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Dieudonné-Köthe duality for vector-valued
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Abstract

We study Dieudonné-Köthe spaces of Lusin-measurable functions with
values in a locally convex space. Let Λ be a solid locally convex lattice of
scalar-valued measurable functions defined on a measure space Ω. If E is
a locally convex space, define Λ {E} as the space of all Lusin-measurable
functions f : Ω→ E such that q(f(·)) is a function in Λ for every continuous
seminorm q on E. The space Λ {E} is topologized in a natural way and
we study some aspects of the locally convex structure of Λ {E}; namely,
bounded sets, completeness, duality and barrelledness. In particular, we
focus the important case when Λ and E are both either metrizable or
(DF )-spaces and derive good permanence results for reflexivity when the
density condition holds.
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1 Introduction

The Köthe-Toeplitz theory of perfect sequence spaces (see [25, §30] or [44, Ch. 2])
has been one of the most influential in the study of the structure of locally con-
vex spaces. It has provided the specialists with plenty of hints, examples and
counterexamples. Dieudonné [9] extended this theory to spaces of measurable
functions by replacing the

∑
in the definition of Köthe and Toeplitz with a suit-

able
∫

. More recent developments include the study of the vector-valued cases:
Köthe spaces of sequences from a locally convex space [5], [14], [17], [18], [33],
[35], Lp spaces with values in a Banach space [8] or a locally convex space [10],
[11], [12], [13], [23], and Dieudonné-Köthe spaces of measurable functions with
values in a normed space [15], [30], [32].

The aim of this paper is to study Dieudonné-Köthe spaces of measurable
functions with values in a locally convex space and we shall be concerned mainly
with two problems: localization of bounded sets and barrelledness. Of course, the
idea is to extend to the case of functions the techniques used for vector-valued
sequences. One of the first troubles that we face is that we do not have coordinates
anymore, so we have to choose an appropriate definition of measurable function.
The most suitable one for our purposes turns out to be Lusin measurability. In
the case of sequences, one uses properties of the space of all absolutely convergent
sequences from a locally convex space. Hence in our case we need a theory of
absolute integration of functions with values in a locally convex space analogous
to the theory of Bochner integral for Banach spaces. We shall use the theories of
summable functions and absolutely p-integrable functions developed by Thomas
[41], [43] and continued in our previous paper [12].

Roughly speaking, let Λ be a solid locally convex lattice of scalar-valued mea-
surable functions defined on a measure space Ω. If E is a locally convex space,
define Λ {E} as the space of all Lusin-measurable functions f : Ω→ E such that
q(f(·)) is a function in Λ for every continuous seminorm q on E. The space Λ {E}
is topologized in a natural way and we study some aspects of the locally convex
structure of Λ {E}; namely, bounded sets, completeness, duality and barrelled-
ness. The organization of the paper is as follows: Section 2 contains the precise
definitions and describes our framework for the rest of the paper. Section 3 is de-
voted to the problem of localization of bounded sets. We introduce an extension
of the well-known property (B) of Pietsch [33, 1.5.5] and prove that if either both
Λ and E are metrizable or both are (df)-spaces, then the bounded sets in Λ {E}
can be lifted from suitable bounded sets in Λ and E. In Section 4, we give an
example showing that L1{E} need not to be complete even if E is complete. This
forces us to introduce the additional hypothesis “L1{E} is complete” to derive
completeness results for Λ {E}. Denote by Λ× the Dieudonné-Köthe dual of Λ.
The topological dual of Λ with the strong topology β(Λ,Λ×) is not always Λ× as
the example Λ = L∞ shows. Even if the strong dual of Λ is Λ×, it may happen
that the dual of Λ {E} does not coincide with Λ× {E ′b}; e.g. for a Banach space E,
the equality (Λ {E})′ = Λ× {E ′b} holds if and only if E ′ has the Radon-Nikodym
property with respect to µ [15, Thm. 1]. When Λ = L1, this was extended to
quasi-barrelled spaces E such that E ′b has property (B) of Pietsch [12, 4.7]. Then,
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in order to ensure that (Λ {E})′ = Λ× {E ′b} for a general locally convex space E,
we must impose some Radon-Nikodym type of condition on E. This problem will
be studied in Section 5. In Section 6 we use the results about duality to obtain
the barrelledness of Λ {E} in some situations. The last section is devoted to the
important case when Λ and E are both either metrizable or (DF )-spaces and
derive good permanence results for reflexivity when the density condition holds.

2 Terminology and Notation

Measure Space. Throughout, Ω stands for a Hausdorff, locally compact and
σ-compact topological space and µ for a Radon measure on Ω, i.e. µ is a (non-
negative) measure defined on the σ-algebra of all Borel subsets of Ω such that

µ(A) = sup {µ(K) : K is compact and K ⊂ A}

for every Borel set A ⊂ Ω. For the sake of notational simplicity, we shall work
with the completion (Ω,Σ, µ) of the Radon measure space. For the same reason,
we shall simply write a.e. or Lp instead of µ-a.e. or Lp(µ). We denote by p∗

the conjugate number of p ∈ [1,∞]. We assume, to avoid trivial cases, that our
measure space does not reduce to a finite number of atoms. A particular instance
of Radon measure space is the set IN of natural numbers with the discrete topology
and the counting measure. In this case, the spaces we deal with are vector-valued
sequence spaces and, as we pointed out in the Introduction, they will be relevant
because of the insights they provide to tackle the general case.

Dieudonné-Köthe Duality. Let L1
loc be the space of all (classes of a.e. equal)

measurable and locally integrable scalar-valued functions. The family of semi-
norms

φ ∈ L1
loc →

∫
K
|φ| dµ =

∫
Ω
|φ| · χK dµ

obtained when K runs through the compact subsets of Ω defines a metrizable
topology on L1

loc because Ω is σ-compact. With this topology L1
loc is a Fréchet

space. The dual of L1
loc is the space L∞c of all essentially bounded measurable

functions having compact support. In what follows, Λ will stand for a solid
subspace of L1

loc containing L∞c ; solid meaning that if φ ∈ Λ and ψ : Ω → IR
is a measurable function such that |ψ| ≤ |φ| a.e., then ψ is also in Λ. The
Dieudonné-Köthe dual of Λ is the space Λ× defined by:

Λ× :=
{
θ ∈ L1

loc : φ · θ ∈ L1 for all φ ∈ Λ
}
,

and Λ is said to be perfect if Λ = (Λ×)×. The space Λ× is perfect and solid.
For instance, (Lp, Lp

∗
) and (L1

loc, L
∞
c ) are Dieudonné-Köthe dual pairs of perfect

spaces. The spaces Λ and Λ× are put into separate duality by means of the
bilinear form

(φ, θ) ∈ Λ× Λ× →
∫

Ω
φ(t) · θ(t) dµ(t).

This duality was defined and studied by Dieudonné [9]. This line of research was
continued by several authors: [6], [16], [19], [24], [27], [28], [29], [34], [37], [38],
[39], [40] and [45].
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We recall here some relevant facts. The space Λ× is sequentially complete for
the weak topology σ (Λ×,Λ). Therefore, by the Banach-Mackey Theorem, every
weakly bounded set of Λ× is bounded for the strong topology β (Λ×,Λ). We shall
consider on Λ solid topologies. These are polar topologies of uniform convergence
on solid and bounded subsets of Λ×. IfM is a saturated family of solid subsets of
Λ× that are σ (Λ×,Λ)-bounded, and such thatM covers Λ× and is stable by finite
unions and positive multiples, then the solid topology of uniform convergence on
M is called the M-topology. Since every M ∈ M is solid, the corresponding
polar seminorm on Λ is given by

φ ∈ Λ→ qM(φ) := sup
{∫

Ω
|φ(t) · θ(t)| dµ(t) : θ ∈M

}
∈ IR.

The coarsest solid topology is the one obtained for the family of the solid hulls of
singletons in Λ×. This topology is compatible with the dual pair (Λ,Λ×). On the
other extreme, the finest solid topology is obtained for the family of all σ (Λ×,Λ)-
bounded and solid sets in Λ×. This topology coincides with the strong topology
β (Λ,Λ×). The Mackey topology τ(Λ,Λ×) is also a solid topology that not always
coincides with the strong topology, as the case Λ = L∞ shows. Some necessary
and sufficient conditions for the equality of the Mackey and strong topologies are
given in [16]. As another consequence of the Banach-Mackey Theorem, let us
mention that all solid topologies on Λ share with the weak topology σ(Λ,Λ×) the
same family of bounded sets. When Λ is perfect, all solid topologies are complete
and this is also the case for solid topologies on Λ× of uniform convergence on
saturated families of solid bounded sets in Λ (not necessarily perfect, merely
solid). A useful condition when dealing with sequence spaces is the convergence
of the finite sections to the element. In our case, we have that if theM-topology
is coarser than the Mackey topology, then for every φ ∈ Λ the following hold:
(a) limn φχKn = φ for every increasing fundamental sequence of compact sets
covering Ω a.e., and (b) limµ(A)→0 φχA = 0 [16, Thm. 1, (i)⇒ (ii)] (the statement
of this theorem required Λ to be perfect, but the proof of the implication (i) ⇒
(ii) works also for solid spaces).

Lusin-Measurable Functions. Let E be a locally convex space over the field
of the real or complex numbers. We denote by Q(E) the class of all continuous
seminorms on E, by E ′b the dual of E endowed with the strong topology β(E ′, E),
and by pD the Minkowski functional of an absolutely convex set D ⊂ E. If D
is a disc, i.e. an absolutely convex, closed and bounded set, then pD is a norm
on the linear span ED of D. We shall work with Lusin-measurable functions.
A function f : Ω → E is said to be Lusin-measurable if for every compact
set K ⊂ Ω and every ε > 0 there exists a compact set K ′ ⊂ K such that
µ(K \K ′) < ε and the restriction f : K ′ → E is continuous. Equivalently, since
our measure space is σ-finite, f is Lusin-measurable if there exists a sequence
(Kn) of compact sets in Ω (that we may suppose either disjoint or increasing)
such that µ (Ω \ ⋃nKn) = 0 and each restriction f : Kn → E is continuous. For
the sake of brevity, in what follows we shall simply say that f is measurable; if
some other type of measurability is used, it will be mentioned explicitely. We
think that measurability in the sense of Lusin, used e.g. in [3], [4], [10], [11],
[12], [13], [41], [42], and [43], is the most appropriate for the case of a general

4



locally convex space. If E is a Fréchet space, it coincides with the usual notion of
strongly measurable function as the a.e. limit of a sequence of simple functions. A
measurable function f is zero a.e. if and only if the composition with every x′ ∈ E ′
is also zero a.e.; in particular, two measurable functions f, g : Ω → E are equal
a.e. if and only if the scalar functions 〈f(·), x′〉 and 〈g(·), x′〉 coincide a.e. for each
x′ ∈ E ′. In what follows, we shall identify, without further mention, measurable
functions that are a.e. equal. We say that a function f : Ω → E is localized in
a set B ⊂ E if f(t) ∈ B a.e.; in particular, a function f : Ω → E is localized
in a bounded set if and only if its composition with every continuous seminorm
on E, or only every scalar function 〈f(·), x′〉 (x′ ∈ E ′), is essentially bounded.
Another useful fact is that if a measurable function f is localized in ED for some
absolutely convex and closed set D, then the scalar function t→ pD(f(t)) is also
measurable. We shall make frequent use of the following result from [12].

Estimation Lemma [12, 3.7]. Let K be a compact topological space, f : K → E
a continuous function and B ⊂ E an absolutely convex and closed set.

1. If f(K) does not meet EB then for each n ∈ IN there exists a simple function
sn : K → B◦ ⊂ E ′ such that Re 〈f(t), sn(t)〉 > n for all t ∈ K.

2. If f(K) ⊂ EB and pB(f) : K → IR is continuous then for each ε > 0 there
exists a simple function s : K → B◦ ⊂ E ′ such that

pB(f(t)) < Re 〈f(t), s(t)〉+ ε for all t ∈ K.

Let us remark that in the original statement B was a disc. However, the proof
works for the more general case of an absolutely convex and closed set B because
all you need is B = B◦◦.

Summable Functions. A continuous function f : K → E defined on a compact
topological space K and with values in a quasi-complete locally convex space E
always has an integral

∫
K f dµ ∈ E, defined as the limit of Riemann sums [4, §6,

Prop. 8]. This integral is characterized by the fact that〈∫
K
f dµ, x′

〉
=
∫
K
〈f, x′〉 dµ for all x′ ∈ E ′.

This was used by Thomas [41] to define and study the integration of measurable
functions. Let E be a locally convex space and f : Ω → E be a measurable
function. By analogy with the notion of summable families of numbers, and
following [41, 1.2], we say that f is summable if the following net converges:{∫

K
f dµ : K ∈ Cf

}
,

where Cf is the family, ordered by inclusion, of all compact subsets K ⊂ Ω such
that f : K → E is continuous. In that case, the integral of f is∫

Ω
f dµ := lim

K∈Cf

∫
K
f dµ.

5



For A ∈ Σ define
∫
A f dµ :=

∫
Ω f · χA dµ. Then 〈

∫
A f dµ, x

′〉 =
∫
A 〈f, x′〉 dµ for all

x′ ∈ E ′ and A ∈ Σ.

Radon-Nikodym Property. A vector measure is a countably additive set
function m : Σ → E. A vector measure m is said to be µ-continuous if m(A)
converges to zero when µ(A) converges to zero and is said to have bounded
variation if for each q ∈ Q(E) one has

|m|q (Ω) := sup

{∑
A∈Π

q(m(A)) : Π is a measurable partition of Ω

}
<∞.

It is easy to see that for a µ-continuous vector measure having bounded variation,
each set function A ∈ Σ → |m|q (A) is a µ-continuous positive measure. We say
that a vector measure m : Σ→ E has a density (with respect to µ) if there exists
a summable function g : Ω→ E, the density of m, such that the scalar function
t → q(g(t)) is in L1 for every q ∈ Q(E) and m(A) =

∫
A g dµ for all A ∈ Σ. A

locally convex space E is said to have the Radon-Nikodym property (with respect
to µ) if each µ-continuous vector measure m : Σ→ E with bounded variation has
a density. When E is a Banach space, this Radon-Nikodym property coincides
with the usual one. Every reflexive strict (LF )-space has the Radon-Nikodym
property [12, 4.10]. On the other hand, all locally convex spaces have the Radon-
Nikodym property with respect to the counting measure on IN.

We refer the reader to the books by Jarchow [22], Köthe [25], [26] or Pérez
Carreras and Bonet [31] for the terminology about locally convex spaces and to
the monographs by Bourbaki [3], [4], Diestel and Uhl [8], Schwartz [36] or Thomas
[41] for the properties of measurable functions and vector measures. Our paper
[12] contains several Radon-Nikodym theorems for Lusin-measurable functions.

3 Localization of Bounded Sets

Let us give the natural extension to the function case of the vector-valued se-
quence spaces defined by Pietsch [33] and studied later by De Grande-De Kimpe
[5] and Rosier [35].

Definition. A function f : Ω → E is said to be Λ-integrable if it is measurable
and for every q ∈ Q(E) the scalar function

q(f) : t ∈ Ω→ q(f(t)) ∈ IR

is a function in Λ. We shall denote by Λ {E} the vector space of all Λ-integrable
functions. Note that Λ {E} is solid in the sense that if θ ∈ L∞ and f ∈ Λ {E},
then θ · f ∈ Λ {E}. Observe also that Λ {E} contains the space Sc(E) of all
simple functions with compact support and also the space L∞c (E). If we have a
solid M-topology on Λ, we define on Λ {E} a natural topology by means of the
seminorms

f ∈ Λ {E} → qM(q(f)) := sup
{∫

Ω
|θ(t)| · q(f(t)) dµ(t) : θ ∈M

}
∈ IR,

6



where q ∈ Q(E) and M ∈M. When E is a Banach space and Λ = Lp, the space
Λ {E} is the space Lp {E} of Bochner p-integrable functions. When E and Λ are
metrizable (resp. normable) then Λ {E} also is.

It follows from the scalar case mentioned in the Introduction that if the M-
topology is coarser than the Mackey topology τ(Λ,Λ×), then for each f ∈ Λ {E}
we have (a) limn fχKn = f for every increasing fundamental sequence of compact
sets and (b) limµ(A)→0 fχA = 0. The measurability of a function tells us that
we can approximate it by simple functions uniformly on appropriate compact
sets. Using this together with properties (a) and (b) above, a straightforward
computation shows that Sc(E) is dense in Λ {E} in this case.

In this section, we shall be mainly concerned with the structure of the bounded
subsets of Λ {E} or, rather, with the possibility of finding them in a natural
way from bounded sets in Λ and E. Since all solid topologies in Λ share the
same families of bounded sets, it follows that a set C ⊂ Λ {E} is bounded if
and only if for each q ∈ Q(E) and θ ∈ Λ×, the set {

∫
Ω |θ| q(f) dµ : f ∈ C} is

bounded in IR. For vector-valued sequence spaces, Rosier [35] (see [31, 4.9.7–11] as
well) introduced the notion of fundamental λ-boundedness; a concept generalizing
property (B) of Pietsch [33, 1.5.5] that translated into our context reads as follows.

Definition. We say that E is fundamentally Λ-bounded if each bounded subset
of Λ {E} is contained in a set of the form

[R,B] := {f ∈ Λ {E} : f(t) ∈ EB a.e. and pB(f) ∈ R} ,

where B is a disc in E and R is a solid disc in Λ. (It is clear that such a set
[R,B] is bounded in Λ {E}.) Equivalently, E is fundamentally Λ-bounded if for
each bounded set C ⊂ Λ {E} there exists a disc B ⊂ E such that each function
f ∈ C is localized in EB and {pB(f) : f ∈ C} is a bounded subset of Λ. It is
easy to see that fundamental Λ-boundedness is hereditary for subspaces but it is
an open question whether it lifts to completions.

With this definition, fundamental l1-boundedness is just property (B). For
examples of fundamentally λ-bounded spaces, where λ is a Köthe sequence space,
we refer the reader to [14] and [35]. Normed spaces are fundamentally Λ-bounded
[15]. For Lp spaces we know that if E is quasi-complete then E is fundamentally
Lp-bounded if and only if it is fundamentally `p-bounded [12, 3.8]. As a special
case, we have that metrizable, strict (LF )-spaces and (df)-spaces are fundamen-
tally Lp-bounded for every p ∈ [1,∞] [12, 3.10]. Every locally convex space is
fundamentally L∞-bounded (in particular, `∞-bounded) [10, Lem. 1].

Our first result extends to our case one of the main contributions of Rosier’s
[35, 6.(5)]. The root of this result can be traced back to the localization of
bounded sets in L1{E} and `1{E} given by Grothendieck [20, pp. 68–69] for
Fréchet spaces, and Pietsch [33, 1.5.8] for metrizable and (df)-spaces.

Theorem 1. Let Λ be a perfect space that is metrizable for the strong topology
β(Λ,Λ×). The following hold:

1. If E is metrizable then E is fundamentally Λ-bounded.
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2. If E is a (df)-space then E is fundamentally Λ×-bounded.

Proof. Since Λ(β(Λ,Λ×)) is metrizable, Λ× has an increasing fundamental
sequence of σ(Λ×,Λ)-bounded solid discs (Mn).

Part (1): Let C be a bounded subset in Λ {E}. For each q ∈ Q and n ∈ IN,
the following supremum is finite

sup
{∫

Ω
|θ| q(f) dµ : θ ∈Mn, f ∈ C

}
,

hence Mn · C := {θ · f : θ ∈Mn, f ∈ C} is a bounded subset of L1 {E}. Since
metrizable spaces are fundamentally L1-bounded [12, 3.10], there exists a disc
Bn ⊂ E such that Mn · C ⊂ [V1, Bn] where V1 is the closed unit ball of L1. This
tells us that for each f ∈ C and θ ∈Mn we have

(i) θ(t)f(t) ∈ EBn a.e., and (ii) pBn(θf) ∈ V1.

Since E is metrizable, for the sequence (Bn) of bounded subsets in E, there is
a sequence of positive numbers (ρn) such that

⋃
n ρnBn is contained in a disc B.

Use that Λ× contains the characteristic functions of a fundamental sequence of
compact subsets of Ω to deduce from (i) that every f ∈ C is localized in EB.
The first part will be proved once we show that {pB(f) : f ∈ C} is a bounded
subset of Λ×× = Λ. Take θ ∈ Λ×, then θ is in some Mn. Since ρnBn ⊂ B, it
follows from (ii) above that for every f ∈ C, the function θpB(f) is in L1 and
‖θpB(f)‖1 ≤ ρ−1

n , hence

sup
{∫

Ω
|θ| pB(f) dµ : f ∈ C

}
≤ ρ−1

n .

Therefore, {pB(f) : f ∈ C} is a bounded subset of Λ×× = Λ.

Part (2): If C ⊂ Λ× {E} is bounded then for each φ ∈ Λ one has that
{φf : f ∈ C} is a bounded subset of L1 {E}. Since (df)-spaces are fundamen-
tally L1-bounded [12, 3.10], there is a disc D(φ) ⊂ E such that for each f ∈ C
we have φ(t)f(t) ∈ ED(φ) a.e. and

∥∥∥φpD(φ)(f)
∥∥∥

1
≤ 1. First let us see that there

is a bounded set D ⊂ E that does not depend on any φ and such that every
f ∈ C is localized in ED. Proceed by contradiction: Let B1 ⊂ B2 ⊂ . . . be a
fundamental sequence of discs in E and suppose that for each n = 1, 2, . . . there
exists some fn ∈ C such that the set An = {t ∈ Ω : fn(t) /∈ EBn} has positive
measure. Since fn is measurable, we can obtain a compact set Kn ⊂ An with
positive measure and such that fn : Kn → E is continuous. On the other hand,
since M◦

n is absorbent in Λ = Λ×× and χKn ∈ Λ, there exists ρn > 0 such that
ρnχKn ∈ M◦

n. Applying the Estimation Lemma in §2 to ρnfn : Kn → E, we
deduce that there exists a simple function sn : Kn → B◦n such that

Re 〈ρnfn(t), sn(t)〉 > n

µ(Kn)
for all t ∈ Kn.

By integrating we have ∫
Kn

Re 〈ρnfn(t), sn(t)〉 dµ(t) > n.
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Now, every sn(Kn) is a finite set. Since sn(Kn) ⊂ B◦n and (B◦n) is a fundamen-
tal system of zero-neighbourhoods in E ′b, it follows that we can arrange the set⋃
n sn(Kn) as a null sequence in E ′b. This null sequence is equicontinuous be-

cause E is a (df)-space. Therefore, there exists an absolutely convex and closed
zero-neighbourhood U in E such that

⋃
n sn(Kn) ⊂ U◦. Let q ∈ Q(E) be the

Minkowski functional of U . The set {q(f) : f ∈ C} is bounded in Λ× by hypoth-
esis, hence it is included in some Mj. For every t ∈ Kj we have

q(fj(t)) = sup {|〈fj(t), x′〉| : x′ ∈ U◦} ≥ Re 〈fj(t), sj(t)〉 .

Bearing in mind that fj is in C and that ρjχKj
∈M◦

j we have the contradiction

1 ≥
∫

Ω
q(fj)ρjχKj

dµ ≥
∫
Kj

Re 〈ρjfj(t), sj(t)〉 dµ > j.

The proof will be finished if we show that there is a disc B ⊂ E such that
D ⊂ B and {pB(f) : f ∈ C} is bounded in Λ×. Assume, without loss of generality,
that D is the first set in a fundamental sequence D ⊂ B1 ⊂ B2 ⊂ . . . of bounded
sets in E and suppose, on the contrary, that for each n = 1, 2, . . . there exists
fn ∈ C such that pBn(fn) /∈ Mn. Then for some non-negative function φn ∈ M◦

n

we have ∫
Ω
φnpBn(fn) dµ > 1.

Since φn, pBn(fn) and fn are measurable functions, there exists a compact set
Kn ⊂ Ω with positive measure and such that the restriction of each of them to
Kn is continuous and, moreover,∫

Kn

φnpBnfn dµ > 1.

By applying the Estimation Lemma once again, given εn > 0 we get a sim-
ple function sn : Kn → B◦n ⊂ E ′ such that pBn (φnfn) < Re 〈φnfn, sn〉 + εn
pointwisely in Kn. Moreover, by choosing an appropriate εn, we also have
that

∫
Kn

Re 〈φnfn, sn〉 dµ > 1. Proceeding as before, one can check that the
set

⋃
n sn (Kn) is equicontinuous. Let U be a zero-neighbourhood in E, with

Minkowski functional q, such that
⋃
n sn(Kn) ⊂ U◦. Since C is a bounded subset

of Λ× {E}, we have that {q(f) : f ∈ C} is a bounded subset of Λ× and therefore
it is included in some Mj. Using that φj ∈M◦

j is non-negative, that the function
sj takes its values in U◦ and that fj ∈ C, we have

1 <
∫
Kj

Re 〈φjfj, sj〉 dµ ≤
∫
Kj

φjq(fj) dµ ≤ 1,

a contradiction.

The hypothesis that Λ is perfect is essential here; see [13, Remark after
Lem. 2]. Since perfect spaces are sequentially complete for all solid topologies,
the hypothesis of this theorem is, in other words, that Λ is a perfect Fréchet
space for some solid topology. For 1 ≤ p ≤ ∞ let Lploc be the Fréchet space of all
measurable and locally p-integrable scalar functions and Lpc be the (DF )-space
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of all measurable and p-integrable functions having compact support (see [21]).
The couple (Lploc, L

p∗
c ) is a Dieudonné-Köthe dual pair of perfect spaces.

Corollary 1. For 1 ≤ p ≤ ∞ the following hold:

1. If E is metrizable then E is fundamentally Lploc-bounded.

2. If E is a (df)-space then E is fundamentally Lpc-bounded.

Corollary 2. Let Λ(β(Λ,Λ×)) be a perfect Banach space such that its dual is Λ×.
Let E = indnEn be a regular inductive limit of a sequence Banach spaces (En).
If either the Banach spaces En are all separable or the inductive limit is strict,
then Λ {E} = indnΛ{En}. In particular, Lp{E} = indnL

p{En} for 1 ≤ p <∞.

Proof. Under the hypotheses for Λ, we know that indnΛ{En} is a topological
subspace of Λ {E} [11, 3.3]. Since E is a (DF )-space, Theorem 1 tells us that
for every f ∈ Λ {E} there is a disc B ⊂ E such that f is localized in EB and
pB(f) ∈ Λ. The inductive limit is regular, therefore B is contained and bounded
in some En. Then f is localized in En and so it is measurable for the inductive
limit topology restricted to En. If the limit is strict, then f is measurable for the
norm of En. If every step in the inductive sequence is separable, a theorem due
to Meyer and Schwartz [36, Part I, II.3 Cor. 2 of Thm. 10 on pp. 122–124] [41,
p. 51] ensures that f is measurable for the norm of En. In either case f ∈ Λ{En}
and this proves that Λ {E} = indnΛ{En}.

4 Completeness

This section is devoted to study the completeness of the spaces Λ {E}. The
starting point is that for a complete locally convex space E, the space L1{E}
is not complete in general. This was already noted in Köthe’s book [26, §41.7,
p. 200], but no example was mentioned. Here we give one by using an example,
due to Thomas [41, 6.11], of a vector measure with values in the dual of a non-
separable Banach space that has bounded variation but no density with respect
to the weak-star topology.

Example. Let Z be the unit ball of L∞[0, 1]. For each z ∈ Z we fix a represen-
tative such that |z(t)| ≤ 1 for every t ∈ [0, 1]. Consider Z as an index set and
let F = `∞(Z) be the dual of the Banach space E = `1(Z) endowed with the
topology of uniform convergence on the norm-compact subsets of E. Then F is
a complete (gDF )-Schwartz space [22, 9.4.1–3, 11.1.4, 12.5.2 and 12.5.6]. (More-
over, by the Banach-Dieudonné Theorem, the topology on F equals the topology
of uniform convergence on the norm-null sequences of E [22, 9.4.3].) We shall
prove that if we take the unit interval with the Lebesgue measure as measure
space, then L1{F} is not complete. For each finite set Y ⊂ Z, let (χY (z))z∈Z be
the element of `∞(Z) that takes the value 1 in the coordinates z such that z ∈ Y ,
and 0 otherwise, and define the simple function fY by

t ∈ [0, 1]→ fY (t) = (z(t) · χY (z))z∈Z ∈ F.
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Then fY ∈ L1{F}. Let us see that, with the order induced by the inclusion
relation, the net {fY : Y ⊂ Z, Y finite} is a Cauchy net in L1{F}. Let q be a
continuous seminorm on F ; we may assume that q is the seminorm of uniform
convergence on some norm-compact set C ⊂ `1(Z). A well-known property of
`1(Z) is that the absolute convergence of the series that gives the norm of each
element is uniform on every compact set. Therefore, given ε > 0 there is a finite
set Y0 such that ∑

z /∈Y0

|ξ(z)| < ε for all ξ ∈ C.

Now, if Y is a finite set contained in Z \ Y0, for t ∈ [0, 1] we have

q(fY (t)) = sup {|〈ξ, fY (t)〉| : ξ ∈ C} = sup

{∣∣∣∣∣∑
z∈Z

ξ(z) · χY (z) · z(t)

∣∣∣∣∣ : ξ ∈ C
}

≤ sup

{∑
z∈Y
|ξ(z) · z(t)| : ξ ∈ C

}
< ε.

Then
∫ 1

0 q(fY (t)) dµ(t) < ε. This proves that {fY : Y ⊂ Z, Y finite} is a Cauchy
net. The space L1{F} is isomorphically embedded in the space cabv(Σ, µ, F ) of
all µ-continuous vector measures m : Σ → F with bounded variation; to every
f ∈ L1{F} we asign the vector measure

mf : A ∈ Σ→ mf (A) =
(∫

A
(f(z))(t) dµ(t)

)
z∈Z
∈ F.

Since cabv(Σ, µ, F ) is complete (this can be proved as in the Banach space case),
our net {fY : Y ⊂ Z, Y finite} converges to a vector measure m : Σ → F . By
looking at the coordinates, we obviously have

m(A) =
(∫

A
z(t) dµ(t)

)
z∈Z
∈ F.

But m does not have a density even for the weak topology σ(F,E) [41, 6.11],
hence {fY : Y ⊂ Z, Y finite} does not converges in L1{F}. Since the net is
bounded, it also follows that L1{F} is not quasi-complete.

The pathology exhibited by this example is the only one that can happen in
the sense explained by our next result.

Theorem 2. If L1{E} and Λ are complete (resp. sequentially complete or quasi-
complete) then so is Λ {E}.

Proof. We give the proof for the first case; the remaining two can be proved
analogously. Let (fi)i∈I be a Cauchy net in Λ {E}. Fix an a.e. partition (Kn) of Ω
into pairwise disjoint compact subsets. For each n ∈ IN, the function χKn is in Λ×,
hence (fi ·χKn)i∈I is a Cauchy net in L1 {E}. By hypothesis (fi ·χKn)i∈I converges
to some function gn in L1 {E}. Since each gn is measurable and the sequence (Kn)
is pairwise disjoint, the function g =

∑∞
n=1 gn · χKn is also measurable. Let us

first check that g is in Λ {E}. For each q ∈ Q(E), the net of scalar functions
(q(fi))i∈I is a Cauchy net in Λ so that it converges to some function φ ∈ Λ. In
particular, for every n ∈ IN we have that φ · χKn is the limit in L1 of the net

11



(q(fi) · χKn)i∈I , hence q(g) · χKn = φ · χKn a.e. in Ω and it follows that q(g) ∈ Λ
because q(g) = φ a.e. in Ω. Since (fi · χKn)i∈I converges to gn in L1{E}, we have
that our Cauchy net (fi)i∈I converges to g ∈ Λ {E} for the topology induced by
L1

loc{E}. The desired conclusion will follow from the Bourbaki-Robertson lemma
as soon as we prove that Λ {E} has a basis of zero-neighbourhoods that are closed
for the topology of L1

loc{E}. Take q ∈ Q(E) and M ∈ M. Bearing in mind that
M is solid, we can write

{f ∈ Λ {E} : qM(q(f)) ≤ 1} =
⋂
θ∈M

{
f ∈ Λ {E} :

∫
Ω
|θ| · q(f) dµ ≤ 1

}

=
⋂

θ∈M∩L∞c

{
f ∈ Λ {E} :

∫
Ω
|θ| · q(f) dµ ≤ 1

}

and this set is closed for the topology of L1
loc{E}.

By looking at the proof, one can see that the hypothesis “L1{E} is complete”
can be replaced by its equivalent “L1

loc{E} is complete.”

Corollary 3. If L1{E} is complete (resp. sequentially complete or quasi-complete),
the following hold:

1. If Λ is perfect then Λ {E} is complete (resp. sequentially complete or quasi-
complete).

2. Λ×{E} is complete (resp. sequentially complete or quasi-complete) for every
solid topology on Λ× of uniform convergence on a saturated family of solid
bounded subsets of Λ.

A locally convex space E is said to have the metrizable property (B) of Pietsch,
property (BM) for short, if every bounded set C ⊂ l1{E} is bounded in l1{EB}
for some metrizable disc B ⊂ E. Note that if E has property (B) and ev-
ery bounded subset of E is metrizable then E has property (BM). Metrizable
spaces have property (BM). More generally, so does every strict (LF )-space.
For (DF )-spaces, property (BM), or rather that bounded subsets are metriz-
able, equals the dual density condition introduced by Bierstedt and Bonet [1,
1.5]. We have proved in [12, Th. 4.12] that for a quasi-complete locally convex
space E with property (BM) the space L1 {E} is quasi-complete. Then we can
give the following corollaries.

Corollary 4. If E is a quasi-complete locally convex space having property (BM),
the following hold:

1. If Λ is perfect then Λ {E} is quasi-complete.

2. Λ×{E} is quasi-complete.

Corollary 5. If E is a Fréchet (resp. Banach) space and Λ is a perfect Fréchet
(resp. Banach) space, then Λ {E} is also a Fréchet (resp. Banach) space.

12



Since quasi-complete (LB)-spaces are complete [31, 8.3.18], we can use Corol-
lary 2 above (or also [11, 3.6]) to deduce the following result.

Corollary 6. Let Λ(β(Λ,Λ×)) be a perfect Banach space such that its dual is Λ×.
Let E = indnEn be a strict inductive limit of a sequence Banach spaces (En).
Then Λ {E} = indnΛ{En} is a complete (LB)-space. In particular, Lp{E} is a
complete (LB)-space for 1 ≤ p <∞.

The situation for local completeness is different. We do not need the extra
hypothesis that L1{E} is locally complete when E is fundamentally Λ-bounded.

Theorem 3. If Λ is perfect and E is locally complete and fundamentally Λ-
bounded, then Λ {E} is locally complete.

Proof. Let us see that every disc in Λ {E} is a Banach disc. Since the sets
[R,B] form a fundamental family of bounded sets in Λ {E} when R and B run,
respectively, through the solid discs in Λ and discs in E, it is enough to prove
that every [R,B] is a Banach disc. By [31, p. 83] we must show that for each
sequence (fn) from [R,B], the series

∑
n 2−nfn converges in Λ {E} to an element

of [R,B]. Let R◦ be the polar of R in Λ× and define R◦ · [R,B] := {θ · f : θ ∈
R◦, f ∈ [R,B]}. Clearly, R◦ · [R,B] is a subset of [V1, B], where V1 is the unit ball
of L1. But [V1, B] is a Banach disc [12, 3.12], hence for each θ ∈ R◦ the series∑
n 2−nθfn converges in L1{E} to an element of [V1, B] and the convergence is

a.e. in (EB, pB) [12, Proof of 3.12]. Since R◦ is absorbent in Λ×, and this space
contains the characteristic functions of compact subsets of Ω, it follows that
the series

∑
n 2−nfn defines a measurable function from Ω into EB. Finally, for

every θ ∈ R◦ we have pB(θ · f) = |θ| pB(f) ∈ V1, hence pB(f) ∈ Λ×× = Λ and
pB(f) ∈ R◦◦ = R.

5 Duality

We want to give conditions for (Λ {E})′ = Λ× {E ′b} to hold. It will be useful to
consider the following generalized Dieudonné-Köthe dual of Λ {E}.

Definition. The Dieudonné-Köthe dual of a space Λ {E} is defined as the set
(Λ {E})× of all measurable functions g : Ω→ E ′b such that∫

Ω
|〈f(t), g(t)〉| dµ <∞ for all f ∈ Λ {E}.

For g ∈ (Λ {E})× define the linear map

Tg : f ∈ Λ {E} → Tg(f) :=
∫

Ω
〈f(t), g(t)〉 dµ(t).

Remark. The absolute value inside the integral is not really needed in this defini-
tion; one may think of defining Tg as above for a function g : Ω→ E ′b by requiring
merely that

∫
Ω 〈f(t), g(t)〉 dµ(t) exists for all f ∈ Λ {E}. But, as a matter of fact,

for such a function g and f ∈ Λ {E} there exists a function ξ in the unit ball of
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L∞ such that |〈f(t), g(t)〉| = ξ(t) 〈f(t), g(t)〉 a.e. in Ω. Now ξf ∈ Λ {E} because
Λ {E} is solid, hence∫

Ω
|〈f, g〉| dµ =

∫
Ω
〈ξf, g〉 dµ = Tg(ξf).

We have left the absolute value inside the integral because that is the historical
way of defining Köthe duals.

Lemma 1. For g ∈ (Λ {E})× the operator Tg is continuous on Λ {E} if and only
if there exists an equicontinuous disc D ⊂ E ′ such that g is localized in E ′D and
pD(g) ∈ Λ×.

Proof. If Tg is continuous then there is a seminorm q ∈ Q(E) and a solid disc
M ∈M such that

|Tg(f)| ≤ sup
{∫

Ω
q(f) |θ| dµ : θ ∈M

}
for all f ∈ Λ {E}.

Call U the closed unit ball of q and take D = U◦. Let us see first that g is localized
in E ′D. If, on the contrary, µ {t ∈ Ω : g(t) 6∈ E ′D} > 0, there is a compact subset
K ⊂ Ω with positive measure and such that g is continuous on K and g(K) does
not meet E ′D. Since g : K → E ′ is continuous for the strong topology, it is also
continuous for the weak topology σ(E ′, E). By the Estimation Lemma, there
exists a simple function sn : K → D◦ = U such that Re 〈sn(t), g(t)〉 > n for all
t ∈ K. Integrate to obtain

n · µ(K) ≤
∫

Ω
Re 〈sn, g〉 dµ = ReTg(sn) ≤ sup

{∫
Ω
q(sn) |θ| dµ : θ ∈M

}
≤ sup

{∫
Ω
χK |θ| dµ : θ ∈M

}
= qM(χK),

a contradiction for big enough values of n.

We have to prove now that pD(g) ∈ Λ×. Fix a non-negative function φ ∈ Λ.
Let (Kn) be an increasing sequence of compact sets covering a.e. Ω and such that
all the restrictions of φ · g and φ · pD(g) to Kn are continuous. Using again the
Estimation Lemma, we can find a simple function sn : Kn → D◦ = U such that

φ(t)pD(g(t)) ≤ Re 〈sn(t), φ(t)g(t)〉+ µ(Kn)−1 for all t ∈ Kn.

Integration on Kn yields∫
Kn

φ · pD(g) dµ ≤
∣∣∣∣∫
Kn

〈φ · sn, g〉 dµ
∣∣∣∣+ 1 = |Tg(φ · sn)|+ 1

≤ sup
{∫

Ω
q(φsn) |θ| dµ : θ ∈M

}
+ 1

≤ sup
{∫

Ω
φ · |θ| dµ : θ ∈M

}
+ 1 <∞.

By the Monotone Convergence Theorem, we have that φ · pD(g) is integrable.
Since φ was arbitrary, it follows that pD(g) ∈ Λ×.

Conversely, assume that there exists an equicontinuous disc D ⊂ E ′ such
that g is localized in E ′D and pD(g) ∈ Λ×. Take any set M ∈ M such that
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pD(g) ∈ M . Let q be the polar seminorm associated to D. Since we have that
|〈f(t), g(t)〉| ≤ q(f(t)) · pD(g(t)) for all t ∈ Ω, it follows that

|Tg(f)| ≤
∫

Ω
q(f)pD(g) dµ ≤ sup

{∫
Ω
q(f) |θ| dµ : θ ∈M

}
.

Therefore, Tg is continuous.

What is the relation between Λ× {E ′b} and (Λ {E})×?

Theorem 4. The following hold:

1. (Λ {E})× ⊂ Λ× {E ′b}.

2. If E is fundamentally Λ-bounded then (Λ {E})× = Λ× {E ′b}.

3. If E is quasi-barrelled and E ′b is fundamentally Λ×-bounded, then we have
that (Λ {E})× = Λ× {E ′b}. Moreover, in this case every g ∈ Λ× {E ′b} de-
fines, via Tg, an element of the topological dual of Λ {E}, in other words
Λ× {E ′b} ⊂ (Λ {E})′.

Proof. Part (1): Take g ∈ (Λ {E})×. We need to prove that q(g) is in Λ×

for every continuous seminorm q on E ′b. So assume that q is the polar seminorm
corresponding to a disc B ⊂ E and fix φ ∈ Λ. Let (Kn) be a disjoint sequence of
compact subsets of Ω such that the restrictions of both g and q(g) to each Kn are
continuous and µ (Ω \ ⋃nKn) = 0. For each n ∈ IN define εn as 2−n ‖φχKn‖

−1
1

if ‖φχKn‖1 6= 0 and εn = 1 otherwise. Since g : Kn → E ′b is continuous, it
will be also continuous for the weak topology σ(E ′, E), so that we can apply the
Estimation Lemma to deduce that there is a simple function sn : Kn → B◦◦ = B
such that q(g(t)) < Re 〈sn(t), g(t)〉 + εn for all t ∈ Kn. Define the measurable
function s =

∑
n snχKn , then we have

|φ(t)| q(g(t)) ≤ Re 〈|φ(t)| s(t), g(t)〉+
∑
n

εnχKn(t) |φ(t)| a.e. in Ω.

The range of s is bounded, hence |φ| s ∈ Λ {E}. It follows that 〈|φ| s, g〉 ∈ L1

because g ∈ (Λ {E})×. On the other hand, by the choice of the numbers εn, it is
clear that the function

∑
n εnχKn |φ| is also in L1. Therefore, |φ| q(g) ∈ L1 and,

since φ was arbitrary, q(g) ∈ Λ× as desired.

Part (2): We have to prove the inclusion Λ× {E ′b} ⊂ (Λ {E})×. Take a
function g ∈ Λ× {E ′b}. Given f ∈ Λ {E}, there is a disc B ⊂ E such that
f(t) ∈ EB a.e. and pB(f) ∈ Λ. Let q be the continuous seminorm on E ′b of uni-
form convergence on B. Then |〈f(t), g(t)〉| ≤ pB(f(t)) · q(g(t)) holds pointwisely.
But pB(f) ∈ Λ and q(g) ∈ Λ×, hence pB(f) · q(g) ∈ L1, so that 〈f, g〉 is also in
L1. Since f was arbitrary in Λ {E}, we have that g ∈ (Λ {E})×.

Part (3): Take g ∈ Λ× {E ′b}. Since E ′b is fundamentally Λ×-bounded, there
exists a disc D ⊂ E ′b such that g(t) ∈ E ′D a.e. and pD(g) ∈ Λ×. Since E is quasi-
barrelled, we have that D is equicontinuous so that the polar seminorm q of
uniform convergence on D is continuous on E. Now, for each f ∈ Λ {E} we have
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|〈f(t), g(t)〉| ≤ q(f(t))pD(g(t)) and this latter function is in L1 because q(f) ∈ Λ
and pD(g) ∈ Λ×. Since f was arbitrary in Λ {E}, we have that g ∈ (Λ {E})×.
The inclusion Λ× {E ′b} ⊂ (Λ {E})′ follows from Lemma 1 and the fact that E is
quasi-barrelled.

As we mentioned in the Introduction, if we want (Λ {E})′ = Λ× {E ′b} to hold
it will be necessary not only to require Λ′ = Λ×, but also that E ′b satisfies the
Radon-Nikodym property.

Theorem 5. Assume that the dual of Λ is Λ× and that E ′b is quasi-complete and
has the Radon-Nikodym property. Then every element of the dual of Λ {E} can
be represented by means of a function g ∈ Λ× {E ′b}, i.e. (Λ {E})′ ⊂ Λ× {E ′b}.

Proof. Take T ∈ (Λ {E})′. We must find g ∈ Λ× {E ′b} such that

T (f) =
∫

Ω
〈f(t), g(t)〉 dµ(t) for all f ∈ Λ {E}.

T is continuous, hence there is a seminorm q ∈ Q(E) and M ∈M such that

|T (f)| ≤ sup
{∫

Ω
|θ| q(f) dµ : θ ∈M

}
for all f ∈ Λ {E}.

Let K ⊂ Ω be compact. For a measurable set A ⊂ K, define an element mK(A) ∈
E ′ by x ∈ E → 〈x,mK(A)〉 := T (xχA). Indeed, xχA ∈ Sc(E) ⊂ Λ {E}, so that

|〈x,mK(A)〉| = |T (xχA)| ≤ sup
{∫

A
|θ| q(x) dµ : θ ∈M

}
= q(x) · sup

{∫
A
|θ| dµ : θ ∈M

}
= q(x) · qM(χA).

This defines a finitely additive set function mK : A ∈ ΣK → mK(A) ∈ E ′, where
ΣK is the σ-algebra of all measurable sets contained in K. A straightforward
computation shows that mK has bounded variation; as a matter of fact, if we
take a strong seminorm qB on E ′, where B is a disc in E, we have

n∑
j=1

qB(mK(Aj)) ≤ sup {q(x) : x ∈ B} · qM(χA)

for every measurable partition {A1, A2, . . . , An} of a set A ⊂ K. Since Λ′ = Λ×,
it follows that the M-topology is coarser than the Mackey topology, therefore
limµ(A)→0 qM(χA) = 0. This and the inequality above yield that mK is µ-
continuous. Let us see that mK is countably additive. For a disjoint sequence
(An) ⊂ ΣK and A = ∪nAn we have limn µ

(
A \ ∪nj=1Aj

)
= 0. But

qB
(
mK(A)−mK

(
∪nj=1Aj

))
≤ sup {q(x) : x ∈ B} · qM

(
χ(A\∪n

j=1Aj)

)
,

therefore
lim
n→∞

qB
(
mK(A)−mK

(
∪nj=1Aj

))
= 0.

By the Radon-Nikodym property, there is a summable function gK : K → E ′b
such that gK ∈ L1{E ′b} and 〈x,mK(A)〉 =

∫
A 〈x, gK(t)〉 dµ(t) for all x ∈ E and
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A ∈ ΣK . Take different compact sets K1 and K2. It is clear that gK1 and gK2

coincide a.e. on K1 ∩ K2, so we may define a measurable function g : Ω → E ′b
by requiring g = gK a.e. on every compact set K. Plainly, g ∈ L1

loc{E ′b} and for
every simple function s with compact support we have T (s) =

∫
Ω 〈s, g〉 dµ. Since

Sc(E) is dense in Λ {E} and T is continuous, it follows that the integral Tg(f) =∫
Ω 〈f, g〉 dµ exists and satisfies Tg(f) = T (f) for every f ∈ Λ {E}. Finally, as we

pointed out before Lemma 1, this implies that g ∈ (Λ {E})× ⊂ Λ× {E ′b}.

Since the strong dual of a quasi-barrelled space is quasi-complete [22, 12.2.4],
the previous theorems yield the following result.

Theorem 6. Assume that the dual of Λ is Λ×, that E is quasi-barrelled and that
E ′b is fundamentally Λ×-bounded and has the Radon-Nikodym property. Then
(Λ {E})′ = Λ× {E ′b} = (Λ {E})×.

6 Barrelledness Conditions

We have just seen that under certain conditions the equality Λ× {E ′b} = (Λ {E})′
holds. In this case, the precise knowledge of the dual space enables us to study
the strong topology and derive some barrelledness properties. When (Λ {E})′
equals Λ× {E ′b}, we have two topologies on this space. Namely, the strong topol-
ogy β(Λ× {E ′b} ,Λ {E}) as a dual space, and the natural topology as a space of
vector-valued functions when Λ× and E ′ are endowed with their respective strong
topologies β(Λ×,Λ) and β(E ′, E). In this section, we shall speak about them as
the strong and the natural topologies, respectively.

Theorem 7. Assume that the dual of Λ(β(Λ,Λ×)) is Λ×, that E is quasi-barrelled
and fundamentally Λ-bounded, and that E ′b is fundamentally Λ×-bounded and has
the Radon-Nikodym property. Then (Λ {E})′ = Λ× {E ′b}, the strong topology on
Λ× {E ′b} coincides with its natural topology, and Λ {E} is quasi-barrelled.

Proof. The equality (Λ {E})′ = Λ× {E ′b} is Theorem 6 above applied to Λ
endowed with the strong topology β(Λ,Λ×).

Let us prove now that the strong topology on Λ× {E ′b} = (Λ {E})′ is coarser
that the natural topology. Let C be a bounded set in Λ {E} and consider the
strong seminorm

qC : g ∈ Λ× {E ′b} → qC(g) := sup
{∣∣∣∣∫

Ω
〈f, g〉 dµ

∣∣∣∣ : f ∈ C
}
.

Since E is fundamentally Λ-bounded, there exists a disc B ⊂ E and a solid disc
R ⊂ Λ such that for each f ∈ C we have f(t) ∈ EB a.e. and {pB(f) : f ∈ C} ⊂ R.
Since |〈f(t), g(t)〉| ≤ pB(f(t)) · qB(g(t)), we have

qC(g) ≤ sup
{∫

Ω
|〈f, g〉| dµ : f ∈ C

}
≤ sup

{∫
Ω
|φ| qB(g) dµ : φ ∈ R

}
.

The last member in the preceding inequality defines a seminorm continuous for the
natural topology, hence the strong topology is coarser than the natural topology.
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On the other hand, the natural topology is coarser than the strong topology.
To see this, let qB be the strong seminorm on E ′b of uniform convergence on a
disc B ⊂ E, and R a solid disc in Λ. Take the bounded set C = [R,B] ⊂ Λ {E}.
It will be enough to prove that for every g ∈ Λ× {E ′b}, the following inequality
holds: qR(qB(g)) ≤ qC(g). Since

qR(qB(g)) = sup
{∫

Ω
|φ| qB(g) dµ : φ ∈ R

}
,

given ε > 0 there exists a non-negative function φ ∈ R such that

qR(qB(g)) < ε+
∫

Ω
φ · qB(g) dµ.

Take a sequence (Kn) of disjoint compact sets covering Ω a.e. and such that the
restrictions of both g and qB(g) to each Kn are continuous. Choose a sequence of
positive numbers (δn) such that the measurable function δ =

∑
n δnχKn satisfies∫

Ω φ · δ dµ < ε. By the Estimation Lemma in §2, for each δn there exists a simple
function sn : Kn → B such that qB(g) ≤ Re 〈sn, g〉 + δn pointwisely in Kn. The
function s =

∑
n snχKn is measurable and verifies qB(g) ≤ Re 〈s, g〉+ δ a.e. in Ω.

Multiply by φ, integrate and take into account that φ · s is in C to deduce

qR(qB(g)) ≤ ε+
∫

Ω
φ · Re 〈s, g〉 dµ+

∫
Ω
φ · δ dµ

≤ ε+
∫

Ω
Re 〈φ · s, g〉 dµ+ ε

≤ 2ε+ sup
{∫

Ω
|〈f, g〉| dµ : f ∈ C

}
= 2ε+ qC(g).

Since ε was arbitrary, we have qR(qB(g)) ≤ qC(g).

Let us prove that Λ {E} is quasi-barrelled. If H ⊂ (Λ {E})′ = Λ× {E ′b}
is strongly bounded, then H is bounded for the natural topology. Since E ′b is
fundamentally Λ×-bounded, there is a disc D ⊂ E ′b and a solid disc M ⊂ Λ× such
that H ⊂ [M,D]; i.e. every g ∈ H is localized in E ′D and pD(g) ∈M . Since E is
quasi-barrelled, the polar seminorm qD is continuous. For f ∈ Λ {E} we have

qH(f) ≤ sup
{∫

Ω
|〈f, g〉| dµ : g ∈ H

}
≤ sup

{∫
Ω
qD(f)pD(g) dµ : g ∈ H

}
≤ sup

{∫
Ω
qD(f) · θ dµ : θ ∈M

}
= qM(qD(f)),

and this last expression is a continuous seminorm on Λ {E}.

Theorems 3 and 7 yield the following corollary.

Corollary 7. Under the hypothesis of Theorem 7, if Λ is perfect and E is locally
complete, then Λ {E} is barrelled.

If we want to get that Λ {E} is barrelled without requiring E to be locally
complete, a different approach is to use the abstract result given in [7]. A family
PΣ = {PA : A ∈ Σ} of continuous linear projections on a locally convex space X
is called an (Ω,Σ, µ)-Boolean algebra of projections if:
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1. PΩ is the identity on X.

2. PA = 0 whenever A ∈ Σ and µ(A) = 0.

3. PA1∩A2 = PA1 · PA2 for all A1, A2 ∈ Σ.

4. PA1∪A2 = PA1 + PA2 for all disjoint A1, A2 ∈ Σ.

The result mentioned above can be stated as follows.

Theorem A ([7, Cor. 1 and 2]) Let X be a Hausdorff locally convex space with
an (Ω,Σ, µ)-Boolean algebra of projections PΣ. Assume that PΣ is equicontinuous
and that the following condition holds:

(∗) Whenever (An) is a decreasing sequence in Σ with µ (
⋂
nAn) = 0, (xn) is

a bounded sequence in X such that xn is supported in An (i.e. PAn(xn) = xn) for
each n ∈ IN, and (αn) is a sequence in `1, then the series

∑
n αnxn converges in

X.

Then we have:

1. If X is quasi-barrelled and PA(X) is barrelled for each atom A ∈ Σ then X
is barrelled.

2. If X is quasi-barrelled and µ is atomless then X is barrelled.

Let us see first that a space Λ {E} satisfies condition (∗) above provided that
Λ is locally complete. In our case the equicontinuous (Ω,Σ, µ)-Boolean algebra
of projections on Λ {E} is given by

PA : f ∈ Λ {E} → PA(f) := χA · f ∈ Λ {E} .

Lemma 2. Assume that Λ is locally complete. Let (An) be a decreasing sequence
of measurable sets with µ (

⋂
nAn) = 0 and (fn) be a bounded sequence in Λ {E}

such that fn is supported in An for every n ∈ IN. If (αn) ∈ `1 then the series∑
n αnfn converges in Λ {E}.

Proof. Since (An) is decreasing, if t /∈ An, then fj(t) = 0 for j ≥ n. Therefore,
except for t on a zero measure set, each of the series

∑
n αnfn(t) contains only a

finite number of nonzero terms. This tells us that the series
∑
n αnfn is pointwise

convergent a.e. in Ω to a function f : Ω → E. It is easy to see that this conver-
gence is almost uniform on compact sets, so that f is measurable. Let us see that
f ∈ Λ {E} and that the series

∑
n αnfn converges to f for the topology of Λ {E}.

Take q ∈ Q(E), then pointwisely we have q(f) ≤ ∑
n |αn| q(fn). Since (αn) ∈ `1

and the sequence (q(fn)) is bounded in Λ, it follows that the locally Cauchy series∑
n |αn|q(fn) is convergent to a function φ ∈ Λ because this space is locally com-

plete. Now
∑
n |αn|q(fn) is an increasing series that converges pointwisely a.e. in

Ω. By integrating on compact sets we easily deduce that its pointwise limit is
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also φ. Then q(f(t)) ≤ φ(t) a.e. in Ω, so that q(f) ∈ Λ because this space is solid.
Finally, take M ∈M. Then, since (fn) is bounded, we have

lim
n→∞

qM

(
q

(
f −

n∑
k=1

αkfk

))
= lim

n→∞
qM

q
 ∞∑
k=n+1

αkfk


≤ lim

n→∞

∞∑
k=n+1

|αk| · qM (q(fk)) = 0,

so that
∑
n αnfn converges to f in Λ {E}.

Theorem 8. Under the hypothesis of Theorem 7, if Λ is locally complete, and if
either the measure space is atomless or E is barrelled, then Λ {E} is barrelled.

Proof. We shall apply Theorem A. Since Λ is solid, it follows that the family
PΣ = {PA : A ∈ Σ} is an equicontinuous Boolean algebra of projections on
Λ {E}, in the sense given above. Now, if A is an atom and E is barrelled, then
PA(Λ {E}) is barrelled because, in this case, PA(Λ {E}) is isomorphic to E. Next,
the previous lemma tells us that Λ {E} satisfies condition (∗) of Theorem A.
Theorem 7 says that Λ {E} is quasi-barrelled. Finally, apply Theorem A.

7 The Special Case of Fréchet and (DF)-spaces

We treat here the special case of Fréchet and (DF )-spaces. As we saw in Theo-
rem 1, if Λ and E are both metrizable or (DF ) then they have good localization
of bounded sets. Since these classes of spaces are, roughly speaking, dual to each
other, one can localize the bounded sets also in Λ× {E ′b}. This enables us to make
good use of the results of the last two sections.

We shall fix some terminology for this last section in order to avoid clumsy
repetitions. First of all, we shall assume that Λ is perfect and that it is endowed
with the strong topology β(Λ,Λ×); in particular, Λ is complete. If Λ is a Fréchet
space then Λ× is a (DF )-space. Conversely, if Λ is (DF ) then Λ× is Fréchet.
Echelon and coechelon spaces are important examples of (Fréchet,(DF )) dual
pairs of perfect spaces, they have been studied in [6], [16], [27], [28] and [34].

We say that the dual pair (Λ,Λ×) is reflexive if the topological dual of Λ is Λ×

and vice versa; equivalently, Λ with the Mackey topology τ(Λ,Λ×) is reflexive.

According to Theorem 1, if Λ is a Fréchet space and E is metrizable then E
is fundamentally Λ-bounded and E ′b is fundamentally Λ×-bounded. Conversely,
and also by Theorem 1, if Λ is a (DF )-space and E is a (DF )-space then E is
fundamentally Λ-bounded and E ′b is fundamentally Λ×-bounded. We shall not
repeat these two facts in the proofs below.

Theorem 9. (1) Let Λ be a Fréchet space with topological dual Λ×. If E is
a metrizable space such that E ′b has the Radon-Nikodym property, then we have
(Λ {E})′ = Λ× {E ′b} = (Λ {E})×. Moreover, if either the measure is atomless or
E is barrelled, then Λ {E} is barrelled.
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(2) Let Λ be a Fréchet space with topological dual Λ×. If E is a Fréchet space
such that E ′b has the Radon-Nikodym property, then Λ {E} is a Fréchet space with
dual (Λ {E})′ = Λ× {E ′b} = (Λ {E})×.

(3) Let Λ be a (DF )-space with topological dual Λ×. If E is a quasi-barrelled
(DF )-space such that E ′b has the Radon-Nikodym property, then Λ {E} is a quasi-
barrelled (DF )-space with dual (Λ {E})′ = Λ× {E ′b} = (Λ {E})×. Moreover, if
either the measure is atomless or E is barrelled then Λ {E} is barrelled.

Proof. Part (1): Apply Theorems 6 and 8 above. For part (2) we also need
these two results together with Corollary 5. For part (3), simply note that if (Bn)
and (Rn) are fundamental sequences of bounded sets in E and Λ, respectively,
the sequence of bounded sets ([Rn, Bn]) is fundamental in Λ {E}. The conclusion
follows from Theorems 6 and 8 again.

Part (3) of this result should be compared with [13, Thm. 4]. Their conclusions
are the same but the hypotheses are somewhat different. Namely, in [13, Thm. 4]
it is required Λ to be a Banach space, but it is not required its strong dual to be
Λ×; E is a (DF )-space that satisfies the dual density condition, but no mention
of the Radon-Nikodym property is made (however, see Lemma 3 below); besides,
we also assumed that the countably valued functions are dense in Λ {E}.

Corollary 8. If E is metrizable and E ′b has the Radon-Nikodym property, then
the dual of Lp{E} is Lp

∗{E ′b} for all p ∈ [1,∞). Moreover, if either the measure
is atomless or E is barrelled then Lp{E} is barrelled

Corollary 9. If E a quasi-barrelled (DF )-space and E ′b has the Radon-Nikodym
property then for all p ∈ [1,∞) Lp{E} is a quasi-barrelled (DF )-space with dual
Lp
∗{E ′b}. Moreover, if either E is barrelled or the measure is atomless then Lp{E}

is barrelled.

As we mentioned above, every reflexive Fréchet space has the Radon-Nikodym
property. We give now a class of (DF )-spaces with the Radon-Nikodym property.

Lemma 3. If E is a reflexive (DF )-space satisfying the dual density condition
then E has the Radon-Nikodym property.

Proof. Since E satisfies the dual density condition, we have that the bounded
subsets of E are metrizable [1, 1.2.(d)], hence E has property (BM). To prove
that E has the Radon-Nikodym property, let m : Σ→ E be a µ-continuous vector
measure with bounded variation, then m has locally bounded average range by
[2, Lem. 3.3]. Therefore, m has locally relatively weakly compact average range
because E is reflexive. Our Radon-Nikodym theorem [12, 4.9] allows us to deduce
that m has a density because E is quasi-complete and has property (BM).

Theorem 10. (1) Let Λ be a (DF )-space with topological dual Λ×. If E is
a reflexive (DF )-space then Λ {E} is a barrelled (DF )-space with strong dual
Λ× {E ′b}.

(2) Let Λ be a Fréchet space with topological dual Λ×. If E is a reflexive
Fréchet space with the density condition then the strong dual of Λ {E} is Λ× {E ′b}.
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(3) Let Λ be a Fréchet space such that the dual pair (Λ,Λ×) is reflexive. If E
is a reflexive Fréchet space with the density condition, then Λ {E} is a reflexive
Fréchet space.

(4) Let Λ be a (DF )-space such that the dual pair (Λ,Λ×) is reflexive. If E
is a reflexive (DF )-space satisfying the dual density condition, then Λ {E} is a
reflexive (DF )-space.

(5) If E is either a reflexive Fréchet space with the density condition or a
reflexive (DF )-space with the dual density condition, then the space Lp{E} is
reflexive for 1 < p <∞.

(6) If E is a reflexive Fréchet space with the density condition, then L1{E} is
distinguished.

Proof. Part(1): Since E is reflexive, it is barrelled. Now apply Theorem 9 (3).

Part (2): Since E has the density condition, we have that E ′b satisfies the dual
density condition [1, 1.2.(c)]. Lemma 3 above tells us that E ′b has the Radon-
Nikodyn property. Finally, apply Theorem 9 (2).

Part (3): By (2), the strong dual of Λ {E} is Λ× {E ′b} and this space has
Λ {E} as strong dual by (1).

Part (4): By (1), the strong dual of Λ {E} is Λ× {E ′b}. Since E ′b is a reflex-
ive Fréchet space stisfying the density condition [1, 1.2.(c)], the strong dual of
Λ× {E ′b} is Λ {E} by (2).

Part (5) follows from parts (3) and (4).

Part(6): We have to see that the strong dual of L1{E} is quasi-barrelled. The
strong dual of L1{E} is L∞{E ′b} by part (2) and this space is quasi-barrelled
by [10, Thm. 2] or [13, Thm. 4] because E ′b is a (DF )-space satisfying the dual
density condition.
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spaces, Math. Proc. Cambridge Philos. Soc. 112 (1992), 165–174.
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[25] G. Köthe, Topological Vector Spaces, I, Springer-Verlag, Berlin, Heidelberg
and New York, 1969.
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