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Abstract: Many studies indicate that diets including carotenoid-rich foods have positive effects
on human health. Some of these compounds are precursors of the essential nutrient vitamin A.
The present work is aimed at implementing a database of carotenoid contents of foods available
in the European market. Factors affecting carotenoid content were also discussed. Analytical data
available in peer-reviewed scientific literature from 1990 to 2018 and obtained by HPLC/UHPLC
were considered. The database includes foods classified according to the FoodEx2 system and will
benefit compilers, nutritionists and other professionals in areas related to food and human health.
The results show the importance of food characterization to ensure its intercomparability, as large
variations in carotenoid levels are observed between species and among varieties/cultivars/landraces.
This highlights the significance of integrating nutritional criteria into agricultural choices and of
promoting biodiversity. The uncertainty quantification associated with the measurements of the
carotenoid content was very rarely evaluated in the literature consulted. According to the EuroFIR
data quality evaluation system for food composition tables, the total data quality index mean was 24
in 35, reflecting efforts by researchers in the analytical methods, and less resources in the sampling
plan documentation.

Keywords: agro-food; agronomy; food composition; fruits and vegetables

1. Introduction

The main dietary sources of carotenoids for humans are in general fruits and vegeta-
bles, although they are also present in other plant products (herbs, legumes, cereals or even
oils), algae, animal foods, additives or supplements [1].
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There are many studies indicating that carotenoid-rich diets can have a positive role in
human health and contribute to reduce the risk of diseases associated with aging, such as
certain cancers, cardiovascular disease, bone, skin or eye disorders and may be beneficial
for mental and metabolic health, during pregnancy and early life. In addition to their role
as colorants and bioactive compounds with possible positive effects on human health, some
carotenoids also have a well-defined role as provitamin A nutrient, being key in combating
vitamin A deficiency, especially in areas with low consumption of animal foods [2,3].

However, neither the European Food Safety Authority (EFSA) [4] nor the U.S. Food
and Nutrition Board [5] have established official recommended daily intakes/nutritional
reference values for the main dietary carotenoids. Indeed, there is still insufficient categor-
ical evidence of the amounts needed to help promote health, even for a widely studied
non-provitamin A carotenoid such as lutein, which has been positively associated to eye
health and other benefits [6,7].

According to the European labeling requirement [8], the daily reference intake for
vitamin A is 800 µg, with 15% (120 µg) being considered significant to the label’s nutritional
table. The equivalence between carotenoids provitamin A and retinol is an issue on which
a scientific consensus has not yet been established. According to the Food and Nutrition
Board of the Institute of Medicine, in USA, for provitamin A carotenoids from food, 6 µg
of β-carotene or 12 µg of α-carotene or 12 µg of β-cryptoxanthin are equivalent to 1 µg
of retinol. In terms of activity, twice those amounts are needed to obtain that of 1 µg
of retinol [9,10]. The first equivalence is named retinol equivalent (RE) and the second
retinol activity equivalent (RAE). The Food and Agriculture Organization of the United
Nations/International Network of Food Data Systems (FAO/INFOODS), adopted these
equivalences with the note that they may be specific for each country [11]. The equivalence
factors are estimated with large intervals of confidence due to factors that lead to high
standard deviations, including large interindividual response, differences in food matrix
and processing or analytical errors [12].

Apart from retinoids, carotenoids can also be enzymatically cleaved by humans into
apocarotenoids and other derivatives, which are eliciting increasing interest, as they may be
involved in biological actions. Given their versatility, carotenoids are importance continues
growing in the era of sustainable healthy diets and for the development of innovative
products such as novel foods or nutricosmetics, among others [2,3,13].

The promotion of currently underutilized local foods is increasingly a priority to
improve environmental sustainability and reducing in particular, the carbon footprint as
local foods have been often replaced by processed unhealthy foods due to its convenience.
Frequently, mainly in low-income countries, the latter foods are produced far from the
place of consumption having negative impacts in health and the environment. According
to FAO, in 2019, more than 6000 plant species have been cultivated for food. Of these less
than 200 make major contributions to food production globally, regionally or nationally
and only nine species account for 66% of total crop production [14]. In this context, food
composition databases are important tools for the adequate choice of foods and to promote
biodiversity by highlighting neglected yet nutritionally rich species that lost importance
with growing industrialization.

Food composition data are used in different fields of knowledge, mainly in the areas
of agro-food, nutrition and health [15]. They are often the basis of studies that link the
ingestion of carotenoids with health outcomes, so the quality of the data is of particular
importance. The uncertainty of these data influences that of studies made from those and
their conclusions drastically. This is not positive not only in scientific terms but also in
order to support the implementation of public health policies.

The determination of the different components of foodstuffs is particularly time con-
suming and expensive due to their diversity and the different analytical methods involved.
Carotenoids are particularly difficult to analyze accurately due to their lipophilicity, insta-
bility, structural similarity or scarcity of certified reference materials, which poses problems
of accuracy and comparability of results. On the other hand, there is a clear dispersion of
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food carotenoids composition data. In general, food composition databases only include
β-carotene, the carotenoid with the highest theoretical vitamin A activity and probably the
most ubiquitous in foods [1,2].

In general, variations in the profile of carotenoids within a species are not observed
with the naked eye unless there are color mutants. However, great variations are perceived
in each carotenoid content and in the total carotenoid content in the different varieties of
a species. This variability requires high resources in the design and implementation of
sampling plans and highly specialized analytical and human resources for obtaining high
quality data.

Several original data quality assessment systems were developed by several entities,
such as the United States Department of Agriculture (USDA), the Agence Française de
Sécurité des Produits Alimentaires (AFSSA), the Bioactive Substances in Food Information
Systems (BASIS), the Centro per lo Studio e la Prevenzione Oncologica (CSPO) and the
German Food Code and Nutrient Data Base (BLS). More recently the European Food Infor-
mation Resource (EuroFIR) developed a system based on those in order to harmonize food
composition data evaluation, by compilers [16]. Although its importance and usefulness
are indisputable it is still not widely. Regarding carotenoids the first works on data quality
assessment dates back to 1993, although only the analytical steps were considered [17,18].

This work is aimed at developing a comprehensive database of analytical data on
carotenoid contents in plant foods produced/marketed in Europe reported in peer reviewed
primary scientific sources. The quality of the data was assessed following current EuroFIR
AISBL (International Non-Profit Organization) recommendations for compilers [16]. On
the other hand, factors influencing carotenoid levels in foods are discussed.

2. Material and Methods
2.1. Data Collection

The identification of the papers for data collection was done through the b-on (Online
Knowledge Library), a search engine that pre index metadata in a single central index.
It contains over 16,750 scientific international publications from 16 publishers, through
subscriptions negotiated on a national (Portugal) basis with these publishers.

The following keywords were searched in titles: carotenoid OR carotene OR xan-
thophyll OR lutein OR zeaxanthin OR cryptoxanthin OR lycopene OR phytoene OR
phytofluene. Thereafter filters related to European countries were applied: Albania OR
Armenia OR Austria OR Azerbaijan OR Belarus OR Belgium OR Bosnia OR Bulgaria
OR Croatia OR Cyprus OR Czech Republic OR Denmark OR Estonia OR Europe* OR
Finland OR France OR Georgia OR Germany OR Greece OR Hungary OR Iceland OR
Ireland OR Italy OR Kazakhstan OR Kosovo OR Latvia OR Liechtenstein OR Lithuania
OR Luxembourg OR Macedonia OR Malta OR Moldova OR Monaco OR Montenegro OR
Netherlands OR Norway OR Poland OR Portugal OR Romania OR Russia OR Serbia OR
Slovakia OR Slovenia OR Spain OR Sweden OR Switzerland OR Turkey OR Ukraine OR
United Kingdom OR UK were searched in all fields. From this search, using filters, papers
containing Food OR Vegetable OR Fruit were selected. Papers about biological fluids and
food of animal origin were excluded manually.

The research was conducted in papers published in the period 1990–2018 and only
original research full-text papers were scrutinized. Only analytical data obtained by HPLC
or UHPLC systems equipped with at least spectrophotometric detector were considered.
The use or not of the saponification step during extraction method was registered since this
step affects the analytical measurement results [1]. Only food items intended for human
consumption produced and/or marketed in Europe were considered. Food supplements
were not in the scope of this collection.

Each paper was analyzed by researchers working in the area of carotenoids, in par-
ticular with knowledge of the analytical methods. All carotenoids reported in each paper
were collected and the water content, when available. References to carotenoids content
expressed as RE, RAE and % of the total, presented only in the graphic form and indicating
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only the minimum and maximum were discarded. The different units referred in the
papers were converted to µg/100 g. The tables were organized to document the food, com-
mon name, scientific name including species and varieties/cultivars/landraces/accessions
(whenever known). Other descriptors, including countries of origin and purchase, general
food processing method, color and part analyzed, were also registered when available.

All foods items were classified according to the FoodEx2 hierarchical system devel-
oped by the European Food Safety Authority (EFSA), at least at level 1 (twenty food groups).
When the number of foods at a given level was high, lower levels were used in order to
distinguish them. That is, being a hierarchical system, when the group level comprised a
large amount of foods (for instance, in the case of fruits and vegetables), the main sources
of carotenoids, levels 3 and 4 were reached in order to obtain a greater distinction between
the foods of these groups. Facet descriptors were used to provide additional information
for processed foods.

2.2. Data Quality Assessment

The quality of data published was evaluated using the methodology developed in
the scope of EuroFIR. This includes the evaluation of the measurement and the sampling
methods [16]. Briefly, this method evaluates seven categories: food description, component
identification, sampling plan, number of analytical samples, sample handling, sample
analysis and analytical quality control. Quality was scored in each one by answering a
total of 28 predefined questions (criteria). For each category several criteria were defined
and for each one the evaluator should answer “Yes”, “No” or “Not Applicable” (when the
criterion is not relevant for the nutrient in appreciation). These answers were translated
quantitatively, accordingly the following answers points scheme: “Yes”, 5 points; “No”
and “Not Applicable”, 0 points. The total points in each category were divided by the
total number of “Yes” and “No”; by definition when one category gets only “No” or
“Not Applicable” answers, the score should be 1. Through this evaluation, each category
received a score between 1 (low quality) and 5 (high quality). At the end, the scores of each
category were added and the overall quality index ranged between 7 (low quality) and
35 (high quality). The evaluation was done for all papers collected and, for each category
and overall quality index, means were calculated.

3. Results and Discussion
3.1. Data Collection

The search tools of b-on was not selective enough and a general review of the abstracts
resulting from the search, which returned initially >1000 results, was necessary. After this
review, 373 references were collected and from these 25 were rejected, the main cause being
the determination of carotenoids by spectrophotometric method instead of HPLC/UHPLC.
The time frame was from 1990 to 2018, with emphasis on the most recent years. The year
with the most papers was 2016. The references were from Archives of Biochemistry and
Biophysics, Crop Science, European Food Research and Technology, Food and Nutrition
Research, Food Chemistry, Food Research International, Food Science and Technology
International, International Journal of Food Science and Technology, International Journal
of Food Sciences and Nutrition, Journal of Agricultural and Food Chemistry, Journal of
Chromatography A, Journal of Food Composition and Analysis, Journal of Food Science,
Journal of Food, Agriculture and Environment, Journal of Separation Science, Journal of
the Science of Food and Agriculture, LWT-Food Science and Technology, Nutrición Hos-
pitalaria, Plant Foods for Human Nutrition, Planta, Postharvest Biology and Technology,
Archivos Latinoamericanos de Nutrición, Food and Nutrition Bulletin, Revista do Instituto
Adolfo Lutz and Scientia Horticulturae. Although b-on has a high journal coverage, digital
object identifier (DOI) was not available in some of the oldest references, forcing a new
internal referencing of these papers in order to create a unique identification.

To facilitate comparisons, all carotenoid content units were converted to µg/100 g,
preferably in fresh weights, unless water content was not given, and in this case, the dry



Foods 2021, 10, 912 5 of 31

basis was flagged. The vast majority of papers did not report water content despite this
parameter is key in order to be able to relate compositions in food composition databases.

The information about the use or not of saponification during the analytical process
was collected as this reaction can lead to important losses of carotenoids or even the
formation of artifacts, decreasing the accuracy of the analysis. To monitor this process, an
internal standard is often added by some researchers, for example β-apo-8′-carotenal or
echinenone. Despite being a lengthy step, saponification is often essential to hydrolyze the
carotenoid esters, to eliminate lipids and eliminate chlorophylls [1,2]. However, only 10%
of the papers refer the inclusion/not inclusion of this step.

In general, the part of the food analyzed was mentioned in the papers. The descriptor
“edible part” was used very often. However, in foods that may generate ambiguities, a more
detailed description will be an asset. This is the case, for example, of apple, pear, tomato
and apricot, in which the peel may or may not be considered an edible part, influencing
the carotenoid content.

All food items were codified by FoodEx2, using the exposure hierarchy, including
facets for processed food. This classification system, initially developed for exposure
evaluation to contaminants, is currently increasingly used in the area of food composition
and mandatory in projects supported by EFSA. It is less complex in relation to other systems
(e.g., LanguaL) and it is used by EFSA to facilitate the compatibility/comparability among
different domains of food databases and from different countries at the EU level.

Supplementary Tables S1–S10 [19–180], corresponding to 10 level 1 FoodEX2 groups,
Coffee, cocoa, tea and infusions; Seasoning, sauces and condiments; Composite dishes;
Fruit and vegetable juices and nectars; Animal and vegetable fats and oils and primary
derivatives thereof; Fruit and fruit products; Legumes, nuts, oilseeds and spices; Starchy
roots or tubers and products thereof, sugar plants; Vegetables and vegetable products;
Grains and grain-based products present the carotenoid content of food items. Sub tables
by FoodEX2 subgroups (levels 2–4) and the respective codes, including facets (represented
by #) were also used to obtain more discrimination and facilitate consultation.

The lack of quantitative data for a carotenoid in the tables meant in many cases that
the carotenoid was not reported in the paper and not that the food did not contain that
carotenoid. This has been common for the colorless carotenoids phytoene and phytofluene,
which have been very often ignored [2].

Supplementary Tables S1–S10 contain 3507 values of carotenoid content, with 29.4%
referring to β-carotene, 18.8% to lutein, 10.3% to β-cryptoxanthin, 8.8% to zeaxanthin, 7.0%
to α-carotene and 3.9% to lycopene.

Excluding foods analyzed in their dry form, and according to this collection, the major
sources of the carotenoids above were, in µg/100 g fresh weight, in descending order
(extracts of Tables S1–S10 for some of these foods area presented on Appendix A):

– Carrot, spinach, goosefoot, peppers (red) and sheep sorrel for β-carotene.
– Spinach, goosefoot, sheep sorrel, Indian spinach and amaranth for lutein.
– Peppers (red), apricot, sarsaparilla, tamarillo and mandarin for β-cryptoxanthin.
– Peppers (red), goosefoot, duckweed, goji berries and maize for zeaxanthin.
– Carrot, pumpkin, carrot greens, cowpea and Ceylon spinach for α-carotene.
– Tomato, rosehip, ketchup, watermelon and tomato sauce for lycopene.

3.2. Data Quality Index

Sample analysis and the component identification obtained immediately the maximum
score, which was 5. Firstly, since HPLC (or more recently UHPLC) is the method generally
accepted as suitable for the analysis of individual carotenoids, only data obtained using it
were considered for data collection. Additionally, only clear unequivocal identified and
quantified (including units) carotenoids were included in the database. The score for the
number of analytical samples was 1 due to the specification of this gathering per analytical
sample. Indeed, this category was not evaluated. The results of the global evaluation
of all papers are presented in Figure 1, excluding categories evaluated a priori based on
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the assumptions of this collection. Considering the set of papers reviewed, the average
scores obtained were 4 for the Food description, 5 for the Component identification, 2 for
the Sampling plan, 1 for the Number of analytical samples, 4 for the Sample handling,
5 for the Sample analysis and 3 for the Analytical quality control. Considering that seven
categories were under evaluation and that each one can get a maximum score of 5, overall,
a mean rating of 24 out of a possible maximum of 35 was obtained by applying strictly
the method. Considering the peculiarity of this collection it could be considered that a
score of 23 out of 30 was obtained. Taking into account the EuroFIR criteria for quality of
food composition databases, the results reveal that the data on carotenoids, available in the
scientific literature present a greater weakness in terms of the sampling plan and then in
terms of analytical control. This can be attributed to the difficulty in defining representative
food sampling plans, the intention of the study (for instance the representativeness of the
food in the country is not usually an important aspect) or the scarcity of certified reference
materials/interlaboratory tests in this area. Another important aspect is that researchers
from other areas may not be aware for the importance of these quality parameters and may
not describe them in their publications.

Figure 1. Paper documentation evaluation, for food composition databases, by the EuroFIR system.

3.2.1. Factors Affecting the Level of Carotenoids

The data collected show great variations in the levels of carotenoids within and across
plant foods (Tables S1–S10). All plant biosynthesize carotenoids in their photosynthetic
tissues following a quite constant pattern in most cases, whereas many of them also
biosynthesize a wider variety of them in structures such as fruits, several flower structures,
tubers, seeds or roots [181,182]. Apart from the type of plant tissue there are manifold
factors related to the accumulation of carotenoids in these foods, examples of some of
which are outlined below. It is important to note that, because of the numerous factors
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governing the biosynthesis of carotenoids in plant foods, it is generally difficult to establish
categorically the effect that a particular practice has on a given food. Thus, it is not
uncommon to find in the bibliography that the effect of an agronomic practice is markedly
different depending for instance on genetic factors or developmental stages.

3.2.2. Factors Related to the Plant
Genetic Factors

The carotenoid profile in qualitative terms is usually quite constant across many
varieties, although there can also be spontaneous or targeted color mutations that result in
varieties with a distinctive carotenoid pattern. Thus, most sweet oranges (Citrus sinensis
L. Osbeck) accumulate epoxycarotenoids (typically certain isomers of violaxanthin and
antheraxanthin) as major carotenoids [55], whereas a few cultivars such as Cara Cara,
Shara or Hong Anliu have a reddish flesh due to the accumulation of large amounts of
lycopene (absent in most orange varieties) and also of the colorless carotenoids phytoene
and phytofluene [52,183]. On the other hand, the variety Pinalate has a yellowish pulp
resulting from the very high accumulation of ζ-carotene, phytoene and phytofluene, which
are the main carotenoids in this variety [184]. There are also tomato color mutants, for
instance the R tomato, which has yellowish flesh and does not accumulate carotenoids [185]
or the Delta tomato, with increased δ-carotene levels (a carotenoid not usually detected in
most tomato varieties) and reduced lycopene contents [186].

In some cases, structures that do not accumulate carotenoids or that accumulate very
low amounts can become good sources of these compounds as a result of spontaneous
mutations. One example would be the cauliflower, where a gene mutation results in the
accumulation of high levels of β-carotene in the inflorescence and other structures [187].
The accumulation of carotenoids in previously non-carotenogenic structures can also be
achieved by means of genetic engineering. The biosynthesis of β-carotene in the endosperm
of golden rice being an excellent example [188].

On the other hand, there can be important differences in the carotenoid levels even
within the same variety under the same cultivation conditions. Thus, for instance, in
a study where the accumulation of carotenoids, tocopherols and phenolic compounds
in diverse tomato and wild relatives was studied it was concluded that, when ripe, the
highest levels of lycopene, phytoene and phytofluene were found in two accessions of
the same tomato variety (var. cerasiforme). The differences ranged between ca. 2-fold
(lycopene) and ca. 6-fold (phytoene), which highlights the impact that the genotype has in
the accumulation of secondary metabolites [189].

Ripening

In carotenogenic fruits, ripening is normally accompanied by the degradation of
chlorophylls and the increase in the biosynthesis of carotenoids although there are some
exceptions. Thus, in fruits that remain green when ripe (kiwi) or those that owe their final
color to anthocyanins (strawberries and other berries and olives) the carotenoid content
can decrease over ripening [182].

Part of the Tissue

The carotenoid content is not normally evenly distributed in the plant structures.
Indeed, it can vary considerably both longitudinally and transversally as it can be observed
with the naked eye in foods like tomato fruits or carrots. Considering this is essential when
generating compositional data on carotenoids [86]. A correct sampling procedure would
involve, among many other steps, to quarter longitudinally the sample and then take and
combine opposite sections [190].

Location of the Fruit in the Plant

The position of a carotenogenic fruit in the plant can have an important effect in their
carotenoid levels. As an example, statistically significant differences in carotenoid contents
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have been reported in diverse tomato genotypes as a function of the location of the tomato
clusters, although a consistent pattern of changes valid for all carotenoids and varieties
was not observed. The authors argued that differences in the carotenoid content depending
on the location could be due to differences in exposure to radiation [141], which is a factor
known to affect carotenoid biosynthesis, as discussed below.

3.2.3. Ambient Factors
Light Quality

It is well known that the spectral quality of the light that reaches the plant can have an
impact in the biosynthesis of secondary metabolites. Thus, the use of shade nettings that
allow for the selection of the desired spectral light is becoming an important technological
concept in agronomy [191]. As an example, it has been reported that blue light can have
a positive impact on the accumulation of lycopene and β-carotene in tomatoes [133]. On
the other hand, short-term ultraviolet B (UV-B) irradiation on sweet basil did not lead to
marked increases in the carotenoid levels of young plants and decreased them in flowering
plants [192].

Light Quantity

The effect of high light exposure or intensity on the levels of not only carotenoids but
also other secondary metabolites is thought to be positive in general [193]. For example,
high light exposure can lead to increases in total carotenoids in the peel of apples [194] or
in tomatoes [132].

Interestingly, the fine tuning dosage of blue light could be a good strategy to increase
the chlorophyll and carotenoid levels of microgreens like parsley, mustard or beet, where
increases in these compounds ranging from 1.2-fold to 4.3-fold have been observed [110].

Climate, Season and Geographic Site of Production

Climate is a complex phenomenon that is interrelated with factors including season or
geographical location, among others.

Some studies carried out in Brazil with papayas [195], West Indian cherry [182] or
mangoes [196] indicate that, in some cases, climatic factors can have a greater impact on the
biosynthesis of carotenoids than cultivar differences and that greater exposure to sunlight
and higher temperatures can elevate the carotenoid levels in some fruits. In some cases,
5–6-fold differences in the levels of carotenoids between different geographical regions
were observed [182]. A similar conclusion was drawn from a study in which the carotenoid
levels in diverse tomatoes grown in Ireland and Spain were compared [131].

Concerning seasonal effects, significant differences in the levels of both total and
some individual carotenoids of kale have been reported, the total carotenoid content being
higher in winter than in summer, 1.25-fold for cultivar cv. Manteiga [197] and 2-fold for
galega v. acephala [32]. In a study in which the effect of regulated deficit irrigation, cluster,
developmental stages and two seasons (autumn and spring) on the carotenoid levels of
“Lazarino” and “Summerbrix” tomatoes was evaluated, it was concluded that, overall,
lower levels of individual and total carotenoids were observed in autumn [198].

Features of climate changes, for instance the increase in temperature, the elevated
atmospheric CO2 and the arrival of more UVB rays on Earth due to the decrease in the
ozone layer seems to influence the content of carotenoids in food. In an experimental
study the influence of temperature on total carotenoid content was evaluated and it was
found that the total carotenoid content of five tomato varieties was lower at 35.4 ◦C than
at 33.4 ◦C [199]. A meta-analysis conducted showed that in general an exposure of plants
to high levels of CO2 decreased the content of carotenoids by 15%, with some exceptions,
mainly when the plants were abiotically stressed, in which the concentration of carotenoids
increased [200]. Plantains grown in the south hemisphere contained the more carotenoids
provitamin A, α-carotene and β-carotene the greater the incidence of UVB rays [201].
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3.2.4. Agronomic Practices
Salinity Stress

Diverse treatments leading to salinity stress have been shown to increase lycopene and
other carotenoid levels (in some cases up to 3-fold) in different tomato genotypes [127,134].
Salinity stress has also been shown to lead to elevated carotenoid contents in red pep-
per [202] and, more markedly, in romaine lettuce [103].

Water Deficit

The availability of water is an important problem in many parts of the world, so
the importance of implementing practices leading to efficient water usage in agriculture
continues growing. The effect of water stress or deficit irrigation on the commercial quality
or other parameters, like the levels of secondary metabolites, is therefore a timely research
topic. As an example, it has been observed that a regulated deficit irrigation with a reduc-
tion of 40–50% in the leaf water potential in some tomato varieties can lead to increases
in the levels of not only carotenoids but also phenolic compounds without affecting sig-
nificantly their commercial quality. More specifically, ca. 1.5-fold increases in lycopene
and total carotenoid levels were observed in some cases [141]. Deficit irrigation has also
been reported to reduce yield, but not lycopene and fruit quality in certain watermelon
varieties [203]. Interestingly, grafting of mini-watermelon under irrigation deficit led to
increases of lycopene levels ca. 40% compared to the ungrafted counterparts [204]. Grafting
under water stress could also lead to increases in lycopene levels in cherry tomatoes [205].
Contrastingly, regulated deficit irrigation has also been shown to reduce carotenoid levels
in peaches [206]. On the other hand, water stress has been reported to significantly reduce
the levels of capsanthin in red peppers, the degree of reduction being related to the intensity
of the stress [207].

Use of Agrochemicals

As part of an interesting study, the carotenoid levels of kales cv. “Manteiga” grown in a
farm not using agrochemicals were compared with those grown in a neighboring farm that
used glyphosate (herbicide), ethyl parathion (insecticide) and a leaf fertilizer containing
nitrogen, phosphorus and potassium. The results indicated that the total carotenoid
contents were significantly higher (1.2-fold) in the farm not using agrochemicals [182,198].
Significantly higher lycopene contents (ranging from 1.6-fold to 2-fold) were found in Rio
Red grapefruits grown conventionally (using diverse fertilizers and products for pest and
weed control) relative to organically-grown counterparts in a study in which the fruits
were harvest at the early, mid and late season for three consecutive years [54]. There is
also evidence that fertilization with nitrogen can affect positively the accumulation of
carotenoids in red pepper [208] and carrot [209] and negatively in tomatoes [210], whereas
phosphorous or potassium can have a positive effect in this crop [210].

3.3. Post-Harvest Treatments, Industrial Processing, Cooking and Storage Conditions

These topics are dealt with in detail elsewhere. In general, the losses of carotenoids
increase with the intensity and the time of the treatments, with important differences
among matrices and carotenoid species [118,211].

It is well-known that the synthesis of carotenoids can continue after harvest if the
carotenogenic material remains intact, hence the carotenogenesis can be controlled to some
extent by modulating parameters such as temperature, atmosphere or light, among others.
Again, different behavior due factors including matrices, carotenoid species or conditions
of the treatment have been reported. For instance, freezing storage for 6 months had no
significant effect on β-carotene content of peas and carrots, although frozen storage for one
year led to a decrease in α- and β-carotene in processed carrots [211].

It is very important to note that very frequently; published papers report that industrial
processing or cooking lead to increases of the levels of carotenoids, these results being in
most cases erroneous. Thus, in most cases the treatments inactivate proteins (including
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of course carotenogenic enzymes) and leads to carotenoid degradation. Claims about
enhanced levels of carotenoids as a result of such industrial or culinary treatments should
be accompanied by supporting evidence, for instance upregulation of carotenogenic genes
or downregulation of genes encoding carotenoid oxygenases, which cleave carotenoids
into retinoids, apocarotenoids or other products [13].

Another reason is that, very frequently, those treatments enhance the extractability
of carotenoids from treated compared to raw matrices due to the changes such as the
softening of membranes or walls [182,212]. In relation to this, it is important to note that,
depending on the conditions; some treatments can decrease the content of carotenoids in
the food but enhance their release from it during digestion, having therefore a potential
positive impact on their bioavailability. Examples of this have been reported in carrot [166],
tomato [138] and orange products [37], among others. On the other hand, sometimes, an
important source of error is that the changes in the weight of the processed or cooked
food are not taken into account; hence, the reported retentions of carotenoids are not
realistic. Several formulae for their calculation are recommended in a reference text by
Rodriguez-Amaya [182]:

% retention = (carotenoid content per g of cooked food × g of food after cooking/carotenoid content per g of raw food × g of food before cooking) × 100 (1)

% retention = carotenoid content per g of cooked food (dry basis)/carotenoid content per g of raw food (dry basis) × 100 (2)

% retention = carotenoid content (after cooking) per g of original raw food/carotenoid content per g of raw food × 100 (3)

Apart from losses of carotenoids during processing, cooking and/or storage other
phenomena including geometrical isomerization [213,214] or 5,6-epoxide to 5,8-furanoid
rearrangements can take place [31,197]. Given that both kind of isomerizations are accom-
panied by changes in the light absorption spectra [186], noticeable food color changes as a
result of them could be expected in some cases.

Taken together, it can be readily inferred that the levels of carotenoids do vary con-
siderably in any food even in set of samples from the same geographical area. As some
examples of this fact in samples analyzed in the same laboratory, 18–20-fold differences
have been reported in marketed orange juices and tomato fruits [31,140,215] and 60-fold
differences in olive oils [216].

4. Conclusions and Research Needs

The carotenoid analytical data collected for this work, showed a good average quality
index, 24/35, according to the EuroFIR classification. It has been concluded that there is the
need to improve the description and/or allocation of more resources to the definition of
sampling plans and to the external control of the laboratory analytical methods to increase
the number of traceable and comparable results. Only a complete analytical method
validation, including accuracy evaluation, enables the estimation of the uncertainty of the
measurement results (topic mentioned in only two of the publications analyzed) in order
to assess its impact on studies based on dietary carotenoid content and in the assessment
of actual differences in carotenoid levels. The uncertainty evaluation will also enable the
definition of the number of significant figures of the results, avoiding the false impression
of high accuracy of the results published with too many significant figures without support.

The analytical methods used to obtain the collected data generally included several
mass transfer steps and in some cases a saponification reaction, which do lead to carotenoid
losses, Hence it is important to mention clearly when the saponification step is included
and measures taken to correct for losses (e.g., internal standards choice). On the other
hand, the complete separation of the carotenoids in the chromatographic columns is in
some cases difficult and requires specialized technicians.

The investment in faster analytical methods, less prone to error and using more
environmentally friendly reagents and in less quantity will be an asset for the determi-
nation of carotenoids in foods. The analytical distinction between the E and Z isomers
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of the different carotenoids may be important to gain further insight into differences in
bioaccessibility/bioavailability, vitamin A activity and other bioactivities.

Foods contain different carotenoids in different levels, so it is advisable to consume a diver-
sified diet to obtain appropriate levels of the major health-promoting dietary carotenoids. This
approach is also advised in the case of contaminants to minimize exposure to each contaminant.

Although food carotenoid databases are very useful tools to establish recommended
intakes, bioaccessibility/bioavailability studies and more integrated studies considering all
diet/components/individuals interactions are also needed as the carotenoid status depend
on factors depending on the matrix, other dietary components and the individual. Although
there is ample evidence that a diet rich in fruits and vegetables (e.g., Mediterranean
Diet) has positive effects on human health and, establishing recommendations for dietary
carotenoids intakes would contribute to reinforcing the education/informed choices by
the population. In addition, it could contribute to decrease the consumption of heavily
processed foods, which are often rich in saturated fat, sugar and salt. Provitamin A
carotenoids are particularly very important for populations with limited availability of
animal foods or for those that do not eat them by choice. In line with this fact, it is important
to improve their conversion into vitamin A activity, overcoming limitations of RA and RAE
formulas, and to appropriately consider them in the nutritional labeling of foods.

The wide variations in the carotenoid contents in different varieties/cultivars/landraces/
accessions of a certain species illustrate the importance and the need for their documenta-
tion in food composition databases. This collection includes little consumed foods with
very high levels of carotenoids (for instance rosehip or sarsaparrilla). This can contribute
to take better advantage of biodiversity to enhance the carotenoid intake in particular. This
database can be useful to include the carotenoid content/nutritional value criterion on the
choice of varieties for agricultural cultivation, in addition to others such as high production
or resistance to transport and pests. In environmental terms, studies on the carbon or water
footprints of foods in general are also necessary as diet and environment are essential
elements for human health.
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Appendix A

Table A1. Root and tuber vegetables (excluding starchy- and sugar-) (A00QF) (µg/100 g).

Food Name Scientific Name Origin
(Country)

Purchase
(Country) Water (%) Part

Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Carrot Daucus carota L. United
Kingdom

United
Kingdom peeled 4450 ± 940 32,000 ± 2880 [95]

Carrot Daucus carota L. Italy Italy 2840–4960 4350–8840 [25]

Carrot Daucus carota L. Germany Germany 91.3 edible part 4890 9020 [53]

Carrot Daucus carota L. Germany Germany 84.3 edible part 3060 6500 12 [53]

Carrot Daucus carota L. Germany Germany edible part 4120 4650 28 [53]

Carrot Daucus carota L. Spain Spain edible part orange 3245 8162 [24]

Carrot Daucus carota L. Spain Spain edible part orange 2895 6628 [24]

Carrot Daucus carota L. Spain Spain edible part orange 3700 9800 [24]

Carrot Daucus carota L. Turkey Turkey root orange 1344–3011 4160–7162 [156]

Carrot Daucus carota L. Spain Spain edible part 3245 8162 [24]

Carrot Daucus carota L. Spain Spain edible part 2895 6628 [24]

Carrot Daucus carota L. Italy Italy all sample L*52.2 ± 0.7a*24.1 ± 1.5b*36.1 ± 1 82,100 ± 1100 128,400 ± 800 [111]

Carrot Daucus carota L. Italy Italy all sample L*52.1 ± 0.8a*22.6 ± 1.1b*35.7 ± 1.9 85,600 ± 2400 101,600 ± 700 [111]

Carrot Daucus carota L. Italy Italy all sample L*50.2 ± 1.1a*21.4 ± 1.4b*35.3 ± 1.5 68,100 ± 9100 113,000 ± 16,700 [111]

Carrot Daucus carota L. Poland Poland roots 4820–9520 [157]

Carrot Daucus carota L.
cv Nerac Ireland Ireland roots 188,000 ± 5000 [158]

Carrot Daucus carota L.
cv. Nantes Brazil tuber orange 3500 6150 nd [109]

Carrot Daucus carota L.
HCM France France root dark-orange 7583± 619 17,206 ± 643 [159]

Carrot Daucus carota L.
subsp. sativus Finland Finland 2200–4900 4600–10,300 [86]

Carrot Daucus carota L.
subsp. sativus Spain Spain 2900 ± 300 6600 ± 0 [86]

Carrot Daucus carota L.
subsp. sativus

United
Kingdom

United
Kingdom 2700–3600 8500–10,800 [86]
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Table A1. Cont.

Food Name Scientific Name Origin
(Country)

Purchase
(Country) Water (%) Part

Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Carrot Daucus carota L.
subsp. sativus USA 3900 5600 [86]

Carrot Daucus carota L.
subsp. sativus Egypt 3400 6300 [86]

Carrot Daucus carota L.
subsp. sativus Taiwan 2800 ± 300 5400 ± 600 [86]

Carrot Daucus carota L.
subsp. sativus Malaysia 3400 6800 [86]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 2322 ± 233 5404 ± 305 [159]

Carrot
Daucus carota L.
var. Blanche à

collet vert
France France root white nd nd [159]

Carrot
Daucus carota L.
var. Blanche des

vosges
France France root white nd nd [159]

Carrot Daucus carota L.
var. Carentan France France root orange 1644 ± 50 5932 ± 360 [159]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 1972± 183 5433 ± 462 [159]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 3131 ± 263 6633 ± 564 [159]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 1419 ± 99 4149 ± 112 [159]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 2291 ± 224 6190 ± 403 [159]

Carrot
Daucus carota L.

var. Commercial
French

France France root orange 1916 ± 138 4730 ± 319 [159]
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Table A1. Cont.

Food Name Scientific Name Origin
(Country)

Purchase
(Country) Water (%) Part

Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Carrot Daucus carota L.
var. Kokubu France France root orange 1748 ± 29 3740 ± 25 [159]

Carrot
Daucus carota L.

var. La
Merveille

France France root orange 2092 ± 36 5869 ± 101 [159]

Carrot
Daucus carota L.
var. Nantaise

améliorée
France France root orange 1369 ± 150 3625 ± 329 [159]

Carrot Daucus carota L.
var. San NaÏ France France root orange 1333 ± 85 3206 ± 182 [159]

Carrot Daucus carota L.
var. sativa, D.C. Spain Spain 88 root orange 2895 ± 276 6628 ± 45 [24]

Carrot Daucus carota L.
var. sativa, D.C. Spain Spain 90 root orange 3245 ± 128 8162 ± 364 [24]

Carrot
Daucus carota L.

var. Violette
jordanienne

France France root purple nd 381 ± 24 [159]

Carrot
Daucus carota L.

var. Violette
turque

France France root purple nd 318 ± 18 [159]

Carrot Daucus carota L.
var. yellowstone France France root yellow nd 332 ± 15 [159]

Carrot Daucus carota L.,
var. Bolero Turkey Turkey root 1642 ± 101

3011 ± 217
4826 ± 465
7162 ± 503 [160]

Carrot Daucus carota L.,
var. Fontana Norway Norway root 5490–11,270 2210–5510 [161]

Carrot Daucus carota L.,
var. Maestro-F1 Turkey Turkey root 1706 ± 60

2478 ± 179
4160 ± 148
6706 ± 42 [160]

Carrot Daucus carota L.,
var. Merida Norway Norway root 5550–10,200 1980–5220 [161]

Carrot Daucus carota L.,
var. Nanco Turkey Turkey root 1473 ± 34

2630 ± 33
4310 ± 118
6440 ± 146 [160]

Carrot Daucus carota L.,
var. Nandrin Norway Norway root 5630–12,080 1910–4530 [161]
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Table A1. Cont.

Food Name Scientific Name Origin
(Country)

Purchase
(Country) Water (%) Part

Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Carrot Daucus carota L.,
var. Nantindo Turkey Turkey root 1665 ±

113–3006 ± 66
4767 ± 123
6637 ± 58 [160]

Carrot Daucus carota L.,
var. Newburg Norway Norway root 6100–10,800 2370–4090 [161]

Carrot Daucus carota L.,
var. Presto-F1 Turkey Turkey root 2346 ± 45

2367 ± 217
5185 ± 468
6198 ± 138 [160]

Carrot Daucus carota L.,
var. PS-F1 Turkey Turkey root 2688 ± 225

2967 ± 36
6168 ± 302
6373 ± 476 [160]

Carrot Daucus carota L.,
var. Tito Turkey Turkey root 1344 ± 17

1718 ± 153
4563 ± 311
4835 ± 473 [160]

Carrot

Daucus carota
var. Jaune
obtuse du

Doubs

France France root yellow nd 332 ± 21 [159]

Carrot
Daucus carota

var. New
Kuroda

France France root orange 1635 ± 17 3632 ± 64 [159]

Carrot
Daucus carota L.

var. De
Guérande

France France root orange 1278 ± 234 3354 ± 457 [159]
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Table A2. Spinaches and similar (A00MH) (µg/100 g).

Food Name Scientific
Name

FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country) Water (%) Part

Analysed Colour α-
Carotene β-Carotene Lutein Ref.

Spinach Spinacea
oleracea L. A00MJ Spain Spain edible part green 4626 6422 [24]

Spinach Spinacea
oleracea L. A00MJ Spain Spain 92 leaves +

stalk green 3254 ± 330 4229 [24]

Spinach Spinacea
oleracea L. A00MJ Spain Spain 92 leaves +

stalk green 4626 ± 346 4229 ± 1310 [24]

Spinach Spinacea
oleracea, L. A00MJ Spain Spain edible part green 3254 6422 ± 1190 [24]

Spinach Spinacia
oleracea L. A00MJ Brazil leaves green nd 4423 5793 [109]

Spinach Spinacia
oleracea L. A00MJ Italy Italy nd 3100–4810 5930–7900 [25]

Spinach Spinacia
oleracea L. A00MJ Germany Germany 90.8 edible part 90 3250 9540 [55]

Spinach Spinacia
oleracea L. A00MJ Spain Spain edible part 4626 8700 ± 100 [28]

Spinach Spinacia
oleracea L. A00MJ Spain Spain edible part 3254 218,700 ± 15,400 [28]

Spinach Spinacia
oleracea L. A00MJ Italy Italy all sample L*30.5 ± 1.1a*8 ± 0.6b*10 ± 0.8 152,100 ± 5000 167,000 ± 10,400 [111]

Spinach Spinacia
oleracea L. A00MJ Italy Italy all sample L*33.7 ± 1.1a*7.7 ± 1.1b*9.3 ± 1 148,100 ± 6500 194,200 ± 4200 [111]

Spinach Spinacia
oleracea L. A00MJ Italy Italy all sample L*33.1 ± 0.8a*6.9 ± 0.9b*9.2 ± 0.8 18,4600 ± 9300 6422 [111]

Spinach Spinacia
oleracea L. A00MJ Slovenia Slovenia 90.7 leaves green 4840–13,900 [114]
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Table A3. Mandarins and similar (A01CB) (µg/100 g).

Food
Name

Scientific
Name

FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country)

Water
(%)

Part
Analysed Colour E(v. Trans)-α-

Carotene
E(v. Trans)-β-

Carotene
β-

Cryptoxanthin Lutein Phytoene Phytofluene Violaxanthin Zeaxanthin Ref.

Mandarin Citrus cv
Mediterranean A01CD Italy Italy

essential oil of
peel fruit

(free)
610 ± 62 [58]

Mandarin Citrus cv
Mediterranean A01CD Italy Italy

essential oil of
peel fruit
(laurate)

1411 ± 140 [58]

Mandarin Citrus cv
Mediterranean A01CD Italy Italy

essential oil of
peel fruit

(myristate)
1504 ± 132 [58]

Mandarin Citrus cv
Mediterranean A01CD Italy Italy

essential oil of
peel fruit

(palmitate)
715 ± 74 [58]

Mandarin Citrus deliciosa,
Ten. A01CJ Spain Spain 86 without skin orange 213 ± 102 843 ± 216 [24]

Mandarin Citrus deliciosa,
Ten. A01CJ Spain Spain 85 without skin orange 130 ± 10 1106 ± 63 [24]

Mandarin Citrus reticulata A01CD Spain Spain orange 213 843 [24]

Mandarin
Citrus reticulata

Blanco cv.
Hansen

A01CE France France juice fruit 197 1500 163 446 500 467 (cis) 128 [43]

Mandarin
Citrus reticulata

Blanco cv.
Hansen

A01CE France France juice fruit 70 162 230 100 110 445 (cis) 143 [43]

Mandarin
Citrus reticulata

Blanco cv.
Hansen

A01CE French
Polynesia juice fruit 76 916 210 24 92 560 (cis) 131 [43]

Mandarin Citrus reticulate,
L. var. Tango A01CD Spain Spain fruit orange 12.4 547 1331.6 [56]
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Table A4. Cereal grains (and cereal-like grains) (A000L) (µg/100 g).

Food
Name

Scientific
Name

FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country) Saponification Part

Analysed Colour α-
Carotene

(v. Trans)-α-
Carotene β-Carotene E(v. Trans)-

β-Carotene
β-

Cryptoxanthin
E(V. Trans)-

Lutein Ref.

Maize Zea mays L. A000T Spain Spain edible part yellow 33 30 [24]

Maize Zea mays L. A000T Croatia Croatia all sample 117.3± 8.17 158.5 ± 9.5 [174]

Maize Zea mays L.
A000T

#F28.A07KQ
$F28.A0BA1

USA no 15 14 0 202 [28]

Maize Zea mays L. A000T Netherlands Netherlands kernels 20 ± 7 424 ± 6 157 ± 3 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 44 ± 9 447 ± 28 29 ± 2 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 58 ± 0 40 ± 2 93 ± 1 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 3 ± 1 246 ± 8 453 ± 8 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 44 ± 1 879 ± 28 37 ± 3 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 41 ± 7 448 ± 15 260 ± 10 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 17 ± 0 368 ± 2 988 ± 5 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 23 ± 2 56 ± 2 37 ± 2 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 11 ± 0 37 ± 0 41 ± 4 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 6 ± 4 253 ± 13 375 ± 15 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 16 ± 3 303 ± 16 251 ± 8 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 86 ± 6 277 ± 8 84 ± 2 [175]

Maize Zea mays L. A000T Netherlands Netherlands kernels 23 ± 1 305 ± 20 371 ± 15 [175]
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Table A5. Cucurbits with inedible peel (A00KD) (µg/100 g).

Food Name Scientific Name FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country) Water (%) Part Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Pumpkin Cucurbita maxima A00KH Spain Spain edible part 490 60 [24]

Pumpkin Cucurbita maxima A00KH Spain Spain edible part 31 188 [24]

Pumpkin Cucurbita maxima A00KH Spain Spain edible part 53 692 [24]

Pumpkin Cucurbita maxima var.
Autumn Cup A00KH Austria Austria flesh fruit 800 5200 [152]

Pumpkin Cucurbita maxima var.
Buen Gusto A00KH Austria Austria flesh fruit 1000 3300 [152]

Pumpkin Cucurbita maxima var. Flat
white Boer A00KH Austria Austria flesh fruit 7500 6200 [152]

Pumpkin Cucurbita maxima var.
Gelber Zentner A00KH Austria Austria flesh fruit 0 2200 [152]

Pumpkin Cucurbita maxima var.
Hyvita A00KH Austria Austria flesh fruit 990 2500 [152]

Pumpkin Cucurbita maxima var.
Imperial Elite A00KH Austria Austria flesh fruit 1100 7400 [152]

Pumpkin Cucurbita maxima var.
Japan 117 A00KH Austria Austria flesh fruit 1000 7200 [152]

Pumpkin Cucurbita maxima var.
Mini green Hubbard A00KH Austria Austria flesh fruit 420 1400 [152]

Pumpkin Cucurbita maxima var.
Mishti kumra A00KH Bangladesh fruit 362 ± 89.3 [157]

Pumpkin Cucurbita maxima var.
Snow Delite A00KH Austria Austria flesh fruit 1500 6400 [152]

Pumpkin Cucurbita maxima var.
Uchiki Kuri A00KH Austria Austria flesh fruit 1400 2500 [152]

Pumpkin Cucurbita maxima var.
Umber Cup A00KH Austria Austria flesh fruit 790 3700 [152]

Pumpkin Cucurbita maxima A00KH Austria Austria flesh fruit 900 4300 [152]

Pumpkin Cucurbita maxima x C.
moschata var. Tetsuka Buto A00KH Austria Austria flesh fruit 2400 3500 [152]
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Table A5. Cont.

Food Name Scientific Name FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country) Water (%) Part Analysed Colour α-Carotene β-Carotene β-Cryptoxanthin Ref.

Pumpkin

Cucurbita moschata
Duchesne cv. Menina

Brasileira and cv.
Goianinha

A0DLT
#F20.A07QF
$F20.A07RD

Brazil without skin
and seed orange 2530 6170 nd [109]

Pumpkin Cucurbita moschata var.
Burpee Butterbush A0DLT Austria Austria flesh fruit 980 3100 [152]

Pumpkin Cucurbita moschata var.
Long Island Cheese A0DLT Austria Austria flesh fruit 5900 7000 [152]

Pumpkin Cucurbita moschata var.
Martinica A0DLT Austria Austria flesh fruit 1600 5400 [152]

Pumpkin Cucurbita moschata var.
Mousquée de Provence A0DLT Austria Austria flesh fruit 2800 4900 [152]

Pumpkin Cucurbita pepo A00KH Italy Italy 490 60 [25]

Pumpkin Cucurbita pepo L. A00KH Poland Poland 8.2 seed and oil yellow-
green 10–20 80–210 20–50 [153]

Pumpkin Cucurbita pepo var. Acorn
Table A00KH Austria Austria flesh fruit 150 2100 [152]

Pumpkin Cucurbita pepo var. Acorn
Tay Bell A00KH Austria Austria flesh fruit 150 2100 [152]

Pumpkin Cucurbita pepo var.
Carneval di Venezia A00KH Austria Austria flesh fruit 30 60 [152]

Pumpkin Cucurbita pepo var.
Melonette Jaspée Vende A00KH Austria Austria flesh fruit 50 1300 [152]

Pumpkin Cucurbita pepo var. Tonda
padana (Americano) A00KH Austria Austria flesh fruit 120 2300 [152]

Pumpkin Curcubita maxima A00KH Spain Spain edible part orange 490 60 [24]

Pumpkin Curcubita maxima A00KH Spain Spain edible part orange 31 188 [24]

Pumpkin Curcubita maxima A00KH Spain Spain edible part orange 53 692 [24]
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Table A6. Rose hips and similar (A01FR) (µg/100 g).

Food
Name

Scientific
Name

FoodEx2_
TermCode

FoodEx2_
TermName

Origin
(Country)

Purchase
(Country)

Part
Analysed Colour β-Carotene E(v. Trans)-

β-Carotene
Z(v. cis)-B-
carotene

E(v.
Trans)-β- Phytoene Phytofluene Ref.

Rosehip Rosa canina L. A0DSS Dog rose Turkey Turkey whole
plants

red and
pink 18–370 [75]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany all sample 2495 ± 207.5 [76]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany all sample 500 ± 35 [76]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany all sample 290 ± 32.5 [76]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany pulp 3200 ± 200 500 ± 320 1200 ± 100 400 ± 100 nd [77]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany pulp 4200 ± 200 900 ± 240 100 ± 100 700 ± 100 [77]

Table A7. Rose hips and similar (A01FR) (µg/100 g) (continuation).

Food
Name

Scientific
Name

FoodEx2_
TermCode

FoodEx2_
TermName

Origin
(Country)

Purchase
(Country)

Part
Analysed Colour Lycopene E(v. Trans)-

Lycopene
Z(v. Cis)-
Lycopene Violaxanthin E(v. Trans)-

Lutein
E(v. Trans)-
Zeaxanthin Ref.

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany all sample 23,842.5 ±
777.5 [76]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany all sample 3615 ± 215 [76]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany pulp 7900 ± 1500 8400 ± 1600 300 ± 10 100 ± 10 2700 ± 30 [77]

Rosehip Rosa canina L. A0DSS Dog rose Germany Germany pulp 7400 ± 1200 6300 ± 600 700 ± 100 600 ± 100 [77]
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Table A8. Cucurbits with inedible peel (A00KD) (µg/100 g).

Food
Name Scientific Name FoodEx2_

TermCode
Origin

(Country)
Purchase
(Country)

Water
(%)

Saponi-
Fication

Part
Analysed Colour α-

Carotene
β-

Carotene
E(v. Trans)-β-

Carotene
β-

Cryptoxanthin Lycopene E(v. Trans)-
Lycopene Ref.

Watermelon
Citrullus lanatus

(Thunb) Matsumura
& Nakai

A00KJ Italy Italy red 46–546 959–1681 [154]

Watermelon Citrullus lanatus A00KJ Spain Spain edible part red 77 62 2454 [24]

Watermelon Citrullus lanatus A00KJ USA no 0 126 5 [28]

Watermelon
Citrullus lanatus

(Thunb.) Matsum &
Nakai

A00KJ Brazil red nd 365 nd 3550 [109]

Watermelon Citrullus vulgaris A00KJ
#F10.A0F2S Indonesia fruit red 592

(314–777) nd 11,389
(8731–13,523) [59]

Watermelon Citrullus vulgaris A00KJ
#F10.A0F5H Indonesia fruit yellow 140

(56–287) 90 (59–110) 71 (nd -109) [59]

Watermelon Citrullus vulgaris A00KJ
#F10.A0F2S Italy Italy nd 314–777 nd 4770–13,523 [25]

Watermelon Citrullus vulgaris A00KJ
#F10.A0F5H Italy Italy nd 56–287 59–110 nd–109 [25]

Watermelon Citrullus vulgaris,
Schered.

A00KJ
#F20.A07QF
$F20.A07RD

Spain Spain 92
without
rind or
seeds

red 77 ± 29 62 ± 20 2454± 319 [24]

Watermelon Citrullus vulgaris,
Schrad A00KJ Spain Spain edible part red 57.6 ± 4.8 1.2 ± 0.5 [56]

Watermelon Citrullus vulgaris A00KJ Finland Finland pulp - 3080 [26]

Table A9. Cucurbits with inedible peel (A00KD) (µg/100 g).

Food
Name

Scientific
Name

FoodEx2_
TermCode

Origin
(Country)

Purchase
(Country) Water (%) Saponi-

Fication
Part

Analysed Colour Lutein E(v. Trans)-
Lutein

E(v. Trans)-
Zeaxanthin Phytofluene Phytoene Ref.

Watermelon Citrullus
lanatus A00KJ Spain Spain edible part red 40 ± 13 1122 ± 812 [24]

Watermelon Citrullus
lanatus A00KJ USA no 4 0 [28]

Watermelon Citrullus
lanatus A00KJ Spain Spain Pulp red 440 1170 [22]
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D. The effects of different UV-B radiation intensities on morphological and biochemical characteristics in Ocimum basilicum L.
J. Sci. Food Agric. 2013, 93, 1266–1271. [CrossRef]

193. Poiroux-Gonord, F.; Bidel, L.P.R.; Fanciullino, A.L.; Gautier, H.; Lauri-Lopez, F.; Urban, L. Health benefits of vitamins and
secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. J. Agric.
Food Chem. 2010, 58, 12065–12082. [CrossRef]

194. Li, P.; Cheng, L. The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. Physiol. Plant.
2008, 134, 282–292. [CrossRef]

195. Kimura, M.; Rodriguez-Amaya, D.B.; Yokoyama, S.M. Cultivar differences and geographic effects on the carotenoid composition
and vitamin A value of papaya. Leb. Wissen Technol. 1991, 24, 415–418.

196. Mercadante, A.Z.; Rodriguez-Amaya, D.B. Effects of Ripening, Cultivar Differences, and Processing on the Carotenoid Composi-
tion of Mango. J. Agric. Food Chem. 1998, 46, 128–130. [CrossRef]

197. Mercadante, A.Z.; Rodriguez-Amaya, D.B. Carotenoid composition of a leafy vegetable in relation to some agricultural variables.
J. Agric. Food Chem. 2002, 39, 1094–1097. [CrossRef]

198. Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Benítez-González, A.M.; Stinco, C.M.; Meléndez-Martínez, A.J. Antioxi-
dants (carotenoids and phenolics) profile of cherry tomatoes as influenced by deficit irrigation, ripening and cluster. Food Chem.
2018, 240, 870–878. [CrossRef] [PubMed]

199. Geetha, G.A. Changes in fruit quality and carotenoid profile in tomato (Solanum lycopersicon L.) genotypes under elevated
temperature. J. Hortl. Sci. 2015, 10, 38–43.

200. Loladze, I.; Nolan, J.M.; Ziska, L.H.; Knobbe, A.R.; Loladze, I.; Knobbe, A.R. Carotenoids and Carbon Dioxide Rising Atmospheric
CO2 Lowers Concentrations of Plant Carotenoids Essential to Human Health, A Meta-Analysis. Mol. Nutr. Food Res. 2019, 63,
e1801047. [CrossRef] [PubMed]

201. Dzomeku, B.; Wald, J.; Wünsche, J.; Nohr, D.; Biesalski, H. Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of
Selected Plantain Cultivars. Plants 2020, 9, 541. [CrossRef] [PubMed]

202. Navarro, J.M.; Flores, P.; Garrido, C.; Martinez, V. Changes in the contents of antioxidant compounds in pepper fruits at different
ripening stages, as affected by salinity. Food Chem. 2006, 96, 66–73. [CrossRef]

http://doi.org/10.1021/jf070342p
http://doi.org/10.1016/j.jfca.2014.11.011
http://doi.org/10.1016/j.foodchem.2010.01.034
http://doi.org/10.1016/j.jcs.2013.12.010
http://doi.org/10.1016/j.phytochem.2008.04.020
http://doi.org/10.1093/jxb/erg083
http://doi.org/10.1007/BF00047400
http://www.ncbi.nlm.nih.gov/pubmed/8343597
http://doi.org/10.1046/j.1365-313X.1999.00381.x
http://doi.org/10.1105/tpc.106.046417
http://www.ncbi.nlm.nih.gov/pubmed/17172359
http://doi.org/10.1126/science.287.5451.303
http://www.ncbi.nlm.nih.gov/pubmed/10634784
http://doi.org/10.1016/j.phytochem.2010.03.021
http://doi.org/10.1080/87559129.2017.1298124
http://doi.org/10.1002/jsfa.5879
http://doi.org/10.1021/jf1037745
http://doi.org/10.1111/j.1399-3054.2008.01131.x
http://doi.org/10.1021/jf9702860
http://doi.org/10.1021/jf00006a018
http://doi.org/10.1016/j.foodchem.2017.08.028
http://www.ncbi.nlm.nih.gov/pubmed/28946354
http://doi.org/10.1002/mnfr.201801047
http://www.ncbi.nlm.nih.gov/pubmed/31250968
http://doi.org/10.3390/plants9040541
http://www.ncbi.nlm.nih.gov/pubmed/32331213
http://doi.org/10.1016/j.foodchem.2005.01.057


Foods 2021, 10, 912 31 of 31

203. Bang, H.; Leskovar, D.I.; Bender, D.A.; Crosby, K. Deficit irrigation impact on lycopene, soluble solids, firmness and yield of
diploid and triploid watermelon in three distinct environments. J. Hortic. Sci. BioTechnol. 2004, 79, 885–890. [CrossRef]

204. Proietti, S.; Rouphael, Y.; Colla, G.; Cardarelli, M.; de Agazio, M.; Zacchini, M.; Rea, E.; Moscatello, S.; Battistelli, A. Fruit quality
of mini-watermelon as affected by grafting and irrigation regimes. J. Sci. Food Agric. 2008, 88, 1107–1114. [CrossRef]

205. Sánchez-Rodríguez, E.; Leyva, R.; Constán-Aguilar, C.; Romero, L.; Ruiz, J.M. Grafting under water stress in tomato cherry,
improving the fruit yield and quality Grafting under water stress in tomato cherry, improving the fruit yield and quality. Ann.
Appl. Biol. 2012, 161, 302–312. [CrossRef]

206. Buendía, B.; Allende, A.; Nicolás, E.; Alarcón, J.J.; Gil, M. Effect of Regulated Deficit Irrigation and Crop Load on the Antioxidant
Compounds of Peaches. J. Agric. Food Chem. 2008, 56, 3601–3608. [CrossRef] [PubMed]

207. Tian, S.-L.; Lu, B.-Y.; Gong, Z.-H.; Shah, S.N.M. Effects of drought stress on capsanthin during fruit development and ripening in
pepper (Capsicum annuum L.). Agric. Water Manag. 2014, 137, 46–51. [CrossRef]

208. Flores, P.; Navarro, J.; Garrido, C.; Rubio-Asensio, J.S.; Martínez, V. Influence of Ca2+, K+ and NO3− fertilisation on nutritional
quality of pepper. J. Sci. Food Agric. 2004, 84, 569–574. [CrossRef]

209. Seljåsen, R.; Kristensen, H.L.; Lauridsen, C.; Wyss, G.S.; Kretzschmar, U.; Birlouez-Aragone, I.; Kahl, J. Quality of carrots as
affected by pre- and postharvest factors and processing. J. Sci. Food Agric. 2013, 93, 2611–2626. [CrossRef]

210. Dorais, M. Effect of cultural management on tomato fruit health qualities. Acta Hortic. 2007, 744, 279–294. [CrossRef]
211. Jones, R.B.B.; Stefanelli, D.; Tomkins, R.B.B. Pre-harvest and post-harvest factors affecting ascorbic acid and carotenoid content in

fruits and vegetables. Acta Hortic. 2015, 1106, 31–41. [CrossRef]
212. Granado, F.; Olmedilla, B.; Blanco, I.; Rojas Hidalgo, E. Carotenoid composition in raw and cooked Spanish vegetables. J. Agric.

Food Chem. 1992, 40, 2135–2140. [CrossRef]
213. Knockaert, G.; Pulissery, S.K.; Colle, I.; van Buggenhout, S.; Hendrickx, M.; van Loey, A. Lycopene degradation, isomerization

and in vitro bioaccessibility in high pressure homogenized tomato puree containing oil, Effect of additional thermal and high
pressure processing. Food Chem. 2012, 135, 1290–1297. [CrossRef]

214. Nguyen, M.; Francis, D.; Schwartz, S. Thermal isomerisation susceptibility of carotenoids in different tomato varieties. J. Sci. Food
Agric. 2001, 81, 910–917. [CrossRef]

215. Meléndez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Carotenoids, Color, and Ascorbic Acid Content of a Novel Frozen-Marketed
Orange Juice. J. Agric. Food Chem. 2007, 55, 1347–1355. [CrossRef] [PubMed]

216. Moyano, M.J.; Meléndez-Martínez, A.J.; Alba, J.; Heredia, F.J. A comprehensive study on the colour of virgin olive oils and its
relationship with their chlorophylls and carotenoids indexes (I), CIEXYZ non-uniform colour space. Food Res. Int. 2008, 41,
505–512. [CrossRef]

http://doi.org/10.1080/14620316.2004.11511861
http://doi.org/10.1002/jsfa.3207
http://doi.org/10.1111/j.1744-7348.2012.00574.x
http://doi.org/10.1021/jf800190f
http://www.ncbi.nlm.nih.gov/pubmed/18447361
http://doi.org/10.1016/j.agwat.2014.02.007
http://doi.org/10.1002/jsfa.1694
http://doi.org/10.1002/jsfa.6189
http://doi.org/10.17660/ActaHortic.2007.744.29
http://doi.org/10.17660/ActaHortic.2015.1106.6
http://doi.org/10.1021/jf00023a019
http://doi.org/10.1016/j.foodchem.2012.05.065
http://doi.org/10.1002/jsfa.911
http://doi.org/10.1021/jf063025b
http://www.ncbi.nlm.nih.gov/pubmed/17253722
http://doi.org/10.1016/j.foodres.2008.03.007

	Introduction 
	Material and Methods 
	Data Collection 
	Data Quality Assessment 

	Results and Discussion 
	Data Collection 
	Data Quality Index 
	Factors Affecting the Level of Carotenoids 
	Factors Related to the Plant 
	Ambient Factors 
	Agronomic Practices 

	Post-Harvest Treatments, Industrial Processing, Cooking and Storage Conditions 

	Conclusions and Research Needs 
	
	References



