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tool used to prove the results is the Lyapunov method. We analyze two illustrative examples
to show the interest and usefulness of the main results.

Keywords: Neutral pantograph stochastic differential equations with Markovian switching,
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1 Introduction

Stochastic delay differential equations (SDDEs) have an important role in many branches of
science, industry and economics. Such models have been used in epidemiology, biology, mechanics
and finance. The stability of these stochastic delay differential equations has much interest
especially for control and stabilization problems and it is still necessary to develop new methods
to analyze the asymptotic properties, despite of the fact that there are many published results
for the stability of ordinary stochastic differential equations and stochastic delay differential
equations (see, e.g., [3], [8], [9], [14] and [15]).
Neutral stochastic differential equations with Markovian switching (NSDEMS) is a particular
case of stochastic delay differential equations. In the literature, many authors have studied
(NSDEMS) (see [7] and [12]).
Recently, as a special case of SDDEs, a class of nonlinear stochastic pantograph delay equations
(NSPDEs) has received a great deal of attention and various studies have been carried out
on the polynomial and exponential stability of NSPDEs (see [1], [2], [10], [11], [13] and [16]).
One important class of stochastic delay systems, the neutral pantograph stochastic differential
equations with Markovian switching (NPSDEwMS) has also been studied (see [11] and [13]).
The almost sure stability with general decay rate of (NPSDEwMS) was first investigated by
X. Mao et al. (see [11]). However, all equations of the above-mentioned works are driven by
white noise perturbations with continuous initial data, and white noise perturbations are not
always appropriate to interpret real data in a reasonable way. In real phenomena, the state of
stochastic pantograph delay system may be perturbed by extreme events or abrupt impulses. A
more natural mathematical framework for these phenomena takes into account other processes
rather than Brownian motions. In particular, we use the Lévy noise with jumps into neutral
pantograph stochastic differential equations with Markovian switching to model abrupt changes
and, in particular, we generalize the results in [6] which were obtained for exponential stability
and did not include Markovian switching. Nevertheless, as far as we know, there is no research
on the h-stability on the stochastic case, although there are some papers on the deterministic
case (see [4] and [5]). This type of stability provides new insights about the asymptotic behavior
of solutions and it is well worth analyzing it.

In this paper, we will study the h-stability in p-th moment of neutral pantograph stochastic
differential equations with Markovian switching driven by Lévy noise. To do this, we have
structured the paper as follows. In Section 2, we introduce some basic notations and assumptions.
In Section 3, we establish some sufficient conditions ensuring h-stability in p-th moment of neutral
pantograph stochastic differential equations with Markovian switching driven by Lévy noise by
using the Lyapunov techniques and Itô’s formula. In Section 4, we analyze two illustrative
examples to show our theoretical results.
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2 Preliminaries and definitions

Let {Ω,F , (Ft)t≥0,P} be a complete probability space with a filtration satisfying the usual con-
ditions, i.e., the filtration is continuous on the right and F0 contains all P-zero sets. W (t) is an
m-dimensional Brownian motion defined on the probability space. Let t0 > 0, q ∈ (0, 1) and
C([qt0, t0];Rn) denote the family of the continuous functions ϕ from [qt0, t0] to Rn with the norm
‖ϕ‖ = supqt0≤s≤t0 |ϕ(s)| and |x| =

√
xTx for any x ∈ Rn. If A is a matrix, its trace norm is de-

noted by |A| =
√
trace(ATA), while its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}.

Let p > 0, LpFt
([qt, t];Rn) denote the family of all Ft-measurable, C([qt, t];Rn)-valued random

variables ϕ = {ϕ(θ) : qt ≤ θ ≤ t} such that E‖ϕ‖p <∞. For a ∈ R, F (a−) denotes the left-hand
limit of function F (.) at a, i.e., F (a−) = liml→0− F (a+ l).

Let {r(t), t ∈ R+ = [0,+∞)} be a right-continuous Markov chain on the probability space
{Ω,F , (Ft)t≥0,P} taking values in a finite state space S = {1, 2, . . . , N} with a generator Γ =
(γij)N×N given by

P (r(t+ ∆) = j|r(t) = i) =

{
γij∆ + o(∆), if i 6= j
1 + γii∆ + o(∆), if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j, if i 6= j, while

γii = −
∑
i 6=j

γij.

We assume that the Markov chain r(.) is independent of the Brownian motion W (.).
Consider the following neutral pantograph stochastic differential equation with Markovian switch-
ing driven by Lévy noise:

d [x(t)−G(t, x(qt))] = f(t, x(t), x(qt), r(t))dt+ g(t, x(t), x(qt), r(t))dW (t),

+

∫
|z|<c

H1(t, x(t−), x(qt−), r(t), z)Ñ(dt, dz) +

∫
|z|≥c

H2(t, x(t−), x(qt−), r(t), z)N(dt, dz) t ≥ t0,

(2.1)
with the initial condition ξ ∈ LpFt

([qt0, t0];Rn), i.e. x(t) := x(t; t0, ξ) = ξ(t) for qt0 ≤ t ≤ t0. Let
u(t) = x(t)−G(t, x(qt)). Here, we furthermore assume that

f : [t0,+∞)× Rn × Rn × S −→ Rn, g : [t0,+∞)× Rn × Rn × S −→ Rn×m,

G : [t0,+∞)× Rn −→ Rn.

Hi : [t0,+∞) × Rn × Rn × S × Rd −→ Rn (i=1, 2), and the constant c ∈ (0,+∞) is the
maximum allowable jump size. N(., .) is a Poisson random measure defined on R+ × (Rd \ {0})
with compensator Ñ and intensity measure ν(.).
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It is always assumed that N(., .) is independent of W (.). Let ν(.) be a Lévy measure such that

Ñ(dt, dz) = N(dt, dz)− ν(dz) and
∫
Rd\{0}(|z|

2 ∧ 1)ν(dz) = λ < +∞.

Usually, the pair (W (.), N(., .)) is called a Lévy noise,
∫
|z|<cH1(t, x(t−), x(qt−), r(t), z)Ñ(dt, dz)

is called a ‘small jump’ and
∫
|z|≥cH2(t, x(t−), x(qt−), r(t), z)N(dt, dz) is called ‘large jump’.

We denote by x(t; t0, ξ) the solution of Eq. (2.1).
Let C1,2 ([qt0,+∞)× Rn × S;R+) be the family of all non-negative functions V (t, x, i) on

[qt0,+∞) × Rn × S, which are twice continuously differentiable with respect to x and once
continuously differentiable with respect to t.
For any (t, x, y, i) ∈ [qt0,+∞)×Rn ×Rn × S, u(t) = x(t)−G(t, y(t)), with y(t) = x(qt), by the
generalized Itô’s formula we have,

V (t, u(t), r(t)) = V (t0, u(t0), r(t0)) +

∫ t

t0

LV (s, x(s), x(qs), r(s))ds+Mt, (2.2)

where the operator LV (t, x, y, i) : [qt0,+∞)×Rn ×Rn × S → R and the process Mt are defined
respectively by

LV (t, x, y, i) = Vt(t, u, i) + Vx(t, u, i)f(t, x, y, i)

+
1

2
trace

(
gT (t, x, y, i)Vxx(t, u, i)g(t, x, y, i)

)
+

∫
|z|<c

(
V (t, u+H1(t, x, y, i, z))− V (t, u, i)− Vx(t, u, i)H1(t, x, y, i, z)

)
ν(dz)

+

∫
|z|≥c

(
V (t, u+H2(t, x, y, i, z))− V (t, u, i)

)
ν(dz)

+
N∑
j=1

γijV (t, u, j)

and

Mt =

∫ t

t0

Vx(s, u(s), r(s))g(s, x(s), x(qs), r(s))dW (s)

+

∫ t

t0

∫
|z|<c

(
V (s, u(s) +H1(s, x(s−), x(qs−), r(s), z))− V (s, u(s), r(s))

)
Ñ(ds, dz),

+

∫ t

t0

∫
|z|≥c

(
V (s, u(s) +H2(s, x(s−), x(qs−), r(s), z))− V (s, u(s), r(s))

)
N(ds, dz)

where

Vt =
∂V (t, x, i)

∂t
, Vx =

(
∂V (t, x, i)

∂x1
, . . . ,

∂V (t, x, i)

∂xn

)
, Vxx =

(
∂2V (t, x, i)

∂xi∂xj

)
n×n

.
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For our purpose, we will state some assumptions which can ensure the existence and uniqueness
of a solution x(t) = x(t; t0, ξ) on t ≥ t0, for equation (2.1).
H1: (A local Lipschitz condition): For each integer d ≥ 1 there is an ld > 0 such that

|f(t, x, y, i)−f(t, x, y, i)|∨|g(t, x, y, i)−g(t, x, y, i)|∨|Hb(t, x, y, i, z)−Hb(t, x, y, i, z)| ≤ ld
(
|x−x|+|y−y|

)
,

for all t ≥ t0, i ∈ S and x, x, y, y ∈ Rn with |x| ∨ |x| ∨ |y| ∨ |y| ≤ d and b = 1, 2.
Besides, f(t, 0, 0, i) = 0 , g(t, 0, 0, i) = 0 and Hb(t, 0, 0, z) = 0, G(t, 0) = 0 , for any t ≥ t0, z ∈ Rd

and b = 1, 2.
H2: There exists a constant β ∈ (0, 1

2
) such that

|G(t, y)−G(t, y)| ≤ β|y − y|, (2.3)

for all t ≥ t0 and y, y ∈ Rn.
H3: There exist positive numbers c1, c2, c3, c4, and p such that c3 ≥ c4 and for all (t, x, y, i) ∈
[qt0,+∞)× Rn × Rn × S, we have

c1|x|p ≤ V (t, x, i) ≤ c2|x|p. (2.4)

LV (t, x, y, i) ≤ −c3|x|p + c4q|y|p. (2.5)

Recall now some useful inequalities which will be used in our analysis.

Lemma 2.1. (i) Let 0 < p ≤ 1 and a, b ∈ R+. Then

(a+ b)p ≤ ap + bp.

(ii) Let p > 1, ε > 0 and a, b ∈ R+. Then

(a+ b)p ≤
(

1 + ε
1

p−1

)p−1(
ap +

bp

ε

)
.

Proof. See [9].

Remark 2.2. For p > 1, we can take ε = 1, then, for any a, b ∈ R+, we have

(a+ b)p ≤ 2p−1 (ap + bp) . (2.6)

Theorem 2.3. Let assumptions H1-H3 hold. Then for any given initial data ξ, there is a unique
global solution x(t) of equation (2.1) on t ∈ [t0,+∞).
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Proof. Using Assumption H1, for any initial value ξ ∈ LpFt
([qt0, t0];Rn), there exists a unique

maximal solution x(·) = x(·; t0, ξ) on [t0, σe) (see Theorem 1 in [12]), where σe is the explosion
time. Let k0 > 0 be sufficiently large such that ‖ξ‖ < k0. For each integer k ≥ k0, define the
stopping time

τk = inf {t ∈ [t0, σe); |x(t)| ≥ k} .

Clearly, τk is increasing as k →∞ and τk → τ∞ ≤ σe a.s.. If we can show τ∞ =∞ a.s., then we
have σe =∞ a.s. Therefore, we just need to show τ∞ =∞ a.s.
Case 1: Assume 0 < p ≤ 1. By the generalized Itô formula (see, [14]) and Lemma 2.1 we have

E (V (t ∧ τk, u(t ∧ τk), r(t ∧ τk)))

= E (V (t0, u(t0), r(t0))) + E
(∫ t∧τk

t0

LV (s, x(s), x(qs), r(s))ds

)
≤ E (V (t0, u(t0), r(t0)))− c3E

(∫ t∧τk

t0

|x(s)|pds
)

+ c4qE

(∫ t∧τk

t0

|x(qs)|pds
)

≤ E (V (t0, u(t0), r(t0)))− c3E
(∫ t∧τk

t0

|x(s)|pds
)

+ c4E

(∫ q(t∧τk)

qt0

|x(s)|pds

)

≤ E (V (t0, u(t0), r(t0)))− c3E
(∫ t∧τk

t0

|x(s)|pds
)

+ c4E

(∫ t∧τk

qt0

|x(s)|pds
)

= E (V (t0, u(t0), r(t0)))− c3E
(∫ t∧τk

t0

|x(s)|pds
)

+ c4E

(∫ t0

qt0

|x(s)|pds
)

+c4E

(∫ t∧τk

t0

|x(s)|pds
)

≤ E (V (t0, u(t0), r(t0)))− (c3 − c4)E
(∫ t∧τk

t0

|x(s)|pds
)

+ c4t0(1− q)E‖ξ‖p

≤ E (V (t0, u(t0), r(t0)))− (c3 − c4)E
(∫ t∧τk

t0

|x(s)|pds
)

+ c4E‖ξ‖p

≤ E (V (t0, u(t0), r(t0))) + c4E‖ξ‖p

≤ c2E (|u(t0)|p)) + c4E‖ξ‖p

≤ c2E (|x(t0)|p) + c2β
pE (|x(t0)|p) + c4E‖ξ‖p

≤
(
c2(1 + βp) + c4

)
E‖ξ‖p.

Then, by assumption H3,

E|u(t ∧ τk)|p ≤
1

c1

(
c2(1 + βp) + c4

)
E‖ξ‖p.
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By the definition of τk, we have |x(τk)| = k and |x(t ∧ τk)| ≤ k, |x(t ∧ τk)|p ≤ kp , including
|x(q(t ∧ τk))|p ≤ kp. For τk ≤ t, we have |x(t ∧ τk)| = |x(τk)| = k, and we therefore obtain
E
[
|x(t ∧ τk)|p1τk≤t

]
= kpP (τk ≤ t). By the inequality

|x(t)|p ≤ |u(t)|p + βp|x(qt)|p,

we obtain

|u(t ∧ τk)|p ≥ |u(t ∧ τk)|p1{τk≤t}
≥ |x(t ∧ τk)|p1τk≤t − βp|x(q(t ∧ τk))|p1{τk≤t}
≥ kp (1− βp) 1{τk≤t}.

Then,

P (τk ≤ t) ≤ 1

kp (1− βp)
E|u(t ∧ τk)|p

≤ 1

c1kp (1− βp)
(
c2(1 + βp) + c4

)
E‖ξ‖p.

Letting k → ∞ implies P (τ∞ ≤ t) = 0 and, consequently, τ∞ > t a.s. Letting t → ∞, we can
obtain τ∞ =∞ a.s, which implies that there exists a global solution x(t) to the system (2.1).

Case 2: Assume now p > 1. Proceeding as in Case 1 and using (2.6),

E (V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))) ≤ E (V (t0, u(t0), r(t0))) + c4E‖ξ‖p

≤ c2E (|u(t0)|p)) + c4E‖ξ‖p

≤ 2p−1c2E (|x(t0)|p) + 2p−1c2β
pE (|x(qt0)|p) + c4E‖ξ‖p

≤
(
2p−1c2(1 + βp) + c4

)
E‖ξ‖p.

From the inequality
|x(t)|p ≤ 2p−1|u(t)|p + 2p−1βp|x(qt)|p,

we obtain, by using the same techniques as in Case 1,

|u(t ∧ τk)|p ≥ |u(t ∧ τk)|p1{τk≤t}

≥ kp
(

1

2p−1
− βp

)
1{τk≤t}.

Then,

P (τk ≤ t) ≤ 1

kp
(

1
2p−1 − βp

)E|u(t ∧ τk)|p

≤ 1

c1kp
(

1
2p−1 − βp

)(2p−1c2(1 + βp) + c4
)
E‖ξ‖p.
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Letting k → ∞ implies that P (τ∞ ≤ t) = 0, and, therefore, τ∞ > t a.s. Letting t → ∞, we
deduce τ∞ =∞ a.s, which implies that there exists a global solution x(t) to the system (2.1).

Definition 2.1. The function h : R+ → (0,∞) is said to be an h-type function if the following
conditions are satisfied:

(i) It is continuous and nondecreasing in R+ and continuously differentiable in R+.

(ii) h(0) = 1, limt→∞ h(t) =∞ and φ = supt>0 |
h
′
(t)

h(t)
| <∞.

(iii) For any t ≥ s ≥ 0, h(t) ≤ h(s)h(t− s).

Definition 2.2. Equation (2.1) is said to be h-stable in p-th moment, if there exist positive
constants δ and c such that, for any ξ ∈ LpFt

([qt0, t0];Rn), the corresponding solution x(·; t0, ξ)
of (2.1) with initial value ξ satisfies

E (|x(t; t0, ξ)|p) ≤ cE (||ξ||p)h−δ(t)hδ(t0), t ≥ t0. (2.7)

We will impose the following condition on G to obtain the h-stability of equation (2.1).
H4: There exist constants β ∈ (0, 1) and ε ≥ 0 such that for all y, y ∈ Rn and t ≥ t0, it holds

|G(t, y)−G(t, y)|p ≤ βh−ε((1− q)t)|y − y|p, (2.8)

and G(t, 0) = 0.

Theorem 2.4. Let assumptions H1, H3 and H4 hold except (2.5) which is replaced by

LV (t, x, y, i) ≤ −c3|x|p + c4qh
−ε((1− q)t)|y|p, (2.9)

for all (t, x, y, i) ∈ [qt0,+∞)× Rn × Rn × S, ε > 0 and 2p−1β < 1, for p > 1.

Let 0 < δ ≤ c3 − c4
2p−1c2φ

(
1 + β

q

) , for p > 1, and φ is the positive constant which verifies condition

(ii) in Definition 2.1.
Then, Equation (2.1) is h-stable in p-th moment.

Proof. Let ξ ∈ LpFt
([qt0, t0];Rn) be an initial function for Eq. (2.1) and denote by x(·) its

corresponding solution. We split our analysis into two cases.
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Case 1: Let δ ∈ (0, ε) and 0 < p ≤ 1. For each k ∈ N∗, define the stopping time τk = inf{t ≥
t0; |x(t)| ≥ k}. For any t ≥ t0, by the generalized Itô formula applied to hδ(t)V (t, u(t), r(t)),
Lemma 2.1, H3 and H4, we have

E
(
hδ(t ∧ τk)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))

)
= hδ(t0)E (V (t0, u(t0), r(t0))) ,

+E
(∫ t∧τk

t0

hδ(s)

[
δ
h
′
(s)

h(s)
V (s, u(s), r(s)) + LV (s, x(s), x(qs), r(s))

]
ds

)
,

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE
(∫ t∧τk

t0

hδ(s)|u(s)|pds
)

−c3E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+ c4qE

(∫ t∧τk

t0

hδ(s)h−ε((1− q)s)|x(qs)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c2φδβE
(∫ t∧τk

t0

hδ(s)h−ε((1− q)s)|x(qs)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4qE

(∫ t∧τk

t0

hδ(s)h−ε((1− q)s)|x(qs)|pds
)
,

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c2φδβE
(∫ t∧τk

t0

hδ(s)h−δ((1− q)s)|x(qs)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4qE

(∫ t∧τk

t0

hδ(s)h−δ((1− q)s)|x(qs)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c2φδβE
(∫ t∧τk

t0

hδ(qs)|x(qs)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4qE

(∫ t∧τk

t0

hδ(qs)|x(qs)|pds
)
.
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Then,

E
(
hδ(t ∧ τk)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))

)
≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+
c2φδβ

q
E
(∫ t∧τk

qt0

hδ(s)|x(s)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4E

(∫ t∧τk

qt0

hδ(s)|x(s)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+
c2φδβ

q
E
(∫ t0

qt0

hδ(s)|x(s)|pds
)

+
c2φδβ

q
E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4E

(∫ t0

qt0

hδ(s)|x(s)|pds
)

+ c4E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδ

(
1 +

β

q

)
E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+
c2φδβ

q
hδ(t0)t0(1− q)E (‖ξ‖p) + c4h

δ(t0)t0(1− q)E (‖ξ‖p)

+c4E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + hδ(t0)(1− q)E (‖ξ‖p)
(
c2φδβ

q
+ c4

)
+

(
c2φδ

(
1 +

β

q

)
+ c4 − c3

)
E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)
.
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For δ ≤ c3 − c4
c2φ(1 + β

q
)
, by Lemma 2.1, H3 and H4, we obtain

E
(
hδ(t ∧ τk)|u(t ∧ τk)|p

)
≤ 1

c1
E
(
hδ(t ∧ τk)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))

)
≤ 1

c1
hδ(t0)E (V (t0, u(t0), r(t0)))

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
c2φδβ

q
+ c4

)
≤ c2

c1
hδ(t0)E (|u(t0)|p)

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
c2φδβ

q
+ c4

)
≤ c2

c1
hδ(t0)E (|x(t0)|p) +

c2
c1
hδ(t0)βE (|x(qt0)|p)

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
c2φδβ

q
+ c4

)
≤ 1

c1
hδ(t0)

(
c2(1 + β) + (1− q)

(
c2φδβ

q
+ c4

))
E (‖ξ‖p) .

Letting k →∞, we have

E
(
hδ(t)|u(t)|p

)
≤ 1

c1
hδ(t0)

(
c2(1 + β) + (1− q)

(
c2φδβ

q
+ c4

))
E (‖ξ‖p) . (2.10)

By Lemma 2.1, H4 and the definition of h-function, we obtain

E
(
hδ(t)|x(t)|p

)
≤ E

(
hδ(t)|u(t)|p

)
+ βE

(
hδ(t)h−ε((1− q)t)|x(qt)|p

)
,

≤ E
(
hδ(t)|u(t)|p

)
+ βE

(
hδ(t)h−δ((1− q)t)|x(qt)|p

)
,

≤ E
(
hδ(t)|u(t)|p

)
+ βE

(
hδ(qt)|x(qt)|p

)
.

Then, for any T > 0,

sup
t0≤t≤T

E
(
hδ(t)|x(t)|p

)
≤ sup

t0≤t≤T
E
(
hδ(t)|u(t)|p

)
+ β sup

t0≤t≤T
E
(
hδ(qt)|x(qt)|p

)
,

≤ sup
t0≤t≤T

E
(
hδ(t)|u(t)|p

)
+ β sup

qt0≤t≤T
E
(
hδ(t)|x(t)|p

)
,

≤ sup
t0≤t≤T

E
(
hδ(t)|u(t)|p

)
+ β sup

qt0≤t≤t0
E
(
hδ(t)|x(t)|p

)
+β sup

t0≤t≤T
E
(
hδ(t)|x(t)|p

)
,

≤ sup
t0≤t≤T

E
(
hδ(t)|u(t)|p

)
+ βhδ(t0)E (‖ξ‖p) + β sup

t0≤t≤T
E
(
hδ(t)|x(t)|p

)
,
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Therefore,

sup
t0≤t≤T

E
(
hδ(t)|x(t)|p

)
≤ 1

1− β
sup

t0≤t≤T
E
(
hδ(t)|u(t)|p

)
+

β

1− β
hδ(t0)E (‖ξ‖p) ,

≤ 1

c1(1− β)
hδ(t0)

(
c2(1 + β) + (1− q)

(
c2φδβ

q
+ c4

))
E (‖ξ‖p)

+
β

1− β
hδ(t0)E (‖ξ‖p) ,

≤ C1E (‖ξ‖p)hδ(t0).

where C1 =
1

c1(1− β)

(
c2(1 + β) + (1− q)

(
c2φδβ

q
+ c4

)
+ c1β

)
.

Letting T →∞, we deduce

sup
t0≤t<∞

E
(
hδ(t)|x(t)|p

)
≤ C1E (‖ξ‖p)hδ(t0). (2.11)

This implies, for all t ≥ t0,

E (|x(t)|p) ≤ C1E (‖ξ‖p)h−δ(t)hδ(t0). (2.12)

Case 2: Let δ ∈ (0, ε) and p > 1. Proceeding as in Case 1 and using (2.6), we have

E
(
hδ(t ∧ τk)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))

)
= hδ(t0)E (V (t0, u(t0), r(t0)))

+E
(∫ t∧τk

t0

hδ(s)

[
δ
h
′
(s)

h(s)
V (s, u(s), r(s)) + LV (s, x(s), x(qs), r(s))

]
ds

)
≤ hδ(t0)E (V (t0, u(t0), r(t0))) + c2φδE

(∫ t∧τk

t0

hδ(s)|u(s)|pds
)

−c3E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+ c4qE

(∫ t∧τk

t0

hδ(s)h−ε((1− q)s)|x(qs)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + 2p−1c2φδE
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+2p−1c2φδβE
(∫ t∧τk

t0

hδ(qs)|x(qs)|pds
)
− c3E

(∫ t∧τk

t0

hδ(s)|x(s)|pds
)

+c4qE

(∫ t∧τk

t0

hδ(qs)|x(qs)|pds
)

≤ hδ(t0)E (V (t0, u(t0), r(t0))) + hδ(t0)(1− q)E (‖ξ‖p)
(

2p−1c2φδβ

q
+ c4

)
+

(
2p−1c2φδ

(
1 +

β

q

)
+ c4 − c3

)
E
(∫ t∧τk

t0

hδ(s)|x(s)|pds
)
.
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For δ ≤ c3 − c4
2p−1c2φ

(
1 + β

q

) , by (2.6), H3 and H4, we obtain

E
(
hδ(t ∧ τk)|u(t ∧ τk)|p

)
≤ 1

c1
E
(
hδ(t ∧ τk)V (t ∧ τk, u(t ∧ τk), r(t ∧ τk))

)
≤ 1

c1
hδ(t0)E (V (t0, u(t0), r(t0)))

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
2p−1c2φδβ

q
+ c4

)
≤ c2

c1
hδ(t0)E (|u(t0)|p)

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
2p−1c2φδβ

q
+ c4

)
≤ 2p−1

c2
c1
hδ(t0)E (|x(t0)|p) + 2p−1

c2
c1
hδ(t0)βE (|x(qt0)|p)

+
1

c1
hδ(t0)(1− q)E (‖ξ‖p)

(
2p−1c2φδβ

q
+ c4

)
≤ 1

c1
hδ(t0)

(
2p−1c2(1 + β) + (1− q)

(
2p−1c2φδβ

q
+ c4

))
E (‖ξ‖p) .

Letting now k →∞,

E
(
hδ(t)|u(t)|p

)
≤ 1

c1
hδ(t0)

(
2p−1c2(1 + β) + (1− q)

(
2p−1c2φδβ

q
+ c4

))
E (‖ξ‖p) . (2.13)

Then, using the same technique as in Case 1, for any T > 0, we have

sup
t0≤t≤T

E
(
hδ(t)|x(t)|p

)
≤ 2p−1

1− 2p−1β
sup

t0≤t≤T
E
(
hδ(t)|u(t)|p

)
+

2p−1β

1− 2p−1β
hδ(t0)E (‖ξ‖p) ,

≤ 2p−1

c1(1− 2p−1β)
hδ(t0)×

×
(

2p−1c2(1 + β) + (1− q)
(

2p−1c2φδβ

q
+ c4

))
E (‖ξ‖p)

+
2p−1β

1− 2p−1β
hδ(t0)E (‖ξ‖p)

≤ C2E (‖ξ‖p)hδ(t0),

where C2 =
2p−1

c1(1− 2p−1β)

(
2p−1c2(1 + β) + (1− q)

(
2p−1c2φδβ

q
+ c4

)
+ c1β

)
.

Letting T →∞, we deduce

sup
t0≤t<+∞

E
(
hδ(t)|x(t)|p

)
≤ C2E (‖ξ‖p)hδ(t0). (2.14)
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This implies, for all t ≥ t0,

E (|x(t)|p) ≤ C2E (‖ξ‖p)h−δ(t)hδ(t0). (2.15)

Therefore, for all t ≥ t0,
E (|x(t)|p) ≤ CE (‖ξ‖p)h−δ(t)hδ(t0), (2.16)

where C = max{C1, C2}.

Remark 2.5. Compared with existing results in the literature, we are considering Markovian
switching and analyze h-stability of pantograph-type neutral stochastic differential equations
with Lévy noise, obtaining some general results which generalize the known results (see, for
instance, [6] and the references therein).

3 Examples

In this section, we will discuss some examples to show the interest of our results.

Example 3.1. We consider the following neutral pantograph stochastic differential equation with
Markovian switching driven by Lévy noise:

d
[
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

]
= f(t, x(t), x(0.5t), i)dt+ g(t, x(t), x(0.5t), i)dW (t),

+

∫
|z|<1

H1(t, x(t−), x(0.5t−), i, z)Ñ(dt, dz) +

∫
|z|≥1

H2(t, x(t−), x(0.5t−), i, z)N(dt, dz) t ≥ t0,

(3.1)
where the initial data x0 = ξ ∈ LpFt

([0.5, 1];R), r(1) = 1, z ∈ R and W (t) is a one dimensional
Brownian motion, N(., .) is a Poisson random measure defined on R+×(R\{0}) with compensator

Ñ and intensity measure ν(.). It is always assumed that N(., .) is independent of W (.). Let ν(.)

be a Lévy measure such that Ñ(dt, dz) = N(dt, dz)− ν(dz) and
∫
R\{0}(|z|

2 ∧ 1)ν(dz) = λ < +∞.
Let

f(t, x(t), x(0.5t), 1) = −3

2

(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
,

f(t, x(t), x(0.5t), 2) = −
(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
,

g(t, x(t), x(0.5t), 1) =
1

2

(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
,

g(t, x(t), x(0.5t), 2) =
1

3

(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
,

H1(t, x(t), x(0.5t), 1, z) = z
(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
.

H1(t, x(t), x(0.5t), 2, z) =
1

2
z
(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
.
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H2(t, x(t), x(0.5t), 1, z) = (

√
5

2
− 1)

(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
.

H2(t, x(t), x(0.5t), 2, z) = (

√
5

8
− 1)

(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)
.

Let u(t) = x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t) and ν(dz) =
dz

1 + z2
. Let S = {1, 2} and the matrix

Γ = (γij)1≤i,j≤2 defined by (
−1 1
1 −1

)
We will prove that system (3.1) is polynomially stable in mean square. To this end, let

V (t, x, i) = ψix
2, for i ∈ S, where ψ1 = 1 and ψ2 = 1

2
. Then

1

2
|x|2 ≤ V (t, x, i) ≤ |x|2 (3.2)

By the definition of LV, we have for i = 1

LV (t, x(t), x(0.5t), 1) = −3u2(t) +
1

4
u2(t) + u2(t)

∫
|z|<1

z2

1 + z2
dz

+
3

2
u2(t)

∫
|z|≥1

dz

1 + z2
− 1

2
u2(t)

=

(
π

4
− 5

4

)
u2(t)

= −0.46
(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)2
.

For i = 2

LV (t, x(t), x(0.5t), 2) = −u2(t) +
1

18
u2(t) +

1

8
u2(t)

∫
|z|<1

z2

1 + z2
dz

− 3

16
u2(t)

∫
|z|≥1

dz

1 + z2
+

1

2
u2(t)

= −
(

5π

32
+

7

36

)
u2(t)

= −0.68
(
x(t)− 0.3 (ln(e+ 0.5t))−0.5 x(0.5t)

)2
Then, using 2ab ≤ a2 + b2, for all a, b ∈ R, we have

LV (t, x(t), x(0.5t), 1) ≤ −0.46x2(t) + 0.462x2(t) + 0.09 (ln(e+ 0.5t))−1 x2(0.5t)

+(−0.46)0.09 (ln(e+ 0.5t))−1 x2(0.5t)

≤ −0.24x2(t) + 0.05 (ln(e+ 0.5t))−1 x2(0.5t)

≤ −0.21x2(t) + (0.1)(0.5) (ln(e+ 0.5t))−1 x2(0.5t).
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LV (t, x(t), x(0.5t), 2) ≤ −0.68x2(t) + 0.682x2(t) + 0.09 (ln(e+ 0.5t))−1 x2(0.5t)

+(−0.68)0.09 (ln(e+ 0.5t))−1 x2(0.5t)

≤ −0.21x2(t) + 0.05 (ln(e+ 0.5t))−1 x2(0.5t)

= −0.21x2(t) + (0.1)(0.5) (ln(e+ 0.5t))−1 x2(0.5t).

Then, for i ∈ S, we obtain

LV (t, x(t), x(0.5t), i) ≤ −0.21x2(t) + (0.1)(0.5)(ln(e+ 0.5t))−1x2(0.5t). (3.3)

Thus, the assumptions of theorem 2.4 are satisfied with c1 = 1
2
, c2 = 1, c3 = 0.21, c4 = 0.1,

p = 2, β = 0.3, q = 0.5, ε = 1, h(t) = ln(e + t), φ = 1
e

and δ = 0.09. Therefore system (3.1) is
h-stable in mean square.

Example 3.2. We consider the following neutral pantograph stochastic differential equation with
Markovian switching driven by Lévy noise:

d
[
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

]
= f(t, x(t), x(0.5t), i)dt+ g(t, x(t), x(0.5t), i)dW (t),

+

∫
|z|<1

H1(t, x(t−), x(0.5t−), i, z)Ñ(dt, dz) +

∫
|z|≥1

H2(t, x(t−), x(0.5t−), i, z)N(dt, dz) t ≥ t0,

(3.4)
Where the initial data x0 = ξ ∈ LpFt

([0.5, 1];R), r(1) = 1, z ∈ R, W (t) is a one dimensional Brow-
nian motions, N(., .) is a Poisson random measure defined on R+× (R−{0}) with compensator

Ñ and intensity measure ν(.). It is always assumed that N(., .) is independent of W (.). Let ν(.)

be a Lévy measure such that Ñ(dt, dz) = N(dt, dz)− ν(dz) and
∫
R−{0}(|z|

2 ∧ 1)ν(dz) = λ < +∞.
Let

f(t, x(t), x(0.5t), 1) = −7

2

(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
,

f(t, x(t), x(0.5t), 2) = −1

8

(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
,

g(t, x(t), x(0.5t), 1) =
1

4

(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
,

g(t, x(t), x(0.5t), 2) =
1

2

(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
,

H1(t, x(t), x(0.5t), 1, z) =
1

2
z
(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
.

H1(t, x(t), x(0.5t), 2, z) =
1

3
z
(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
.

H2(t, x(t), x(0.5t), 1, z) =
(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
.
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H2(t, x(t), x(0.5t), 2, z) = (

√
31

6
− 1)

(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)
.

Let u(t) = x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t) and ν(dz) =
dz

1 + z2
.

Let S = {1, 2} and the matrix Γ = (γij)1≤i,j≤2 define by(
−1 1
1 −1

)
We will prove that system (3.4) is exponentially stable in mean square. Indeed, as in the preceding
example, let V (t, x, i) = ψix

2, for i ∈ S, where ψ1 = 1
2

and ψ2 = 1. Then

1

2
|x|2 ≤ V (t, x, i) ≤ |x|2 (3.5)

By the definition of LV, we have for i = 1

LV (t, x(t), x(0.5t), 1) = −7

2
u2(t) +

1

32
u2(t) +

1

8
u2(t)

∫
|z|<1

z2

1 + z2
dz

+
3

2
u2(t)

∫
|z|≥1

dz

1 + z2
+

1

2
u2(t)

=

(
11π

16
− 87

32

)
u2(t)

= −0.56
(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)2
.

For i = 2,

LV (t, x(t), x(0.5t), 2) = −1

4
u2(t) +

1

4
u2(t) +

1

9
u2(t)

∫
|z|<1

z2

1 + z2
dz

− 5

36
u2(t)

∫
|z|≥1

dz

1 + z2
− 1

2
u2(t)

= −
(

9π

72
+

5

18

)
u2(t)

= −0.67
(
x(t)− 0.2 (1 + 0.5t)−0.5 e−0.5tx(0.5t)

)2
Then, using 2ab ≤ a2 + b2, for all a, b ∈ R, we have

LV (t, x(t), x(0.5t), 1) ≤ −0.56x2(t) + 0.562x2(t) + 0.04 (1 + 0.5t)−1 e−tx2(0.5t)

+ (−0.56)(0.04) (1 + 0.5t)−1 e−tx2(0.5t)

≤ −0.24x2(t) + 0.02 (1 + 0.5t)−1 e−tx2(0.5t)

= −0.24x2(t) + (0.04)(0.5) (1 + 0.5t)−1 e−tx2(0.5t).
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LV (t, x(t), x(0.5t), 2) ≤ −0.67x2(t) + 0.672x2(t) + 0.04 (1 + 0.5t)−1 e−tx2(0.5t)

+(−0.67)0.04 (1 + 0.5t)−1 e−tx2(0.5t)

≤ −0.09x2(t) + 0.02 (1 + 0.5t)−1 e−tx2(0.5t)

= −0.09x2(t) + (0.04)(0.5) (1 + 0.5t)−1 e−tx2(0.5t).

Then, for i ∈ S, we obtain

LV (t, x(t), x(0.5t), i) ≤ −0.09x2(t) + (0.04)(0.5) (1 + 0.5t)−1 e−tx2(0.5t). (3.6)

Thus the assumptions of Theorem 2.4 are satisfied with c1 = 1
2
, c2 = 1, c3 = 0.09, c4 = 0.04,

β = 0.2, p = 2, q = 0.5, ε = 2, h(t) = (1 + t)et, φ = 2 and δ = 0.008. Therefore system (3.4) is
h-stable in mean square.
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