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Abstract

In this thesis, we focus on methods for detecting outliers in a multivariate setting. Outliers are also

referred to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics

literature. It can be said that an outlier generally exhibits some abnormality or some kind of out

of the way behavior. Understanding the nature of outliers gives us a better insight into the data

generation process [2, 40]. Outlier detection is an integral part of the data analysis that sheds light

on objects that do not conform with the rest of the data.

After a brief Introduction, in Chapter 2 we illustrate some of the various methods that were

devised to deal with univariate samples. Moreover, we state the masking and swamping effect that,

as we will discuss, can be difficult to handle even in univariate samples. Finally, we apply these

methods to a normally distributed sample in order to demonstrate the masking effect and to compare

their results.

In the following chapters, we present different methods for multivariate data based on various

characteristics, which can be grouped into five big categories: Depth-based methods, Distance-based

methods, Density-based methods, methods based on Mahalanobis distance and Distribution-based

methods.

In Chapter 3, different notions of depth are presented and some of their corresponding detection

methods. Throughout the chapter, we discuss the notion of depth originated by Tukey that the

ISODEPTH and FDC algorithms were based on and the notion of Liu that led to the Modified Band

Depth which we will apply to multivariate samples.

In Chapter 4, we present outlier detection methods based on the distance between objects. More-

over, we present the first notion of outliers based on their distance, the DB outliers as well as the

one that is currently used based on the k nearest neighbor distance. Moreover, we present some of

the basic pruning methods that distance-based methods use in order to handle bigger datasets. In

addition, we present the definition of a reverse k-nearest neighbor by Hautamaki et al. Finally, we

apply the method that is used to find DB outliers, two methods computing k nearest distances of

the objects along with the method based on Hautamaki’s definition.

In Chapter 5, density-based methods are listed, that take into account the local density of each

observation. We present the Local Outlier Factor (LOF) method, that is the basis of the best-known

density-based methods, along with a more robust extension of this notion known as the Robust

Kernel Outlier Factor (RKOF) method. In the same chapter we apply these methods and compare

their results.

In Chapter 6 we develop methods that are based on the Mahalanobis distance. The classical

Mahalanobis distance is presented as well as a more robust version of it. Their main difference is

that the first computes each observation’s distance based on the estimators of the mean and scatter

when all of the observations are taken into consideration while the second uses the the estimated

mean and scatter from a specific subset of observations. Apart from the χ2 quartile that is usually

used as a cutoff for these methods, we present Filzmoser’s extension, the adaptive quartile. Finally,
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we test these methods and compare their results.

In Chapter 7, we present methods that detect outliers based on a distributional assumption.

Most of these methods are more efficient when normally distributed datasets are under examina-

tion. Moreover, we compare the methods that we present in this chapter with the help of package

“OutliersO3”.

Finally, in Chapters 8 and 9 we apply all these methods to the humus and dat datasets respectively.

Testing these methods on different datasets gives us the opportunity to compare them and to build

a more solid opinion about outlier detection, given in Chapter 10.
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Resumen

En este TFM, nos centramos en el estudio de outliers en un marco multivariante. A los outliers

también se les denomina anormalidades, discordancias, desviaciones o anomaĺıas en Mineŕıa de Datos

y otra literarura estad́ıstica. Puede decirse que un outlier exhibe alguna anormalidad o tipo de

comportamiento diferente al resto. Comprender la naturaleza de los outliers nos ayuda a comprender

el proceso de generación de los datos. La detección de outliers es aśı una parte integral del análisis

de datos que nos ayuda a identificar aquellos objetos que no están en consonancia con el resto de los

datos.

Tras una breve Introducción, en el Caṕıtulo 2 ilustramos algunos de los métodos diseñados para

tratar con muestras univariantes. Introducimos además los problemas de enmascaramiento y sat-

uración que, como discutiremos, pueden ser dif́ıcil de solventar incluso en muestras univariantes.

Finalmente, aplicamos estos datos a una muestra normalmente distribuida para dirigir el efecto de

enmascaramiento y comparar los resultados que se obtienen.

En los siguientes caṕıtulos, se presentan diferentes métodos basados en caracteŕısticas multi-

variantes, y que pueden agruparse en cinco grandes categoŕıas: métdos basados en la profundidad,

métodos basados en distancias, métodos basados en densidad, métodos basados en la distancia de

Mahalanobis, y métodos basados en la distribución.

En el Caṕıtulo 3, se presentan diferentes definiciones de profundidad y sus correspondientes

métodos de detección. A lo largo del caṕıtulo, se estudian la noción de profundidad, debida original-

mente a Tukey, y en la que se basan los algoritmos ISODEPTH y FDC, aśı como la noción de Liu,

que condujo al concepto de profundidad de banda modificada, técnica que aplicaremos a muestras

multivariantes.

En el Caṕıtulo 4, se presentan métodos de detección de outliers basados en la distancia entre

objetos. Además, se presenta la primera noción de outliers basada en su distancia, los DB outliers,

aśı como la que se usa actualmente, basada en la distancia a los k-vecinos más cercanos. Se presentan,

además, algunos de los métodos de poda básicos que utilizan los métodos basados en distancias para

manejar conjuntos de datos más grandes. Se incluye también la definición de inverso de k-vecinos

más cercanos debida a Hautamaki y otros. Para finalizar, se aplica el métodos para encontrar DB

outliers, dos métodos para calcular las k distancias más cercanas de los objetos, junto con método

basado en la definición de Hautamaki.

En el Caṕıtulo 5, se estudian los métodos basados en la densidad, que tienen en cuenta la densidad

local de cada observación. Presentamos el método Local Outlier Factor (LOF), que es la base de los

métodos más conocidos basados en la densidad, junto con una extensión más robusta de esta noción,

definida como método Robust Kernel Outlier Factor (RKOF). En el mismo caṕıtulo se aplican estos

métodos y se comparan sus resultados.

En el Caṕıtulo 6 se desarrollan métodos basados en la distancia de Mahalanobis. Se trata la

distancia de Mahalanobis clásica, aśı como una versión más robusta de ella. Su principal diferencia

es que, la primera calcula la distancia de cada observación basándose en las estimaciones de la media
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y la dispersión que se obtienen considerando todas las observaciones, mientras que la segunda utiliza

las estimaciones de la media y dispersión basadas en un subconjunto espećıfico de observaciones.

Aparte de cuantiles χ2, que son usualmente utilizados como punto de corte en estos métodos, se

presenta la extensión de Filzmoser, denominada cuantil adaptativo. Finalmente, se aplican estos

métodos y se comparan sus resultados.

En el Caṕıtulo 7, se presentan métodos que detectan outliers basados en una hipótesis distribu-

cional. La razón es que, la mayoŕıa de estos métodos son más eficientes cuando los datos bajo

consideración se distribuyen normalmente. Además, los métodos presentados en este caṕıtulo se

comparan con la ayuda del paquete OutliersO3.

Para finalizar, en los Caṕıtulos 8 y 9, se aplican todos estos métodos a los conjuntos de datos

humus y dat, respectivamente. Contrastar estos métodos sobre diferentes conjuntos de datos nos da

la oportunidad de compararlos y construir una opinión más sólida sobre la detección de outliers, la

cuál se recoge en el Caṕıtulo 10.
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1 Introduction

Over the years, many definitions have been made of outliers. Hawkins defines an outlier as “an

observation which deviates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism”.[26]. Barnett and Lewis define an outlier in a set of data as “an

observation (or subset of observations) which appears to be inconsistent with the remainder of that

set of data” [4]. Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in

the data mining and statistics literature [2].

So, an outlier generally exhibits some abnormality or some kind of out of the way behavior.

More specifically, the creation of an outlier is because of unusual behaviour of the generating process

underlying a given dataset. Understanding of the nature of the outliers gives us a better insight into

the data generation process [40].

Outlier detection can be useful in many applications [38] such:

• Medical Diagnosis: In many medical applications the data is collected from a variety of

devices, unusual patterns of which indicate disease conditions.

• Credit Card Fraud: Suppose that the number and password of one’s card is compromised.

This could lead to unreasonable expenses from the least likely places coming from this card i.e.

an unusual signal that can be detected through the transaction data that had been collected

over time by the bank.

• Sensor Networks: A sensor network is a communication system that monitors conditions like

humidity, pressure, vibrations, intensity of sound, level of pollution etc. in different locations.

Outlier detection is employed these networks in order to locate strange or false indices.

Throughout this thesis, we will present a variety of outlier detection methods that declare objects

that are not part of the rest of the data generated from an underlying process (denoted as normal

data, indicating that is the outlier-free subset of the data). For that purpose, we will make use of

packages [54, 35, 20, 18, 59] that are implemented in the statistical environment of R and apply these

methods on three datasets: Wood specific gravity, humus and dat in order to observe similarities

and differences between them.

Some basic ideas will be introduced in Chapter 2, referring to univariate data. However, this

thesis concentrates on outlier detection in multivariate data, for which a variety of different concepts

and methods – presented from Chapter 3 onwards – are available [23].
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2 Univariate Case

To understand the nature of an outlier and its definitions that were given above, one must be familiar

with outlier detection in a univariate dataset.

Outlier detection methods can be categorized into many groups. The main two are: Tests of discor-

dancy (formal tests) and outlier labeling methods (informal tests) [4, 51].

Most formal tests use test statistics for hypothesis testing. They are usually based on assuming

some well-behaved distribution for the dataset, and for the extreme values a test is carried out on

whether or not it deviates from the assumed distribution declaring it outlier or not. Some tests are

for a single outlier and others for more than one. Selection of these tests mainly depends on the

number of outliers, and type of data distribution [51].

Many discordancy tests have been built (Dixon test, Shapiro-Wilk etc.) mostly in the years when

computer analysis was not at its peak and most of them are applicable to distributions such as

Normal, Exponential and Gamma.

While formal tests are quite efficient when examining datasets modeled by known distributions

(provided that tests based on these distributions are used), most distributions of real-world data may

be unknown or may not follow specific distributions such as the ones we gave above. In such cases,

data points may be incorrectly reported as outliers because of poor fit to the erroneous assumptions of

the model. Another disadvantage is that discordancy tests are very sensitive to masking or swamping

problems [51].

Masking Effect (an outlier is undetected as such): Masking can occur when a group of

outlying points contaminates the dataset in such a way that the mean and standard deviation

are affected by it resulting in misleading estimate. Thus, the distance of the outlying point

from the mean can be small. Accordingly, an outlier can mask other outliers which can be

detected only after omitting the first one.

Swamping Effect (a non-outlier is classified as an outlier): Swamping can occur when

an observation can be declared as outlier only in the presence of an additional outlying object.

That can be caused also from a contamination of the dataset in which the estimate of mean

and standard deviation can be defined far away from uncontaminated objects [1].

Informal tests are based on a criterion formed by various estimates of scale and location of the

underlying dataset and declare the observations that do not comply with this criterion as outliers.

The main difference between formal and informal tests is that the latter ones do not require test

statistics based on a certain distribution or a hypothesis to determine whether an extreme value is

an outlier or not according to this distribution.

We will now present some of the methods that can be used for outlier detection in the univariate

case.
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2.1 Z-Score

Figure 1: Histograms of Normal and LogNormal Distibution

The Z-score test for outliers is probably one of the most common tools for a rough evaluation

of the discrepancies that may exist in the underlying dataset. Suppose we examine one-dimensional

data observations, denoted by x1, x2, x3, ..xn with mean µ and standard deviation σ.

The Z-value for the data point xi is denoted as zi and is defined as follows:

zi =
|xi − µ|

σ

The Z-value test computes the number of standard deviations by which the data varies from

the mean. Assuming that the data is generated from the normal distribution and having accurately

estimated the mean and standard deviation, one can have a very good picture of the outliers in the

data defining them as the observations which exceed the rule: zi ≥ 3. We note that for efficient

estimations of mean and standard deviation, datasets with few observations are not recommended.

Although this method does not need specific distribution assumptions, it may not work well in

distributions with high skewness like the LogNormal Distribution (shown in Figure 1) [2].

Quite often, masking may occur when this method is applied, mainly due to the effect of outliers

on mean and standard deviation estimators. An example is given next. We will refer to this dataset

as contaminated normal dataset.

Application

We generate observations from the Normal Distribution with µ = 10 and σ = 2 and we replace

randomly the last two observations of that sample with the extreme values 18 and 20 which are

obviously far enough from the mean with respect to its standard variation.
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normal_data<-rnorm(30,10,2)

normal_data_con<-c(normal_data[-(1:2)],18,20)

sd_normal_data_con<-abs(normal_data_con-mean(normal_data_con))/sd(normal_data_con)

ID xi zi ID xi zi z′i z′i

1 12.29 0.48 16 8.88 0.75 0.73 0.79

2 7.27 1.33 17 12.51 0.56 1.52 0.83

3 11.33 0.13 18 12.04 0.39 0.31 0.62

4 13.94 1.07 19 7.61 1.21 1.48 1.36

5 12.57 0.58 20 10.07 0.32 0.86 0.26

6 12.22 0.45 21 9.42 0.56 0.70 0.55

7 7.84 1.13 22 10.72 0.09 1.26 0.03

8 9.75 0.44 23 8.86 0.76 0.40 0.8

9 9.88 0.39 24 11.39 0.15 0.35 0.33

10 9.98 0.36 25 10.09 0.31 0.30 0.25

11 10.86 0.04 26 9.78 0.43 0.09 0.39

12 8.1 1.03 27 11.98 0.37 1.14 0.6

13 7.71 1.17 28 10.62 0.12 1.32 0.01

14 12.03 0.38 29 18 2.54 0.62 3.3

15 11.13 0.06 30 20 3.26 0.22

Table 1: z-values for the contaminated normal sample before and after omitting observation 30

As we can see from Table 1, only after omitting observation 30, the z-value test (denoted as z′i)

manages to declare observation 29 as outlier. That is, because observation 30 masks observation

29 and because of the sensitivity of z-score to the presence of more than one outlier, the latter

observation fails to be detected.

2.2 Generalized extreme Studentized deviate test

The generalized extreme Studentized deviate (ESD) test [42] is a formal test used to detect one or

more outliers in a univariate dataset x1, x2, ...xn that follows an approximately normal distribution

and is an extension of Grubbs test [24].

Grubbs test is defined for the hypothesis:

H0: There are no outliers in the data set

H1: There is exactly one outlier in the data set

12



In this test, an observation xj is declared as outlier when

Rj =
maxi|xi − x|

s
>

tn−2,p · (n− 1)√
(n− 2 + t2n−2,p) · n

where tν,p is the 100 ·p percentage point from t distribution with ν degrees of freedom and p = 1− α
2·n

for a significance level α (x and s denotes the sample mean and standard deviation respectively).

With the use of the modified version of the extreme studentized deviate, one can test for up to a

prespecified number r of outliers.

Given the upper bound, r (for r = 1 the modified method overlaps with the classical), the

generalized ESD test essentially performs r separate ESD tests. The generalized ESD test is defined

for the hypothesis:

H0: There are no outliers in the data set

H1: There are up to r outliers in the data set

The test-statistic for one outlier is defined as R1 = Rj. In addition, we remove the observation

that maximizes |xi − x̃| and we recompute the above statistic, denoted now as R2, with n − 1

observations. We repeat this process until r observations have been removed. This results in the

r test statistics R1, R2, ..., Rr. Corresponding to the r test statistics, we compute the following r

critical values

λi =
tn−i−1· (n− i)√

(n− i− 1 + t2n−i−1,p)(n− i+ 1)
, (1)

i = 1, 2, ..., r. Finally, the largest i that satisfies Ri > λi determines the number of outliers as they

are detected in the first i steps. Rosner showed that this approximation is very accurate when n > 25

[42].

Application

Applying this method to the contaminated normal dataset previously introduced and setting

r = 3 we get the results above.

We note that we used rosner.test function from R package EnvStats

> rosnerTest(normal_data_con,3)

$statistic

R.1 R.2 R.3

3.257076 3.301117 2.026632

$alpha

[1] 0.05

$crit.value

lambda.1 lambda.2 lambda.3

2.908473 2.892705 2.876209

$all.stats

i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier

13



1 0 10.96163 2.774995 20.00000 30 3.257076 2.908473 TRUE

2 1 10.64996 2.226531 18.00000 29 3.301117 2.892705 TRUE

3 2 10.38746 1.751780 13.93767 4 2.026632 2.876209 FALSE

Given the above results, we observe that the generalized ESD test is more robust to outliers. The

disadvantage is that like any formal test, the generalized ESD test assumes that the data is modeled

by a particular distribution, in this case the normal distribution.

2.3 Tukey’s Method (Boxplot)

Tukey’s method [56], is an informal test for outliers that with the use of the median, lower quartile,

upper quartile, lower extreme, and upper extreme of a data set, constructs the boxplot. Its original

characteristics were the hinges and the Hspread which are similar to Q1, Q3 and IQR that are

defined below. It is considered to be less sensitive to extreme values of the data than the previous

methods because instead of the sample mean and the standard deviation which can be affected by

outliers, it uses quartiles on the simple assumption that outliers are the minority of the data.

A classical Boxplot consists of:

• The IQR (Inter Quartile Range) that is the distance between the lower (Q1) and upper (Q3)

quartiles which are the medians of the lower and upper half of the dataset respectively. A box

is drawn to span IQR and the median is drawn inside this box.

• The whiskers that extend from the edges of the box to the maximum and minimum data point

(adjacent values) inside the so-called inner fences. Inner fences are located at a distance

1.5 × IQR below Q1 above Q3. Basically, the upper whisker is the minimum point that is

larger than Q1− 1.5× IQR and the upper whisker is the maximum point that is smaller than

Q3 + 1.3× IQR

• Outer fences are located at a distance 3× IQR below Q1 and above Q3.

Any value plotted outside the whiskers that is between the inner and outer fences is a possible

outlier. There is no statistical basis for the reason that Tukey uses 1.5 and 3 regarding the IQR to

make inner and outer fences [51].

Application

By applying this method to contaminated normal dataset, we get that Q1 = 9.42, Q3 = 12.04,

IQR = 2.62, median is 10.67 (which is the mean of observations 22, 28), lower and upper whisker

is 7.27 and 13.94 respectively. Finally, inner fences expresses the interval [5.49,15.97] and outer

fences [1.56,19.9]. In Figure 2, boxplot detects observations 29, 30 as they lie outside the computed

whiskers.
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Figure 2: Boxplot of the contaminated normal sample

While the previous method is limited to unimodal and reasonably symmetric data such as the

normal distribution, Tukey’s method is applicable to any other data since it makes no distributional

assumptions and it does not depend on a mean or standard deviation. Due to the fact that this

method is based on robust measures such as lower and upper quartiles and the IQR without con-

sidering the skewness of the data, its disadvantage is that more skewness to the data may result in

more wrongly defined outliers. That is why, in many cases the classical boxplot is used more as a

graphical tool to detect skewness in an underlying dataset than a test for detecting outliers.

15



3 Depth-Based Methods

3.1 Introduction

Depth-based methods are integral to multivariate extreme value methods. Extreme value methods

usually (especially when they are applied to univariate data) try to model the underlying distribution

explicitly. Although this is not the case with depth-based methods, they were built to detect the

same kind of outliers [2].

Figure 3: Depth-Based Outlier Detection [2]

3.2 Aim of depth-based methods

Johnson et al. [28] state that even though over one hundred discordancy/outlier tests have been

developed [4], they are not suitable for proper outlier detection mainly for two reasons:

• Most of them are univariate so they are unsuitable for multidimensional data sets.

• All of them are distribution-based, which in many cases does not suit outlier analysis since in

most data sets we have no knowledge about the exact distribution and one has to proceed with

extensive testing in order to find a distribution that fits the attribute.

To avoid the aforementioned problems of distribution fitting and restriction to univariate data

sets, depth-based approaches have been developed.
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3.3 Analytical approach of depth-based methods

In depth-based methods, convex hull analysis is used in order to find outliers. The idea is shown in

Figure 3 and Figure 4 where points in the outer boundaries of the data lie at the corners of the convex

hull i.e. a polygon with vertices, the points in the shallow layers of the dataset. Accordingly, such

points are considered to be extreme values and more likely to be outliers. A depth-based algorithm

proceeds in an iterative fashion. In the k-th iteration, every point at the vertices of the convex hull

is omitted from the initial dataset and assigned a depth of k. The algorithm keeps repeating this

process until the dataset is empty. Points with depth at most r are declared as outliers [2]. This

robust notion of depth, called depth contour was originally introduced by Tukey [56].

First, let us consider the univariate case. Suppose, a one-dimensional data set P = {p1, p2, p3, ..., pn}

Definition 3.1. The depth of a point z relative to the data set P , is the minimum of the number of

data points to the left of z, and the number of data points to the right of z:

depth1(z;P ) = min(#{i : pi ≤ z},#{i, pi ≥ z})

Remark. In the univariate case, rank [57, 56] and depth are related. Moreover, extreme values

are considered to be the points of depth one as they lie far away from the rest of the dataset. In

addition, second lowest and second highest values based on rank assigned with depth two, and so

on. Consevely, the median is the point with the highest depth based on Definition 3.1 [49].

Figure 4: Example of depth contours. The deepest point in the sample is marked by a cross [32]
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Considering the multivariate case we present the following definition [57, 49].

Definition 3.2. The half-space depth of a point z ∈ Rd relative to a d-dimensional data cloud

P = {p1,p2, ...pn} is defined as the smallest depth of z in any one-dimensional projection of the

data set.

Remark. The half-space depth is affine invariant because depth is invariant to linear trandormations

of the data p [13, 14] making it independent of the underlying coordinate system.

Given these two definitions we define a set Pk as a contour of depth k of a data set P ⊂ Rd if its

interior points have depth at least k, and the boundary points have depth equal to k:

Pk = {p ∈ Rd|depth(p,P) ≥ k}

Remark. Pk is the intersection of all half-spaces that contain at least n+ 1− k points of the cloud,

hence it is convex [49].

The maximal depth depends on the shape of P meaning that the the computational complexity

of depth-based methods that map the underlying dataset into convex hulls increases exponentially

with dimensionality. That is because, a convex-hull in a d-dimensional space consists of at least 2d

points so by moving to higher dimension the number of points lying at the vertices of the convex-hull

is also increased [2]. As a result these heuristic and non-probabilistic methods, due to their high

computational cost can only be trustworthy in low dimensional data sets.

3.4 Proposed depth-based methods

As we noted above, these methods do not scale up well because of their computational complexity.

Pk is the intersection of a collection of half-planes, of which it can be assumed that their boundary

line passes through two data points. Each edge of Pk is thus part of a line through two data points,

and hence each vertex of the desired contour lies on the intersection of two such lines. So, naively

thinking, we can consider all lines through two data points, and compute all their intersection points,

of which there are O(n4). At each of these intersection points we then compute the half-space depth

by means of an algorithm of Rousseeuw and Ruts [47]. The intersection points with depth equal to

k are then stored, denoting their number by Nk. The depth contour Pk is the convex-hull consisting

of these Nk points. The computation of the depth in all of the O(n4) points brings the total time

complexity to O(n5logn) [49].

Many algorithms have been proposed in order to reduce the high computational cost.

Ruts and Rousseeuw develop an algorithm called ISODEPTH, which computes 2-D depth con-

tours [43]. The key idea of their algorithm is based on dividers and for n < 1000 the time of

the proposed algorithm behaves as a multiple of O(n2logn). Although the ISODEPTH algorithm

managed to reduce the computational cost, it still remains high. Furthermore, ISODEPTH relies on

the non-existence of collinear points and removing all of them can be very time consuming.
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Johnson et al [28] propose the FDC algorithm which is an extension of ISODEPTH. FDC performs

better than ISODEPTH when n is not too small and is robust against collinear points. The main

difference between the two lies in the fact that ISODEPTH computes the dividers of all n data points

while FDC restricts the computation to a selected, much smaller, subset of points, thanks to the

construction of the appropriate convex hulls.

Definition 3.3. Given a point cloud P consisting of n points, a line L is an e-divider of P if there

are e points in P to the left of L, and (n− e) points in P to the right of L.

Remark. In the spirit of finding outliers, whenever e ≤ (n− e), we say that the e points are to the

“outside” of L and the remaining points on the “inside” of L.

Definition 3.4. (a) We call the “inside region” and the “outside region”, denoted as IR(L) and

OR(L) respectively, the two subregions into which the line L divides the convex hull of P .

(b) Given a collection of e-dividers, we refer to the intersection of all their inside regions (i.e.,

∩IR(L)) the e-intersected inside region.

The only interesting part of an e-divider is a finite segment of it. The line segments of the e-

dividers construct the inside region of a given convex hull. Suppose that the convex hull (denoted as

G) of the entire point cloud of a given data set P is a polygon with an arbitrary number of vertices.

FDC algorithm:

• Returns this polygon as the zero-th depth contour.

• Computes the convex hull (denoted as H; suppose a polygon) of the remaining points in the

data cloud (i.e., all points except the ones on the outer boundaries)

• Computes all the one-dividers in the initial convex hull in the first iteration and

– If the convex hull that is constructed from the line segment of a one-divider and the rest

of the edges of the initial polygon G contains the polygon H, then the intersection of these

convex hulls gives the contour of depth equal to 1.

– Otherwise, the algorithm expands that convex hull in order for the polygon H to be inside

it.

• The algorithm moves to the next iteration (computing the two-dividers) until it finds all k first

depth contours.
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3.5 Modified Band Depth (MBD)

The modified band depth measure introduced by Lopez-Pintado [33] also assigns a value indicating

how “deep” an observation is inside the sample but in a different notion than the one discussed

above. It is an extension of Liu’s simplicial depth function [31] which measures each observation’s

depth by the number of convex hulls (made of a given number of points i.e. vertices) that contain it.

In order to visualize the idea, suppose a dataset P = (p1,p2, ...,pn), where pi ∈ R2, for i = 1, ..., n.

Now, consider the triangle generated by three arbitrary points pi, pj, pk. The idea of simplicial depth

function lies in the observation that a point’s depth depends on how many triangles of the
(
n
3

)
possible combinations this point falls inside. Normally, points of high depth tend to be inside a

large proportion of triangles while points in the boundaries are not likely to fall in many triangles.

Therefore, high values of the simplicial function for a point indicate that it is deep in the data cloud,

while low values indicate the opposite.

In that context modified band depth is defined as follows

Definition 3.5. Let P = (p1,p2, ...,pn), where pi ∈ Rd a d-dimensional point. The modified band

depth of a point p is

MBD(p) =
1

d

d∑
k=1

(
n

2

)−1 ∑
1≤i1<i2≤n

I{min{pi1(k),pi2(k)} ≤ p(k) ≤ max{pi1(k),pi2(k)}}

where I(·) is the indicator function and p(k) is the k-th coordinate of p.

Based on Definition 3.5. the depth of an object p can be interpreted as the mean, over all pairs of

observations, of the proportions of coordinates whose values are between the minimum and maximum

of two values of points from the dataset.

MBD can be computed over all combinations of objects higher than two but it is shown that

choosing to test each object’s depth with respect to each pair of observations, we can have efficient

results and keep the computational complexity low at the same time. Moreover, MBD computational

cost is shown to be O(n2 · d) which is much smaller than the aforementioned methods [33].
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3.6 Applying outlier detection using depth-based method to wood spe-

cific gravity data

To motivate the Least Median Squares method, Rousseeuw [43] contaminated a rather well behaved

real data set by replacing four observations. The raw data came from Draper and Smith [15] and were

used to determine the influence of anatomical factors on wood specific gravity, with five explanatory

variables and an intercept. Observations 4, 6, 8, and 19 are identified using LMS. These observations

do not appear to be obvious outliers from the Least Squares analysis [12].

More specifically, we go on applying outlier detection using the depth based method based on

the modified band depth measure implemented in the R-package ”OutlierDetection”. We note that

every function in this package also provides for bivariate data scatterplots showing the outlying

observations.

The code is as follows:

> depthout(my_data, rnames = FALSE, cutoff = 0.25, boottimes = 100)

The arguments of the above command are:

• The Wood Gravity data

• A logical value indicating whether the data set has rownames (default value is False)

• A percentile threshold used for depth; basically after computing the MBD of all the observations

it declares that percentage of observations with the lowest MBD values (default is 0.05).

• A number of bootstrap samples to find the cutoff (default is 100 samples) based on which,

the outlyingness of each object is computed in a sense of how frequent this observation was

detected as outlier.

Using this command we get the following results

$`Outlier Observations`

x1 x2 x3 x4 x5 y

4 0.437 0.1591 0.446 0.423 0.992 0.450

6 0.444 0.1628 0.429 0.411 0.984 0.431

8 0.413 0.1673 0.418 0.430 0.978 0.423

19 0.417 0.1687 0.405 0.415 0.981 0.401

$`Location of Outlier`

[1] 4 6 8 19
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$`Outlier Probability`

[1] 0.82 0.97 1.00 1.00

We also apply the original function implemented in the R-package ”depthTools”. The code is

below

> MBD(my_data)

$ordering

[1] 14 15 5 16 2 13 18 3 17 1 9 11 7 12 10 20 4 6 8 19

$MBD

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

0.4333333 0.477193 0.4491228 0.2964912 0.4982456 0.2596491 0.4070175

[,8] [,9] [,10] [,11] [,12] [,13] [,14]

0.2315789 0.4333333 0.3859649 0.4122807 0.4035088 0.4631579 0.5017544

[,15] [,16] [,17] [,18] [,19] [,20]

0.5026316 0.4780702 0.4403509 0.4561404 0.1614035 0.3561404

As we see from the results, the aforementioned command correctly detects the outliers that inten-

tionally were included. Moreover the results of the two functions overlap completely as they both

have the same results. The advantage of the second functions is that we can have an ordering of

the observations i.e. a further insight about which point based on that method is further away from

the others. The first one, does not give any order even though it prints the same results but it is

able to return a proportion of times an object is detected as outlier after bootsrtaping. Applying the

command for different cutoffs we observe that depthout’s sensitivity increases with higher cutoff

values. Furthermore, the highest “outlyingness” of these observations are obtained by giving the

value 0.24 to the cutoff. The same results but with lower “outlyingness”, we obtain by giving values

for the cutoff from the space [0.23,0,27].

3.7 Conclusions

Depth-based methods are different from the other extreme value methods. They are able to de-

tect outliers from the outer boundaries of a data space without assuming any particular statistical

distribution of the underlying data nor requiring the existence of a metric distance function (as

distance-based methods do). Nevertheless, except for MBD they do not scale up well [2] in higher

dimensions and based on their structure they are unable to detect isolated points in the inside regions

of the convex-hull as they are suited for extreme value detection. In the underlying data, deapthout

was able to detect the true outliers of the dataset letting us assume that the nature of outlierness of

these observations is rather extreme than local.
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4 Distance-Based Methods

4.1 Introduction

Distance-based methods are a popular class of outlier-detection algorithms across a wide variety of

data domains, and define outlier scores on the basis of nearest neighbor distances. Distance-based

outlier analysis methods work with the assumption that the k-nearest neighbor distances of outlier

data points are much larger than normal data points. [2]

Knorr and Ng [29] propose the following distance-based definition for outliers that is consistent

with Hawkin’s definition and generalizes the one that Barnett and Lewis proposed :

Definition 4.1. An object O in a data set T is a DB(p,D) outlier (DB stands for Distance Based),

if at least fraction p of the objects in T lies greater than distance D from O.

In simple terms, in a data set T we define an object O as an outlier if no more than a certain

number of objects (denoted as k) are at a distance less than or equal to D from O. Defining that

fraction as N−k
N

(where N is the number of data points in T ) and giving a rather small value for k,

this fraction has to be close to unity in order to give proper results. Most distance-based algorithms

therefore work with the parameter k, because it is simpler, and more intuitive to understand.

Based on the notion of the above definition, many methods have been proposed for outlier detec-

tion, some of which will be discussed in this section. Moreover, we present Ramaswamy’s idea for

dealing with high dimensional data.

4.2 Aim of the distance-based methods

Like depth-based methods, distance-based methods do not need any statistical assumption about the

underlying data. Therefore, there are suitable for situations where the observed distribution does

not fit any standard distribution.

More importantly, they are well defined for d-dimensional data sets for any value of d. Unlike

the depth-based methods (except for MDB), DB-outliers are not restricted computationally to small

values of d. While depth-based methods rely on the computation of layers in the data space, outliers

detected by distance-based methods go beyond the data space and rely on the computation of dis-

tance values based on a metric distance function (Manhattan, Euclidean etc.). Computing all these

distances for all of the objects in their k nearest neighborhoods can be computationally expensive.

In the next chapter we will scratch the surface of how to deal with high dimensional data by a brief

presentation of Ramaswamy’s method.
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4.3 Analytical approach of the distance-based methods

Ramaswamy et al. [39] proposed a slightly different definition for an outlier based on the fact that

the main interest of a user is the identification of the top n outliers.

Definition 4.2. Given an input data set with N points, parameters n and k and denoting as Dk(x)

the distance of point x from its k-th nearest neighbor, a point x is a Dk
n outlier, if there are no more

than n− 1 other points x′ such that Dk(x
′) > Dk(x).

In other words, if we rank points according to the Dk(x) distance, the top n points in this ranking

are considered to be outliers. Based on this definition, the user is no longer required to specify the

distance D (as in the previous one) to define the neighborhood of a point. Instead, the only thing

that has to be specified is the number of outliers of interest.

The simplest approach to the problem uses a nested loop approach. In the nested loop approach,

two arrays are maintained– the first array contains the candidates for outlier data points, and the

other array contains the points to which these candidates are compared in distance based processing.

Once more than k data points have been identified to lie within a distance of Dk from a point in the

first array, that point is automatically marked as a non-outlier. Subsequently, no more time is spent

on distance computations involving that data point. Such an approach may require O(N2) distance

computations in the worst case. Since each distance computation may require O(p) time, it follows

that the overall running time is O(N2 ·p). Therefore, pruning methods are required in order to speed

up the distance computations[2, 39]

The approximation of a set of points using their minimum bounding rectangle (MBR), is a key

tool for these pruning methods. Upper and lower bounds on Dk(x) for points in each MBR are then

computed. These bounds provide useful information enabling us to prune entire MBRs that cannot

possibly contain outliers.

Most researchers use as distance metric the Euclidean distance (Ramaswamy et al. used the

squared Euclidean distance). Let us denote a point x in a d-dimensional space by x = (x1, x2, ..., xd)

and a d-dimensional rectangle R by the two endpoints of its major diagonal, r = (r1, r2, ..., rd) and

r′ = (r′1, r
′
2, ..., r

′
d) such that ri < r′i for i = 1, 2, ..., d. We now give the following definitions that

describe the minimum and maximum distances between a point and a rectangle and between two

rectangles.

Definition 4.3. The minimum distance between a point x and a rectangleR (denoted by MINDIST(x,R))

[48] is defined as MINDIST(x,R)=
∑d

i=1 δ
2
i , where δi is defined as

δi =


ri − xi , if xi < ri

xi − r′i , if r′i < xi

0 , otherwise
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Definition 4.4. The maximum distance between a point x ad a rectangleR (denoted by MAXDIST(x,R))

is defined as MAXDIST(x,R)=
∑d

i=1 δ
2
i , where δi is defined as

δi =

r′i − xi , if xi <
ri+r

′
i

2

xi − ri , otherwise

Definition 4.5. The minimum distance between two rectangles R, S (denoted by MINDIST(R,S))

is defined as MINDIST(R,S)=
∑p

i=1 δ
2
i , where δi is defined as

δi =


ri − s′i , if s′i < ri

si − r′i , if r′i < si

0 , otherwise

Definition 4.6. The maximum distance between two rectangles R,S (denoted by MAXDIST(R, S))

is defined as MAXDIST(R, S)=
∑p

i=1 δ
2
i , where δi = max{|s′i − ri|, |r′i − si|}.

Every point in R is at distance of at least MINDIST(x,R) from x and no point in R is at a

distance that exceeds MAXDIST(x,R) from x. Similarly every point in R is at a distance of at least

MINDIST(R, S) from every point in S (S is denoted similarly by the two endpoints s and s′) and

no point in R is at a distance that exceeds MAXDIST(R, S) from every point in S (and vice versa)

[39].

25



Figure 5: Example of minimum bounded rectangles and their corresponding R-tree: A set of the

MBRs of some data geometric objects (not shown). These MBRs are D, E, F, G, H, I, J, K, L,

M, and N, which will be stored at the leaf level of the R-tree. The same figure demonstrates the

three MBRs (A, B, and C) that organize the aforementioned rectangles into an internal node of the

R-tree.[36]

4.3.1 Index-based approach

The aforementioned bounds can be used in conjunction with index structures such as the R-tree [6] for

estimating the k-nearest neighbor distance of data points. Of course any other spatial index structure

can be used. R-tree (an example is given in Figure 5) is preferred because it is an index structure

in which nearby objects are grouped and represented in rectangles in a way that no intersections

between the rectangles and their content objects can be made. So an R-tree uses minimum bounding

rectangles in order to represent the data at the nodes. In order to determine the outliers in the data

set, the points are processed one by one in order to determine their k-nearest neighbor distances.

The highest n such distances are maintained dynamically over the course of the algorithm. For the

efficient estimation of the Dk(x) a pruning method can be applied: Looking in a arbitrary subset of

the input objects Dk(x) for x is computed . If the aforementioned value is lower than the minimum

distance of a MBR then none of the points in that rectangle can be defined as k-neighbors of x. Such

subtrees of the R-tree can be completely pruned from consideration.

In addition, since we are interested in the top n outliers further pruning can be made in the

computation of Dk(p). In each step of this index-based algorithm the top n outliers can be sorted

and the minimum distance among these outliers can be computed. If during the computation of

Dk(x) of a point x we find that its value is lower than the minimum distance of the top n outliers

then point x cannot possibly be an outlier.[2, 39, 29].
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Partition-Based speed-up: Since we are interested in detecting the top n outliers and

typically the value of n is small, unnecessary computations of distances Dk of points cannot

be avoided in spite of the aforementioned pruning methods.

The key idea to this pruning method (it is more of a preprocessing step) is to cluster the data

into partitions and compute the lower and upper bounds on Dk for points in each partition. If

the upper bound of this partition is lower than the minimum distance of the top n outliers that

are provided in each step, then the whole partition can be avoided in further computations.

An approximation of this minimum distance can be obtained by sorting a certain number of

lower bounds of partitions that consist of at least n objects[2, 29, 39]

An extension to Ramaswamy’s work is the proposed method of Hautamaki et al. [25]. As we

discussed above, the algorithm needs a specific number of outliers as an input and that in most cases

is unknown. For this extension, two different variants are considered: mean of k-nearest neighbor

(kNN) distances (MeanDIST) and maximum of kNN distances (KDIST). Vectors with large average

kNN distance are all marked as outliers. When scanning the ordered list from smaller to larger

distances, we check if the difference between adjacent distances is larger than a given threshold. We

then define vectors beyond the cut point as outliers. We define the threshold as:

T = max(Li − Li−1) · t,

where Li is the KDIST or the MeanDIST of the ith vector and t ∈ (0, 1) is an input parameter.
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4.3.2 Reverse Nearest Neighbor approach

Most of the distance-based methods directly use the k-nearest neighbor distribution in order to define

outliers. A different approach is to use the number of reverse k-nearest neighbors in order to define

outliers [25]. Therefore, the concept of a reverse k-nearest neighbor is first defined.

Definition 4.7. A data point x is a reverse k-nearest neighbor of y, if and only if y is a k-nearest

neighbor of x [2].

Data points which have large k-nearest neighbor distances, will also have few reverse neighbors,

because the latter ones tend to have neighbors with smaller distances. Thus, an outlier is defined as

a point for which the number of reverse k-nearest neighbors is less than a user-defined threshold [2].

The reverse nearest neighbor approach can also be easily understood in terms of the underlying

k-nearest neighbor (kNN) graph.

We define the k-nearest neighbor graph as a weighted directed graph, in which every vertex

represents a single vector, and the edges correspond to pointers to neighbor vectors. Every vertex

has exactly k edges to the k nearest vectors according to a given distance function. the weight of

the edge eij is the distance between vectors xi and yi. The graph can be constructed by exhaustive

search considering all pairwise distances at the cost of O(N2) time.

Moreover, Hautamaki et al. [25] proposed a method in which an object (denoted by a vertex) is

defined as an outlier on the basis of its indegree number in the kNN graph. For a vertex, the number

of head ends (by the phrase head ends we mean the edges that point the underlying vertex; for

example a k nearest neighborhood of an object in a knn graph is shown by the edges that start from

the target object and end to its knn neighbor objects pointing their corresponding verices) adjacent

to a vertex is called the indegree of the vertex and the number of tail ends adjacent to a vertex is its

outdegree. In our case, the indegree number of an object can be interpret as the number of reverse k-

nearest neighbors, due to the observation that the k nearest neighbor of a point is not a symmetric

definition. The fact that a point is a k nearest neighbor of another point does not imply the opposite.

That observation of Hautamaki creates a connection between the distance based methods and the

density based methods that we will present in the next chapter. According to the above, an outlier

can be defined as follows:

Definition 4.8. Given kNN graph G for data set S, an outlier is a vertex, whose indegree is less

than or equal to T [25].

In other words, the proposed algorithm, after creating the kNN graph checks each vertex to see

if its indegree number is lower than a given threshold T and if it is, it marks it as an outlier.
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4.4 Applying outlier detection using distance-based methods to wood

specific gravity data

In this section we will test four functions on Wood specific gravity data (we recall that the Wood

specific gravity data is a data set of twenty observations on six variables, four of which (4, 6, 8,

19) are known to be outliers). The first one is based on the Definition 4.1 which is the original

seed of these methods. The following two measure knn distances and based on a cutoff declare the

exceeding objects as outliers. Finally, the last function is based on Hautamaki’s method and the

indegree number of objects discussed above.

• DB: Calculates how many observations are within each object’s neighborhood, which is formed

by a specific distance given by the user. The objects that have proportion of neighbors lower

than a user’s fraction are declared as outliers.

• nn: Computes the average k-nearest neighbor distance of observation and based on the boot-

strapped cutoff, labels an observation as outlier.

• nnk: Computes the k-th nearest neighbor distance of an observation and based on the boot-

strapped cutoff, labels an observation as outlier.

• KNN IN: Calculates the indegree number of each observation given a k-nearest neighbors

graph.

We begin with the first function implemented in R package “DDoutlier” testing it with its default

settings. The code is below

> DB(my_data, d=1, fraction = 0.05)

$neighbors

[1] 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

$classification

[1] "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier"

[13] "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier" "Inlier"

As we see from the results, the function tuned in these settings is unable to find any outlier. That

is because the arguments depend on the size of the dataset and on the distance between the objects.

In this case, it seems that the given distance is too high, and since this method does not depend

on a specific number of neighbors, unifies all objects in one neighborhood. In Table 2 we present

some results of DB function. Input value d decides the number of objects within each observation

and input value fraction represents a cutoff based on which we declare the outliers. Even though,

the function eventually manages to find the correct outliers in the dataset, one might think that this
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DB function

d fraction Outliers

0.1 7 9 10 12 13 18 20

0.1 0.2 1 2 4 5 6 7 8 9 10 11

12 13 16 17 18 19 20

0.3 1 2 3 4 5 6 7 8 9 10 11

12 13 16 17 18 19 20

0.1 0

0.2 0.2 19

0.3 4 6 8 19

Table 2: Number of detected outliers for different d and franctions for DB function

way is more complicating than helpful. That is because, the information of an efficient distance d is

strictly linked to the structure of the underlying data which is most of the times unknown.

On the contrary, functions nn and nnk (implemented in R package “OutlierDetection”) search

for outliers based on the distances of the objects within their neighborhoods which are equally sized

determined by a specific k given by the user (default value for k is the number of the observations

times 0.05). Moreover, the number of outliers detected in the dataset depends on a percentile cutoff

value given by the user (default is 0.95). These algorithms compute all knn distances and flag

all observations whose distances exceed the latter threshold. Even though knn distances are not

given, in order to have an outlier score between the flagged outliers an outlier probability based on

bootstraping is employed (like in the depthout function). The difference between the two functions

is that the first one compute the average of the knn distances of each observation while the second

one computes the k-th nearest distance of each observation.

We begin testing the nn function and for that purpose we set the arguments according to the

(small) size of the dataset. The code of nn and the obtained results are given below.

nn(my_data, k = 5, cutoff = 0.75, boottimes = 100)

$`Outlier Observations`

x1 x2 x3 x4 x5 y

7 0.489 0.1231 0.562 0.455 0.824 0.481

9 0.536 0.1182 0.592 0.464 0.854 0.475

10 0.685 0.1564 0.631 0.564 0.914 0.486

12 0.703 0.1335 0.519 0.484 0.812 0.519

$`Location of Outlier`

[1] 7 9 10 12
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$`Outlier Probability`

[1] 0.96 0.82 0.99 0.97

The code of the nnk function as well as the obtained results are as follows

nnk(my_data, k = 5, cutoff = 0.75, boottimes = 100)

$`Outlier Observations`

x1 x2 x3 x4 x5 y

6 0.444 0.1628 0.429 0.411 0.984 0.431

8 0.413 0.1673 0.418 0.430 0.978 0.423

19 0.417 0.1687 0.405 0.415 0.981 0.401

$`Location of Outlier`

[1] 6 8 19

$`Outlier Probability`

[1] 0.96 0.96 1.00

As we can see from the above results and Table 3, nnk is able to find the true outliers of the

dataset quicker than nn. That is because of the small size of the dataset. In small datasets the size

of the k nearest neighborhoods is accordingly small. So the average of the knn distances can not be

representative. For k = 10 both functions show the same results. Consequently, these functions in

larger datasets can provide in a high percentage the same outliers.

Outliers

nn nnk k

7 10 12 4 6 8 19 6

7 10 12 19 4 6 8 19 7

7 8 10 19 4 6 8 19 8

6 8 10 19 4 6 8 19 9

4 6 8 19 4 6 8 19 10

Table 3: Number of detected outliers for different k for nn and nnk functions
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Finally we present Hautamaki’s method (implemented in R package DDoutlier). It works quite

differently from the other methods as it has as outlier score the indegree number of each observation.

Basically, it computes for a given k the number of times that an observation is a k nearest neighbor

of the other observations.

The code for KNN IN function for k = 5 and the obtained results are shown below

> KNN_IN(my_data,k=5)

[1] 8 7 7 3 10 3 5 3 2 1 5 3 4 10 9 4 4 7 3 2

> order(KNN_IN(my_data,k=5))

[1] 10 9 20 4 6 8 12 19 13 16 17 7 11 2 3 18 1 15 5 14

Based on the obtained results and Table 4, we observe a decrease in the number of observations

that satisfy T ≤ 3. Furthermore, we notice convergence (slower that the one we encountered in nnk

function) to the true outliers as we increase the value of k.

KNN IN

k outliers

4 10 12 20 7 9 4 6 8 17

19

6 10 9 4 6 8 19

7 10 9 4 6 8 19

8 4 6 8 19

9 4 6 8 19

Table 4: Detected outliers for different k based on their indegree number. Observations with T ≤ 3

are presented
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4.5 Conclusions

Distance-based methods are able to detect outliers in data sets in which the underlying distribution

is unknown. Their main idea is that higher knn distances tend to come from more isolated points

of the dataset. Furthermore, these methods scale up better than the depth-based methods, because

they are not so much restricted to lower dimensions due to a variety of data structures and pruning

methods like the ones we discussed above. Applying some of these methods to a dataset known for its

contamination, we note that DB while successful, needs more information about the data structure

than the other three. Furthermore, it has no outlier score, thus giving no clue to the user of how

much of an outlier an observation is. Consequently, DB, can be unsuitable for high dimensional raw

datasets. On the other hand, nn, nnk and KNN IN are much easier to handle as they search for

outliers in equally sized neighborhoods. However, the choice of k in order to have efficient results

is not clear. In the previous analysis we noticed a convergence to the true outliers increasing k.

However in higher dimensional datasets in which the number of outliers is unknown and and the

observations canot be represented in a graph the choice of k can be tricky as we will see in Chapter

8.
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5 Density-Based Methods

5.1 Introduction

Density-based approaches for outlier detection have been developed to deal with the local density

problems of the distance-based methods. In many applications there can be different regions and

varying characteristics in a dataset. Therefore it is more meaningful to search for outlying objects

based on other objects in each of their neighborhoods.

In a typical density-based framework, there are two parameters that define the notion of density

of an object.

• A parameter MinPts specifying the minimum number of objects, and

• A parameter specifying the volume under consideration.

These two parameters determine a density threshold for the algorithm to operate. To detect density-

based outliers, it is necessary to compare the densities of different sets of objects in the data.[40, 27]

In this section we will discuss the Local Outlying Factor (LOF) based on which many algorithms

were built and its properties. Next, we will describe an extension of LOF called the Robust Kernel-

based Outlier Factor (RKOF).

5.2 Aim of density-based methods

In the previous chapter, we presented the distance-based methods. These methods define as outliers

the objects that are a threshold distance away from a partition of the data set. They detect outliers

in a more global sense making them unable to find all kinds of outliers as they were proved to be

sensitive to data locality (except for the reverse-nearest neighbor approach that can handle local

data variations well).

As we can see in Figure 6, while both points p1 and p2 are outliers, a classic distance-based

method would probably detect only p2 because it is far away from both clusters C1 and C2. On the

other hand, point p1 is too close to them and so it is considered as normal. Moreover, if we choose

to have a stricter threshold for the distance in order to reveal p1, the method will probably denote

more objects as outliers than the real ones.

In addition, all the aforementioned methods detect outliers in a binary concept declaring them

outliers or not. Density-based methods proceed to a quantification of how much of an outlier an

object is giving in that way more information about the outlying objects [40, 8]
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Figure 6: Illustration of a local outlier [40].

5.3 Analytical approach of the density-based methods

5.3.1 Local Outlier Factor (LOF)

Most of the density-based methods follow the concept of local outlier factor which is a measure of

difference in density between an object and its neighborhood. That is why we begin our analysis

with the following definitions giving the k-distance and the k-distance neighborhood of a point p

[8]. As we have discussed in previous chapters a distance between two objects p and o is denoted by

d(p, o).

Definition 5.1. For any positive integer k, the k-distance of object p, denoted as dk(p), is defined

as the distance d(p, o) between p and an object o ∈ D such that:

(a) for at least k objects o′ ∈ D\{p} it holds that d(p, o′) ≤ d(p, o), and

(b) for at most k − 1 objects o′ ∈ D\{p} it holds that d(p, o′) < d(p, o).

Definition 5.2. Given the k-distance of p, the k-distance neighborhood of p (denoted by Nk(p))

contains every object whose distance from p is not greater than the k-distance, i.e.

Nk(p) = {q ∈ D\{p}|d(p, q) ≤ dk(p))}

. These objects q are called the k-nearest neighbors of p.

Remark. The cardinality of Nk(p) can be greater than k in case of ties in the k-distances of points.
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Definition 5.3. Let k be a natural number. The reachability distance of object p with respect to

object o is defined as rd(p, o) = max{dk(o), d(p, o)}.

Intuitively, if the two points are far away from each other then the reachability distance between

them is their actual distance. If on the contrary, they are close to each other then their reachability

distance equals the k-distance of point o.

While the above definitions work for any natural number k, we are only interested in the notion

of MinPts and we use the values of the rd(p, o) (for all points o in Nk(p)) as a measure of volume

both of which determine the local density [8].

Definition 5.4. The local reachability density of p (denoted by lrdk(p)) is defined as

lrdk(p) =

(∑
o∈Nk(p) rdk(p, o)

|Nk(p)|

)−1

Intuitively, the local reachability density of an object p is the inverse of the average reachability

distance based on the k-nearest neighbors of p. It works as an estimator of the density at point p by

analyzing the k-distance of the objects in Nk(p).

Definition 5.5. The (local) outlier factor of p is defined as

LOFk(p) =

∑
o∈Nk(p)

lrd(o)
lrd(p)

|Nk(p)|

The outlier factor of object p is the average of the ratio of the local reachability density of p and

those of its k-nearest neighbors. Basically, it measures the outlierness of the point p. The higher the

value of LOF (p) the ”more of an outlier” an observation is.

We continue the analysis by giving some properties of LOF.

Lemma 5.1. Let C be a collection of objects. Let rdmin denote the minimum reachability distance

of objects in C, i.e., rdmin = min{rd(p, q)|p, q ∈ C}. Similarly, let rdmax denote the maximum

reachability distance of objects in C. Let ε be defined as rdmax
rdmin

− 1.

Then for all objects p ∈ C, such that:

(a) all the k-nearest neighbors q of p are in C, and

(b) all the k-nearest neighbors o of q are also in C,

it holds that 1
1+ε
≤ LOF (p) ≤ 1 + ε.
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Proof. It holds that rd(p, q) ≥ rdmin, ∀q ∈ Nk(p). Therefore, based on Definition 5.4 it holds for

the reachability distance of p that lrdk(p) ≤ 1
rdmin

. In contrast, it can be seen that lrdk(p) ≥ 1
rdmax

because it holds that rd(p, q) ≤ rdmax, ∀q ∈ Nk(p).

Let q be a k-nearest neighbor of p. Working in the same way, we can prove that the local

reachability density of q is between the same bounds.

Thus, taking into consideration Definition 1.5 we prove for the upper bound that

LOFk(p) =

∑
o∈Nk(p)

lrd(o)
lrd(p)

|Nk(p)|
≤

∑
o∈Nk(p)

1
rdmin

1
rdmax

|Nk(p)|
=

1
rdmin

1
rdmax

= 1 + ε

. We work analogously for the lower bound.

The interpretation of Lemma 5.1. is that if a point p is in a dense area of a cluster C then its

k-nearest neighbors will also be in C along with their k nearest neighborhoods, leading to a value of

ε close to zero and a LOF (p) close to one. Thus for that kind of points Lemma 5.1. gives efficiently

tight bounds denoting that they cannot be possible outliers [8]

The following theorem is an extension of Lemma 5.1. It corresponds to points that are on the

borders of a cluster and gives the same bounds as Lemma 5.1. when a point deep in the cluster is

considered.

First we present the following terminology [8].

Definition 5.6. For any object p let

• the directmin(p) denotes the minimum reachability distance between p and a k-nearest neighbor

of p, i.e.,

directmin(p) = min{rdk(p, q)|q ∈ Nk(p)}

• the directmax(p) denotes the maximum reachability distance between p and a k-nearest neighbor

of p, i.e.,

directmax(p) = max{rdk(p, q)|q ∈ Nk(p)}

• the indirectmin(p) denotes the minimum reachability distance between q and a k-nearest neigh-

bor of q, i.e.,

indirectmin(p) = min{rdk(q, o)|q ∈ Nk(p) and o ∈ Nk(q)}

• the indirectmax(p) denotes the maximum reachability distance between q and a k-nearest neigh-

bor of q, i.e.,

indirectmax(p) = max{rdk(q, o)|q ∈ Nk(p) and o ∈ Nk(q)}
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Theorem 5.2. Let p be an object from the database D, and 1 ≤ k ≤ |D|.
Then, it is the case that

directmin
indirectmax

≤ LOFk(p) ≤
indirectmax
directmin

Proof. It is similar to the previous proof. In this case we will deal with the lower bound and

analogously we can get the upper bound. By definition of directmax(p) we obtain

rdk(p, o) ≤ directmax(p) ∀o ∈ Nk(p)

From the above inequality we derive

(∑
o∈Nk(p) rdk(p, o)

|Nk(p)|

)−1

≥ 1

directmax(p)
⇒ lrdk(p) ≥

1

directmax(p)
(2)

Again by definition of indirectmin(p) we find

rdk(o, q) ≥ indirectmin(p)

Similarly we find(∑
q∈Nk(o) rdk(o, q)

|Nk(o)|

)−1

≤ 1

indirectmin(p)
⇒ lrdk(o) ≤

1

directmin(p)
(3)

From the inequalities (1) and (2) we get the final step∑
o∈Nk(p)

lrd(o)
lrd(p)

|Nk(p)|
≤

∑
o∈Nk(p)

1
directmin(p)

1
indirectmax(p)

|Nk(p)|
⇔ LOFk(p) ≥

indirectmax
directmin

Remark. For points deep inside the cluster Theorem 5.2 is equivalent to Lemma 5.1 as the values

of indirectmax and directmin coincide with the values of rdmax and rdmin respectively.

Finally, we present (without its proof) Theorem 5.3 - an extension of Theorem 5.2 - which gives

more efficient bounds for the points whose k-nearest neighborhood overlaps with more than one

cluster [8].

Theorem 5.3. Let p be an object from the database D, 1 ≤ k ≤ |D|, and C1, C2, ..., Cn be a partition

of Nk(p), i.e. Nk(p) = C1 ∪ C2 ∪ ... ∪ Cn ∪ {p} with Ci ∩ Cj = ∅, Ci 6= ∅, for 1 ≤ i, j ≤ n, i 6= j.

Furthermore, let ξi = |Ci|
|Nk(p)| be the percentage of objects in p’s neighborhood, which are also in

Ci. Let the notions directimin(p) directimax(p) indirectimin(p) indirectimax(p) be defined analogously to

directmin(p), directmax(p), indirectmin(p), and indirectmax(p) but restricted to the set Ci.

Then, it holds that

(a) LOF (p) ≥
(∑n

i=1 ξi · directimin(p)

)
·
(∑n

i=1
ξi

directimax(p)

)
(b) LOF (p) ≤

(∑n
i=1 ξi · directimax(p)

)
·
(∑n

i=1
ξi

directimin(p)

)
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Breunig et al.[8] originally presented the LOF method as a density-based approach because of its

ability to adjust to regions of varying density. For example, in the case of Figure 6, the LOF values

of data points in clusters C1 and C2 will be quite close to one, even though the densities of the two

clusters are different. On the other hand, the LOF values of both the outlying points p1 and p2 will

be much higher since they will be computed in terms of the average of ratios of local reachability

densities [40].

In general, the maximum value of LOFk(p) over a range of different values of k is used as the

outlier score in order to rank the different objects. The computational complexity of the LOF method

obviously depends on the size of the underlying database. For low dimensional data, distances of the

k nearest neighbors are computed with complexity of O(n) using a grid-based approach (n indicates

the number of observations) while in data sets of a higher dimension they can be computed with

complexity O(n log n) using an index-based approach. Finally the computational cost of the LOF

values is O(k · n). Subsequently, many investigations [27, 30] into the LOF method were able to

reduce the computational complexity and handle bigger data sets [8].

5.3.2 Robust Kernel-Based Local Outlier Factor(RKOF)

The RKOF method is an extension of the LOF method in which the same framework is used with

more efficient density estimates. The LOF method employs the local reachability distance as a

density estimate which in large data sets can be inaccurate especially in the presence of outlying

points. In order to achieve more accurate density estimation the RKOF method employs a kernel

density estimate for the computation of outlier factors [21].

In the univariate case, the kernel estimator [52] is defined by

f̂(x) =
1

n · h

n∑
i=1

K

(
x−Xi

h

)
,

where Xi denotes the ith observation in a data set with cardinality n , h is the window width (also

called the smoothing parameter) and K(·) is a kernel function that satisfies
∫ +∞
−∞ K(x) = 1

Figure 7: Kernel estimate by individual kernels with window width 0.4 [52]
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Intuitively, the kernel estimator is expressed by the sum of ”bumps” placed at the observations.

The shape of the bumps and their width are determined by the kernel function K(·) and the smooth-

ing parameter h respectively.

With the purpose of allowing the scale parameter of the bumps to vary among the observations

to which they correspond, we define the variable kernel estimate [52] by

f̂(x) =
1

n

n∑
j=1

1

h · dk(Xj)
·K
(
x−Xj

h · dj,k

)
,

where dk(Xj) denotes the distance from point Xi to its k- nearest neighbor. We note that the window

width around Xj is proportional to dk(Xj) so that points in more sparse regions will have flatter

kernels. For fixed k,only the parameter h is responsible for the degree of smoothing. The choice of

k determines the degree of h’s sensitivity to the data locality [52]

Extending to the multivariate case, the kernel function K(·) is a function defined in d-dimensional

space that satisfies ∫
Rd
K(x) = 1,x ∈ Rd

The most common multivariate kernel functions are the Gaussian

K(x) = (2 · π)−
d
2 · exp(−1

2
xTx)

and the Epanechnikov

K(x) =

1
2
· c−1
d · (d− 2) · (1− xTx) , if xTx < 1

0 , otherwise

where cd is the volume of the unit d-dimensional sphere [52].

Returning to the RKOF method, we present an extension of the variable kernel estimator in the

multivariate case.

Definition 5.7. The local kernel density estimate of p is defined as

kde(p) =

1
hγ
·
∑

o∈Nk(p)
1
λγo
·K
(

p−o
hγ ·λγo

)
Nk(p)

,

λo =

(
f(o)

g

)−α
, log g =

∑
q∈D log f(q)

|D|
where h is the smoothing parameter, γ is the sensitivity parameter, K(·) is the multivariate kernel

function and λo is the local bandwidth factor. f(·) is a pilot density estimate that satisfies f(q) > 0

for all the objects, α is the sensitivity parameter that satisfies 0 ≤ α ≤ 1, and g is the geometric

mean of f(q).
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Remark. In the original (multivariate) variable kernel estimate parameter γ equals the dimension

of the data set. [21, 52]

kde(p) is computed locally in the k-distance neighborhood of object p while also retaining the

adaptive kernel window width that, as we discussed, is allowed to vary from one object to another.

Basically, the pilot density estimate is used to get a rough idea about the density and yields a

pattern of bandwidths (corresponding to the various observations) which are used to build the kernel

local estimate [52].

Gao et al. [21] use as pilot density estimate the following function

f(o) =
1

dk(o)

Substituting this into the kde(p) we obtain

kde(p) =

∑
o∈Nk(p)

1
(C·dk(o)α)γ

·K
(

p−o
C·dk(o)α

)
|Nk(p)|

, C = h · gα

where the default values of C and α equal one.

Definition 5.8. The weighted density estimate of p’s neighborhood is defined as

wde(p) =

∑
o∈Nk(p) ωo · kde(o)∑

o∈Nk(p) ωo
, ωo = exp

{
−

( dk(o)
dkmin

− 1
)2

2 · σ2

}
where ωo is the weight of object o in the k-distance neighborhood of object p, σ is the variance with

the default value 1, and dkmin = min{dn(o)|o ∈ Nk(p)}.

Based on the definition of LOF, the detection performance is sensitive to the parameter k, which

must be sufficiently large in order for the k- distance neighborhood to consist of enough normal points

so that outliers have the chance to be detected. In the weighted neighborhood density estimate, the

weight of the neighbor object is a monotonically decreasing function of its k-distance with the largest

weight equal to one for the nearest neighbor. Thus, the weighted neighborhood density estimate is

able to detect outlying objects accurately even if the number of outliers in the neighborhood equals

the number of normal objects making it more robust than the local reachability density used in the

LOF method [21].

Definition 5.9. The robust kernel-based outlier factor of p is defined as

RKOF (p) =
wde(p)

kde(p)
,

where wde(p) is the density estimate of the k-distance neighborhood of p, and kde(p) is the local

density estimate of p.

As for LOF, RKOF measures the degree to which a point is outlying. The larger the RKOF value

of a point the more probable it is to be an outlier. The computational complexity is the same as

LOF’s [52].
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5.4 Applying outlier detection using LOF and RKOF algorithms to

wood specific gravity data

In this section we will test three functions on Wood specific gravity data (we recall that the Wood

specific gravity data is a data set of twenty observations on six variables, four of which (4, 6, 8, 19)

are known to be outliers).

• LOF: Computes a local density for observations with a user-given k-nearest neighbors. The

density is compared to the density of the respective nearest neighbors, resulting in the local

outlier factor.

• RKOF: Computes a kernel density estimation by comparing density estimation to the density

of neighboring observations resulting in the robust kernel outlier factor. A Gaussian kernel is

used for density estimation, given a bandwidth with k-distance.

• dens: Computes the RKOF values based on RKOF function and based on a user-given per-

centile cutoff declares as outliers the observations whose RKOF values exceed the underlying

cutoff. Moreover, it provides an outlier probability like in depthout, nn and nnk

The first two functions can be found in ”DDoutlier” package while the latter is implemented in

”OutlierDetection”

We begin with the first function. Its code is below

LOF(dataset, k)

The only arguments needed are the underlying data set and the MnPts determining the local density.

The function returns the LOF value of each observation.

We obtain the following results

LOF(my_data, k = 6)

[1] 0.9320898 1.0289675 0.9792408 1.3571371 0.9723653 1.3929624 1.3058637

1.4051025 1.1767145 1.2400128 1.1262819 1.2063343 1.1032250

[14] 0.9712314 1.0205625 0.9908529 0.9442170 1.1100389 1.4282616 1.0432364

Sorting the above scores in ascending order with order() function we obtain the following vector

> order(LOF(my_data, k = 6))

[1] 1 17 14 5 3 16 15 2 20 13 18 11 9 12 10 7 4 6 8 19
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We note that observations 4, 6, 8, 19 have the higher LOF values for k=6, 7, ..., 15 (see Table

5). However, for values higher than eight we observe lower LOF values converging to one. The LOF

method was indeed able to direct higher scores to the true outliers of the data set. Due to the fact

that normal data points have a LOF value close to one and taking into consideration the fourth

observation, a question arises whether a value equal to 1.3571371 is high enough for this object to

be denoted as an outlier.

The code of the second function is as follows

RKOF(dataset, k , C = 1, alpha = 1, sigma2 = 1)

The first two arguments are the same as for the first function while the other ones have been intro-

duced in the previous chapter. Moreover, C is a multiplication parameter for k-distance of neighbor-

ing observations acting like a bandwidth increaser. Default is one such that k-distance is used for the

Gaussian kernel. Finally, alpha is a sensitivity parameter for k-distance (small alpha creates small

variance in RKOF and vice versa) and sigma2 is a variance parameter for weighting of neighboring

observations. Both of them have also default value equal to one. The function returns the RKOF

value of each observation.

We obtain the following results

RKOF(my_data, k = 8, C = 1, alpha = 1, sigma2 = 1)

[1] 1.0274242 0.9525171 0.9304886 2.4660712 0.9138639 2.4192465 2.2790186

2.6386842 1.7495769 1.9928869 1.1746130 1.6597684 1.4778650

[14] 0.7717380 0.8477847 1.0204903 1.0984443 1.3634725 2.8206986 1.3187638

order(RKOF(my_data, k = 8, C = 1, alpha = 1, sigma2 = 1))

[1] 14 15 5 3 2 16 1 17 11 20 18 13 12 9 10 7 6 4 8 19

We note that observations 4, 6, 8, 9 have the higher RKOF values for k=8, ..., 19 (see in Table

5). Moreover, for values 10 or higher these observations are in the same order as in LOF method.

The main difference apart from k is the fact that the method directs much higher RKOF values to

the outlying points (by these results one could denote the seventh observation also as an outlier,

although in varying values of k its score keeps reducing).

Furthermore, if we choose to change the value of sigma2 to 0.1 we obtain the following results

>RKOF(my_data, k=7, C=1, alpha = 1, sigma2 =0.1)

[1] 1.0963566 1.1197494 1.0016784 3.7314614 1.0502284 3.8828330 2.7476913 3.2005587

2.3847559 2.5486490 1.5015050 2.1789623 2.0767597 0.8336603 0.9017041 1.1594693

1.2525511 1.8449604 3.4199065 1.5509820
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order(RKOF(my_data, k = 7, C = 1, alpha = 1, sigma2 = 0.11))

[1] 14 15 3 5 1 2 16 17 11 20 18 13 12 9 10 7 8 19 4 6

As we can see from the above results, giving a smaller value to the parameter sigma2, not only

we detect the true outliers with the highest RKOF values faster (smaller k) but also we obtain a

clearer idea of the outlying objects through their RKOF values as the latter ones have much bigger

values than the rest of the data. Finally, we can safely speculate that the nature of these outliers

having been already compared with three different kind of methods is that of an extreme value,

because of their mutual sensitivity to that kind of outliers.

Outliers

LOF RKOF (σ = 1) RKOF (σ = 0.1) k

4 6 8 19 12 9 7 10 13 17 12 18 9 20 7 10 17 13 12 18 20 9 7 10 4

9 12 6 8 19 10 7 4 11 18 9 12 20 4 7 10 11 18 12 20 9 7 10 4 5

9 12 10 7 4 6 8 19 18 10 4 8 9 12 6 7 19 12 10 9 7 4 8 6 6

9 12 10 7 4 6 8 19 12 9 10 8 19 7 4 6 12 9 10 7 8 19 4 6 7

13 12 10 7 4 6 8 19 12 9 10 7 6 4 8 19 12 9 10 7 4 6 8 19 8

13 12 10 7 4 6 8 19 9 12 10 7 4 6 19 8 9 12 7 10 4 6 8 19 9

18 12 10 7 4 6 8 19 9 12 10 7 4 6 8 19 9 12 10 7 4 6 8 19 10

Table 5: Number of detected outliers for different k for LOF and RKOF functions

As we see in Table 5, LOF can be considered more efficient, in the sense of assigning the highest

values to the true outliers at smaller values of k. That could be due to the small size of the dataset and

the small percentage of contamination (20%). Either way, we observe in both methods a convergence

in the ascending order of the observations while the methods are declaring the true outliers. Moreover,

this phenomenon also appeared when testing KNN IN function for different values of k indicating

a similarity in the behaviour of these methods.

Finally, we present dens function. Its code and obtained results for k = 4 are below

>dens(my_data, k = 4, C = 1, alpha = 1, sigma2 = 1,cutoff = 0.75, rnames = F,

boottimes = 100)

$`Location of Outlier`

[1] 7 9 10 20

$`Outlier Probability`

[1] 1.00 0.89 1.00 0.94
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According to the results, dens function is indeed consistent with the RKOF values presented

above for k = 4 in Table 5. The only difference is that it declared only the ones that had values

higher that the given percentage. This can be very helpful for datasets with more observations.

Moreover, instead of the order given by the RKOF values, an outlier possibility is given as an outlier

score indicating which observation is declared as an outlier the most. Accordingly, the ascending

order of the outliers based on their outlier possibility matches the ascending order presented in Table

5.

5.5 Conclusions

Density-based methods work efficiently in data sets with varying local densities, while other methods

may not recognise all the non normal objects. The LOF method is the basis for many density-based

methods and is able to adjust to these local density variations and measure the “outlyingness” of

the objects by their LOF values. The RKOF method extends the latter method. It is more robust

to the choice of k and as we noticed earlier outlying observations receive higher scores than LOF’s

making much easier the decision to the user to denote them.
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6 Mahalanobis distance

6.1 Introduction

The methods presented in Chapters 5 and 6 are based on the most fundamental idea in multivariate

data analysis, that is to measure the similarity of the objects in target data by their distance from each

other. As we have already discussed, objects with large distance show low similarity, while objects

with small distance between them are considered to belong to the same category or to have similar

properties (that part of the data is also called normal). The distance between objects depends on

the selected distance metric function, the dimension, and on the scaling of each dimension. Distance

measurements in high-dimensional space are extensions of distance measures in two dimensions [62].

Let two objects be defined by the vectors xA = (xA1 , xA2 , ..., xAd), xB = (xB1 , xB2 , ..., xBd). Most

used is the Euclidean Distance (denoted by dEuclidean()) which is equivalent to that used in daily

life. Applying Pythagoras’ rule gives

dEuclidean(xA,xB) =

( d∑
j=1

(xBj − xAj)2

) 1
2

= (xB − xA)T (xB − xA)

Over the years, different kinds of measures have been introduced such us the Minkowski distance

dMinkowski =

( d∑
j=1

(xBj − xAj)d
) 1

d

and the Manhattan distance

dManhattan = ||xB − xA||1 =
d∑
j=1

|xBj − xAj |

. The Mahalanobis distance analyzed below considers the distribution of the object points in the

variable space (as characterized by the covariance matrix) and more importantly is not affected by

the scaling of the variables [62].

6.2 Aim of the Mahalanobis distance

The concept of the Mahalanobis distance can also be used in the context of detecting multivariate

outliers. In Figure 8, we show how more concentrated to the data are the ellipses formed from the

Mahalanobis distances of all the objects from the center than the circles formed by the Euclidean

distances of the objects to the center. Unlike Euclidean distace, Mahalanobis distance takes into

account the correlation between the variables via the covarience matrix so that it can provide safer

results concerning the outliers and the geometrical structure of the dataset in general. In that context,

multivariate outliers can be interpreted as points that are far away from the ellipse or ellipsoid (if

we are dealing with high dimensional data) i.e. those noted with exceptionally high Mahalanobis

distances [62].
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Figure 8: Euclidean distance (left) and Mahalanobis distance (right) [62]

6.3 Analytical approach of the Mahalanobis distance

In general, the Mahalanobis distance between two d-dimensional objects xA and xB without any

distributional assumption is defined by

MD(xA,xB) =
√

[(xB − xA)T · S−1·(xB − xA)]

where S is the sample covariance of the data matrix. The computation of the Mahalanobis distance

requires the inversion of the covariance matrix S [62].

Even though Mahalanobis distance can be assigned to all kinds of datasets, its values correspond

to coherent results when the entire dataset is assumed to be normally distributed about its mean

in the form of a multivariate Gaussian distribution. Let µ be the d-dimensional mean vector of a

d-dimensional data set, and Σ be its d × d covariance matrix. In this case, the (i, j)th entry of the

covariance matrix is equal to the covariance between the dimensions i and j. The covariance matrix

Σ (d × d) is a quadratic, symmetric matrix which consist of the covariances σjk between every two

variables xj and xk . The cases j = k (main diagonal) are “covariances” between one and the same

variable, which are in fact the variances σjj of the variables xj for j = 1, ..., d.

The probability distribution f(x) for a d-dimensional data point x can be defined as follows:

f(x) =
1√

|Σ| · (2 · π)
d
2

· e−
1
2
·(x−µ)·Σ−1·(x−µ)T

The value of |Σ| denotes the determinant of the covariance matrix. We note that the term in the

exponent is (half) the squared Mahalanobis distance between the data point x and the mean µ of

the data. The value in the exponent of the normal distribution above is used as the outlier score [2].
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Suppose a n× d data matrix X (n observations d variables). The classical measure of covariance

between two variables xj and xk is the sample covariance, sjk, defined by

sjk =
1

n− 1

n∑
i=1

(xij − x̄j) · (xik − x̄k)

For mean-centered variables and written in vector notation

sjk =
1

n− 1

n∑
i=1

xij · xik = xTj · xk

Based on the above definition, the sample covariance matrix S can be calculated for mean-centered

X by

S =
1

n− 1
XT ·X

In general, S is given by

S =
1

n− 1
(X− 1x̄)T · (X− 1x̄),

where 1 is a vector of ones of length n and x̄ = (x̄1, x̄2, ..., x̄d) is the mean vector.

Another measure for the relation of variables xj and xk is their correlation originally proposed

by Pearson defined by

rj,k =

∑n
i=1(xij − x̄j) · (xik − x̄k)√∑n

i=1(xij − x̄j)2 ·
√∑n

i=1(xik − x̄k)2

The range of rj,k is -1 to +1; a value of +1 indicates a perfect linear relationship, a value of -1

indicates a perfect inverse linear relationship; absolute values of approximately < 0.3 indicate a poor

or no linear relationship [62]

The Mahalanobis distance is similar to the Euclidean distance, except that it normalizes the data

on the basis of the inter-attribute correlations. For example, if the axis system of the data were

to be rotated to the principal directions (using principal components analysis) then the data would

have no correlations between the target variables and so the Mahalanobis distance would not be

affected by them. The Mahalanobis distance is simply equal to the Euclidean distance in such a

transformed (axes-rotated) data set after dividing each of the transformed coordinate values by the

standard deviation of that direction. This approach recognizes the fact that the different directions

of correlation have different variance, and the data should be treated in a statistically normalized

way along these directions [2].

Thus, the information about the distribution of the object points in the variable space is contained

in the covariance matrix and its estimation as well as the mean’s can be affected by a possible

contamination of the dataset. As we will discuss more specifically in Chapter 7, a sufficient number

of anomalous points can damage the estimations of scale and location of a target dataset, leading to

erroneous Mahalanobis distances, that is, outlier scores.
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A more robust measure, can be derived from a robust covariance estimator such as the minimum

covariance determinant (MCD) estimator [43, 46, 62]. The MCD estimator searches for a subset

of h observations having the smallest determinant of their classical sample covariance matrix. The

robust location estimator T is then defined as the arithmetic mean of these h observations, and the

robust covariance estimator is given by the sample covariance matrix of the h observations as well

as the correlation for each pair of variables.

The Mahalanobis distance based on the assumption that the dataset is Normally distributed

approximately follows a chi-square distribution χ2
d with d degrees of freedom (d is the number of

variables). If an object has a larger squared Mahalanobis distance than the cutoff it is exceptionally

high and can therefore be considered as a potential multivariate outlier. One can then take a quantile

of the chi-square distribution, like the 97.5% quantile x2
d,0.975 as cutoff value.

Even though for higher dimensions we cannot visualize the ellipsoid formed by the Mahalanobis

distances of the d-dimensional points, due to the fact that their values are one-dimensional, a index

plot can be made showing each observation by its Mahalanobis distance value and a straight line

indicating the cutoff value. Observations that exceed this line are considered to be outliers.

Moreover, Garrett [22] proposed the χ2 plot in order to detect the outliers. This plots the empirical

distribution function of the robust Mahalanobis distances (denoted by RD that is the Mahalanobis

distances computed using the MCD estimations of location and scatter) against the χ2 distribution.

The cutoff value can also be used as a break in the tails and observations whose MD exceed the

break are considered to be outliers.

On that basis, Filzmoser [16] introduced the adaptive quartile. The adaptive quartile is basically

a threshold that takes into account the difference between the empirical and a theoretical distribution

of the RD’s in the tails. If we denote by Gn(u) the empirical distribution of the RD2
i and by Gn(u)

the theoretical function of χ2
d then we can compare their tails in order to detect outliers, since for

multivariate normally distributed samples Gn converges to G. Defining the tails by δ = χ2
p,0.975 we

obtain

pn(δ) = sup
u≥δ

(
G(u)−Gn(u)

)+

indicating the positive differences beyond the tails (in case of multivariate normally distributed data

a critical value pcrit(δ, n, d) is employed for more exact value of pn(δ), denoted as αn(δ) [16]). Finally,

the target cutoff is defined by

cn(δ) = G−1
(
1− pn(δ)

)
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6.4 Applying outlier detection using Mahalanobis distance to wood spe-

cific gravity data

In this section we will apply two detection methods using the Mahalanobis distance. The first, is the

classical one as discussed above and the second one is based on the MCD estimator.

We recall that the Wood specific is a data set of twenty observations on six variables, four of

which (4, 6, 8, 19) are known to be outliers.

We use four different functions that were built in the software enviroment of R:

• maha: Computes the Mahalanobis distance of an observation and based on the Chi square

cutoff, labels an observation as outlier. Outlyingness of the labelled “outlier” is also reported

based on its p values (That is a vector of (1− p) values of the detected observations).

• aq.plot: Plots the ordered squared robust Mahalanobis distances of the observations against

the empirical distribution of the RD2
i . In addition the distribution function of χ2

d is plotted

as well as two vertical lines corresponding to the x2
d-quantile specified in the argument list

(default is 0.975) and the adjusted quantile. Three additional graphics are created (the first

showing the data, the second showing the outliers detected by the specified quantile of the χ2
d

distribution and the third showing these detected outliers by the adjusted quantile). In case

of d > 2 the data is projected on the first two robust principal components (i.e. principal

component analysis based on a covariance matrix estimated by the MCD method).

• Moutlier: Plots the classical and the robust (based on the MCD estimator) Mahalanobis

distance.

We begin with the first function. Its code and obtained results are below

> maha(my_data,cutoff=0.8)

\begin{verbatim}

$`Outlier Observations`

x1 x2 x3 x4 x5 y

7 0.489 0.1231 0.562 0.455 0.824 0.481

11 0.664 0.1588 0.506 0.481 0.867 0.554

12 0.703 0.1335 0.519 0.484 0.812 0.519

16 0.523 0.1320 0.505 0.612 0.919 0.508

$`Location of Outlier`

[1] 7 11 12 16

$`Outlier Probability`
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[1] 0.8850952 0.8922186 0.8136708 0.8487555

As we see from the above results, none of the true outliers were detected. Furthermore, if we

increase the percentile threshold to 0.9, the method fails to detect any outlier. We speculate that

the presence of these contaminated outliers caused a swamping effect, with normal points like 7, 11,

12 and 16 detected as outliers.

For identifying outliers, it is crucial how center mean and covariance are estimated from the data.

Since the classical estimators, arithmetic mean vector x̄ and sample covariance matrix S are sensitive

to outliers, they can be inefficient for the purpose of outlier detection.

The code of the second function is as follows

> aq.plot(my_data, delta=qchisq(0.975, df=ncol(x)), quan=0.6, alpha=0.05)

The arguments of the function are

• x: A given data set

• delta: A quantile of the χ2 distribution with degrees of freedom equal to the numbers of

variables of the data. This quantile appears as cyan-colored vertical line in the plot.

• quan: A proportion of observations which are used for MCD estimations.

• alpha: Maximum thresholding proportion of outlying observations (optional scalar, default:

alpha = 0.05). For α = 0.025 overlap with the quartile cutoff of χ2
p,0.975

In Figure 9, the upper left plot shows the RDi of the objects projected on the first two principal

components. The two plots on the bottom marks outliers, the observations that exceed (on the

left) χd quantile and (on the right) the adjusted quantile. Finally, the upper right plot, shows the

empirical distribution of the RDi as well as the chi26 distribution and the aforementioned cutoff values

labeled by cyan and blue colors.

Based on the following results, the method managed to detect the true outliers in the data set.

Moreover, all three plots detected the same outliers along with the results in Boolean form (TRUE-

FALSE)

Projection to the first and second robust principal components.

Proportion of total variation (explained variance): 0.6152118

$outliers

[1] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
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Figure 9: Plots produced by the aq.plot function (wood specific data)

Finally, we give another presentation of the above results with the plots below. The code of the

function Moutlier is

> Moutlier(my_data, quantile = 0.975, plot = TRUE)

The values of the function are the data set and a quantile (cutoff value) for the Mahalanobis

distance. These plots are given along with the scores for both methods (Classical vs Robust) plus

the value with the outlier cutoff. The horizontal line indicates the cutoff value:
√
x2

20,0.975 = 3.801233

$md

[1] 2.245038 1.246945 2.306514 2.032232 2.154265 2.061767 3.199989 2.130094 2.424357 2.796674 3.229097 2.963120 2.196803 1.912686

[15] 1.553139 3.069379 2.153202 2.178547 2.488627 2.342370

$rd

[1] 1.3006229 0.7936416 1.2717753 17.3993341 1.4017126 19.8568695 3.6723871 19.8399457 1.3147917 1.3348067 3.9343012 1.3810315

[13] 1.0419987 1.3601641 1.0569889 3.3563387 1.1397842 1.2200950 22.8174234 1.0946777

$cutoff

[1] 3.801233
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Figure 10: Classical Mahalanobis distance scores (left) Robust Mahalanobis distance scores (right)

Based on Figure 10, the first method does not detect any outlier while the other one was able to

detect the known outliers plus the 11th observation with a value of 3.93 which is a little above the

line.

6.5 Conclusions

Mahalanobis distance is a distance-based method for outlier detection. It is a distance measure that

accounts for the covariance structure, estimated by the sample covariance matrix S. The problem of

swamping arise due to the influence of outliers on classical location and scatter estimates (sample

mean and sample covariance matrix), which implies that the estimated distance will not be robust to

outliers. That is why we also choose robust versions of the Mahalanobis distance such as the one that

is based on the MCD estimator. A problem with the Mahalanobis distance is the need to invert the

covariance matrix which may be difficult with highly correlating variables. Moreover, in cases which

the data may have many different clusters with different orientations, this kind of distance-based

method may not be effective.

53



7 Distribution-Based Methods

7.1 Introduction

In this section we present some methods that aim to declare objects in a data set as outliers based on

a certain assumption. The most common is that the objects have been generated from a multivariate

Gaussian distribution. The squared distances of the objects from their estimated center are χ2

distributed with p numbers of freedom and the distances that exceed a certain cutoff value based on

the χ2 distribution declared as outliers.

Generally, in order to provide efficient outlier analysis, it is desirable for these methods to have

some properties, that is, to be affine equivariant, robust and computationally not too expensive.

An estimator T is affine equivariant if it yields

T (X ·A + b) = T (X) ·A + b,

where X is the data matrix, A is any non singular matrix and b a random vector, meaning that

it does not depend on any orientation of the data. A method in order to be robust, has to have high

breakdown point, that is handling properly the data even if the percentage of the contamination is

high [11, 7]. The combination of these two properties forces the computational cost to increase. In

this section we will discuss how these methods handle these requirements in order to provide efficient

results.

7.2 FastMCD algorithm

The minimum covariance determinant (MCD) estimator was originally proposed by Rousseeuw [43]

and its objective is to find in a data set (of n observations) h observations whose classical covariance

matrix has the lowest determinant. Basically, it corresponds to finding the h points for which the

classical tolerance ellipsoid (for a given level) has minimum volume, and then taking its center. It

is considered to be one of the robust tools that were built in order to deal with the masking and

swamping effect that prevents the Mahanalobis distance from being able to handle the presence of

many outliers in the underlying data set [45, 43].

The main idea of the MCD method lies in the following theorem [45]
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Theorem 7.1. Consider a data set N = {x1, .,xn}, where xi = (xi1, ..., xip) for i = 1, ..., n is a

p-variate observation. Let H1 ⊂ {1, .., n} with |H1| = h, and put T1 := 1
h
·
∑

i∈H1
xi and S1 :=

1
h
·
∑

i∈Hi(xi −T1) · (xi −T1)′. If det(S1) 6= 0, define the relative distances

d1(i) :=
√

(xi −T1)′ · S−1
1 · (xi −T1) for i = 1, ..., n.

Now take H2 such that {d1(i)|i ∈ H2} := {(d1)1:n, (d1)2:n, ..., (d1)h:n}, where (d1)1:n ≤ (d1)2:n ≤ ... ≤
(d1)h:n are the ordered distances , and compute T2 and S2 based on H2. Then

det(S2) ≤ det(S1)

with equality if and only if T2 = T1 and S2 = S1.

Theorem 1.1 generates an iterative process in which we move from pair (Tk,Sk) to pair (Tk+1,Sk+1),

by producing Hk+1, computing each time the n distances (with respect to (Tk,Sk)) and sorting them

in an ascending order. Since the determinants are non-negative and it holds that det(Sk+1) ≤ det(Sk)

for all k ∈ N the procedure converges (in practice the number of iterations is lower than ten) [45].

With that being said, we note that the MCD algorithm basically applies Theorem 1.1 to initial

choices of H1 subsets until convergence and keeps the one with the lowest determinant.

Corollary 7.1.1. The MCD subset H of N is separated from N \H by an ellipsoid.

Proof. Suppose any H subset of the iteration process generated by Theorem 1.1. By definition of H

it holds that

d2(i) ≤ λ =

{
(x−T)′ · S−1 · (x−T)

}
h:n

∀xi ∈ H,

where λ is the the maximum squared distance of the observations 1, ..., h (and the least distance of

the observations h, ..., n). On the other hand for the remaining points it holds that

d2(i) ≥ λ ∀xi /∈ H

Defining the ellipsoid E =

{
x | (x−T)′ · S−1 · (x−T) ≤ λ

}
, we get that H ⊂ E and N \H ⊂ E.

Remark. There is at least one point in H subset in the borders of the ellipsoid while it is not

necessary for xj /∈ H to be.
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Based on Corollary 7.1.1. [45] we have to be careful in the choice of the initial H1. It can be

arbitrary, but in that way the method will be inefficient in data sets with many outliers since the

ellipsoid that will be constructed may consist of outlying objects. From a non-robust perspective,

one could choose h to be equal with n. In that way the MCD location estimate T1 would be the

arithmetic mean and MCD scatter estimate S1 would be the covariance matrix of the whole data set.

The best initial choice is an H subset of p + 1 objects to which we will keep adding objects until it

yields a non-negative determinant (having a subset with fewer observations than variables would be

pointless since it will always give zero determinant). In that way we note that h = n+p+1
2

gives MCD

its highest possible breakdown value [34]. Alternatively, due to the fact that most cases of data sets

are no more than 25% contaminated, a good choice for the initial cardinality of the H subset would

be 0.75 · n [45].

Having enough proper initial choices, the algorithm begins with the iterations. It has been proved

that robust solutions are provided in the first two or three steps so a pruning can be made in the

remaining iterations.

Finally, when the method deals with high dimensional data sets, it provides a pre-processing step

in which a partition is made of the data set. Then, after the algorithm is applied to each partition it

stores the ten best solutions for each partition. Then the subsets are pooled, yielding a merged set

to which we apply the algorithm with initial subsets the ones that the algorithm stored in the first

place. The ten best solutions after the iteration steps are stored and used as initial subsets for the

whole data set to which the method is applied one final time giving the pair (Tfull,Sfull) with the

lowest determinant among these ten.

The latter pair is used for the robust distances of the observations defined as

RDi =
√

(xi −Tfull)′ · S−1
full · (xi −Tfull) i = 1, ..., n

If the data is generated from the multivariate Gaussian distribution we denote

TMCD = Tfull and SMCD =
mediRDi

χp,0.5
· Sfull

The method flags the observations that exceed a cutoff value (in most cases that value is
√
χ2
p,0.975,

where p is the number of the variables).

The MCD method is affine equivariant, that is, when the data is translated or subjected to a

linear transformation, the resulting (Tfull,Sfull) will transform accordingly. The computational cost

of each iteration is O(n) [45].
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7.3 BACON algorithm

The blocked adaptive computationally efficient outlier nominators (BACON) algorithm was intro-

duced by Billor et al. [7]. The method like FastMCD searches through an iterative process for a

subset with certain properties. Moreover, this subset is considered to be free of outlying objects,

thus declaring every object that is not in that subset as an outlier.

Consider an n× p data matrix.

BACON algorithm starts by choosing a basic subset of m > p observations using one of the

following methods:

(a) It computes the Mahalanobis distances of the observations

MDi =
√

(xi −T)′ · S−1 · (xi −T) i = 1, ..., n

where T and S are the mean and covariance matrix respectively of all n observations. The

m = c · p (where c is an integer given by the user) observations with the smallest distances

form the initial basic subset.

(b) It computes the distances of the observations from the median i.e. ||xi − m||, where m =

med(x′1, ..,x
′
n) and || · || is the vector norm. The m observations with the smallest distances

form the initial basic subset.

We note that method (a) is affine equivariant but it is not robust which means that it gives poor

results when the rate of the contamination is high. In contrast, method (b) is not affine equivariant

as the median depends on the linear transformation of the data, but is robust being able to handle

up to 40% contamination in the data.

After computing the initial basic subset with either of these methods, the BACON algorithm com-

putes for all observations their distances (discrepancies) respectively from this subset characterized

by the pair (Tb,Sb) where Tb is its mean and Sb its covariance matrix

di =
√

(xi −Tb)′ · S−1
b · (xi −Tb) i = 1, ..., n

The observations whose discrepancies satisfy di < cnpr · χ2
p,α
n

form a new basic subject based on

which the distances of all the observations are again computed and tested by the latter inequality

leading to a more concentrated subset. This iteration process stops when the subset no longer

changes.

Once the iteration process is terminated the objects not located in the returned subset are declared

as outliers.
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Suppose that r is the number of objects in the ith iteration. cnpr, plays the role of a correction

factor defined by cnpr = cnp + chr where

chr = max{0, h− r
h+ r

}, h =
n+ p+ 1

2

cnp = 1 +
p+ 1

n− p
+

1

n− h− p
Based on its definition, chr is considered to be an inflation factor in the case of a significantly

lower value of r than the value of h

7.4 Skewness-adjusted Outlyingness

The robust distances of the observations in a data set based on the MCD estimator provide efficient

conclusions about the outlying observations when the uncontaminated objects are generated from

the multivariate Gaussian distribution. However, the method may be inefficient when it deals with

data sets of high skewness. Brys et al. [9] presented a modification of the outlyingness measure that

can handle skewness (We note that this method does not need an distributional assumption, but we

listed it in this section for illustrating the OutliersO3 package).

The Stahel–Donoho outlyingness measure [53, 13] is defined as:

SDi = max
v∈H

|x′i · v −medj(x′j · v)|
madk(x′k · v)

where madk(x
′
k · v) is the the median absolute deviation defined as

madk(x
′
k · v) = medk|x′k · v −medj(x′j · v)|

We denote as H the space of the unit length vectors v (directions) that are perpendicular to the

hyperplanes that are spanned by an arbitrary number of points in the data set. Like the robust

distances this measure is expressed as a rejection rule for all the objects whose SD exceeds the value

of
√
χ2
p,0.975.

The skewness-adjusted outlyingness measure [9] is defined as

AOi = max
v∈H

|x′i · v −medj(x′j · v)|(
c2(v)−medj(x′j · v)

)
· 1x′i·v>medj(x′i·v) +

(
medj(x′j · v)− c1(v)

)
· 1x′i·v<medj(x′j ·v)

where c1(v) and c2(v) are the end points of the skewness adjusted boxplot [61] of the projected data.

It is based on the classical boxplot (discussed in Chapter 2) with the only difference that it takes

into account the skewness of the data.

It is defined as

[c1, c2] =

[Q1 − 1.5 · e−3.5·MC · IQR,Q3 + 1.5 · e4·MC · IQR] , if MC ≥ 0

[Q1 − 1.5 · e−4·MC · IQR,Q3 + 1.5 · e3.5·MC · IQR] , if MC ≤ 0
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where MC is a robust measure of skewness called medcouple [10] and is defined as

MC(xj) = med
xi≤medj(xj)≤xk

(
xk −medj(xj)

)
−
(
medj(xj)− xi

)
xk − xi

Remark. When the data is symmetric we obtain MC = 0 in every direction and the modified

boxplot is equivalent to the classical. However, when the data is right skewed then MC > 0 enabling

c1 and c2 to exceed the endpoints of the classical boxplot (specially for c2). In contrast, when the

data is left skewed, MC < 0 resulting again in a wider space [9].

Like the Stahel-Donoho outlyingness measure, its modification measures distances between the

projected data and their median with the difference that AOi takes into account the skewness of

the projected data. Moreover, since it is fatal computationally to project all observations on every

univariate direction v the method generates 250 of them since it has been proved that exceeding this

number does not have significantly better results.

The cutoff value of the skewness-adjusted outlyingness measure in most cases is the upper bound of

the modified boxplot e.g. cutoff = 1.5·e4·MC ·IQR where right skewness is taken into consideration.

We recall that the squared SDi’s are approximately χ2 distributed and χ2 considered to be a right

skewed distribution. Although for the SDi’s there is no assumption about the distribution it is

typically right skewed.

Once the AOi’s are computed, the method denotes as outliers the observations whose AO exceeds

the above cutoff. Like the MCD method, the aforementioned method is affine equivariant [9].
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7.5 FastPCS algorithm

The Projection Congruent Subset (PCS) method was proposed by Vakili et al. [60] and like the

FastMCD and AO provides an outlyingness index measuring how much each observation departs

from the pattern set by the majority of the data. It adopts some steps of the FastMCD method

as it strives to select among many possible H-subsets of observations one devoid of outliers. Then,

the outlyingness index is simply the distance of each observation to this subset. The main difference

from the FastMCD method is the choice of the H subset rendering it less sensitive to outliers. More

specifically, in case of fastMCD, the presence of a large enough number of outliers can prevent the

method from finding an efficient H subset of normal observations for the estimation of location and

scatter.

PCS looks for the H-subset of multivariate observations that is most congruent along many

univariate projections. For that purpose, FastPCS starts with m random choices of subsets consisting

of p observations, xi = (xi1, ..., xip) . It then considers K random directions αmk such that {x |
x′i · αmk = 1} is a hyperplane for k = 1, 2, ..., K.

In addition, it computes the squared orthogonal distances from each object to αmk defined by

d2
p,i(αmk) =

(x′i · αmk − 1)2

||αmk||2
i = p+ 1, ..., n

It denotes the set of h observations with the lowest squared distances denoted as Hmk.

Furthermore, it follows an iterative process similar to the one we discussed in the FastMCD

method for the computation of an optimal subset H in which the algorithm:

• commences with M subsets H0
m of p + 1 observations and for each of them it computes the

following measure among K directions αmk

Di(H
0
m) =

K

med
k=1

d2
p,i(αmk)

ave
j∈H0

m

d2
p,j(αmk)

i = 1, ..., n

• Then for a given point q [60] it computes H1
m, a set of points that satisfy

Di(Hm) ≤ Dq(Hm)

• It continues until convergence. Empirically, after three steps H3
m consist of [n+p+1

2
] objects.

• Returns the optimal Hm
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Once the Hm subset is given, the method proceeds to the computation of the incongruence index

of Hm along amk defined as

I(Hm, αmk) = log
ave
i∈Hm

d2
i (αmk)

ave
i∈Hmk

d2
i (αmk)

The value of this index is always positive and measures the relation of the subsets. Smaller values

indicate more exact overlapping between the projection of the objects of Hm along amk with the

objects of Hmk.

The key point that makes this algorithm more insensitive to the presence of many outliers lies

in the observation that a disjoint form of Hmk tends to be less congruent with an optimal Hm than

a cohesive one. It has been proven [60] that a cohesive subset Hmk when joined with the optimal

Hm produces a set Hmk ∪ Hm bigger than the one that would have been produced with a disjoint

one. That results in a denominator in I(Hm, amk) bigger in the latter case while the numerator

remains the same in both cases ending up with a higher value of I(Hm, αmk) in case of a disjoint or

contaminated subset [60].

Finally, the algorithm takes into consideration all the K projections removing the dependence

among I(H)m,αmk) by taking the average among them

I(Hm) = aveKk=1I(Hm, αmk)

Among the M different values of I(Hm) that are computed FastPCS chooses the smallest. Iden-

tically to the FastMCD method, the pair of (TPCS,SPCS) is computed which gives to the user the

final outlyingness index of each observation defined by

d2
PCS(i) =

√
(xi −TSPC)′ · S−1

PCS · (xi −TPCS) i = 1, ..., n

Any observation whose d2
PCS exceeds the cutoff =

√
χ2
p,0.975 is considered to be an outlier.

We note that the initial number M of the Hm subsets must be large enough in order to find an

uncontaminated subset. As for the number of projections, it has been proven that no more than 25

are needed for efficient results due to the more concentrated work on the computation of the Hm

subset, while for the Skewness -adjusted Outlyingness 250 are generated. Each computation of Hm

has a complexity of O(p3 + n · p) [60].

Due to the fact that FastPCS in order to run, needs an input data set of 25 · p objects we will

not be able to run it for the Wood specific gravity data to illustrate the O3plot.
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7.6 HDoutliers algorithm

One could say that the HD algorithm presented by Wilkinson [64] is a mixture of methods. It is able

to handle high dimensional data of categorical and continuous variables. HDoutliers differs from the

previously mentioned methods because it is based on the exponential distribution. The basic idea

for the distributional assumption lies in the following theorem [63]

Theorem 7.2. Let {xi}, for i = 1, ..., n, be a sample of independent identically distributed random

variables. If the upper order statistics are defined as

x1:n is the largest element of {xi}

x2:n is the second largest element and so on..

and their successive differences

Di = xi:n − xi+1:n

then if the extreme value index is 0, then the differences Di are asymptotically independent and

exponentially distributed with means proportional to 1/i, for i = 1, 2, ... as long as i� n

We note that, the extreme value index is a parameter that controls shape in the generalized

extreme value family defined by

G(z) = exp

[
−
(

1 + ξ · z − µ
σ

)− 1
ξ
]
, 1 + ξ · z − µ

σ
≥ 0

where µ and σ control location and scale respectively [50]. So basically, HDoutliers after partitioning

the data into exemplars [64], takes from each exemplar its representative observations fitting to them

an exponential distribution.

More specifically the algorithm commences with normalizing the data if the variables are not on

a common scale (we omit its transformation step to the data set in case of the presence of categorical

values and its reduction step when a data consist of more that 10000 observations-briefly it uses

random projections reducing the dimensionality to a default p′).

Next, it creates a list of exemplars by adding the first row of the data matrix declaring it to be

its center. For all the remaining rows their distances from the first row are computed. If a distance

exceeds δ = 0.1

(logn)
1
p

then the observation responsible is added to the exemplar list representing its

center. If not, it is added to the exemplar centered in the first row. The value of δ is designed to

be below the expected value of the distances between n·(n−1)
2

pairs of the normalized points. In that

way the data set is divided into balls of the same radius and centered on actual points. Furthermore,

it computes all nearest neighbor distances between objects in each exemplar and fits an exponential

distribution to their upper tail.

Any exemplar that is significantly far from the other exemplars based on the upper 1−α (default

is 0.05) point of the fitted cumulative distribution function is considered to be outlying. We note

that an exemplar can be a single observation or a bunch of observations.
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7.7 DDC algorithm

This particular method is quite different from any other method that we have discussed so far. That

is because it does not handle outliers in a n × d data matrix as d-dimensional observations but

as single deviating data cells. Generally, outlying methods detect cases that do not belong in the

dataset, because they are members of a different population, handling them as points in d-dimensional

space making them in that way indivisible (and not looking in each dimension seperately). In [44]

Rousseeuw et al. consider each case as a row in the n× d data matrix that can be divided into cells.

Matrix-wise, the motivation for this method was the simple assumption that some rows may be

outlying due to some of their columns’ values while other may be normal. It has been proved [3] that

given a fraction ε of contaminated cells at random positions, the expected fraction of contaminated

rows is

1− (1− ε)d

which quickly exceeds 50% for increasing ε and d. Many methods under that percentage of contam-

ination are unable to reach sufficient conclusions about the outlying objects.

The DDC algorithm runs with any underlying distribution for the data set. However, it works

ideally under the assumption that the xi rows of the underlying data set are generated from the

multivariate Gaussian with unknown d-variate mean µ and positive semi definite covariance matrix

Σ.

Suppose a n× d data matrix X.

The DDC algorithm firstly standardizes X to Z

zij =
xij −mj

sj
(4)

where mj is a robust estimator of location for each column j and is computed as follows

mj = robLoc(xj) =

∑n
i wi,j · xij∑n
i=1wi,j

where the weights are given by

wi,j = W

(
xij −medj(xij)

medj|xij −medj(xij)|

)
and W (t) =

(
1−

(
t

c

)2)2

, |t| ≤ c

where c is a positive constant (default value is 3).

Furthermore, sj is a robust estimator of scale for each column j and is computed as follows

sj = robScale(xj) = medj|xij −mj| ·

√
1

δ
· aveni ρ

(
xij −mj

medj|xij −mj|

)
where ρ(t) = min(t2, b2), b2 = 2.5 and δ = 0.845 ensuring consistency for Gaussian data.

We note that this method of estimation constitutes the first step of the M-estimators algorithm

[44, 37].
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After the columnwise standarization in (1), the DDC algorithm creates a new matrix denoted as

U defined as

uij =

zij , if |zij| ≤
√
χ2

1,p

NA , otherwise
(5)

where χ2
1,p is the pth quantile of the χ2 distribution with 1 degree of freedom. Basically U matrix is

an outlier detector in the univariate case of each column flagging the values that exceed a certain

cut off value.

In addition, the DDC algorithm takes into consideration the bivariate correlations between vari-

ables for each observation.

For columns j, h with i 6= h DDC employs a robust correlation measure dented as corjh, that

is the plain product-moment correlation of the data points (uij, uih) inside the ellipse around (0,0)

with coverage probability p as in (2) implied by the initial correlation estimate

ρ̂jh =

(
robScale(uij + uih)

)2

−
(
robScale(uij − uih)

)2

4
(6)

DDC algorithm uses only the pairs (j, h) that satisfy corjh ≥ 0.5 computing a robust slope bjh of

a robust regression line without intercept that predicts variable j from variable h. That line is

computed from the points that satisfy |rihj| ≤ χ2
1,p ·mn

i (rijh) where rihj = uij−bjh ·uih for i = 1, ..., n.

DDC denotes λjh as the initial slope of the (j, h) pair defined as λjh = medi

(
uij
uih

)
.

Furthermore, DDC algorithm computes the predicted values of ûij considering only the variables

that their correlation measure with the jth is above 0.5 (constructing along with h an index space

denoted as Hj) as follows

ûij = G

(
{bjh · uij | h ∈ Hj}

)
(7)

where G is a combination rule that handles the NA values.

Finally, DDC algorithm computes the standardized cell residuals, defined as

rij =
uij − ûij

mn
i (ûij − uij)

(8)

and flags in each column j the cells that satisfy |rij| ≥
√
χ2

1,p
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7.8 Applying outlier detection using distribution-based methods to wood

specific gravity data

In this section we will illustrate the plot O3. Plot 03 was designed for outlier detection. What makes

it so intuitive is the fact that it is able to detect outliers in lower dimensions of the underlying data

set through varying combinations of the respective variables. Unwin [58] originally presented this

plot concerning outlier detection. The O3 plots are able to detect outliers employing the six different

methods that were presented above.

We illustrate the Plot O3, with the use of the well known by now Wood specific gravity data.

We employ the following functions from the R package Outliers03

• O3prep: Identifies outliers for the variable combinations and tolerance levels specified. It is

used as an input for the following functions.

• O3plotT: Draws O3 plots for one method and up to three tolerance levels and supporting

parallel coordinate plots.

• O3plotM: Draws O3 plots for more than one methods enabling the comparison between them

and supporting parallel coordinate plots.

We begin our analysis testing the FastMCD method to the data inputting 0.5 as a tolerance value

> MCD <- O3prep(my_data, k1=1, method=c("MCD"),tols = 0.05)

> MCD_plot <- O3plotT(MCD)

> MCD_plot$gO3

The O3 Plot is divided into two blocks by the two white columns in the middle. In the left block

each column represents a different variable and each row a different combination of them. Gray

cells show which variable participates in each combination while the blue dashed lines separate each

group of different number of variables participating in the combination. The variables are sorted by

their frequency of participation in the combinations. In the right block each column represents an

observation. Red cells in each row indicate the outlying objects flagged by the underlying method

for the combination of the variables in that row.
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Figure 11: O3 plot from the FastMCD algorithm

As we can see from Figure 11, the MCD method with a tolerance level of 0.05 detects six observa-

tions outlying. We note that the 11th observation was flagged by the most combinations of variables

along with the 7th. Also these were the only objects detected to be outlying when all of the variables

were combined. The MCD method seems to be affected by a masking effect maybe due to the low

number of observations in the data set.

Figure 12: A parallel coordinate plot of all the data. The cases ever found to be outliers are coloured

red
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Relaxing the tolerance FastMCD detects three more objects as outliers (shown in Figure 13)

although only in univariate and bivariate combinations. In contrast, a stricter tolerance level of

value equal to 0.01 leads to the detection of four outliers, 16,9,7 and 11. In figure 12 we see these

objects through a parallel coordinate plot.

Figure 13: O3 plot from the FastMCD algorithm for different tolerance values

We continue our analysis by giving the code for the BACON algorithm

>BAC <- O3prep(my_data, k1=1, method=c("BAC"), tols = c(0.1,0.05,0.01))

>BAC_plot <- O3plotT(bac)

>BAC_plot$gO3

Figure 14: O3 plot from the BACON algorithm for different tolerance values
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In Figure 14 the BACON method is illustrated. From the 03 plot we see that the algorithm

detected in almost all the combinations the true outliers. We observe, though, that it did not flag

any object when all variables were combined. As we see in Figure 15, omitting variables x3 and y

from the data set, observations 4, 6, 8, 19 yield very low values in variables x1 and x4 and very high

values in x2 and x5. Furthermore, an increase of the tolerance value led to a significant increase of

the outlying objects in the univariate case of variable x5. Finally we note that the BACON algorithm

was indeed successful in finding the correct outliers in the underlying data set of 20% contamination

[7, 11].

Figure 15: A parallel coordinate plot of the data considering only variables x1, x2, x4, x5

The code for the skewness-adjusted outlyingness measure is given below

> adjout <- O3prep(my_data, k1=1, method=c("adjOut"), tols = c(0.1,0.05,0.01))

> adjout_plot <- O3plotT(adjout)

>adjout_plot$g03

The tolerance level in this case tends to be less sensitive in this method as we observe in Figure

16 that it identifies only three observations that have been also declared in the FastMCD method.

Although it did not give proper results it tends to give fewer outliers than the FastMCD.
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Figure 16: O3 plot from the AO measure for different tolerance values

We examine the results of the HDoutliers algorithm by the following commands

> HDo <- O3prep(my_data, k1=1, method=c("HDo"), tols = c(0.1,0.05,0.01))

> HDo_plot <- O3plotT(HDo)

>HDo_plot$g03

Figure 17: O3 plot from the HDoutliers algorithm for different tolerance values

As we see in Figure 17, HDoutliers is more sensitive than the aforementioned alogirithms cellwise

declaring observation 7 as an outlier in the most variable combinations. Like BACON and AO, it

fails to detect outliers when all variables are combined .
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Finally we present the code for the DDC algorithm below

> DDC <- O3prep(my_data, k1=1, method=c("DDC"), tols = c(0.1,0.05,0.01))

> DDC_plot <- O3plotT(DDC)

>DDC_plot$g03

Figure 18: O3 plot from the DDC algorithm for different tolerance values

In Figure 18 we observe efficient results as the DDC algorithm was able to detect the true

outlying objects. More specifically observations 4, 6, 8, 19 are the only ones that were detected

in the combination of variables x1, x2, x3, x4, y. However the observation found as an outlier in

most cases was the 10th. Finally we observe that relaxing the tolerance value leads to more outlying

objects in lower dimensions and less in fewer dimensions.

7.9 Conclusions

Distribution-based methods have the advantage that they respond well to exact fit situations, that

is datasest that are generated from the multivariate normal distribution. Moreover, most of the

methods we discussed are robust so they can handle heavily contaminated data sets. Plot03 unifies

these methods and modifies them in order to detect outliers in every possible combination of the

data variables. This new tool enables the user to see the discrepancies in lower dimensions having in

that way more information about the data. This in fact is very useful when we want to look at the

behaviour of a data set with many variables in a smaller subset without any reduction method. The

poor results that most of the methods produced is probably due to the small number of observations

in the underlying data set.
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8 Humus Layer (O-horizon) of the Kola Data

The humus dataset is implemented in the mvoutlier package. The data originates from the Kola

Project, which was a geological survey and data collection effort conducted from 1993-1998. Samples

from the humus ground layer were taken from Norway, Finland, and Russia and elemental ground

makeup was recorded for 617 unique observations. The humus ground layer is formed from decom-

posing organic litter to include leaves, roots, branches, etc [55, 41, 17]. Humus layer is a data frame

with 617 observations on 44 different variables.

Before we begin our analysis we omit the first 3 variables because they represent the ID and

the coordinates of each observation.We then measure the skewness of the data using the function

skewness() from the R package moments.

Ag 6.1136720 Ni 9.3199522

Al 3.0464415 P 11.7156569

As 10.3667974 Pb 18.9472707

B 2.7078609 Rb 1.7673577

Ba 1.6708973 S 0.7695066

Be 6.3772582 Sb 1.8081578

Bi 2.7778763 Sc 2.5496159

Ca 6.9433935 Si 0.6158160

Cd 2.2540816 Sr 13.3922063

Co 8.3331150 Th 8.6649278

Cr 9.3505637 Tl 1.8492946

Cu 12.2560644 U 20.0555647

Fe 6.2160905 V 3.5954228

Hg 4.0259441 Y 14.8257164

K 5.1160085 Zn 1.7124205

La 9.8782389 C -1.9757673

Mg 3.4694265 H -1.8453518

Mn 9.4020969 N -0.1644502

Mo 6.4442158 LOI -2.0947662

Na 10.7304293 pH 1.1165646

Cond 0.2414859
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As we can see from the above results, we deal with a high skewed data set that we have to log

transform in order to reduce the skewness.

log_humus<-cbind(humus[1:3],log(humus[4:27]),humus[28],log(humus[29:30]),humus[31],

log(humus[32:38]),log(1+50.8-humus[39]),log(1+7.1-humus[40]),humus[41],

log(1+98.8-humus[42]),log(humus[43]),humus[44])

We note that variables like Cond did not need log transformation because of its very low value

of skewness. We only transformed when the absolute value of skewness was above 1. Furthermore,

for variables with negative skewness we log transform the reflected variables. As we can see below,

the log transformation of the dataset reduced by a lot the skewness of the variables.

Ag 0.07686216 Ni 1.21638725

Al 0.36323030 P 1.07475529

As 1.80696684 Pb 1.73450733

B 0.67454365 Rb -0.42419502

Ba -0.09421180 S 0.76950659

Be 0.37050354 Sb -1.04440349

Bi 0.23926369 Sc 0.01473079

Ca 0.01180195 Si 0.61581603

Cd 0.14538457 Sr 1.52768415

Co 0.94174909 Th 0.73218060

Cr 0.73792750 Tl 0.10688968

Cu 2.15778988 U 1.03944466

Fe 0.60438594 V 0.59391029

Hg 0.39483989 Y 0.74417940

K 0.41581384 Zn -0.26501122

La 0.50176916 C 0.09347919

Mg 0.72110704 H 0.86359353

Mn 0.13273250 N -0.16445024

Mo 1.65680056 LOI 0.18002052

Na -0.25920409 pH 0.68674777

Cond 0.24148593
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8.1 Outlier analysis

We begin our analysis by running all the methods that we presented in the previous chapters based

on OutlierDetection package with their default settings. The advantage of these functions is that

while they use the outlier methods they employ a cutoff produced by bootstrapping. Therefore, each

observation which is denoted as an outlier, comes with a bootstrapped estimated probability of its

outlyingness.

> depthout_log_humus_dflt <- depthout(log_humus, rnames = FALSE, cutoff = 0.05,

boottimes = 100)

As we discussed, this method based on depth, computes the Modified Band Depth of each obser-

vation. Those that have the lowest values are considered to be outliers. For that purpose we tuned

a cutoff of 5%.

The results are given below

depthout_log_humus_dflt$`Location of Outlier`

[1] 28 35 60 75 133 160 173 201 232 238 256 258 275 297 301 383 390 399 409 451

478 487 615

> depthout_log_humus_dflt$`Outlier Probability`

[1] 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

1.00 0.99 1.00 1.00 1.00 1.00 1.00

We find that 23 observations have the least depth in the data set and they are lying in the

shallowest layers of the data set.

We now present the distance based functions nn and nnk and their results

> nn_log_humus_dflt <- nn(log_humus, k = dflt, cutoff = 0.95, Method = "euclidean",

rnames = FALSE, boottimes = 100)

> nn_log_humus_dflt$`Location of Outlier`

[1] 17 22 27 28 34 54 75 79 106 125 133 160 168 232 235 258 266 390 449 569

612 615

> nn_log_humus_dflt$`Outlier Probability`

[1] 1.00 0.99 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

>

> nnk_log_humus_dflt <-nnk(log_humus, k = dflt, cutoff = 0.95, Method = "euclidean",

rnames = FALSE, boottimes = 100)

> nnk_log_humus_dflt$`Location of Outlier`

[1] 17 22 27 28 75 79 106 125 133 160 161 168 232 235 240 258 266 358 390 449

569 612 615
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> nnk_log_humus_dflt$`Outlier Probability`

[1] 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00

In these methods we use for k nearest neighbors the default setting which equals 30 as it is

the integer part of the product 0.05*nrow(log humus). We note that the cutoff in this case is 0.95

because the methods declare outliers with the highest distances exceeding this value. We recall

that nn computes the average of the k nearest neighbor distances while nnk computes the actual k

nearest neighbors distances. nnk detects a total of 23 observations as outliers out of which 8 points

were also detected in the depth-based method. nn method returns almost identical results to nnk

due to the large number of observations in the dataset.

In the context of distance we also present Hautamaki’s method concerning the in-degree number

of each observations. We recall that lower in-degree indicates higher outlying probability.

We present the 24 lower in-degree values with T = 8 as a cutoff

> which(8>=KNN_IN(log_humus, k= dflt))

>order(KNN_IN(log_humus, k= dflt))[1:24]

77 615 28 34 75 125 168 355 449 258 385 569 68 232 266 311 399 582

27 41 66 160 201 515

We find that 8 observations match with the results of depthout while 12 match those of nnk’s.

Continuing our analysis we perform the function that detects outlying objects taking into ac-

count their RKOF values. We recall that higher RKOF values express higher probability of the

corresponding observations to be outliers.

The code along with the results are below

>dflt=0.05*nrow(log_humus)

> dens_log_humus_dflt <- dens(log_humus, k = dflt, C = 1, alpha = 1, sigma2 = 1,

cutoff = 0.95, rnames = F, boottimes = 100)

> dens_log_humus_dflt$`Location of Outlier`

[1] 17 22 27 28 34 41 75 77 79 106 125 133 160 168 201 232 258

266 390 399 449 565 569 615

> dens_log_humus_dflt$`Outlier Probability`

[1] 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.95 1.00

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

We note that this method detects 24 ouliers, 10 of which are also detected by the depth-based

method.
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For the purpose of finding outliers based on local density and the number of outliers detected

by the dens function we present the 24 highest LOF and RKOF values that were built in the

DDoutliers package with the default settings.

> order(LOF(log_humus,k=dflt))[594:617]

[1] 41 565 133 22 399 79 106 201 160 34 390 27 232 266 17 125

77 258 569 168 75 449 28 615

> order(RKOF(log_humus, k=dflt, C=1, alpha = 1, sigma2 = 1))[594:617]

[1] 133 41 565 399 22 79 106 201 160 390 34 27 266 17 232 125 258

77 569 168 75 449 28 615

First of all, we note that the dens function is consistent with the RKOF values produced by

the RKOF function. Furthermore, compering results between LOF and RKOF there is only a

small difference in the order of the outliers due to the different weighting of the two methods. The

advantage of these methods is that they measure each observation’s outlyingness. We also notice

that observations 615 and 28 with the highest LOF and RKOF values also have the second and third

lowest in-degree values, respectively showing some kind of consistency between these methods.

Consequently we expect that observations 168, 75, 449, 28, and 615 that were detected with high

LOF and RKOF values and also detected in most methods are indeed outlying.

Finally, we present the outliers detected by the Mahalanobis distance. Objects whose Mahalanobis

distance exceeds the cutoff
√
χ2

41,0.975 ≈ 7.78 are declared outliers.

> maha_log_humus <- maha(log_humus,0.975)

> maha_log_humus$`Location of Outlier`

9 27 28 31 34 35 53 60 61 63 65 67 70 75 87 90 97 116 125 133

135 139 168 173 194 200 219 232 235 237 238 240 258 261 265 275 290 299 311

332 341 352 359 362 376 378 383 390 395 399 418 420 427 441 449 459 469 478

480 487 488 501 518 521 557 558 569 573 574 576 580 605 613 614 615

We note a tremendous increase in the number of detected outliers as in this case 75 observations

are considered to be outlying. The underlying size increases as we can see in Figure 19 when we

compute robust distances instead. That is because the ellipsoid constructed from all observations is

affected by the contaminated objects. In contrast, robust distances are based on the MCD estimators

of center and covariance which are computed with fewer observations which are considered to be

uncontaminated, thus being able to capture all the outliers that classical Mahalanobis distance could

not with the same cutoff.
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Different methods have different cutoffs. For example squared Mahalanobis distances with the

assumption that the objects are generated from a p-variate Gaussian distribution, are χ2
p distributed

and thus a percentile of χ2
p is used as a cutoff. The previous methods do not need any distribution

assumptions but their sensitivity in most cases depends on k and of course on the percentile cutoff

that we choose to use.

Figure 19: Mahalanobis distances versus the object number. On the left, distances are computed

using classical estimates for for location and covariance. On the right, they are computed based on

the MCD estimator

Number of outliers

dens nnk k Percentage

25 23 5

26 24 10

24 25 15 0.95

26 22 20

23 21 25

83 83 5

85 83 10

88 84 15 0.85

87 84 20

84 85 25

Table 6: Number of detected outliers for different k and percentages for den and nnk
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k Observations

5 T=0: 34 41 77 126 171 224 232 237 311

355 428 458 605

T=1:12 25 61 66 97 135 140 166 201

211 243 258 262 299 326 379 381 393

399 406 452 466 491 519 532 535 546

565 580 582 610 614 615

10 T=0: 77 311 355

T=1: 34 126 582 605 615

T=2: 41 66 68 111 139 171 201 232 258

379 428

KNN IN 15 T=0: 311 355

T=1: 77

T=2: 34 68 139 201 258 379 615

20 T=0:0

T=1:77 311 355

T=2: 34 68 615

25 T=0:0

T=1: 0

T=2:77 355 615

Table 7: Number of detected outliers by KNN IN for different cutoffs T

In Table 7 we observe that increasing the number of k we detect fewer outliers with these in-

degrees values. For example when k = 25 we detect only 77, 355, 615 with indegree value equal to

2. That means that in neighborhoods of 25 points three observations participate in only two.

In Table 8 we observe different LOF and RKOF values for different k. When applying these

methods there is no clear answer about the optimal choice of k. Bigger k indicates bigger scale

for the neighborhood. Increasing k we detect a weak convergence of the methods. For example

for k = 15, 20, 25 observations 75, 449, 28, 615 based on their LOF values are outlying with the

same ascending order. In case of RKOF we detect a slightly weaker convergence as we detect for

the same k, observations only 449, 28, 615 outlying in the same order. We speculate that the log

transformation had a smoothing effect to the distances of the data objects making the neighborhoods

less contaminated so that the robustness of the RKOF provided the same results as LOF.
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Methods k Observations

5 515 61 399 458 171 610 54 385 126 582

66 311 201 258 34 390 355 41 77 28 232

615 569 75 449

10 61 554 582 458 201 390 311 355 17 27

385 34 160 41 258 266 125 232 168 569

77 75 449 28 615

LOF 15 22 311 355 399 79 41 201 106 385 27

160 390 34 17 266 232 125 258 168 77

569 75 449 28 615

20 117 565 41 22 399 385 79 106 201 160

17 390 34 27 266 232 125 77 258 168

569 75 449 28 615

25 117 41 385 565 22 399 79 106 201 27 34

160 390 232 17 266 125 77 258 569 168

75 449 28 615

5 135 160 201 54 61 399 385 610 582 28

311 171 126 66 258 34 615 77 355 390

41 569 232 75 449

10 201 458 554 582 390 61 17 311 27 385

34 355 258 160 266 125 168 41 232 569

77 75 449 28 615

RKOF 15 22 79 399 106 311 201 355 390 41 385

17 27 160 34 266 258 125 168 232 77

569 449 75 28 615

20 565 355 22 399 79 41 385 106 201 390

17 160 34 27 266 125 232 258 168 77

569 75 449 28 615

25 117 399 41 22 565 385 79 106 201 390

34 160 27 17 266 232 125 258 168 77

569 75 449 28 615

Table 8: LOF and RKOF values for different k. The 25 highest values are listed.
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So far we have a rough idea about the outlying objects, but due to the high dimensionality we

do not have a picture of the objects. For that purpose, we will use the 03 plots that are can be very

useful when we want to see the nature of the objects in smaller dimensions.

We choose randomly four variables (Al, Co, Cu, Ni) for examination. Our goal is to figure out if

the previous results have any consistency in lower dimensions.

We begin our analysis by comparing HDoutliers and FastPCS. For these methods to be com-

parable, we choose different tolerance levels. We recall that HDoutliers labels observations as outliers

if they fall in the (1− α) tail of the fitted exponential distribution. On the other hand the tolerance

level of FastPCS equals 1−α where α in this case is the size of the subsets used in the algorithm. The

algorithm after computing an optimal subset declares as outliers all the observations whose distances

exceed a χ2
4 cutoff. For illustrative reasons we choose a low tolerance level for FastPCS while in

HDoutliers we use the default setting.

>HPmethods <- O3prep(sd_log_humus, method=c("HDo", "PCS"),tolHDo = 0.05,

tolPCS = 0.01)

>HPmethods_O3 <- O3plotM(HPmethods)

>HPmethods_O3$g03

Figure 20: O3 Plot comparing HDoutliers and FastPCS

In Figure 20, we notice that for the given tolerance levels the two methods do not overlap. That is

partly because FastPCS does not detect ouliers in the univariate case. On the other hand we observe

that HDoutliers while it detects a lot of outlying objects (especially in variables Cu and Ni), fails to

detect outlier in higher dimensions. The idea of the method is, as we discussed, to group cases that

are very close together in exemplars before calculating nearest neighbor distances. If there are too
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many cases with the same or close values, this can result in the algorithm identifying far too many

cases as outliers. For example all observations until 615 are not detected by FastPCS even though

they are considered to be outliers by HDOutliers.

Finally increasing the tolerance level for the FastPCS to 0.25 (indicating initial subsets of 0.75 ·
617 ≈ 461 objects) the method detects 268 observations.

Next, we present the comparison of FastMCD and adjOut. The tolerance level for the first

method corresponds to the quantile (default is 0.975) of χ2
4 set by the user. In this case it is set to

that small value (1-0.999) in order for the plot to be representative. As for the latter method, its

tolerance method corresponds to the quantiles that we want to use in order to build the skewness

adjusted boxplot.

> Mamethods <- O3prep(sd_log_humus, method=c("MCD", "adjOut"),

tolMCD = 0.001,toladj = 0.2)

> Mamethods_humus_O3 <- O3plotT(Mamethods)

>Mamethods_humus_O3$gO3

Figure 21: O3 Plot comparing FastMCD and adjOut

The FastMCD method results in many more outliers than adjOut as we notice in Figure 21. That

is because of the different perspective of their cutoffs. Moreover, unlike FastMCD, adjOut does not

have any distributional assumption and its cutoff takes into account the skewness of the data. We

recall that we have already log transformed the data before the analysis and due to the fact that this

modified boxplot is wider than the classical one, we find this insensitivity of the method reasonable.

That is probably why adjOut does not detect any outliers in the univariate case. Furthermore, we

notice that in most cases the results of adjOut overlap with FastMcd’s. Of interest is observation
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615 which is detected by adjOut only when Al, Cu, Ni are combined and based on our analysis so

far it is probably outlying.

We note that most observations are detected by the combination of Co, Cu, Ni. As we see in

Figure 22 outliers (labelled as red) correspond to high values in these three variables in comparison

with the non outlying points.

Figure 22: Parallel Coordinate Plot for FastMCD and adjOut

Finally we present the O3 plot of DDC and BACON. The tolerance level for DDC is α which

indicates the 1−α percentile of χ2
1 (it is a cellwise detection). As for BACON we choose a tolerance

level of 0.95. We recall that the cutoff value for the latter method is the value of χ2
4, 0.95

617

> DBmethods <- O3prep(sd_log_humus, method=c("BAC", "DDC"),tolBAC = 0.95,tolDDC = 0.03)

> DBmethods_humus_O3 <- O3plotM(DBmethods)

> DBmethods_humus_O3$gO3

In Figure 23 we note that like FastPCS, the DDC algorithm does not detect outliers in the

univariate case. We further note that BACON like FastMCD detects a large number of outliers.

However BACON is not considered to be a robust tool as its breakdown point is 20%. In addition we

notice, in rows c0110 (indicating that Co and Ni are the variables combined) and c0111 an overlapping

of the two methods in the most detected observations. We also note many differences in the flagged

cells due to the fact that DDC takes into account the robust correlations between variables while

BACON does not.
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Figure 23: Plot comparing DDC and BACON

As we discussed FastMCD, BACON and FastPCS have a similar perspective on detecting outliers.

Their common key idea is that all of these methods search for an “outlier free” subset and based

on that flag the bigger distances. Figure 24 shows the consistency of these methods. Moreover, we

observe that the BACON method detects the most cases followed by FastMCD and finally the fewest

cases are detected by FastPCS.

Figure 24: Plot comparing FastMCD FastPCS and BACON
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We present the code for Figure 6 along with the outliers flagged by each method below

PBMmethods <- O3prep(sd_log_humus, method=c("BAC", "MCD","PCS"),tolBAC = 0.95,tolMCD = 0.001,tolPCS = 0.01)

PBMmethods_humus_O3 <- O3plotM(DBmethods)

PBMmethods_humus_O3$gO3

PBMmethods_humus_O3$nOut

PCS BAC MCD

12 48 42

Looking at the above plots we observe that the combination of variables Cu and Ni results in the

most observations detected as outliers. We recall that we have already log transformed our data in

the prepocessing step. Looking at Figure 25 we see a linear relationship between the log transformed

variables. Moreover, we have labelled the observations that were most detected by the methods in

the Outliers03 package. We observe, that observations 87, 35, 28, 67, 75 were flagged by all the

methods the most times by most combinations. Scatterplot shows that these observations are indeed

far away from the rest of the data. While observations 28 and 75 seem to be strong outliers when the

whole dataset is tested, observations 87, 35, 67 do not share the same role. Moreover, observations

like 449 and 615 based on this scatterplot do not seem to be outlying so much from the rest of the

data even though they were noted by the most LOF and RKOF values when the whole dataset was

tested. Therefore, it can be seen that a subset of variables can interpret the outlyingness of some

objects but it also shows that possible strong outliers can be presented as normal points and vice

versa.

Figure 25: Scatterplot of Cu and Ni
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Finally, we search for outliers in the dataset after being reduced to lower dimension. For that

purpose we employ the method of Principal Components Analysis (PCA). PCA is the most famous

procedure for dimension reduction. It produces the Principal Components that are fewer than the

original variables when the latter are highly correlated (like the log transformations of Cu and Ni

presented in Figure 25). Briefly, Principal components are the eigenvectors of the covariance data

matrix with the highest eigenvalues multiplied by the underlying data matrix. Consequently they are

linear transformations of the original variables, orthogonal and uncorrelated. Thus, in this section

with the use of PCA we represent the distances between objects in 41-dimensional space in the

directions with the maximum variance i.e. information of the dataset.

We present the code we used for the computation of the principal components and the first 5

components based on their proportion of variance.

PCA_log_humus<-princomp(log_humus)

Components 1 2 3 4 5

Proportion of variance 0.93 0.067 0.0065 4.04× 10−5 1.86× 10−5

Table 9: Components ordered by their proportion of variance

Based on Table 9 keeping only the first two components we can retain approximately 99% of

the original variance. That means that we can actually visualize the distances of the observations

without losing information.

With the scores computed above, we run again the methods setting as k (when required) the

values in Table 10. We compare the results of the methods before and after the PCA giving a

proportion of their intersecting values. The R code we used to obtain the scores is below.

PC12_log_humus<-PCA_log_humus$scores[,1:2]

Percentage

Methods

k
5 10 15 20 30

dens 56% 76% 91.97% 95.83% 92%

LOF 76% 76% 92% 100% 96%

KNN IN 36% 44% 60% 72% 80%

nnk 92% 84% 84% 88% 92%

maha 16%

depthout 37.5%

Table 10: Percentages of consistency before and after PCA
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Figure 26: Scatterplot with the principal components for the dens method with k = 20. The

observations labeled red are the detected outliers

Figure 27: Scatterplot with the principal components for the dens method with k = 5. The observa-

tions labeled red are the detected outliers
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Figure 28: Scatterplot with the principal components for the nnk method with k = 15. The obser-

vations labeled red are the detected outliers

Figure 29: Scatterplot with the principal components for the nnk method with k = 5. The observa-

tions labeled red are the detected outliers
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For LOF and KNN IN, we compared the 25 highest values while in the remaining methods, the

percentage is computed taking as denominator the larger number number of detected outliers before

and after PCA of each method (we omitted nn and RKOF due to their consistency with nnk and

dens respectively). We note that these proportions of common detected outliers do not imply the

same weighting order.

Since we found from principal components analysis that we can project the whole dataset in two

dimensions without losing almost any information, we are able to visualize it in a scatterplot. As we

can see in the next figures, the objects form one cluster and the outliers seem to be in the form of

extreme values.

We observe that increasing k in dens and LOF, the number of mutually detected ouliers also

increases in each method before and after applying PCA to the data. Moreover, we observe the same

thing for KNN IN but with smaller rate. If we set k = 60 we get a percentage of consistency equal

to 96% . On the contrary, the nnk method shows consistency in lower values of k.

In Figures 26 and 27 we see exactly why there is such a difference in the consistency between the

results before and after applying PCA to the dataset. Choosing k = 5 makes the algorithm search

for outliers in an undesirably local prospect. Based in Figure 27, the method detects observations

that they do not seem to be outlying, just because the knn neighborhood we chose for local detection

is too small. Furthermore, even though PCA managed to retain almost all the information of the

variables, some of it is inevitably missing and it is more likely to be seen in objects that are close to

each other than the ones that were already sufficiently far. Consequently, the method tuned in k = 5,

was set to detect outliers even inside the underlying region in which the distance of the objects after

PCA was slightly changed. In contrast, nnk function marks as outliers those observations that have

the highest knn distances, that is, the points that are away from the region not depending so much

on the value of k. That is why, its results we obtained before and after applying PCA were similar.

For the purpose of comparing these two methods, we note that due to the fact that the objects

formed one cluster, they detected almost the same objects. nnk function detected observation 133

while dens did not even though both of the methods detected observation 106. However, dens

function managed to detect observations 399 and 565 which can be (based on the plots) declared as

outliers. Furthermore interesting is the case of observation 385 which even though it may not be

considered as extreme, is definitely isolated from the region and was detected only by nnk.

Finally, maha and depthout values do not seem to be as consistent as the aforementioned

methods. depthout takes into account every pair of points in computing the modified band width

of each observation without having a fluctuation parameter like distance or density based methods.
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The case of the maha function is interesting. We present the results after running the maha

function on the scores of the principal components.

>maha_PC12_log_humus<-maha(PC12_log_humus,0.975)

>maha_PC12_log_humus$`Location of Outlier`

>[1] 17 27 28 34 41 75 79 106 125 160 168 201 232 258 266 399 449 569 615

Figure 30: Scatterplot with the principal components for the maha method with
√
χ2

2,0975 ≈ 2.72

cutoff. The observations labeled red are the detected outliers
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We recall that before applying PCA, the maha function detected 75 outlying observations. It is

known that by employing the PCA method the underlying data matrix is projected into the directions

that best explain the data set. With that being said, we can assume that objects that were not

explained by the principal components are probably the outlying ones. Consequently, applying PCA

to the data is very useful in the case of methods that declare outliers by their Mahalanobis distances.

Finally, we compare the results from the classical Mahalanobis distances with the robust distances.

For that purpose, we employ the following codes

> Moutlier_PC12_log_humus<-Moutlier(PC12_log_humus, quantile=0.975,plot=TRUE)

> which(Moutlier_PC12_log_humus$cutoff<Moutlier_PC12_log_humus$rd)

12 17 27 28 34 36 40 41 49 54 61 73 75 77 79 106 125 160 168 201 221

232 244 258 266 268 275 375 399 449 569 615

Figure 31: Plots showing the classical and robust Mahalanobis distances for
√
χ2

2,0.975 ≈ 2.72 cutoff.
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Observing Figure 31 and the results we notice an increase in the number of outliers in the robust

case, but considering that most of the outlying objects were only slightly above the cutoff line,

both of the methods share the same set of outliers. Moreover, we employ the aq.plot function which

compares the exceeding robust distances using the cutoff from χ2 and an adjusted quantile depending

on the empirical distribution of the robust distances. As we notice from the results, the exceeding

robust distances based on the adjusted cutoff and taking into account the scatterplots presented in

Figure 32, are more consistent with dens and maha than the ones exceeding the
√
χ2

2,0.975 value.

However, interesting is the case of observation 77 that was only detected with the classical cutoff

and not the adjusted.

> aq.plot_log_humus <- aq.plot(PC12_log_humus, delta=qchisq(0.975,

df=ncol(PC12_log_humus)), quan=1/2, alpha=0.05)

which(TRUE==aq.plot_log_humus$outliers)

>[1] 17 27 28 34 41 49 75 106 125 160 168 201 221 232 244 258 266 399 449 569 615

Figure 32: Upper left plot shows the robust Mahalanobis distances. Upper right plot shows the

empirical distribution of the robust distances. The red line labels the χ2 distribution and the two

vertical lines label the 97.5% cutoff and the adjusted quantile cutoff respectively. The two lower plots

labels in red the outliers that exceed each cutoff.
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8.2 Conclusions

In this section, we presented all the methods that we have introduced, applying them to the humus

dataset. First, we did a search for outliers applying all methods tuned to their default settings

in the whole data. Even though we found common outlying objects in all of the methods, different

methods detect different kind of outliers. Moreover, there is no straight answer to which are the right

parameters for the optimal selection, due to high dimensionality of the raw data. In that context, we

examined a subset of variables, to see if some of the strong outliers that were detected in the whole

data frame could have originated from it with the use of the methods employed by the R package

Outliers03. We noticed overlapping between most of the methods, specifically FastMCD, BACON

and FastPCS. Finally we applied PCA to the data, which probably because of the high correlation

of the variables could be projected in only two directions that preserved the variance of the objects.

Moreover we observed a consistency of the percentages of the common outliers being detected for

each method before and after PCA. Based on that last observation and the fact that we are able to

visualize the data in a scatterplot, we compared the methods with k best suited for each method.

We note that the lowest consistency percentage was yielded by the Mahalanobis distance method

which before PCA declared far more observations than the other methods.
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9 dat dataset

In this section we will apply the methods presented above in the dat dataset where the majority of the

data came from a bivariate Normal distribution [19]. The dat dataset is included in the mvoutlier

package. It is an illustrative data example consisting of 100 observations on two variables. It is

constructed to have outliers.

In Figure 33, we mark the observations that can be considered as observations far away from the

bulk of the dataset.

Figure 33: Scatterplot showing possible outlying points

9.1 Outlier analysis

We begin our analysis by applying the maha function to the data. Its code and the obtained results

are shown below

maha_dat$`Location of Outlier`

[1] 58

> maha_dat$`Outlier Probability`

[1] 0.9887983

As we can see from the results the maha function detected only one observation. We speculate

that the contamination in the dataset by extreme values, prevented the appropriate estimation of

scale and location, leading to a masking effect for the rest of the outliying objects.
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We continue our analysis by computing the robust Mahalanobis distances of the objects employing

the MCD method.

> Moutlier_dat<-Moutlier(dat,quantile=0.975, plot=TRUE)

> which(Moutlier_dat$cutoff<Moutlier_dat$rd)

[1] 1 2 3 4 5 6 7 8 9 10 36

As we can see from the results and Figure 34 the Mahalanobis distances based on the MCD

method exceeding the cutoff correspond to the objects forming the cluster to the bottom right plus

observation 36. That means that the ellipse constructed by the MCD estimators of location and

scale separates these points from the rest of the data in which observation 58 is included.

Figure 34: Plots showing (left) classical Mahalanobis distances versus the robust distances for cutoff√
χ2

2,0.975 = 2.72

We obtain the same results using as cutoff for the robust Mahalanobis distances the adjusted

quartile, shown below in Figure 35.

aq.plot_dat <- aq.plot(dat, delta=qchisq(0.975, df=ncol(dat)), quan=1/2, alpha=0.05)

>which(TRUE==aq.plot_dat$outliers)

[1] 1 2 3 4 5 6 7 8 9 10 36
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Figure 35: Upper left plot shows the robust Mahalanobis distances. Upper right plot shows the

empirical distribution of the robust distances. The red line labels the χ2 distribution and the two

vertical lines label the 97.5% cutoff and the adjusted quantile cutoff respectively. The two lower plots

labels in red the outliers that exceed each cutoff.

We continue our analysis by applying three methods implemented in the OutliersO3 package.

PBMMethods_dat <- O3prep(dat, method=c("PCS", "BAC", "MCD"),tolPCS=0.1,

tolBAC=0.95,tolMCD =0.01 )

As we see in Figure 36, FastMCD, FastPCS and BACON overlap completely except for observation

36 which is only detected by BACON. Moreover, we notice that these results also overlaps with the

results obtained by the Mahalanobis distances. This is quite reasonable, one might think, because

all four methods form an ellipse based on the identification of an optimal subset of h observations

and based on a χ2
p,a cutoff declare the outliers.
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Figure 36: Plot comparing FastMCD, FastPCS and BACON

Next we apply the depth-based method to the data.

> depthout_dat <- depthout(dat, rnames = FALSE, cutoff = 0.1, boottimes = 100)

> depthout_dat$`Location of Outlier`

[1] 4 5 6 7 9 10 36 58

> depthout_dat$`Outlier Probability`

[1] 1.00 0.95 0.95 1.00 0.99 0.90 0.99 0.96

> depthout_dat$`Location of Outlier`

[1] 1 2 3 4 5 6 7 8 9 10 11 23 25 26 27

28 29 31 33 34 36 58 62 73 77 90 94

> depthout_dat$`Outlier Probability`

[1] 1.00 0.98 1.00 1.00 1.00 1.00 1.00 0.97 1.00

1.00 0.97 1.00 0.90 0.95 1.00 0.98 0.90 0.74 1.00

1.00 1.00 1.00 1.00 0.92 1.00 0.97 0.96

In Figures 37 and 38 we see that increasing the percentile threshold the observations that are

only in the border of the data cloud are detected. For the underlying dataset we conclude that this

way of searching for outliers is less focused than the other methods above.
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Figure 37: Scatterplot of observations detected by depthout for percentile threshold 0.1

Figure 38: Scatterplot of observations detected by depthout for percentile threshold 0.3
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nnk function

number of outliers k

11 27 28 34 36 58 77 78 90 94 98 5

11 28 35 36 58 62 69 73 77 78 90 94 6

11 25 28 35 36 58 62 69 77 78 90 94 7

11 25 27 28 33 34 36 58 62 69 77 78 90 8

11 25 27 28 33 36 58 62 69 77 78 90 9

11 25 27 28 33 36 58 62 69 77 90 94 10

1 2 3 4 5 6 7 8 9 10 11 36 58 11

1 2 3 4 5 6 7 8 9 10 36 58 15

1 2 3 4 5 6 7 8 9 10 36 58 30

1 2 3 4 5 6 7 8 9 10 36 58 40

Table 11: Number of detected outliers for different k for nnk for percentile equal to 0.85

Figure 39: Scatterplot of observations detected by nnk for percentile threshold 0.85
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In Table 11 we present the outliers detected by the nnk function for different values of k. We

observe an instability in the first values and then a convergence to the observations that were also

detected by the robust Mahalanobis distances plus observation 58 that in the latter method was

considered to be extreme but not as outlier. Moreover, in Figure 39, choosing k = 7 sets the

algorithm to search for outliers only in the bulk of data to the left of the scatterplot where it detects

the observations that are on its border while the small cluster to the right does not get detected for

any outlying action due to the small value of k.

KNN IN function

number of outliers k

1 58 8 36 100 11 28 85 90 91 94 98 9 5

11 58 36 28 77 90 94 27 33 62 20 25 73 10

58 11 36 62 27 33 90 94 25 28 73 77 1 15

58 11 36 27 62 90 25 28 73 94 33 77 1 16

58 11 36 27 62 90 25 28 73 94 33 77 1 17

58 11 36 27 62 28 90 94 25 33 73 1 2 18

58 11 36 27 62 28 90 25 73 94 1 2 3 19

58 36 11 27 62 28 25 73 90 1 2 3 4 20

36 58 2 3 4 5 6 7 8 9 10 27 1 30

36 58 3 4 5 6 7 9 10 8 1 2 62 40

Table 12: Number of detected outliers for different k for NNK IN. The thirteen observations with

the lowest indegree number are listed

Applying KNN IN to the dataset we obtain the same results as nnk for high values of k. The

difference between these methods lies in k = 15. Setting k = 15 the KNN IN method detects values

that are indeed far away from the right data cloud, marked with red colour as we see in Figure 40.

Moreover, it detects observation 1 (marked with black colour) which is isolated from both clusters.

Consequently, for k = 15 KNN IN handles both of the clusters as outlier-free subsets points and

detects as outliers the points that are far away from each cluster. That is why, this method even if

it uses knn distances, also shares some of the properties of a density based method as it searches for

observations that participate in the fewest k nearest neighborhoods.
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Figure 40: Scatterplot of observations detected by KNN IN

detected outliers

LOF RKOF k

11 80 81 98 61 1 74 90 77 36 94 91 58 81 100 11 80 94 61 77 90 36 74 1 91 58 5

81 35 32 90 62 77 33 27 91 69 11 36 58 98 33 32 81 27 77 94 90 11 69 91 36 58 10

32 28 62 25 77 90 27 91 33 69 11 36 58 81 94 32 28 33 27 77 90 11 91 69 36 58 11

7 90 4 25 8 2 91 27 33 69 11 36 58 77 28 30 33 27 90 2 8 91 11 36 69 58 12

8 2 3 9 6 5 69 10 7 4 11 36 58 91 3 6 5 8 2 7 10 4 11 36 69 58 13

1 8 2 3 6 5 10 9 7 4 11 36 58 1 6 5 7 9 4 36 69 10 11 2 8 58 14

1 8 2 9 7 3 36 6 5 10 11 4 58 7 9 69 36 3 6 5 2 11 8 4 10 58 15

11 36 8 2 1 3 6 5 10 58 9 7 4 36 11 8 2 1 10 3 6 5 9 7 4 58 20

11 8 2 36 1 3 58 10 6 5 9 7 4 11 36 8 2 1 58 3 10 6 5 9 7 4 30

11 36 8 1 2 3 6 5 10 9 7 58 4 11 36 8 1 2 3 58 6 5 10 9 7 4 40

Table 13: Detected outliers for different k for LOF and RKOF. The thirteen observations with the

highest LOF and RKOF values are listed

Table 13 shows the thirteen most outlying observations based on their LOF and RKOF values

(the computed RKOF values are based on the default settings of RKOF function). We notice that

both methods follow the same pattern, noting an instability in small values of k while for higher

values both methods detect the objects marked in Figure 33 .

Table 14 shows the outliers based on the highest RKOF values, the computations of which were

made setting C = 0.1. Parameter C influences the knn distances enabling RKOF to be more sensitive

for objects in the spatial regions of the dataset as we see in Figure 41. We note, observations 99 and
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24 to be detected for the first time as outliers lying inside the data cloud. Such isolated observations

were not detected by any of the previous methods, because most of the previous methods are able

to detect outliers on a more global scale. Finally, we note that by setting k = 11 and C = 0.1 the

method handles the cluster in the right-hand side of the scatterplot as uncontaminated and searches

for outliers in the borders and in spatial regions of the left cluster.

RKOF function

detected outliers k

80 45 18 4 10 100 91 69 11 61 36 58 1 5

78 11 24 18 99 30 80 100 36 69 61 91 58 10

78 99 18 24 11 30 80 100 36 69 61 91 58 11

18 78 99 24 11 30 80 100 36 69 61 91 58 12

18 80 78 24 99 11 30 100 36 69 61 91 58 13

37 78 80 24 99 100 11 30 36 69 61 91 58 14

78 37 24 80 100 99 11 30 36 61 69 91 58 15

89 80 99 78 24 100 11 30 36 69 61 91 58 20

80 78 89 99 24 100 30 11 36 61 69 91 58 30

78 34 80 24 100 89 30 11 61 36 69 91 58 40

Table 14: Detected outliers for different k for RKOF with C=0.1

Figure 41: Scatterplot of observations detected by RKOF for k = 11
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9.2 Conclusions

In this chapter we searched for outliers in the dat dataset. As we saw in the scatterplots, the data

points form one big spatial cluster and a small cluster with a lot fewer objects. Distribution-based

methods, like FastMCD, BACON FastPCS and robust Mahalanobis distances, were able to detect

the bulk of the normal data and separate it from the outlying objects. We observe that these methods

did not declare observation 58 as an outlier. Furthermore, the depth-based method based on the

modified band depth, assigned lower depths to the observations that were on the global borders of

the data cloud. Distance-based method nnk for high values of k recognized as outliers the small

cluster that is far away from the rest of the data as well as some objects of extreme values lying

in the bounds of the big cluster while for lower values of k it did not search for outlying objects in

the small cluster. KNN IN behaved like nnk for high values of k but for lower values k handled

both clusters as normal and searched for outliers with respect to each cluster. Finally, density-based

methods for high values of k gave the same results as nnk and KNN IN while for small values

(especially the RKOF) they searched also for isolated points within the big cluster.
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10 General Conclusions

Outlier detection has always been a hot topic in data analysis because there is no general method to

search for points out of a pattern. Moreover, outlier analysis helps the user to make a more focussed

interpretation for the target dataset and at the same time to unlock possible prospects for further

investigation based on the detected abnormalities.

Consequently, this inability to construct a generally effective method led to a variety of different

outlier detection methods, some of which were discussed and examined above. Briefly, in Chapters

3, 5 and 6 we presented methods that unlike the methods introduced in the later chapters do not

depend on the distribution generating the data. However, they are also based on a certain assumption

whether this is depth, distance or density. Inevitably, all of the aforementioned methods differ in the

kind of outliers they are searching for.

Testing these methods on the humus and dat datasets we conclude that no method outperforms

all the others.

In case of dat, we noticed that even though the objects are normally distributed, widespread con-

tamination can mask the true outlying objects when applying classical methods like the Mahalanobis

distance so robust tools have to be employed. Moreover, we encountered a significant difference be-

tween distributional and non-distributional methods. While the latter methods declared some of the

points as outliers, the former methods labeled them as normal points of extreme values. Finally,

methods based on the data’s density are able to detect points that for the rest of the methods could

be considered normal as they are designed to be more sensitive searching for isolated points in the

inside regions.

In case of humus, we saw how these methods work in higher dimensions. Moreover, we searched

for outliers in a subset of variables to see the behaviour of the outlying objects detected on the

global scale. Finally, we analyzed how the obtained results change after using the PCA method

showing that Mahalanobis distance can be affected greatly by a dimension reduction even if most of

the information is retained. In contrast, methods based on distance were consistent after variable

reduction while methods based on density showed that the local regions of each observation can be

modified after using PCA even if we are able to retain most of the variation.
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