number of components equal to 1
2 in

the maximum contrast vector C f coincides with the number of vertices adjacent to
those vertices coloured with the grey tone 1

2 , that is the sum of the degrees of all
vertices coloured with 1

2 . Without loss of generality, let us suppose φ(v1) = g(v1),
φ(v2) = g(v2) and φ(v3) �= g(v3). By Lemma 4, there is a vertex w1 ∈ Pv1v3 and
a vertex w2 ∈ Pv2v3 with f (w1) = f (w2) = 1

2 . Since f is a maximum contrast
greyscale compatible with g on T , the restriction of f to the union of the three paths
Pviv j , for 1 ≤ i < j ≤ 3, assigns the grey tone 1

2 only tow1 andw2. Due to the fact that
T has no cycles, it is straightforwardly checked that, by starting from each vi ∈ Vc, f
assigns 0 and 1 appropriately to the remaining vertices of T −{Vc ∪{w1, w2}}. Hence,
{w1, w2} are the only vertices with grey tone 1

2 .
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More precisely, letW be the set of vertices within V (Pv1v3∪Pv2v3∪Pv1v2)−Vc with
minimumdegree in T . If there exists a vertexw ∈ W such asw ∈ V (Pv1v3)∩V (Pv2v3),

then w1 = w2 = w and f assigns the grey tone 1
2 to precisely one of such a vertex w.

Otherwise, without loss of generality, let us suppose w ∈ V (Pv1v3) − V (Pv2v3) and
consider a pair of vertices w′ ∈ V (Pv1v3) ∩ V (Pv2v3) and w′′ ∈ V (Pv2v3) − V (Pv1v3)

both with minimum degree in T . If deg(w′) ≤ deg(w) + deg(w′′), then w1 = w2 =
w′ and f assigns the grey tone 1

2 to precisely one of such a vertex w′. If not, f assigns
1
2 to precisely w1 = w and w2 = w′′ or to another pair of vertices w and w′′ verifying
the same conditions as w1 and w2, respectively. The computational cost is obtained
by computing the three paths and the vertices within them that have minimum degree
in the graph. 
�

We observe that finding the solution of the {0, 1}-rmacg problem on bipartite
graphs may become complicated in the general case.

In fact,we have given several examples showing that there are treeswith fewvertices
that need precisely the full set of 5 grey tones given by Theorem 6 (see Fig. 4). Many
other examples of trees with similar properties may be found. Hence, finding the
solution of the {0, 1}-rmacg problem is not an easy question to answer even for the
case of trees.

In a future research, we would like to discover the nature of this problem, whether
it is an NP-complete one or not.

6 Results and open questions

We have introduced the new concept of the contrast of a graph related to vertex and
edge colourings that use colours from the continuous spectrum [0, 1]. The minimum
colour difference between adjacent vertices of the graph plays a fundamental role
in the maximum contrast problem (macg problem) and its close relation with the
chromatic number of the graph has been proven. As a straightforward consequence of
this fact, the NP-completeness of the macg problem is established (Theorem 1) and
a new invariant of the graph has been found. Otherwise, Theorem 2 presents results
regarding the underlying structure of the colour differences between adjacent vertices.

We have achieved several results that allow us to compute the set of all possible
values of grey tones for maximum contrast greyscales of graphs with known chromatic
number. Moreover, some notions of subsets in [0, 1] are introduced, such as the h-
minimum-step-enchained set. We want to remark here that this kind of sets may be
considered independently from any graph and could be useful in other branches of
Mathematics.Byusing the algorithmic proceduremaximal enchained set included
in this paper, we can prove that the set of possible values of grey tones of a maximum
contrast greyscale of a graph is a rational finite set (Theorem 5).

Some natural questions remain open. The properties established in Theorems 2
and 5 can be useful to develop approximation algorithms for the NP-complete macg
problem, and, furthermore, it is interesting to tackle the contrast problem for particular
families of graphs.
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Nonetheless, we give another version of the macg problem consisting of solving
the same question but initially assigning some extreme tones to a subset of vertices.
We name it {0, 1}-Restricted maximum contrast on graphs, {0, 1}-rmacg problem
in short. We have provided a bound set of values of a solution for the {0, 1}-rmacg
problem on any bipartite graph (Theorem 6). The particular case of the {0, 1}-rmacg
problem on bipartite complete graphs is solved (Theorem 7) and it is solved as well
for particular family of trees with additional conditions on the set of vertices initially
coloured (Theorems 8 and 10). However, another improvement of these results like
solving the problem in other families of graphs such as outerplanar graphs or planar
graphs will be dealt with future works. Besides, another open problem appears if
we change the restriction of initially coloured vertices with extreme tones {0, 1} and
consider any other grey tones for the incomplete greyscale.

Furthermore, based on the results of different computational simulations that we
have carried out, another interesting line of work consists of obtaining good approxi-
mations for the optimal solution of the antibandwidth problem frommaximumcontrast
greyscales. Particularly, suitable vertex labelings are achieved when the graph vertices
are sorted following an increasing order of their greytones for a maximum contrast
greyscale.

Lastly, and in addition to the relations of the macg problem to other well-known
combinatorial optimization problems pointed out along this paper, we would like to
highlight that the interest of these new concepts relies in their possible application in
the solution of problems in engineering, physics and applied mathematics, which are
modelled according to a network whose nodes have assigned numerical values of a
certain parameter delimited by a range of real numbers. The objective is to maximize
the differences between each node and its neighbours, from a local and global point of
view simultaneously through a vectorial objective function, that is the contrast vector.
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