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ABSTRACT
This text is the required master thesis that the author needs to present in order to obtain
his Master’s degree in mathematics. It presents a proof of the Néron-Ogg-Shafarevich
Criterion for elliptic curves over complete, discretely valued fields. With that goal, the
basics of valuation theory and ramification are also developed, paying special attention
to p-adic numbers.
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Introduction

When I told one of my advisors, Sara Arias, that I wanted to do a master’s the-
sis about a topic related to Algebraic Geometry and Algebraic Number Theory, she
recommended the Néron-ogg-Shafarevic Criterion, whose statement is as follows:

Theorem. Let K be a field complete with respect to a discrete valuation v and let E be
an elliptic curve over K. Let p be the characteristic of the residue class field of K, and
let ` 6= p be a prime number.
Then E has good reduction if and only if the Tate module T`(E) is unramified.

We will prove the theorem under a slightly more complete statement (Theorem
V.7.2). As it is often the case with results about elliptic curves, this theorem also
holds for abelian varieties. The result was first introduced by Andrew Ogg in 1967 for
elliptic curves, in his work Elliptic curves and wild ramification. Later, it was extented
to abelian varieties by Serre and Tate (1968) in Good reduction of abelian varieties, using
previous result of André Néron. They also named the criterion after Igor Shafarevich
commenting that the later seemed to already know the result.

Although this theorem is the main goal of the master’s thesis from a structural point
of view, it also served as an excuse for me to delve into new topics like valuation theory,
p-adic numbers and ramification theory. This work also utilizes my previous knowledge
about elliptic curves, that I acquired for my bachelor’s degree thesis: “Elliptic curves
and the Mordell Theorem”, [11], and further deepens it.

Now I am going to give a detailed exposition of the structure of this text and talk
about the references that I used the most.

For the first three chapters, my main reference has been [12, Ch. II]. In order to
have other approaches in mind, I have also consulted the texts [9] and [3].

The first chapter is basic valuation theory. I start defining absolute values on fields
and then showing that the nonarchimedean ones can also be seen as (exponential) val-
uations. We focus our attention to discrete valuations. In any case, we end up with
a metric in our field K. Then we show how to obtain a complete field K̂ out of K,
through the process of completion. This generalizes to any field how the real numbers R
are constructed as the completion of Q with the usual absolute value, and also how the
p-adic numbers Qp are the completion of Q for the p-adic metric. Usually it is made the
other way around: first one explain p-adic numbers and see the completion of a metric
field as a generalization. In order to not being redundant and also for the sake of brevity,
I opted to explain the general theory first. In chapter II, this sped up the construction
of Qp as a completion and the connection between the four different definitions of p-adic
numbers that I am going to introduce. Of course, all those definitions lead to the same
mathematical object, as we will show.

The third chapter is an introduction to ramification theory of valuations, followed
by some basic results on the inertia subgroup. I have tried to present only the results
that I was going to need, together with some basic ones to make the exposition clear
and self-contained.

Chapter IV is about formal groups. The first two sections are general theory, and I

v



mainly followed [16, Ch. V], with some help of the notes [10].
At this point, any reader that may not know or recall much about elliptic curves,

should head to the Appendix A. In contains everything necessary to understand Chapter
IV, §3 and the rest of this text. All of it was covered in bachelor’s degree thesis [11].

Once we have presented the formal group of and elliptic curve in Chapter IV, §3,
we pass on to the last Chapter. Here, we define and prove everything we still need to
prove the Criterion, for example, the good or bad reduction of an Elliptic curve. Also,
we present some practical applications of our results in the computation of the subgroup
of points of finite order in §V.5. We end this text with the proof of the Criterion of
Néron-Ogg-Shafarevich.

For Chapter IV, §3 and Chapter V, I followed the standard reference on elliptic
curves: [16].



Chapter I

Valuation Theory

I.1 Elementary valuation theory

Definition I.1.1. A multiplicative valuation or absolute value of a field K is a function
| | : K → R satisfying the properties:

I) |x| ≥ 0, and |x| = 0 ⇐⇒ x = 0.

II) |xy| = |x| |y|.

III) |x+ y| ≤ |x|+ |y| . (triangle inequality)

for every x, y ∈ K.

These properties immediately imply that |1| = 1 = |−1|, |−x| = |x| and
∣∣x−1∣∣ =

|x|−1. This last one shows that if K is the field of fractions of a ring R, then it suffices
to define | | in R to completely determine | | in all of K.

We will always exclude tacitly the trivial absolute value of K: |x| = 1 for every
x ∈ K. Just like we would do with a norm, we can use an absolute value | | to define a
distance function for every x, y ∈ K, namely d(x, y) = |x− y|, turning K into a metric
topological space. As per usual, two absolute values of K are called equivalent if they
define the same topology in K.

Proposition I.1.2. Two absolute values | |1 and | |2 on K are equivalent if and only
if there exists a real number s > 0 such that:

|x|1 = |x|s2 ∀x ∈ K.

Proof. If | |1 = | |s2, then they are obviously equivalent since sequences have the same
convergence and limits for both absolute values.

Conversely, assume both topologies are equivalent. Notice that |x| < 1 if and only if
{xn}n∈N converges to 0 in the topology given by | |. Therefore we have

|x|1 < 1 =⇒ |x|2 < 1.

1



I.1. ELEMENTARY VALUATION THEORY

Let x be any nonzero element of K and let us fix an element y ∈ K such that |y|1 > 1.
Then there exists α ∈ R such that |x|1 = |y|α1 . Let {mi/ni}i∈N be a sequence of rational

numbers with ni > 0 that converges to α from above. Then |x|1 = |y|α1 < |y|
mi/ni

1 , or

equivalently

∣∣∣∣ xniymi

∣∣∣∣
1

< 1, which implies

∣∣∣∣ xniymi

∣∣∣∣
2

< 1. We then have |x|2 < |y|
mi/ni

2 , and

taking the limit this implies |x|2 ≤ |y|
α
2 .

Now, if we use the same argument but with a sequence {mi/ni}i∈N of rational num-
bers that converges to α from below, we get |x|2 ≥ |y|

α
2 . So we have |x|2 = |y|α2 .

Therefore:
log |x|1
log |x|2

=
log |y|1
log |y|2

=: s ∈ R>0, ∀x ∈ K×

hence |x|1 = |x|s2. But

|y|1 > 1 =⇒
∣∣∣∣1y
∣∣∣∣
1

< 1 =⇒
∣∣∣∣1y
∣∣∣∣
2

< 1 =⇒ |y|2 > 1.

Therefore s = log |y|1
log |y|2 > 0, which finishes the proof.

In the above proof we have only used |x|1 < 1 =⇒ |x|2 < 1 to show that there exist
s > 0 such that |x|1 = |x|s2 for every x ∈ K. Obviously the converse is true. Therefore
we have:

Corolary I.1.3. Two absolute values | |1 and | |2 on K are equivalent if and only if:

|x|1 < 1 =⇒ |x|2 < 1 ∀x ∈ K.

Proof.

Definition I.1.4. An absolute value | | on K is called nonarchimedean if |n| stays
bounded for all n ∈ N. Otherwise is called archimedean.

Of course, every absolute value in a field of positive characteristic is nonarchimedean.

Proposition I.1.5. An absolute value | | is nonarchimedean if and only if it satisfies
the strong triangle inequality

|x+ y| ≤ max {|x| , |y|} .

Proof. If the absolute value satisfies the strong triangle inequality then:

|n| = |1 + · · ·+ 1| ≤ 1.

Conversely, assume that there exists N ∈ N such that |n| ≤ N for every n ∈ N . Let
x, y ∈ K and without loss of generality suppose |x| ≥ |y|. Then |x|k |y|n−k ≤ |x|n for
k ≥ 0 and we have:

|x+ y|n ≤
n∑
k=0

∣∣∣∣(nk
)∣∣∣∣ |x|k|y|n−k ≤

(
n∑
k=0

∣∣∣∣(nk
)∣∣∣∣
)
|x|n ≤ N(n+ 1)|x|n

2



I.1. ELEMENTARY VALUATION THEORY

and hence

|x+ y| ≤ N1/n(1 + n)1/n|x| = N1/n(1 + n)1/n max (|x|, |y|) .

By letting n→∞ this shows |x+ y| ≤ max (|x|, |y|).

Proposition I.1.6. The strong triangle inequality implies that

|x| 6= |y| =⇒ |x+ y| = max {|x| , |y|} .

Proof. Without any loss of generality assume that |x| > |y|. Then

|x| = |(y + x)− y| ≤ max {|y + x| , |y|} = |y + x| ≤ max {|x| , |y|} = |x| .

So all inequalities are equalities. We have used that max {|y + x| , |y|} = |y + x| since
otherwise we would have |x| ≤ |y|.

Definition I.1.7. A function v : K → R ∪ {∞} verifying the properties:

1. v(x) =∞ ⇐⇒ x = 0.

2. v(xy) = v(x) + v(y).

3. v(x+ y) ≥ min {v(x), v(y)}.

is called a (exponential) valuation of K, where we establish the following intuitive con-
ventions for the symbol ∞ and every a ∈ K:

a <∞, a+∞ =∞, ∞+∞ =∞.

It is easily shown to verify v(1) = 0 and v(x−1) = −v(x). And since

2v(−x) = v((−x)2) = v(x2) = 2v(x)

we see that v(x) = v(−x).

Proposition I.1.8. Let | | be a non-archimedean absolute value of K. Then the func-
tion

v(x) = − log |x| for x 6= 0, and v(0) =∞

is a valuation of K.

Proof. Properties 1 and 2 in Definition I.1.7 are immediately verified. For Property 3 we
use that |x+ y| ≤ max {|x| , |y|} and the fact that − log is a monotonically decreasing
function:

v(x+y) = − log |x+ y| ≥ − log (max {|x| , |y|}) = min {− log |x| ,− log |y|} = min {v(x), v(y)} .

3



I.1. ELEMENTARY VALUATION THEORY

Remark I.1.9. Two equivalent absolute values | |1 and | |2 = | |s1 , s ∈ R>0, produce
the same valuation except for the scalar factor s:

v2(x) = − log |x|2 = −s log |x|1 = sv1(x).

This motivates the following definition.

Definition I.1.10. Two valuations v1, v2 of K are called equivalent if there exists s > 0
such that v1 = sv2.

Proposition I.1.11. Let v be an exponential valuation of K. Then for each real number
q > 1 the function:

|x| = q−v(x)

is a nonarchimedean absolute value of K. We understand that |0| = q−∞ = 0.

Proof. It is an easy verification:

1) |x| ≥ 0 and |x| = 0 ⇐⇒ v(x) =∞ ⇐⇒ x = 0.

2) |xy| = q−v(xy) = q−v(x)−v(y) = |x| |y| .

3) |x+ y| = q−v(x+y) ≤ q−min{v(x),v(y)} = max
{
q−v(x), q−v(y)

}
= max {|x| , |y|} .

Remark I.1.12. For a fixed q > 1, equivalent valuations v1 = sv2 produce equivalent
absolute values:

|x|1 = q−v(x)1 = q−sv(x)2 = |x|s2 .

We have now seen that we can assign an exponential valuation to every nonar-
chimedean absolute value and viceversa. Furthermore, equivalent absolute values are
sent to equivalent valuations and viceversa.

What happens when, starting with a nonarchimedean absolute value | |, we apply
these two processes? Would we recover our original absolute value | |?

The answer depends on the real number q > 1 that we choose to create the ex-
ponential valuation. We can write q = es for some s > 0. Then, from | | we create
v(x) = − log |x|, and from it the valuation | |′ verifying:

|x|′ = q−v(x) = e−s log|x| = |x|s .

Which proves that, in general, we recover an absolute value equivalent to the original
one, and exactly the original one if q = e. Exactly the same can be said if we star with
the exponential valuation v.

Since every valuation v comes from an absolute value, Proposition I.1.6, tell us that:

v(x) 6= v(y) =⇒ v(x+ y) = min {v(x), v(y)} .

We need to recall a concept followed by a basic result:

4



I.1. ELEMENTARY VALUATION THEORY

Definition I.1.13. Let R be a ring and K its field of fractions. R is called a valuation
ring if for every nonzero x ∈ K, either x ∈ R or x−1 ∈ R.

Proposition I.1.14. A valuation ring R is integrally closed.

Proof. Let K be the field of fractions of R and let x ∈ K be an integral element over R.
This means that x satisfies an equation:

xn + an−1x
n−1 + · · ·+ a0 = 0, ai ∈ R.

If x /∈ R, then x−1 ∈ R. Therefore, multiplying by x1−n the above equation we get:

x = −an−1 − an−2x−1 − · · · − a0x−n+1 ∈ R

a contradiction.

The next three propositions also serve as important definitions.

Proposition I.1.15. Let | | be a nonarchimedean absolute value of a field K and v an
associated valuation. Then the subset

O = {x ∈ K | v(x) ≥ 0} = {x ∈ K | |x| ≤ 1}

is a valuation ring, whose field of fractions is K, with group of units

O× = {x ∈ K | v(x) = 0} = {x ∈ K | |x| = 1}

and the unique maximal ideal

p = {x ∈ K | v(x) > 0} = {x ∈ K | |x| < 1}.

These invariants do not change if we replace | | with an equivalent absolute value or v
with an equivalent valuation.

Proof. All are easy checks. Obviously if we replace v with sv for a real number s > 0
the sets O,O×, p do not change. If we replace | | with | |s , s > 0, then

|x| ≤ 1 ⇐⇒ |x|s ≤ 1; |x| = 1 ⇐⇒ |x|s = 1 and |x| < 1 ⇐⇒ |x|s < 1

showing that the sets O,O×, p are again preserved.
Let’s prove that O is a ring. Obviously 0, 1 ∈ O. Let x, y ∈ O. Then

|x+ y| ≤ max {|x| , |y|} ≤ 1

|xy| = |x| |y| ≤ 1

So O is a ring. To see that O is a valuation ring, notice that every element x ∈ K verifies
either |x| ≤ 1 or |x| > 1 (so that

∣∣x−1∣∣ < 1). This is equivalent to x ∈ O or x−1 ∈ O.
The units of O are those x ∈ O such that x−1 ∈ O. But since |x| ≤ 1 implies∣∣x−1∣∣ ≥ 1, we must have O× = {x ∈ K | |x| = 1}.

5



I.1. ELEMENTARY VALUATION THEORY

Next notice that p is an ideal:

x, y ∈ p =⇒ |x+ y| ≤ max {|x| , |y|} < 1

x ∈ p, y ∈ O =⇒ |xy| = |x| |y| < |y| ≤ 1.

Furthermore, every element of O not in p is a unit. This implies that p is a maximal
ideal an the only one of O, making O into a local ring.

All that remains to prove is that Frac(O) = K. Of course Frac(O) ⊂ K because K
is a field containing O. Conversely, let x ∈ K. Then, since O is a valuation ring, either

x ∈ O ⊂ Frac(O) or x−1 ∈ O. In this later case, x =
1

x−1
∈ Frac(O).

The field k := O/p is called the residue class field of O (or even of K or v).
The valuation ring is sometimes called the ring of integers of K. I have personally

avoided that nomenclature because it could lead to assuming that R is the integral
closure of Z in K, which is not.

Proposition I.1.16. If v : K → R ∪ {∞} is an exponential valuation, then the set
v(K×) is a subgroup of (R,+) called the value group of K

Proof. v(1) = 0 is the zero element. And if v(x), v(y) ∈ v(K×) then

v(x) + v(y) = v(xy) ∈ v(K×)

−v(x) = v(x−1) ∈ v(K×).

Definition I.1.17. A valuation v : K → R ∪ {∞} is called discrete if it admits a
smallest positive value s. In that case the value group is v(K×) = sZ.

Proof. Let x ∈ K such that v(x) = s is the smallest positive value in v(K×). Then for
every m ∈ Z, v(xm) = ms, which shows that sZ ⊂ v(K×).

To prove that v(K×) ⊂ sZ, we proceed by contradiction. Assume that there exists
y ∈ K× such that v(y) = a /∈ sZ. We can assume that a is positive, because if a were
negative, we always could have choosen 0 < −a = v(y−1) /∈ sZ instead. Now, let m
be greatest integer such that a − ms > 0, so that in particular a − ms < s. Then
v(yx−m) = a−ms ∈ v(K×) is positive and smaller than s, a contradiction.

A discrete valuation with smallest positive value s is called normalized if s = 1. If
s 6= 1 we can always divide by s to get an equivalent valuation without changing the
invariants O,O×, p. Having done so, let

π ∈ O, such that v(π) = 1.

Then every element x ∈ K can be uniquely written in the form

x = uπm for some u ∈ O×,m ∈ Z

6



I.1. ELEMENTARY VALUATION THEORY

for if v(x) = m then v(xπ−m) = 0, hence xπ−m = u for some u ∈ O×, which proves the
claim.

With this notation we clearly have

O =
{
uπm : m ≥ 0, u ∈ O×

}
p = πO =

{
uπm : m ≥ 1, u ∈ O×

}
.

This shows that every element π ∈ O such that v(π) = 1 is a generator of p, which
means that π must be a prime element of O since p is a maximal ideal. Furthermore,
every prime element π′ ∈ O must verify v(π′) = 1, since by definition π′ is not an unit,
hence π|π′ and we can write π′ = uπm for some u ∈ O×,m ≥ 1. This means that π′

divides πm, and since π′ is a prime element, π′ must divide π. Therefore π and π′ are
associates and v(π) = v(π′) = 1. The prime elements π are also called uniformizers
for O.

An important extension of this information is collected in the next proposition.

Proposition I.1.18. If v is a normalized discrete exponential valuation of K, then

O = {x ∈ K | v(x) ≥ 0} =
{
uπm : m ≥ 0, u ∈ O×

}
is a principal ideal domain (hence a discrete valuation ring*)

Furthermore, the nonzero ideals of O are given by

pn = πnO = {x ∈ K | v(x) ≥ n}, n ≥ 0

where π is a prime element, i.e., v(π) = 1. Finally, one has

pn/pn+1 ∼= O/p.

Proof. Let I 6= 0 be an ideal of O and x 6= 0 an element in I with smallest positive value
v(x) = n. then x = uπn, u ∈ O×, which means that πnO ⊂ I. Now let y = wπm, w ∈ O×
be an arbitrary element of I. Then m = v(y) ≥ n, hence y = (wπm−n)πn ∈ πnO, so
that I = πnO. This proves that the only ideals of O are of the form πnO, which also
implies that O is a principal ideal domain.

Finally, the morphism pn → O/p given by aπn 7→ amod p, is clearly surjective (since
a can be any element of O). Its kernel is the set of elements aπn ∈ pn such that a ∈ p,
i.e., the kernel is pn+1. So it induces an isomorphism

pn/pn+1 ∼= O/p.

*A local principal ideal domain whose only maximal ideal is nonzero. As a converse to this result, in
any discrete valuation ring a discrete exponential valuation can be easily defined.

7



I.1. ELEMENTARY VALUATION THEORY

We have just seen that in a discretely valued field K, all the ideals of the valuation
ring O form a decreasing chain:

O ⊃ p ⊃ p2 ⊃ p3 ⊃ · · ·

These ideals are also a basis of neighbourghoods of 0. Indeed, if | | = q−v( ), q > 1 is an
absolute value associated to v

pn =

{
x ∈ K : |x| ≤ 1

qn

}
=

{
x ∈ K : |x| < 1

qn−1

}
.

In order to get a basis of neighbourhoods of 1 ∈ K we define:

U (0) = O×, U (n) = 1 + pn, n ≥ 1

Which are called the n-th higher unit groups. Of course:

O× = U (0) ⊃ U (1) ⊃ · · ·

First we note that

x ∈ 1 + pn ⇐⇒ 1− x ∈ pn ⇐⇒ |1− x| < 1

qn−1
, n ≥ 1.

Therefore, an alternative definition of U (n) is

U (n) =

{
x ∈ K× : |1− x| < 1

qn−1

}
.

Each of these open sets contains the element 1 ∈ K. They are effectively subgroups of
O× since:

x = 1 + a ∈ 1 + pn =⇒ v(x) = min(v(1), v(a)) = v(1) = 0 =⇒ x ∈ O×

and

1 + x, 1 + y ∈ U (n) =⇒ (1 + x)(1 + y) = 1 + x+ y + xy ∈ 1 + pn = U (n)

x ∈ U (n) =⇒
∣∣1− x−1∣∣ = |x|−1︸ ︷︷ ︸

=1

|x− 1| = |1− x| < 1

qn−1
=⇒ x−1 ∈ U (n).

Proposition I.1.19. If v is a discrete valuation, for every n ≥ 1 we have

O×

U (n)
∼=
(
O
pn

)×
and

U (n)

U (n+1)
∼=
O
p
.

Proof. The first isomorphism is induced by the canonical group morphism

O× →
(
O
pn

)×
, u 7→ umod pn.

8



I.1. ELEMENTARY VALUATION THEORY

It is surjective, for if x̄ ∈
(
O
pn

)×
, then there exists ȳ ∈ O

pn
such that x̄ȳ = 1 ∈ O

pn
. If

x, y ∈ O are respective preimages of x̄ and ȳ for the surjective quotient map O → O/pn,
then we have xy ∈ 1 + pn ⊂ O×. And if xy is a unit, so are x and y, so that x ∈ O×.

Obviously the kernel of the canonical morphism mentioned above is U (n), so it induces

an isomorpism
O×

U (n)
∼=
(
O
pn

)×
.

Our second isomorphism, once a prime element π is chosen, is induced by the map:

U (n) = 1 + πnO −→ O/p, 1 + πna 7−→ a mod p

It is surjective, because the quotient map O → O/p is surjective.
It is a group morphism between the multiplicative group U (n) and the additive group

O
p

, since (1+πna)(1+πnb) = 1+πn(a+b+πnab) is mapped to a+b+πnab ≡ a+bmod p.

Furthermore, the kernel is clearly U (n+1), so it induces an isomorphism
U (n)

U (n+1)
∼=
O
p

.

9



I.2. COMPLETIONS

I.2 Completions

Definition I.2.1. A valued field (K, | |) is called complete if every Cauchy sequence
{an}n∈N converges to an element a ∈ K.

As usual, {an}n∈N is a Cauchy sequence if for every ε > 0 there exist N ∈ N such
that

|an − am| < ε for all m,n ≥ N.

If (K, | |) is any valued field, we can always find a complete valued field (K̂, | |)
such that K ⊂ K̂ and the valuation of K̂ extends that of K. This is obtained by the
process of completion, which is carried out in the same way as the field of real numbers
is constructed from the field of rational numbers, as the set of all limits of rational
sequences, or equivalently, the set of all Cauchy sequences (with limit not necessarily in
Q) under the equivalent relation: “having the same limit”. This can be expressed more
conveniently in algebraic language.

The Cauchy sequences of K form a ring R, the nullsequences form a maximal ideal
m, and we define the completion of K as the field:

K̂ = R/m.

First we need to make sense of these claims.
We see the set of all sequences of (K, | |) as the infinite product

∏∞
n=1K. This is

a ring, with addition and multiplication being component-wise and where the zero and
unit element are respectively 0 = (0, 0, 0, . . . ) and 1 = (1, 1, 1, . . . ).

Proposition I.2.2. The set R of Cauchy sequences of (K, | |) is a subring of the infinite
product

∏∞
n=1.

The subset m ⊂ R of nullsequences is a maximal ideal.

Proof. Constant sequences are convergent, hence they are Cauchy, so 0, 1 ∈ R. If x =
{xn}n∈N and y = {yn}n∈N are two Cauchy sequences, then they are bounded, i.e. |xn| ≤
cx, |yn| ≤ cy for all n ∈ N. Furthermore, there exist N1, N2 ∈ N such that for every ε > 0

|xn − xm| <
ε

2cy
for all m,n ≤ N1

|yn − ym| <
ε

2cx
for all m,n ≤ N2.

Let N = max {N1, N2}. Then we have

|xnyn − xmym| = |xn(yn − ym) + ym(xn − xm)| ≤ |xn| |yn − ym|+ |ym| |xn − xm|

< cx
ε

2cx
+ cy

ε

2cy
= ε for all m,n ≥ N

and of course
|xn + yn − xm − ym| ≤ |xn − xm|+ |xn − yn|

10
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which shows that xy ∈ R and x+ y ∈ R, respectively. So R is a ring.
The set m is clearly closed under addition. And if |xn| → 0, {yn}n ∈ R, then, since

{yn}n is bounded, let us say by c > 0, then:

|xnyn| ≤ c |xn| → 0 =⇒ {xnyn}n ∈ m.

To see that m is maximal it is better to show that R/m is a field. In R/m it does
not matter how a sequence begins. More precisely, for every n ∈ N :

(x1, x2, ..., xn, xn+1, ...) ≡ (y1, y2, ..., yn, xn+1, xn+2, ...) modm.

Let x ∈ R/m, x 6= 0. This means x is the class of a Cauchy sequence x = {xn}n that
is not a nullsequence. Therefore, it cannot have a subsequence that is a nullsequence
(since otherwise x would be a nullsequence). This implies that there exists n0 such that
xn 6= 0 for every n ≥ n0 which means that in R/m:

(x1, x2, ..., xn0 , xn0+1, ...) = (1, 1, ..., 1, xn0 , xn0+1, ...).

So an inverse for x is
(1, 1, ..., 1, x−1n0 , x

−1
n0+1, ...)

proving that R/m is a field.

Now we embed K in K̂ = R/m associating to every a ∈ K the class of the constant
sequence (a, a, ..., a, ...), since it simply is the class of the sequences whose limit is a.

The absolute value | | of K is easily extended to K̂. If a ∈ K̂ is represented by the
Cauchy sequence {an}n∈N we give it the absolute value

|a| = lim
n→∞

|an| .

This limit exists since ||an| − |am||∞ ≤ |an − am| implies that |an| is a Cauchy sequence
of R with the usual absolute value | |, so it must converge to an element of R. This ex-
tension does not depend on the representative of a, for if we take any other representative
{an + bn}n, where {bn}n is a nullsequence, then

|an| − |bn| ≤ |an + bn| ≤ |an|+ |bn|

which together with lim
n→∞

|bn| = 0 implies that {an}n and {an + bn}n have the same

limit.
As always ||an| − |an||∞ ≤ |an − am| also shows that the absolute value | | : K̂ → R

is a continuous function.
Then, one shows that K̂ = R/m is complete with respect the extended absolute value

and that each a ∈ K̂ is the limit of a sequence {an} in K. Finally, one proves that this
completion is essentially unique, in the sense that if (K̂ ′, | |′) is another complete valued
field that contains (K, | |) as a dense subfield, then the map*:

σ : K̂ → K̂ ′, lim
n→∞

an 7−→ lim
n→∞

an

*The first limit is taken with respect to | | and the second limit with respect to | |′.

11
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is a K-isomorphism that preserves the absolute value, i.e., |a| = |σ(a)|′. This is proven
in the same way that one does when the real numbers are constructed from Q. A proof
can be found in [5, Theorem 1.1.4, pages 9-12]

The next results shows why we won’t be interested in fields complete with respect
to archimedean valuations: they are essentially R or C. Some books, like [12], call it
Ostrowski’s Theorem but this name is often reserved in the literature for the classification
of the absolute values of Q (Theorem II.3.2).

Theorem I.2.3. Let K be a field complete with respect to an archimedean absolute value
| |. Then there is an isomorphism σ from K onto R or C satisfying

|a| = |σ(a)|s ∀ a ∈ K

for some s ∈ (0, 1].

Proof. [12, Ch. II, Theorem 4.2, page 124]

The last result justifies why we will restrict our attention to nonarquimedean absolute
values. In these cases is customary, and sometimes more convenient, to work with the
exponential valuation v directly. That is why it is worth mentioning how to extend it to
K̂.

So let v be an exponential valuation of a field K and | | an associated absolute value.
v can be canonically continued to a valuation v̂ of the completion K̂ by setting v̂(0) =∞
and assigning for each nonzero a = lim

n→∞
an ∈ K̂, an ∈ K, the value:

v̂(a) = lim
n→∞

v(an). (I.1)

Since |a− an| → 0 =⇒ v(a − an) → ∞, there exist n0 such that for n ≥ n0 we have
v(a− an) > v̂(a). Now using that v(x) 6= v(y) =⇒ v(x+ y) = min {v(x), v(y)} we get:

v = (an) = v̂(an − a+ a) = min {v̂(an − a), v̂(a)} = v̂(a)

So that the sequence v(an) is eventually stationary (for n ≥ n0) and v̂(a) ∈ v(K×),
which implies the next result.

Proposition I.2.4. Let K be a field and K̂ its completion with respect to an exponential
valuation v of K. Then the value groups of K and K̂ are the same, i.e.

v(K×) = v̂(K̂×).

Proof.

Therefore, if v is discrete and normalized, so is the extension v̂.
Every Cauchy sequence of K converges in K̂. It is then worthwhile to notice the

following.

Proposition I.2.5. If the absolute value | | of K is nonarchimedean then {an}n∈N is
a Cauchy sequence if and only if an+1 − an is a nullsequence.

12
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Proof. The Cauchy condition for {an}n∈N in particular implies that an+1−an is a nullse-
quence.

Conversely, let m ≥ n. Then we have:

|an − am| = |an − an−1 + an−1 − an−2 + · · ·+ am+1 − am|
≤ max {|an − an−1| , . . . , |am+1 − am|} .

which shows that if an+1 − an is a nullsequence, {an}n is a Cauchy sequence.

Corolary I.2.6. Let (K, | |) be a nonarchimedean valued field. Then an infinite series∑∞
n=1 an is convergent in K̂ if and only if {an}n is a nullsequence.

Proof. Let sn =
∑n

k=1 ak. Then by Proposition I.2.5, sn converges in K̂ if and only if
sn+1 − sn = an+1 is a nullsequence.

Proposition I.2.7. Let O and Ô be the valuation rings of (K, v) and (K̂, v̂) respectively,
with respective maximal ideals p and p̂. Then one has

Ô/p̂ ∼= O/p

and if v is discrete, one has furthermore

Ô/p̂n ∼= O/pn for n ≥ 1.

Proof. The construction of the completion K̂ and the extension v̂ tell us that Ô∩K = O
and p̂ ∩K = p, since

Ô =
{
x ∈ K̂ : v̂(x) ≥ 0

}
p̂ =

{
x ∈ K̂ : v̂(x) > 0

}
.

Which means that the ring morphism

O → Ô/p̂, a 7→ a mod p̂

is well defined. It is surjective since for every x ∈ Ô, its class x = x + p̂ is an open
neighbourhood of x. By the density of K in K̂, (x+ p̂)∩K 6= ∅. Any y ∈ (x+ p̂)∩K 6= ∅
is sent to x by this map. Crearly, the kernel is p. Therefore it induces an isomorphism
Ô/p̂ ∼= O/p.

As we proved, if v is discrete and normalized, then so it is v̂. Let π ∈ O be a prime
element (v(π) = 1 = v̂(π)). Then the only ideals of Ô are p̂n = πnÔ, n ≥ 0. The map

O → Ô/p̂n, a 7→ a modπnÔ

is ring morphism. It is surjective for the same reason as before: since K is dense in K̂,
for every ∈ Ô we have ∅ 6= (x+ p̂n) ∩K ⊂ O, because x+ p̂n is an open neighbourhood
of x. So that there exists y ∈ O such that y ≡ x mod πnÔ. Since pn = πnO = p̂n ∩ O,
the kernel is clearly pn, so it induces an isomorphism Ô/p̂n ∼= O/pn for n ≥ 1.

13
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Proposition I.2.8. Let (K, v) be a discretely valued field. Let S ⊂ O be a system of
representatives for the residue field k = O/p such that 0 ∈ S, and let π ∈ O be a prime
element. Then every x ∈ K̂× admits a unique representation as a convergent series:

x = πm(a0 + a1π + a2π
2 + · · · )

where ai ∈ S, a0 6= 0,m ∈ Z.

Proof. Let v̂ be the extension of v to K̂. Since v̂(K̂×) = v(K×), π is also a prime
element of Ô. We will construct the coefficients ai by induction.

Let x = πmu ∈ Ô with u ∈ Ô×. By the last Proposition we have Ô/p̂ ∼= O/p, wich
means that the class of u modulo p̂ has a unique representative a0 ∈ S, a0 6= 0 (since
u is a unit).We thus have u = a0 + πb1. Assume now that for n ≥ 1 we have found
a0, ..., an−1 ∈ S, uniquely determined by u, such that:

u = a0 + a1π + · · ·+ an−1π
n−1 + πnbn

for some bn ∈ Ô. Let an ∈ S be the only representative of the class bn+ p̂ ∈ Ô/p̂ ∼= O/p,
so that bn = an + πbn+1 for some bn+1 ∈ Ô. Hence:

u = a0 + a1π + · · ·+ an−1π
n−1 + anπ

n + πn+1bn+1.

In this way we construct an infinite series
∑∞

n=0 anπ
n uniquely determined by u. Of

course, it does converge (Proposition I.2.6), since the general term anπ
n tends to zero

(v̂(anπ
n) ≥ n for every n ∈ N). It converges to u since if sn =

∑n
ν=0 aνπ

ν , then
u− sn ∈ p̂n+1, which again means u− sn → 0 as n→∞.

This last result also allows us to give the following meaningful example.

Example I.2.9. Let k be a field. The polynomial ring in one variable k[t] is a unique
factorization domain. For every a ∈ k, we get a maximal ideal (t− a), and for each one
of them we can define a discrete valuation on its field of fractions k(t) as follows. Let
f ∈ k(t), f 6= 0. We extract from f as many powers of (t − a) as posible, i.e., we write
f as:

f(t) = (t− a)m
g(t)

h(t)
, with (g(t)h(t), (t− a)) = 1, m ∈ Z

and define
va(f) = m, v(0) =∞.

This valuation (which has been defined in the same way the p-adic valuation will be
defined in the next chapter) has k[t](t−a) (the localization al (t − a)) as the valuation
ring of k(t). Of course, va(t − a) = 1. Proposition I.2.8, tell us that every nonzero

element of the completion k̂(t) is of the form:

f(t) = (t− a)m
(
a0 + a1(t− a) + a2(t− a)2 + · · ·

)
, m ∈ Z, ai ∈ k

Which is to say that, if x = t − a, then k̂(t) = k((x)), the field of formal power series,
also known as the field of Laurent series.
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At this point one can already read Chapter 2 of this text. I say this because the
last Proposition generalizes, to any discretely valued field, the fact that one can always
express a non-zero p-adic number in the form

x = pm(a0 + a1p+ · · · ), ai ∈ {0, ..., p− 1} , a0 6= 0,m ∈ Z

p-adic integers can also be identified with lim
←−

Z/pnZ, and it comes as no surprise the

fact that we can obtain a similar result in this more general context of valuation theory.

For the rest of this section, let K be a field, complete with respect to a discrete
normalized valuation v. Let O be its valuation ring with maximal ideal p. For every
n ≥ 1, we have the canonical quotient maps O → pn and the natural projections:

O/p λ1←− O/p2 λ2←− O/p3 λ3←− · · ·

which induce a ring morphism O → lim
←−
n

O/pn, where of course:

lim
←−
n

O/pn =

{
(xn) ∈

∞∏
n=1

O/pn | λn (xn+1) = xn

}
.

If we consider the rings O/pn as topological rings for the discrete topology, then lim
←−
n

O/pn

becomes a topological ring too, as a subspace of
∏∞
n=1O/pn which has the product

topology.

Proposition I.2.10. Let K be a complete discretely valued field. The canonical ring
morphism

φ : O → lim
←−
n

O/pn, x 7−→ (x mod pn)n∈N

is an isomorphism and a homeomorphism. It also induces a group

O× ∼= lim
←−
n

O/U (n)

Proof. The kernel of φ is
⋂∞
n=1 p

n = 0, so it is injective. For surjectivity, recall that we
are working with a discrete valuation, so that p = πO, and let R ⊂ O be a system of
representatives of O/p that contains 0. By Proposition I.2.8, each residue a ∈ O/p can
be uniquely written in the form:

a ≡ a0 + a1π + a2π
2 + · · · an−1πn−1(mod pn), ai ∈ R

Therefore, every s ∈ lim
←−
n

O/pn is given by a coherent (for the natural projections) se-

quence of sums:
sn = a0 + a1π + · · ·+ an−1π

n−1, n ∈ N
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which means that s = φ(x) where x = limn→∞ sn =
∑∞

n=0 anπ
n.

We have proved that φ is an isomorphism. To prove that it is an homeomorphism it
suffices* to show that a basis of neighbourhoods of 0 ∈ O maps bijectively to a basis of
neighbourhoods of 0 ∈ lim

←−
n

O/pn.

First note that the sets

Pn =
n−1∏
k=1

{0} ×
∞∏
k=n

O/pk, n ∈ N

form a basis of neighbourhoods of 0 ∈
∏∞
k=1O/pk. Then, the bijection φ : O → lim

←−
n

O/pn

maps the basic neighbourhood pn of 0 ∈ O to the basic neighbourhood Pn ∩ lim
←−
n

O/pn of

0 ∈ lim
←−
n

O/pn. This proves that φ is a homeomorphism.

It induces an isomorphism when restricted to O×:

O× ∼=
(

lim
←−
n

O/pn
)×

= lim
←−
n

(O/pn)× ∼= lim
←−
n

O×/U (n).

where the last isomorphism is given component-wise by Proposition I.1.19.

Now let K be a complete, nonarchimedean valued field (not necessarily discrete) and
let k = O/p be its residue class field. The usual quotient map O → k, x 7→ x, induces a
map O → k[x] reducing the coefficients modulo p:

f(x) = a0 + a1x+ · · · anxn 7→ f(x) = a0 + a1x+ · · ·+ anx
n

We still treat this operation as reducing modulo p, i.e., we write f = f mod p instead of
mod p[x].As it is customary, if λ ∈ O, reduction mod λ stands for reduction modulo the
ideal λO.

Definition I.2.11. A polynomial f(x) = a0 +a1x+ · · · anxn ∈ O[x] is called primitive
if

|f | := max {|a0| , . . . , |an|} = 1

In other words a polynomials f ∈ O[x] is primitive if at least one of the coefficients
is in O×, or equivalently, if f 6= 0.

Now we can prove the main result of this chapter.

Hensel’s Lemma I.2.12. Let K be complete with respect a nonarchimedean absolute
value | |. Let f(x) ∈ O[x] be a primitive polynomial that admits a factorization modulo
p:

f(x) ≡ g(x)h(x) (mod p)

*This is a basic fact about topological groups. If (G,+) is such a group, and {Un}n is a basis of
neighbourhoods of 0 ∈ G, then for each x ∈ G, {x+ Un}n is a basis of neighbourhoods of x. In other
words, a basis of neighbourhoods of x ∈ G is obtained translating by x a basis of 0.
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into relatively prime polynomials g, h ∈ k[x]. Then this factorization can be lifted up
into a factorization of f(x):

f(x) = g(x)h(x)

where g, h ∈ O[x] verify

deg(g) = deg(g); g(x) ≡ g(x) (mod p) and h(x) ≡ h(x) (mod p).

Proof. Let d = deg(f),m = deg(g). First note that deg(f) = deg(g) + deg(h) because k
is a domain. Then

d = deg(f) ≥ deg(f) = deg(g) + deg(h)

which means that d−m ≥ deg(h). Now we lift g, h by just lifting their coefficients, i.e.,
we choose polynomials g0, h0 ∈ O[x] such that g0 ≡ g (mod p), h0 ≡ h (mod p) verifying
deg(g0) = deg(g) = m,deg(h0) = deg(h) ≤ d −m. Of course f ≡ g0h0 (mod p). Since
(g, h) = 1, there exist polynomials a(x), b(x) ∈ O[x] such that ag0 + bh0 ≡ 1 (mod p).
Among the coefficients of f − g0h0 ∈ p[x] and ag0 + bh0 − 1 ∈ p[x], we choose one of
minimal valuation, and call it λ. This means that we have{

f(x)− g0(x)h0(x) ≡ 0 (mod λ)
a(x)g0(x) + b(x)h0(x)− 1 ≡ 0 (mod λ)

and not only modulo p.
We are going to look for the polynomials g and h in the form

g = g0 + p1λ+ p2λ
2 + · · · , h = h0 + q1λ+ q2λ

2 + · · · (I.2)

where pi, qi ∈ O[x] are polynomials of degree < m and ≤ d−m respectively. If we were
to find expressions as in (I.2), then p1λ+ p2λ

2 + · · · and q1λ+ q2λ
2 + · · · would indeed

define polynomials in O[x] of degree < m and ≤ d −m, since grouping the coefficients
of the monomial xt (for t < m ó t ≤ d −m) of each term of the infinite sums in (I.2),
we would get a power series in λ:

∑∞
`=1 akλ

k, ak ∈ O, that converges in O because K is
complete and λ ∈ p. This way we would have deg(g) = m,deg(h) ≤ d −m, and hence
deg(f) ≤ d.

In order to construct these expressions we are going to successively determine the
polymonials

gn−1 = g0 + p1λ+ · · ·+ pn−1λ
n−1, hn−1 = h0 + q1λ+ · · ·+ qn−1λ

n−1 n ≥ 1 (I.3)

in a way that they verify
f ≡ gn−1hn−1 (modλn).

This way, if we let n→∞, we would get f = gh since gn → g and hn → h, which would
be a factorization of f with the desired properties.

Recall that f ≡ g0h0 (modλ), so we have already found the first couple of the
polynomials (I.3) we are looking for (the case n = 1). Assume that we have already
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found these polynomials up to some n ≥ 1 satisfying the desired congruence. Now we
are looking for gn and hn, or equivalently, pn and qn. The relations:

gn = gn−1 + pnλ
n, hn = hn−1 + qnλ

n

transform the condition f ≡ gnhn (modλn+1) into an equivalent condition for pn and
qn:

f ≡ gn−1hn−1 + (gn−1qn + hn−1pn)λn (modλn+1)

since if pn and qn were to satisfy the last congruence, and we define gn := gn−1 +
pnλ

n, hn := hn−1 + qnλ
n, then of course the condition f ≡ gnhn (modλn+1) would hold.

So we must find pn and qn such that:

f − gn−1hn−1 ≡ (gn−1qn + hn−1pn)λn (modλn+1).

Dividing by λn in the above expression and writing fn = λ−n(f − gn−1hn−1) ∈ O[x], we
get:

fn ≡ gn−1qn + hn−1pn ≡ g0qn + h0pn (modλ).

This is the condition that pn and qn must satisfy. Since ag0 + bh0 ≡ 1 (modλ), we have:

afng0 + bfnh0 ≡ fn (modλ) (I.4)

and taking qn = afn and pn = bfn would apparently give us what we need, but the
degrees may be higher that we can allow (remember, we want deg(pn) < m and deg(qn) ≤
d−m). For this reason, we use Euclidean division:

b(x)fn(x) = q(x)g0(x) + pn(x)

obtaining polynomials pn(x) and q(x) such that deg(pn) < deg(g0) = m. The highest
order coefficient of g0 is a unit since since g0 ≡ g (mod p) and deg(g) = deg(g0), hence
q(x) ∈ O[x]. Now, substituting this division in (I.4), we have the congruence

g0 (afn + h0q) + h0pn ≡ fn (mod λ).

Let qn be the polynomial obtained from afn + h0q by removing all coefficients divisible
by λ. This way deg(qn) = deg(qn modλ) and g0qn + h0pn ≡ fn (modλ). Recalling that
deg(fn) ≤ d,deg(g0) = m and deg(h0pn) < (d−m) +m = d, from this last congruence
we deduce that deg(qn) ≤ d−m, as we wanted.

The following corollary tell us that we can lift roots of primitive polynomials f ∈ O[x]
modulo p to actual roots of f .

Corolary I.2.13. Let K be a field complete with respect to a nonarchimedean absolute
value | |. Let f(x) ∈ O[x] be a primitive polynomial and let α ∈ k such that

f(α) ≡ 0 (mod p)
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but
f ′(α) 6≡ 0 (mod p)

i.e., α is a root of the reduction of f but not of the reduction of its formal derivative.
Then, there exists α ∈ O such that α ≡ α and f(α) = 0.

Proof. The fact that f(α) = 0 means we can write:

f(x) = (x− α)f0(x)

The condition f ′(α) 6= 0 means that α is a simple root of f . In other words, (x−α) and
f0(x) are coprime. Now we can apply Hensel’s lemma to g(x) = (x−α) and h(x) = f0(x)
to obtain polynomials g, h ∈ O[x] that factor f and deg(g) = 1. If g(x) = ax+ b, since
it reduces to (x− α), we have a ≡ 1 (mod p) and b ≡ α (mod p). In particular, a ∈ O×.
Therefore we can write:

f(x) = a(x− b/a)h(x).

Taking α = b/a we clearly have α ≡ α (mod p) and f(α) = 0.

Corolary I.2.14. Let K be a field complete with respect to a nonarchimedean valuation
| |. Then, every irreducible polynomial f(x) = a0 + a1x + ... + anx

n ∈ K[x] with
a0, an 6= 0, verifies

|f | = max {|a0| , |an|} .

In particular, an = 1 and a0 ∈ O imply that f ∈ O[x].

Proof. Let ai be a coefficient of f such that |ai| = |f | = max
1≤j≤n

{|aj |}. If we multiply

f by a−1i , the new coefficients bj = a−1i aj are in O and bi = 1, i.e., a−1i f ∈ O[x] and∣∣a−1i f
∣∣ = 1. Let br be the the first of the coefficients of a−1i f such that |br| = 1. Then

we have:
a−1i f(x) ≡ xr(br + br+1x+ · · ·+ bnx

n−r) (mod p).

If we had max {|b0| , |bn|} < 1, then 0 < r < n, and applying Hensel’s lemma to the
above congruence would yield a factorization of a−1i f(x) into two non-trivial factors,
hence a factorization of f(x), a contradiction.

So we must have max {|b0| , |bn|} = 1, or equivalently

max {|a0| , |an|} = |ai| = |f | .

This corollary, together with the following general result and lemma, will allow us to
prove an important result about the extensions of valuations.

Proposition I.2.15. Let K be complete with respect to the absolute value | | and let
V be an n-dimensional normed vector space over K. Then, for any basis {v1, . . . , vn} of
V , the maximum norm

‖x1v1 + · · ·+ xnvn‖ = max {|x1| , . . . , |xn|} , xi ∈ K
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is equivalent to the given norm on V. In particular, V is complete and the isomorphism

Kn −→ V, (x1, . . . , xn) 7−→ x1v1 + · · ·+ xnvn

is a homeomorphism.

Proof. [12, Ch. II, Proposition 4.9, page 133]

Lemma I.2.16. Let A be an integrally closed domain, K its field of fraction and B the
integral closure of A over a finite extension L|K, then

x ∈ B =⇒ NL|K(x) ∈ A.

Proof. Let S be the set of all the K-embeddings of L into K. Of course, A = B ∩K. If
x ∈ B, then its conjugates σx are also integral over A, hence σx ∈ B for every σ ∈ S.
Recall (see, for example [13, Lemma C-5.67, page 457]) that

NL|K(x) =

(∏
σ∈S

σx

)[L:K(x)]

.

So that NL|K(x) ∈ B. And of course NL|K(x) ∈ K. Therefore NL|K(x) ∈ A = B∩K.

Theorem I.2.17. Let K be complete with respect to an absolute value | |K . Then | |K
may be extended in a unique way to an absolute value of any given algebraic extension
L | K. This extension is given by the formula

|α|L = n

√∣∣NL|K(α)
∣∣
K

when L | K has finite degree n. In this case L is again complete.
If | |K is nonarchimedean, the valuation ring of (L, | |L) is the integral closure of

O in L.

Proof. If | |K is archimedean, then by Theorem I.2.3, K = R or C. C is algebraically
closed, so every algebraic extension of C is C again. Since C is the only proper algebraic
extension of R ([8, Corollary 3.20, page 267]), the only non-trivial case we have to
consider is K = R, L = C, and then [C : R] = 2. From classical analysis we know that
every norm in R and C is equivalent to their usual absolute values, which make them
complete. The only thing left to show is that the formula actually extends the absolute
value of R to the absolute value of C, but this is obvious since for every z ∈ C we have

NC|R(z) = zz = |z|2C .

So we may assume that | |K is nonarchimedean. Also, since every algebraic extension
is the composition of its finite subextensions, we only need to prove the existence of
a unique extension of | |K in the case where the extension L|K is finite, of degree
n = [L : K].
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Existence of the extended valuation. Let O be the valuation ring of K and Õ
its integral closure in L. We are going to prove that:

Õ =
{
α ∈ L | NL|K(α) ∈ O

}
. (I.5)

The implication α ∈ Õ =⇒ NL|K(α) ∈ O is given by Lemma I.2.16 since we know that
the valuation ring O is integrally closed. (Proposition I.1.14).

For the other direction, let α ∈ L× such that NL|K(α) ∈ O. Also, let

f(x) = xd + ad−1x
d−1 + · · ·+ a0 ∈ K[x]

be the minimal polynomial of α over K. Then* NL|K(α) = ±am0 ∈ O, which means that
|a0|K ≤ 1, hence a0 ∈ O. Then Corollary I.2.14 implies that f ∈ O[x], and since O is
integrally closed, α ∈ O.

As the statement of this theorem suggests, we define for every α ∈ L:

|α|L = n

√∣∣NL|K(α)
∣∣
K
.

| |L does indeed extend the absolute value | |K , since for every x ∈ K we have
NL|K(x) = xn. The fact thatNL|K(α) = 0 ⇐⇒ α = 0 andNL|K(αβ) = NL|K(α)NL|K(β)
imply the two properties:

|α|L = 0 ⇐⇒ α = 0; |αβ|L = |α|L |β|L .

To show that | |L is a non archimedean absolute value on L, it only remains to prove
the strong triangle inequality.

|α+ β|L ≤ max {|α|L , |β|L} .

Without loss of generality, assume that max {|α|L , |β|L} = |α|L. We then multiply by
|α|−1L =

∣∣α−1∣∣
L

the above inequality to get:∣∣∣∣1 +
β

α

∣∣∣∣
L

≤ 1.

Since

∣∣∣∣βα
∣∣∣∣
L

≤ 1, we have just shown that the strong triangle inequality is equivalent to:

|α|L ≤ 1 =⇒ |α+ 1|L ≤ 1.

Notice that for every x ∈ L

x ∈ Õ ⇐⇒ NL|K(x) ∈ O ⇐⇒
∣∣NL|K(x)

∣∣
K
≤ 1 ⇐⇒ |x|L ≤ 1 (I.6)

*Recall that for x ∈ L, the norm NL|K(x) is, up a to sign, the coefficient of the zero-degree term of
the characteristic polynomial of the automorphism multiply-by-x of L. This characteristic polynomial is
also a m-th power of the minimal polynomial of x over K, where m = [K(x) : K]. All this can be found
in [12, Ch. I, §2].
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This shows that
|α|L ≤ 1 =⇒ |α+ 1|L ≤ 1

is equivalent to α ∈ Õ =⇒ α + 1 ∈ Õ, which is trivially true. This way the strong
triangle inequality has been proven, making | |L into a nonarchimedean valuation of L.

Equation (I.6) also shows that the valuation ring of (L, | |L) is Õ, the integral closure
of O in L, as we wanted.

Uniqueness of the extended valuation. Let | |′L be another extension of | |K
to L with valuation ringO′. Let m and m′ be the maximal ideals of Õ andO′ respectively.
We plan on showing that Õ ⊂ O′. So assume that there exists α ∈ Õ \ O′, and let

f(x) = a0 + a1x+ · · ·+ ad−1x
d−1 + xd

be its minimal polynomial over K. Above we showed that if α ∈ Õ, then f(x) ∈ O[x],
which means that ai ∈ O ⊂ O′. Furthermore

α /∈ O′ =⇒ |α|′L > 1 =⇒ α−1 ∈ m′.

Then, by multiplying by α−d the equation a0 + a1α + · · · + ad−1α
d−1 + αd = 0 and

rearranging we get:

1 = −ad−1α−1 − · · · − a1
(
α−1

)d−1 − a0 (α−1)d ∈ m′,

a contradiction, because m′ is a maximal ideal. So we must have Õ ⊂ O′. In other
words, |x|L ≤ 1 =⇒ |x|′L ≤ 1. This implies that both valuations are equivalent,
because otherwise, by Corollary I.1.3 there would exist y ∈ L such that |x|L ≤ 1 but
|y|′L > 1, a contradiction. So there exists s > 0 such that |x|sL = |x|′L for every x ∈ L,
but since | |L and | |′L agree on K, we must have s = 1, so that both absolute values
are the same.

Finally, the fact that L is again complete follows from Proposition I.2.15, because L
is an n-dimensional vector space over K.

Due to the relation we established between nonarchimedean absolute values and
exponential valuations, if | | were non-archimedean, the above result could also be stated
with an associated exponential valuation v instead of an absolute value. In this case, if
n = [L : K] <∞, the extension w of v is given by the formula:

w(α) =
1

n
v
(
NL|K(α)

)
obtained from the one given by the theorem taking logarithms. And indeed, for every
x ∈ K, NL|K(x) = xn, so that

v(x) = w(x) ∀x ∈ K.

Furthermore, we see that if L|K is a finite extension then, if v is discrete, the extension
w is again discrete.
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Observation I.2.18. Let K be a field complete with respect a nonarquimedean val-
uation v. Extend the valuation to the algebraic extension L|K. Then, their valuation
rings OL,OK and its respective maximal ideals, pL, pK , obviously verify

OK ⊂ OL and pK ⊂ pL.

But we furthermore have that kK ⊂ kL, i.e., an extension for the residue class field of L
and K. This is because the map:

OK → OL/pL, x 7→ x

has pK as its kernel, so that it induces a natural injection kK = OK/pK ↪→ OL/pL = kL.
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Chapter II

p-adic Numbers

Throughout this chapter p ∈ N will be a prime number. We will give several definitions
of p-adic numbers, showing of course that they are all the same.

II.1 Classic Definition of p-adic Numbers

Let us recall that every positive integer f ∈ N has a unique expression in base p:

f = a0 + a1p+ · · ·+ anp
n

where ai ∈ {0, 1, . . . , p− 1}, a system of representatives of Fp. We will call it the p-adic
expansion of f . It is easily computed by succesively dividing f by p.

f = a0 + f1p
f1 = a1 + f2p

...
fn−1 = an−1 + fnp
fn = an.

Of course ai ∈ {0, 1, . . . , p− 1}. In other words ai ≡ fi(mod p).
We can do something similar for every f ∈ Z(p), i.e. for rational numbers whose

denominator is not a multiple of p, since

Z(p)

pnZ(p)
= Z/pnZ.

But for non integer rational numbers, or even for negative integers, we would get an
infinite series

∞∑
k=0

akp
k = a0 + a1p+ . . .
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At least for now, this notation should be understood in a purely formal sense. That
means that

∑∞
k=0 akp

k is just the sequence of partial sums:

sn =

n∑
k=0

akp
k.

All this motivates the definition:

Definition II.1.1. Let p be a prime number. A p-adic integer in a formal series

∞∑
k=0

akp
k = a0 + a1p+ . . .

where ai ∈ {0, 1, . . . , p− 1} for every i = 0, 1, . . . .
The set of all p-adic integers is denoted Zp.

To associate a p-adic expansion to any f ∈ Z(p), we can use the following elementary
result:

Proposition II.1.2. Let a ∈ Z. For every n ∈ N, the residue class of amod pn ∈ Z/pnZ
can be uniquely represented in the form

a ≡ a0 + a1p+ a2p
2 + · · ·+ an−1p

n−1(mod pn)

where ai ∈ {0, 1, . . . , p− 1} for every i = 0, 1, . . . , n− 1

Proof. We proceed by induction on n. For n = 1 this simply means that each element of
Z/pZ has a unique representative in {0, 1, . . . , p− 1}, which is obviously true. Assume
that the result holds for n− 1, then

a = a0 + a1p+ a2p
2 + · · ·+ an−1p

n−2 + gpn−1, for some g ∈ Z.

Now we just take an−1 as the only representative in {0, 1, . . . , p− 1} of gmod p, so that

a ≡ a0 + a1p+ a2p
2 + · · ·+ an−1p

n−2 + an−1p
n−1 (mod pn).

Since this an−1 is uniquely determined by a, the proposition holds.

Since
Z(p)

pnZ(p)
= Z/pnZ, every rational number f ∈ Z(p) defines a sequence of residue

classes mod pn:
sn := f mod pn ∈ Z/pnZ, n = 1, 2, . . .

By the preceding proposition, we find uniquely determined ai ∈ {0, 1, . . . , p− 1} such
that:

s̄1 = a0 mod p
s̄2 = a0 + a1p mod p2

s̄3 = a0 + a1p+ a2p
2 mod p3

...
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The ai are the same for every equation because s̄n is a coherent sequence for the canonical
projections Z/pnZ→ Z/pn−1Z. This sequence of integers:

sn = a0 + a1p+ · · ·+ an−1p
n−1

defines a p-adic number
∑∞

k=0 akp
k. This is the p-adic expansion of f . We have seen

that:
Z(p) ⊂ Zp.

Now, in analogy with the Laurent series, we define:

Definition II.1.3. A p-adic number is an expression of the form:

∞∑
k=−m

akp
k = a−mp

−m + · · ·+ a−1p
−1 + a0 + a1p+ · · ·

where m ∈ Z and ai ∈ {0, 1, . . . , p− 1}. The set of all p-adic numbers is denoted Qp.

Of course Zp ⊂ Qp.

We can write every rational number f ∈ Q as f =
g

h
p−m where (gh, p) = 1, so in

particular g/h ∈ Z(p). If a0 + a1p + a2p
2 + . . . is the p-adic expansion of g/h, then we

can assign to f =
g

h
p−m the p-adic expansion:

a0p
−m + a1p

−m+1 + · · ·+ am + am+1p+ · · · ∈ Qp.

We have just showed that Q ⊂ Qp.
The p adic number

∑∞
k=−m akp

k = a−mp
−m+ · · ·+a−1p

−1 +a0 +a1p+ · · · is usually
denoted as

(a−ma−m+1 . . . a0.a1a2 . . . )p

or
(. . . a2a1a0.a−1a−2 . . . a−m)p

I will use the latter since it is more consistent with the usual base n notation. For
example, 43.25 = 4 · 5 + 4 + 2 · 5−1 = 122

5 . Furthermore, with this notation, the p-adic
integers are precisely the expressions without decimal part, i.e. the expressions of the
form . . . a2a1a0.0000, which is more intuitive.

It is possible to define addition and multiplication in Zp that turn it into a ring
and Qp into its field of fractions. Addition works in the same way as the addition of
two decimal expansion of real numbers: with the usual carry-over rules for digits in
base p. For example, if, in Z7, we have a = 1 + 4 · 7 = 417, b = 6 + 5 · 7 = 567 then
a+ b = 0 + 3 · 7 + 72 = 1307.

For multiplication we can first formally multiply the power series defining two p-adic
integers: ( ∞∑

k=0

akp
k

)( ∞∑
k=0

bkp
k

)
=

∞∑
k=0

ckp
k, where ck =

k∑
j=0

ajbk−j .
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Of course it could happen that ck > p − 1. In that case we write: ck = c̃k + dkp with
c̃k ∈ {0, 1, . . . , p− 1}, and therefore ckp

k = c̃kp
k + dkp

k+1. This way the new coefficient
of pk and pk+1 are c̃k and dk + ck+1, respectively. Again, if dk + ck+1 /∈ {0, 1, . . . , p− 1},
we can repeat this proccess with this coefficient. Appliying successively this procedure
starting with c0, we get the p-adic expression of ab.

Showing that these operations turn Zp into a ring is not difficult but very messy and
it is an unnecesary effort, since it will follow immediately from the definition of Zp as
the inverse limit of Z/pnZ that we will give in the next section.

With these operations, the units of Zp are the elements of the form

u = a0 + a1p+ · · · where a0 6= 0.

This is a direct consequence of Proposition IV.2.1. We can formally invert the power
series in p that defines u and then proceed as with the multiplication two paragraphs
above (the carry-over rules in base p) to get the coefficients of u−1 to lie in {0, 1, ..., p− 1}.

Qp is the quotient field of Zp, which is another way to define Qp. This follows from
the fact that every element of Qp is of the form pmu with m ∈ Z, i.e., u ∈ Z×p , so that
every nonzero element of Qp is invertible. Now, since Qp is a field, it contains the field of
fractions of Zp. Conversely, if a/b ∈ Frac(Zp), with a, b ∈ Zp, extract as high a power of
p from b as possible, so that we can write b = pmu, u ∈ Zp. Then a/b = ap−mu−1 ∈ Qp.
This is exactly the reasoning used to show that the field of fractions of k[[t]] (where k is
a field and t an indeterminate) is just the field of Laurent series k((t)).

All this results will also follow immediately from the (more practical) definition of
the p-adic numbers as the completion of Q for the p-adic metric, that we will give in
Section 3 of this chapter.
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II.2 p-adics as an Inverse Limit

Another representation of the p-adic numbers arise from viewing them not as sequences
of partial sums of integers

∑∞
k=0 akp

k, but as sequences of residue clases (these two things
are the same thanks to Proposition II.1.2):

s̄n = sn mod pn ∈ Z/pnZ.

These are coherent sequences (s̄n)n∈N ∈
∏∞
n=0 Z/pnZ for the canonical projections:

Z/pZ λ1←− Z/p2Z λ2←− Z/p3Z λ3←− · · ·

Which just means that λn(s̄n+1) = s̄n
Anyone already familiarized with this concept already knows that the set we are

talking about is the projective limit of the rings Z/pnZ, i.e.

lim
←−
n

Z/pnZ =

{
(xn)n∈N ∈

∞∏
n=1

Z/pnZ | λn (xn+1) = xn,∀n ∈ N

}
.

We immediately have:

Proposition II.2.1. There is a bijection

φ : Zp
∼−→ lim

←−
n

Z/pnZ

that arises from associating to every p-adic number
∑∞

k=0 akp
k the sequence of residues

s̄n =
n−1∑
k=0

akp
k mod pn ∈ Z/pnZ.

Proof. Indeed, for each p-adic number the sequence (s̄n)n∈N from the statement of the
proposition is in lim

←−
n

Z/pnZ. Conversely, each sequence (s̄n)n∈N ∈ lim
←−
n

Z/pnZ is of the

form

s̄n =

n−1∑
k=0

akp
k mod pn ∈ Z/pnZ

thanks to Proposition II.1.2, so it defines a p-adic integer
∑∞

k=0 akp
k.

The inverse limit has the advantage of clearly being a subring of the direct product∏∞
n=1 Z/pnZ. Therefore, this bijection φ gives Zp the ring structure we seeked.

If one would decide to define the p-adic integers first this way, then for this to agree
with the previous definitions, one would simply have to define the p-adic numbers Qp as
the fraction field of Zp.

28



II.2. P -ADICS AS AN INVERSE LIMIT

It is worth mentioning that one of the more prominent applications of p-adic numbers
is in Diophantine equations. These equations are of the form F (x1, . . . , xn) = 0 where
F ∈ Z[x1, . . . , xn]. The problem is then weakened considering all the congruences:

F (x1, . . . , xn) ≡ 0 (modm), m ∈ Z.

Or, by the Chinese remainder theorem, only the congruences modulo all prime powers:

F (x1, . . . , xn) ≡ 0 (mod pk), p primo, k ∈ N.

In this line, we have the next result, which we will not use in this text but is worth
mentioning.

Proposition II.2.2. Let F (x1, . . . , xn) ∈ Z[x1, . . . , xn] and let p be a prime number.
Then the congruence:

F (x1, . . . , xn) ≡ 0 (mod pk)

is solvable for every k ≥ 1 if and only if the equation:

F (x1, . . . , xn) = 0

has a solution in p-adic integers.

Proof. [12, Ch. II, §1, Proposition 1.4, page 105]

We can already see some examples of explicit computations of the p-adic expansions
of some rational numbers.

Example II.2.3. Euclidean division of −1 by p results in −1 = p − 1 + (−1)p. Using
this successively we see that:

−1 = p− 1 + (p− 1)p+ (p− 1)p2 + . . .

Effectively we have

−1 ≡ p− 1 + (p− 1)p+ (p− 1)p2 + · · ·+ (p− 1)pn−1(mod pn) for every n ∈ N.

Example II.2.4. For every n ∈ N we have

1 = (1 + p+ · · ·+ pn−1)(1− p) + pn.

Therefore
1

1− p
≡ 1 + p+ · · ·+ pn−1(mod pn) for every n ∈ N.

This implies that the p-adic expansion of 1
1−p is 1 + p+ p2 + . . . .
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II.3 p-adics as a Completion of Q

When working on the field Q, the usual absolute value | | is denoted by | |∞, which is
clearly archimedean. We also have the p-adic absolute values | |p, defined as follow:

Let a = b/c ∈ Q×, a, b ∈ Z. We extract from b and c the highest possible power of
the prime number p, resulting in:

a = pm
b′

c′
, (b′c′, p) = 1

and we define

vp(a) = m and |a|p =
1

pm
.

We also establish vp(0) = ∞. Then, it is easily checked that vp : Q → Z ∪ {∞} verifies
the properties:

1. vp(x) =∞⇐⇒ a = 0.

2. vp(xy) = vp(x) + vp(y).

3. vp(x+ y) ≥ min {vp(x), vp(y)}.

So vp is an exponential valuation, called the p-adic valuation and | |p is called the
p-adic absolute value, which is a nonarchimedean absolute value (Proposition I.1.11).
They obviously verify

|a|p = p−vp(a) and vp(a) = − logp |a|p .

Proposition II.3.1. The absolute values | |p and | |∞ of Q are pairwise inequivalent.

Proof. For a given prime number p, |p|p = 1/p < 1 and |p|q = 1 for every q 6= p. So it
does not exist s > 0 such that |p|p = |p|sq. Of course, the archimedean absolute value
| |∞ is not equivalent to any of the nonarchimedean p-adic absolute values, since, for
example, |2|p ≤ 1 for every prime number p but |n|∞ = 2 > 1, so, again, it does not
exist s > 0 such that |2|p = |2|s∞.

The next proposition shows that the p-adic valuations and | |∞ are the only possible
valutions of Q up to equivalence.

Theorem II.3.2. (Ostrowski) Every non-trivial mutiplicative valuation of Q is equiva-
lent to one of the valuations | |p or | |∞.

Proof. Let ‖ ‖ be a nonarchimedean absolute value. Then ‖n‖ = ‖1 + · · ·+ 1‖ ≤ 1 and
there must be at least one prime number p such that ‖p‖ < 1, because otherwise the
unique prime factorization of integers would imply ‖x‖ = 1 for every x ∈ Q×, and we
had discarded the trivial valuation.

The set A = {a ∈ Z | ‖a‖ < 1} is clearly a proper ideal of Z, satisfying pZ ⊂ A. Since
pZ is maximal, we must have A = pZ. In particular, this shows that there was only one
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prime number p with ‖p‖ < 1. Let a ∈ Z and write a = bpm with p - b, so that b /∈ A.
Therefore ‖b‖ = 1 and

‖a‖ = ‖b‖ ‖pm‖ = ‖p‖m = |a|sp
where s = − log ‖p‖ / log p. Therefore, ‖ ‖ is equivalent to | |p.

Now let ‖ ‖ be an archimedean absolute value. We are going to see that for every
m,n ∈ Z>1 we have

‖m‖1/ logm = ‖n‖1/ logn. (II.1)

First we write m in base n:

m = a0 + a1n+ · · ·+ arn
r, ai ∈ {0, 1, . . . , n− 1} , nr ≤ m

Hence, ‖ai‖ = ‖1 + · · ·+ 1‖ ≤ ai ‖1‖ ≤ n− 1 and r ≤ logm/ log n, so we have:

‖m‖ ≤
r∑
i=0

‖ai‖ ‖n‖i ≤
r∑
i=0

‖ai‖max {‖n‖r , 1} ≤ (1 + r)(n− 1) max
{
‖n‖

logm
logn , 1

}
≤
(

1 +
logm

log n

)
(n− 1) max

{
‖n‖

logm
logn , 1

}
We have used that for i ≤ r, ‖n‖i ≤ max {‖n‖r , 1}, since we do not know if ‖n‖ ≥ 1 or
‖n‖ < 1. What we do know is that there exists a n0 ∈ Z>1 such that ‖n0‖ > 1, because
otherwise by the unique factorization of natural numbers, we would have ‖n‖ ≤ 1 for
every n ∈ N, which is not possible because ‖ ‖ is archimedean.

Now we use the above inequality for mk instead of m, resulting in:

‖m‖k ≤
(

1 + k
logm

log n

)
(n− 1) max

{
‖n‖k

logm
logn , 1

}
.

Taking k-th roots on both sides results in:

‖m‖ ≤
(

1 + k
logm

log n

)1/k

(n− 1)1/k max
{
‖n‖

logm
logn , 1

}
.

And if we let k tend to infinity we get:

‖m‖ ≤ max
{
‖n‖

logm
logn , 1

}
.

Which is valid in particular for m = n0. This means:

1 < ‖n0‖ ≤ max

{
‖n‖

logn0
logn , 1

}
= max {‖n‖ , 1}

logn0
logn ,

where the equality is due to logn0

logn > 0. The above equation tells us that max {‖n‖ , 1}
cannot be 1, therefore we have arrived at

‖n‖ > 1.

31



II.3. P -ADICS AS A COMPLETION OF Q

And more importantly

‖m‖ ≤ ‖n‖
logm
logn or ‖m‖1/ logm ≤ ‖n‖1/ logn .

The same procedure swapping the roles of m and n gives

‖n‖1/ logn ≤ ‖m‖1/ logm .

Therefore we have proved (II.1) for every m,n > 1.

Putting c = ‖n‖1/ logn (since it is constant for every n ≥ 2), and c = es for a real
number s > 0, we have:

‖m‖ = es logm = |m|s∞ for every m > 1.

This proves that ‖ ‖ and | |s∞ coincide on Z, thus they coincide on its field of fractions
Q .

Proposition II.3.3. For every nonzero rational number a 6= 0, one has:∏
p

|a|p = 1.

where p varies over all prime numbers and the symbol ∞.

Proof. We can factor each nonzero rational number as:

a = ±
∏
p 6=∞

pvp(a).

The sign of a equals a
|a|∞

. Then we may write

a =
a

|a|∞

∏
p6=∞

1

|a|p

and cancelling a 6= 0 in both sides yields the desired formula.

Now we define the p-adic numbers as a completion, as we promised. We are going to
reset the notation momentarily and use Qp and Zp for these new definitions, but later
we will show that they coincide with the p-adic numbers and p-adic integers defined in
the last section.

Definition II.3.4. The field of p-adic numbers is the completion with respect to the
p-adic absolute value | |p of the field of rational numbers.

The completion is made as described in Chapter I, §2. The p-adic absolute value
and valuation are extended from the ones that we have defined for Q in the same way
that we explained in Chapter I, §2, so there is no need to explain it here again. Only
recall that if 0 6= x = lim

n→∞
xn ∈ Qp, for a Cauchy sequence {xn}n of Q, then the
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sequence vp(xn) must eventually become stationary*, i.e., there exist some n0 ∈ N such
that vp(xn) = vp(xn0) for every n ≥ n0. Therefore, the same can be said about |xn|p.
Then the extensions are given by:

vp(x) := lim
n→∞

vp (xn) = vp (xn0)

|x|p := lim
n→∞

|xn|p = |xn0 |p .

And therefore vp(Q×p ) = vp(Q×) = Z (Proposition I.2.4).

Definition II.3.5. We define the p-adic integers as the valuation ring of Qp:

Zp :=
{
x ∈ Qp | |x|p ≤ 1

}
= {x ∈ Qp|v(x)p ≥ 0} .

Proposition II.3.6. Zp :=
{
x ∈ Qp| |x|p ≤ 1

}
is the closure with respect to | |p of the

ring Z in the field Qp.

Proof. If {xn}n is a Cauchy sequence in Z and x = lim
n→∞

xn ∈ Qp, then

|xn|p ≤ 1 ∀n ∈ N =⇒ |x|p ≤ 1

hence x ∈ Zp (note that |x|p refers to the extended valuation in Qp). This shows that

Z| · |p ⊂ Zp.
Conversely, let x = lim

n→∞
xn ∈ Zp, where {xn}n is a Cauchy sequence of Q. We know

that there exists n0 ∈ N such that vp(xn) is stationary for n ≥ n0, and the same goes
for |x|p. Therefore |xn|p = |x|p ≤ 1 for every n ≥ n0, so we can write xn = an

bn
, with

an, bn ∈ Z and (bn, p) = 1. Now, for each n ≥ n0, choose a solution yn ∈ Z of the

congruence bnyn ≡ an (mod pn) (which exists because bn ∈ (Z/pnZ)×). Since
∣∣∣ 1bn ∣∣∣p = 1,

this means that

|an − bnyn| ≤
1

pn
=⇒ |xn − yn|p =

∣∣∣∣ 1

bn

∣∣∣∣
p

|an − bnyn|p ≤
1

pn

and hence x = lim
n→∞

yn, so that x ∈ Z| · |p .

Our work in the previous Chapter on the more general context of Valuation Theory
let us deduce almost instantly many important results about p-adic numbers. We collect
them below.

Proposition II.3.7. (a) The maximal ideal, p, of the discrete valuation ring (Zp, | |p)
is generated by p, i.e.

p = pZp.
*Also recall that this only occurs because the valuation is nonarchimedean
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(b) The units of Zp are the elements that are not a multiple of p, i.e.

Z×p = Zp r pZp = {x ∈ Qp : v(x)p = 0} .

(c) Every element x ∈ Q×p admits a unique representation:

x = pmu with m ∈ Z for some u ∈ Z×p .

where m = v(x)p.

(d) The nonzero ideals of the ring Zp are the principal ideals

pnZp = {x ∈ Qp | vp(x) ≥ n} .

(e) The residue class field of Zp is

kp =
Zp
pZp
∼=

Z
pZ
.

More generally, for every n ≥ 1, we have:

Zp
pnZp

∼=
Z
pnZ

.

(f) Every x ∈ Q×p has a unique representation as a convergent series:

x = pm(a0 + a1p+ a2p
2 + · · · )

where ai ∈ 0, 1, . . . , p− 1, a0 6= 0,m ∈ Z.

(g) There is a canonical isomorphism

Zp ∼= lim
←−
n

Z
pnZ

.

Proof. (a) p is a prime element of Zp since v(p) = 1, so it generates its maximal ideal.

(b) A direct consequence of (a).

(c) We saw in Chapter I that this is true for any discretely valued field, but we repeat
it here: if vp(x) = m, then vp(xp

−m) = 0 so that xp−m = u for some u ∈ Z×p ,
which proves our claim.

(d) Proposition I.1.18.
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(d) The valued field (Q, | |p) has as its valuation ring

O = {x ∈ Q : vp(x) ≥ 0} = Z(p)

the rational numbers whose denominator is not divisible by p. Of course, the
maximal ideal of Z(p) is pZ(p), and Z(p)/p

nZ(p)
∼= Z/pnZ. Then, since Qp is the

completion of (Q, | |p), Proposition I.2.7 tells us:

Zp
pnZp

∼=
Z(p)

pnZ(p)

∼=
Z
pnZ

, ∀n ≥ 1

(f) Proposition I.2.8, using that the residue class field k ∼= Z/pZ of Qp has {0, 1, . . . , p− 1}
as a system of representatives.

(g) Since Qp is complete, Proposition I.2.10 tell us that there is a canonical isomor-
phism

Zp ∼= lim
←−
n

Zp
pnZp

.

The result then follows from (e).

In the previous proposition, (g) allows us to connect the definition of Qp from this
section with the one of Section 2, and by transitivity (or by Proposition II.3.7 (f)), it
also connects with our definition in Section 1. Therefore, we may use Qp and Zp to
denote p-adic numbers and p-adic integers for any of its definitions, without creating
any confusion.

Yet another interesting result about Qp is:

Proposition II.3.8. The ring of p-adic integers Zp contains the (p− 1)-roots of unity.

Proof. Since xp−1 ≡ 1 (mod p) for every x ∈ F×p = Z/pZ and
∣∣F×p ∣∣ = p−1, the polynomial

xp−1−1 ∈ Zp[x] splits into distinct linear factors over the residue class field Fp. Applying
repeatedly Hensel’s lemma (I.2.12) or its Corollary I.2.13, we see that xp−1−1 also splits
into distinct linear factors over Zp (the factors over Zp must be different, otherwise the
factors over Fp wouldn’t be distinct).

To end this section, we compute some more p-adic expansions.

Example II.3.9. In this example, we want to compute the 5-adic expansion of 2/3 and
−2/3.

First observe that by Fermat’s Little Theorem, 3 | 52n−1 for every n ∈ N. With our
notation, for example, 52n = 1005 = 445 + 1. We have

445
3

=
52 − 1

3
= 8 = 135
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Using this, we can compute:

54 − 1

3
=

100005 − 1

3
=

44445
3

=
445 · 1005 + 445

3
= 1351005 + 135 = 13135

In general we have:

52n − 1

3
=

2n digits︷ ︸︸ ︷
44 . . . 445

3
= 1313 . . . 135︸ ︷︷ ︸

2n digits

Letting n tend to ∞, we see −1/3 = . . . 1313135 because lim
n→∞

= 52n = 0 in the 5-adic

metric.
2

3
= −1

3
+ 1 = . . . 1313145

And using the usual carry-over rules (in base 5) we also have

−2

3
= −1

3
− 1

3
= . . . 1313135 + . . . 1313135 = . . . 31315

As we can see, 2/3 and −2/3 are 5-adic integers, which was expected since 2/3,−2/3 ∈
Z(5) ⊂ Z5.
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II.4 p-adics as a Quotient Ring of Formal Power Series

Yet another, direct method to introduce p-adic numbers is stablished in the next propo-
sition.

Proposition II.4.1. There is a canonical ring isomorphism

Zp ∼= Z[[X]]/(X − p).

Proof. The substitution X 7→ p gives a surjective morphism Z[[X]] → Zp that asso-
ciates to each formal power series

∑∞
k=0 akX

k the p-adic number
∑∞

k=0 akp
k (it may

be neccesary to use the usual carry-over rules in base p to get the coefficients to lie in
{0, 1, . . . , p− 1}). Of course, the ideal (X − p) is in the kernel of this mapping, so it
suffices to show that this is the whole kernel.

Let f(X) =
∑∞

k=0 akX
k be an element of this kernel, i.e., such that f(p) = 0. This

means:
a0 + a1p+ · · ·+ an−1p

n−1 ≡ 0 (mod pn)

for every n ∈ N. Therefore, for each n ≥ 1, there exist bn−1 ∈ Z such that

−bn−1pn = a0 + a1p+ · · ·+ an−1p
n−1

And they verify:
a0 = −pb0,
a1 = b0 − pb1
a2 = b1 − pb2

...

Which then implies

a0 + a1X + a2X
2 + · · · = (X − p)(b0 + b1X + b2X

2 + . . . )

so that f(X) belongs to the ideal (X − p)

When working with formal power series it is worth having in mind Proposition IV.2.1.
In this case serves to see again the relation between the units of Zp

Z×p =
{
a0 + a1p+ a2p

2 + · · · | ai ∈ {0, 1, . . . , p− 1} , a0 6= 0
}

and the invertible elements of a formal power series ring.
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Chapter III

Local Fields, Ramification and
Inertia

III.1 Local Fields

Global fields are either:

� Algebraic number fields: finite extensions of Q.

� Global function fields: finite extensions of Fq(t), the field of rational functions over
a finite field with q elements. These arise as the function field of an algebraic curve
over a finite a field.

Their completions with respect to nonarchimedean valuations play an important role in
number theory. For example Qp and Fp((t)). These complete fields, with finite residue
class fields, are the first examples of local fields, which we define as follows.

Definition III.1.1. A field K is said to be a local field if it is complete with respect
to a nonarchiemedean discrete valuation and its residue class field is finite.

If v is the (normalized) valuation of such a field, we usually take as an associated
absolute value:

|x| = q−v(x)

where q = pr is the number of elements of the residue class field.
The valuation ring is denoted O, with maximal ideal p, and residue class field k, as

before.

Lemma III.1.2. The inverse limit lim
←−
n

O/pn is a closed subset of X =
∏∞
n=1O/pn,

where each O/pn have the discrete topology.

Proof. This is a general fact ([12, Ch. IV, §2, page 266]) on inverse limits. We prove it
in this case. First note that:

lim
←−
n

O/pn =
⋂
n∈N

Xn
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where

Xn =

{
(xi)i∈N ∈

∞∏
n=1

O/pn | λn(xn+1) = xn

}
and λn : O/pn+1 → O/pn are the natural projections, which are continuous since each
O/pn is discrete. Now consider the projections pi : X → O/pi, which are continuous by
the definition of the product topology on X. Call fn = λn ◦ pn+1 and gn = pn. Then

Xn =
{
x = (xi)i∈N ∈ X | fn(x) = gn(x)

}
.

The spaces O/pn have the discrete topology, so they are Haussdorf, which means that
X is also Hausdorff. Therefore, Xn is a closed subset of X, because fn and gn are
continuous, hence the equation fn(x) = gn(x) defines a closed set in Hausdorff spaces.

Since lim
←−
n

O/pn is an intersection of closed sets, it is itself closed.

Proposition III.1.3. A local field K is locally compact. Its valuation ring O is compact.

Proof. By Proposition I.2.10 O is isomorphic as a ring and homeomorphic to lim
←−
n

O/pn,

with the discrete topology on O/pn. By Proposition I.1.18, we have group isomorphisms
pn/pn+1 ∼= O/p for every n ≥ 1. Then we have:

O
p
× p

p2
× p2

p3
× · · · × pn−1

pn
∼=
O
pn
× p

p
× p2

p2
× · · · × pn−1

pn−1
∼=
O
pn
,

which means that #

(
O
pn

)
= #

(
O
p

)n
= qn <∞ where q is the cardinality of k. Hence

for every n,
O
pn

is compact (since they are finite spaces with the discrete topology).

Then, by Tychonov’s theorem*, the product
∏∞
n=1O/pn is compact. As a subset of the

infinite product, the direct limit lim
←−
n

O/pn is closed by Lemma III.1.2, hence compact.

Therefore O is compact.
For every a ∈ K, the neighbourhood A = a+O is both open and closed since

A = {x ∈ K | v(x− a) ≥ 0} = {x ∈ K | |x− a| ≤ 1} ( closed ball)

but also, since |x| = q−v(x):

A = {x ∈ K | v(x− a) > −1} = {x ∈ K | |x− a| < q} ( open ball).

We have just used that v is discrete. The same argument shows that in a discretely
valued field, every ball is both closed and open.

The translation A→ O, x 7→ x− a is clearly a homeomorphism. Which means that
A is compact, hence K is locally compact.

*It states that the product of any collection of compact topological spaces is again compact for the
product topology.
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Lemma III.1.4. Let L|K be a finite extension of a nonarchimedean valued field K such
that the valuation of K extends to L, and let kL|kK be the extension of their respective
residue class fields. Then

[kL : kK ] ≤ [L : K].

In particular, the extension kL|kK is finite.

Proof. It suffices to show that if x1, . . . , xn ∈ kL are linearly independent over kK then
any choice of preimages x1, . . . , xn ∈ L are linearly independent over K. Indeed, if
we were to have a non trivial relation λ1x1 + · · · + λnxn = 0, λi ∈ K, then dividing
by the coefficient λi with highest absolute value would yield a nontrivial combination of
x1, . . . , xn over K that equals 0, with coefficients in OK and at least one of the coefficients
equals 1. This means that after reducing modulo pK we would obtain a nontrivial linear
combination of x1, . . . , xn over kK equal to 0, which is a contradiction.

Theorem III.1.5. The local fields are precisely the finite extensions of the fields Qp,
and the fields Fpr((t)) for r ≥ 1.

Proof. We know that Qp and Fpr((t)) are complete. The later is the completion of Fpr(t)
with respect to the valuation associated to the prime ideal (t) of Fpr [t](Example I.2.9).
In both cases, the valuation is discrete. Let K = Qp or Fpr((t)). Its residue class field
kK is Fp or Fpr , respectively. So K is a local field. Now let L|K be a finite extension
and kL the residue class field of L. By Theorem I.2.17, L is again complete with respect
to the extended valuation w, which is again discrete , as we commented earlier, due to
the formula

w(α) =
1

n
v
(
NL|K(α)

)
. Furthermore, by Lemma III.1.4, the extension kL|kK is finite, and since kK is finite,
so is kL, which means that L is indeed a local field.

Conversely, let K be a local field and v its discrete valuation. Let p be the charac-
teristic of its residue class field k, which must be positive since k is finite. There are two
cases.

� If char(K) = 0, then Q ⊂ K. Furthermore, the restriction of v to Q is equivalent to
the p-adic valuation vp. To see this first note that v(p) > 0 (because p ≡ 0 (mod p)),
and v|Q being a nonarchimedean valuation of Q, it must be equivalent to one of
the q-adic valuations (Theorem II.3.2), where q is a prime number. Since the only
one that assigns a positive value to p is vp, v must be equivalent* to vp. Taking
into account that K is complete, the closure of Q in K is the completion of Q with
respect to vp, i.e. Qp ⊂ K. The fact that the extension K|Qp is finite follows by a
result we will give later (Proposition III.2.7) since K|Qp is separable (char(K) = 0).
But it also follows from a general result of topological vector spaces ([4, Ch.1, §2,
nº4, Theorem 3]), using that K is locally compact by Proposition III.1.3.

*This can also be shown directly. We do not only have v(p) = s > 0, but also v(q) = 0 for every prime
q 6= p, since char(k) = p implies q 6≡ 0 (mod p). Using the unique factorization of natural numbers, this
yields that v(n) = svp(n) in N, hence also in Z. And since Q is the field of fractions of Z, this extends
to Q, showing that v|Q is equivalent to vp.
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� If char(K) > 0 then it has to equal p, for if char(K) = m, reducing 1K + · · ·+ 1K︸ ︷︷ ︸
m times

=

0 shows that p divides the prime number m, so that m = p.

k is a finite field of characteristic p, i.e. k = Fp(α) for some α algebraic over Fp.
Let f(x) ∈ Fp[X] be the minimal polynomial of α over Fp. f can also be seen
as a polynomial in K[X], since Fp ⊂ K. By Hensel’s lemma (I.2.12), we can lift
up the root α ∈ k of f(x) to a root α of f over K(since k is finite so that f is
separable and α is a simple root. In fact, we can lift to K the entire factorization
of f over k). This way, we can see k as a subfield of K (Fp(α) ⊂ K), so k can be
its own system of representatives. Now, applying Proposition I.2.8, the elements
of K are Laurent series in t with coefficients in k, where t is a prime element if K
(i.e., v(t) = 1). In other words K = k((t)). Of course, if r is the degree of f , then
K = Fpr((t)).

We have concluded that the local fields of characteristic 0 are the finite extensions
of Qp, which are called p-adic number fields. The local fields of characteristic p are
the finite extensions of Fp((t)), i.e. the power series fields Fpr((t)) with r > 1. We will
be more interested in the formers.

To finish this section, we have:

Proposition III.1.6. The multiplicative group of a local field K admits the decomposi-
tion:

K× = (π)× µq−1 × U (1)

where (π) =
{
πk | k ∈ Z

}
, q = #k is the cardinality of the residue class field, π is an

uniformizant (or prime element of O), µq−1 is the group of (q − 1)-roots of unity and
U (1) is the group of principal units.

Proof. We can write in a unique way every α ∈ K× as α = πnu with u ∈ O×, which
means that

K× = (π)×O×.

Now note that Xq−1 − 1 splits into different linear factors over k = Fq, because this
polynomial is relatively prime with its derivative, xq−1 = 1 for every x ∈ F×q and
#(F×q ) = q − 1. Then, using Hensel’s Lemma (I.2.12), we lift this factorization to O,
which shows that O× contains the multiplicative group µq−1 of (q−1)-roots of the unity.

The reduction map O× → k×, u 7→ u = umod p, is a group morphism that clearly
has U (1) as its kernel. Of course, it maps the subgroup µq−1 ⊂ O× bijectively onto k×

since every x ∈ F×q is already a (q − 1)-root of unity, i.e., k× = F×q ∼= µq−1. This implies

O×

U (1)
∼= k× ∼= µq−1 hence O× = µq−1 × U (1)

and we have our claim.
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III.2 Ramification

Before delving into this section, we are going to discuss briefly the notion of Henselian
field. It will not be strictly necessary to progress, since in Chapter V (our main objective)
we will always work with complete fields, but it will allow us to generalize our results to
a bigger class of fields.

Definition III.2.1. A Henselian field is a field with a nonarchimedean valuation v
whose valuation ring O satisfies Hensel’s Lemma (I.2.12). One also calls the valuation
v or the valuation ring O Henselian.

Of course, every complete nonarchimedean valued field is Henselian, but we do not
require Henselian fields to be complete. Since most results on complete valued fields
can be deduced solely from the fact that they satisfy Hensel’s lemma, we can broad the
range of application of our results by working with the bigger class of Henselian fields.

If (K, v) is any nonarchimedean valued field, and (K̂, v̂) its completion, we can always
find a Henselian field in between: the separable closure Kv of K in K̂. Its valuation ring
always verifies Hensel’s lemma (see [12, Ch. II,§6, page 143] for more details), although
Kv will not, in general, be complete with respect to the extended valuation. Kv will is
also called the Henselization of K.

As an example of the utility of Hensenlian fields, we have the analogous of Theorem
I.2.17.

Theorem III.2.2. Let K be a Henselian field with respect to the nonarchimedean abso-
lute value | |. Then | | can be uniquely extended to any given algebraic extension L|K.
If L|K has finite degree n, then the extension of | | is given by

|α| = n

√∣∣NL|K(α)
∣∣.

The valuation ring of the extended valuation is always the integral closure in L of the
valuation ring of K.

Proof. In proving Theorem I.2.17, the only place where we directly used that K was
complete was to prove that L was again complete. Now, in this version of the theorem,
we do not make that claim, because K is not necessarily complete. The rest of Theorem
I.2.17 (which is the theorem as stated here), followed only from Hensel’s lemma or its
corollaries, so there is nothing new to prove here.

Of course, if (K, v) is Henselian and L|K is an extension of finite degree n, the
valuation is again extended from v as:

w(α) =
1

n
v(NL|K(α)), α ∈ L

which is obtained taking logarithms in the formula for the extension of the absolute
value.
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Clearly, Corollary I.2.14 also holds for K Henselian instead of complete, since we
only used Hensel’s Lemma in order to prove it.

Only as a curiosity, we comment the surprising result that for Henselian fields we
have a converse of Theorem III.2.2:

Theorem III.2.3. A nonarchimedean valued field (K, | |) is Henselian if and only if
the absolute value can be uniquely extended to any algebraic extension L|K.

Proof. [12, Ch. II, §6, Theorem 6.6, page 147]

We state now two results of commutative algebra that will come in handy later.

Proposition III.2.4. Let A be an integrally closed domain with field of fractions K.
Let L|K be a finite separable extension, B the integral closure of A in L and assume
that A is a principal ideal domain. Then every finitely generated B-submodule M 6= 0 is
a free A-module of rank [L : K].

Proof. [12, Ch. I, Proposition 2.10, page 12]

Lemma III.2.5. (Nakayama’s Lemma). Let A be a local ring with maximal ideal m,
let M be and A-module and N ⊂ M a submodule such that M/N is finitely generated.
Then one has the implication:

M = N + mM =⇒ M = N.

Proof. There are many different statements of this lemma. The version I am using here
is from [12, Ch. I, §11, Exercise 7].

NOTATION: When working with extensions of nonarchimedean valued fields L|K,
we will denote by kL and kK the residue class fields of L and K respectively. If the
valuation w extends the valuation v of K then of course:

v(K×) ⊂ w(L×) and kK ⊂ kL.

The notation OL,OK , pL, pK is self-explanatory.

Definition III.2.6. Let (K, v) be a nonarchimedean valued field and L|K an extension
such that the valuation v can be extended uniquely to a valuation w of L. Then, we
define the ramification index of the extension L|K as the index

e = e(w|v) = (w(L×) : v(K×)).

And the inertia degree is the degree of the extension kL|kK , i.e.

f = f(w|v) = [kL : kK ].
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In particular, the above defintion applies if K is Henselian. If v is discrete, so is

w =
1

n
v ◦NL|K . In that case and in what follows, Π will stand for a prime element of L

(an element of OL with minimum positive valuation w(Π)), and π for a prime element of
K. Of course, if v is normalized v(π) = 1, but this does not mean that w(Π) = 1, since
the inclusion v(K×) ⊂ w(L×) may be strict and in that case there are positive values
smaller than 1 in w(K×). This is measured by the ramification index. Indeed

e = 1 ⇐⇒ v(K×) = w(L×)

and in this case we could take Π := π. But if e 6= 1, then v(K×) ( w(L×) and
w(Π) < v(π). In general, by definition, we have:

e = (w(Π)Z : v(π)Z)

so that v(π) = ew(Π) = w(Πe). This means that there exist u ∈ O×L such that π = uΠe.
From this we deduce a (maybe more familiar) interpretation of the ramification index:
when we extend the ideal p = πOK to OL, since it must be a power of the ideal pL, the
ramification index can be defined as the exponent of this power (see [12, Ch. I, §§8 and
9]). In other words:

pKOL = πOL = ΠeOL = peL.

Sometimes simply written as pK = peL.

Proposition III.2.7. Let K be a Henselian field and L|K an algebraic extension. Then
we have

[L : K] ≥ ef

and if v is discrete and L|K separable, the equality holds

[L : K] = ef

and it is called the fundamental identity.

Proof. Let ω1, . . . , ωf ∈ O×L be representatives of a basis of kL as a kK-vector space.
Let λ1, . . . , λe ∈ L× such that w(λ1), . . . , w(λe) form a system of representatives of the
cosets in w(L×)/v(K×). If v is discrete, we can take λi = Πi−1, i = 1, ..., e.

We are going to show that

{ωjλi | j = 1, . . . , f, i = 1, . . . , e}

is a linearly independent set over K (and later, if v is discrete and L|K is separable, it
will even be a basis of L|K). So let

e∑
i=1

f∑
j=1

aijωjλi = 0, aij ∈ K
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be a nontrivial K-linear combination of the wjλi, i.e., not all aij = 0. We write this
linear combination as

e∑
i=1

siλi = 0 where si =

f∑
j=1

aijωj .

The ωj are linearly independent over K (see the proof of Lemma III.1.4). Then we see
that some of the sums si must be nonzero, because otherwise we would have that every
aij = 0.

We are going to show that if si 6= 0, then w(si) ∈ v(K×). Indeed, dividing si by
the coefficient ai` of biggest absolute value, we get a linear combination of ω1, . . . , ωf
with coefficients in OK , one of which equals 1. This means that this linear combination,
si/ai` does not reduces to 0 in pL, hence si/ai` ∈ O×L . In other words, w(si/ai`) = 0,
which means that w(si) = w(ai`) ∈ v(K×).

Since
∑e

i=1 siλi = 0, there must be at least two nonzero si so their terms can cancel
out. Also, two of the nonzero summands

∑e
i=1 siλi = 0 must have the same value,

because otherwise, using that w(x) 6= w(y) =⇒ w(x+y) = min {w(x), w(y)}, we would
have

w(0) = w

(
e∑
i=1

siλi

)
= min

1≤i≤e

si 6=0

{w(siwi)} 6= w(0).

So we must have w(siλi) = w(sjλj) for some i 6= j, which then would imply

w (λi) = w (λj) + w (sj)− w (si) ≡ w (λj) (mod v
(
K×
)
)

a contradiction with our election of λ1, ..., λf . This shows that the ωjλi, for i =
1, . . . , e, j = 1, . . . , f , are linearly independent over K, which means that

[L : K] ≥ ef.

Now assume that v is discrete and L|K separable. We construct the OK-module

M =

e∑
i=1

f∑
j=1

ωjλiOK .

To show that these ωjλi form a basis of L over K, it suffices to show that M = OL (i.e.,
the ωjλi form a system of generators of OL), since then the result follows by passing to
the fields of fractions.

As we commented earlier, in this case we can choose λi = Πi−1. We have the OK-
submodule of M

N =
e∑
i=1

OKωj

verifying M = N + ΠN + · · ·+ Πe−1N . Since the ωj are a basis of kL = OL/ΠOL over
kK , every x ∈ OL can be written as

x ≡ a1ω1 + · · ·+ afωf︸ ︷︷ ︸
∈N

(mod ΠOL), ai ∈ OK .
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This then implies that OL = N + ΠOL, and successively substituting this equation into
itself we get:

OL = N + Π(N + ΠOL) = · · · = N + ΠN + · · ·+ Πe−1N + ΠeOL = M + ΠeOL.

We have proven that OL = M + peL = M + pKOL. The extension L|K being separable
implies that OL is a finitely generated OK-module (apply Proposition III.2.4 to B =
OL,M = OL, A = OK . All hypothesis are easily satisfied). Then, Nakayama’s Lemma*

(Lemma III.2.5) implies that OL = M .

Remark III.2.8. In the above result, when v is discrete we can drop the condition of
L|K being separable and replace it with K being complete. In this case, in the above
proof we would deduce that M = OL from OL = N+pKOL not by means of Nakayama’s
Lemma, but using that for every i ≥ 1 we have piKM ⊂M which then implies:

OL = M + pK(M + pKOL) = M + p2KOL = · · · = M + pmKOL

for every m ≥ 1, and since {pmKOL}m∈N is a basis of neighbourhoods of 0 in OL, this
last equation shows that M is dense in OL. By Proposition I.2.15, L ∼= Kn, where
n = dimK(L), the isomorphism being also a homeomorphism. Since OK is closed in K
and M ∼= OnK (by construction), we see that M is closed in Kn. This implies that M is
closed in OL, so that M = OL.

We know that every algebraic extension of a field of characteristic zero or a finite
field is separable. So most extensions that we will encounter will be separable. In the
above proposition, if K = Q or K = Qp with one of the p-adic valuations, then the
fundamental identity holds.

For the rest of the section, K will be Henselian unless stated otherwise, so that
its valuation can be uniquely extended to any algebraic extension L|K and sometimes
we will use Hensel’s Lemma and its consequences.

Proposition III.2.9. Let K be an algebraic closure of (K, v). Then the residue class

field kK =
OK
pK

of K is algebraically closed, so it is an algebraic closure of the residue

class field kK = OK
pK

of K.

Proof. Let v be the valuation of K and w its extension to K. Let p(x) ∈ kK [x] be any
polynomial, p(x) =

∑n
i=0 aix

i, where ai ∈ kK , an 6= 0. Then lift this polynomial to some
p(x) =

∑n
i=0 aix

i ∈ OK [x]. In particular, each ai 6= 0 is lifted to some ai ∈ O×K and

if ai = 0, then ai = 0. Since K is algebraically closed, there exists α ∈ K such that
p(α) = 0. Let us see that α ∈ OK . By dividing the equation p(α) = 0 by αn−1 we get:

anα = −
(
an−1 + an−2α

−1 + · · ·+ a0α
−n+1

)
.

*Of course, if OL is a finitely generated OK-module, so is OL/M , so that we can apply our version
of Nakayama’s Lemma.
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If w(α) < 0, since an ∈ O×K , we would have

0 > w(α) = w(anα) = min{−w(α), . . . ,−(n− 1)w(α)} = −w(α) ≥ 0!!!

so it must be w(α) ≥ 0. Then reducing α modulo p yields a root α ∈ kK of p(x), which
finishes the proof.

Definition III.2.10. A finite extension L|K is called unramified if the extension of
the residue class fields kL|kK is separable and:

[L : K] = [kL : kK ].

An arbitrary algebraic extension L|K is called unramified if it is the union of finite
unramified extensions.

It is not strictly necessary in the above definition for K to be Henselian. It suffices
that its valuation extends uniquely to L.

From Proposition III.2.7 and the remark that follows it, if K is a local field and L|K
is an algebraic extension, then the fundamental identity holds, since the valuation in the
complete field K is discrete.

In general, if the fundamental identity [L : K] = ef holds for an algebraic extension
L|K and kL|kK is separable, we have

L|K is unramified ⇐⇒ e(L|K) = 1

which is a more direct definition. As commented above, this holds for extensions of local
fields, or also for any field complete with respect to a nonarchimedean discrete valuation.
In general, the implication that we always have is:

L|K is unramified =⇒ e(L|K) = 1

since, restricting ourselves to finite extensions, we see that

[L : K] ≥ e[kL : kK ] = e[L : K] =⇒ e = 1.

Lemma III.2.11. Let (K, | |) be Henselian and let L|K be an algebraic extension.
Then for every α ∈ OL, the minimal polynomial f(x) ∈ K[x] of α over K is in fact in
OK [x].

Proof. Let f(x) = a0 + a1x+ ...+ an−1x
n−1 + xn be the (monic) minimal polynomial of

α ∈ OL over K. Corollary I.2.14 (which as we comented also holds for Henselian fields),
tells us that

|f | = max {|an| , |a0|} = max {1, |a0|} .

This in particular shows that |aj | ≤ 1 for j = 1, ..., n, i.e, |aj | ∈ OK ⊂ OL for j = 1, ..., n.
But then, since f(α) = 0, we have:

a0 = −
(
a1α+ · · ·+ an−1α

n−1 + αn
)
∈ OL

so that a0 ∈ K ∩ OL = OK , hence f(x) ∈ OK [x].
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Recall that if L|K and F |K are two extensions, then the product LF is the smallest
extension of K that contains both L and F .

Proposition III.2.12. Let L|K and F |K be two extensions inside an algebraic closure
K|K and let E = LF . Then one has

L|K unramified =⇒ E|F unramified.

Proof. Let L|K be such an unramified extension. We can asume that L|K is finite,
otherwise it would be a union of finite unramified extensions and we could do the same
reasoning we are about to do with each of those. Then kL|kK is finite (Lemma III.1.4),
and separable by hypothesis. Therefore, by the Primitive Element Theorem, there exists
α ∈ kL such that kL = kK(α). Lift α to some α ∈ O×L , and let f(x) ∈ O[x] the minimal
(monic) polynomial of α over K (Lemma III.2.11). Then let f(x) ∈ kK [x] be the
reduction of f modulo pK . Of course, [kL : kK ] ≤ deg(f) since f(α) = 0 (so that the
minimal polynomial of α over kK divides f), and also deg(f) = deg(f). We then have

[kL : kK ] ≤ deg(f) = deg(f) = [K(α) : K] ≤ [L : K] = [kL : kK ]

so that all inequalities are in fact equalities. In particular, we have L = K(α). This
implies that E = F (α): from α ∈ L ⊂ E,F ⊂ E, we see that F (α) ⊂ E, and F ⊂
F (α), L = K(α) ⊂ F (α) implies that E = LF ⊂ F (α).

We still need to show that E|F is unramified. Let g(x) ∈ OF [x] be the minimal
polynomial of α over F , and g(x) ∈ kF [x] the reduction of g modulo pF . Since f(x),
regarded as a polynomial in F [x], satisfies f(α) = 0, g(x) must be a factor of f(x).
This implies that g(x) must be a factor of f(x), so that g(x) is separable. g(x) is also
irreducible over kF , since otherwise, by Hensel’s Lemma, g(x) would be reducible over
F , hence g(x) is the minimal polynomial of α over kF . We then have

[kE : kF ]
III.1.4
≤ [E : F ] = deg(g) = deg(g) = [kF (α) : kF ] ≤ [kE : kF ]

so that again all inequalities are equalities. In particular [E : F ] = [kE : kF ] and
kE = kF (α) (so kE |kF is separable), hence E|F is unramified.

Corolary III.2.13. Each subextension of an unramified extension is unramified.

Proof. Let L′|K be a subextension of the unramified extension L|K. The above propo-
sition, for F = L′, E = LL′ = L, tells us that L|L′ is unramified, so that [kL : kL′ ] = [L :
L′]. Then:

[kL : kK ] = [L : K] = [L : L′][L′ : K] = [kL : kL′ ][L
′ : K]

but also
[kL : kK ] = [kL : kL′ ][kL′ : kK ].

These two equations together show that [L′ : K] = [kL′ : kK ], and since kL′ |kK is a
subextension of kL|kK , the extension kL′ |kK is also separable, thus L′|K is unramified.

48



III.2. RAMIFICATION

Corolary III.2.14. The composite of two unramified extensions of K is again unram-
ified.

Proof. Let L|K and L′|K be two unramified extensions. Since both are the composite
of finite unramified subextensions, LL′ is also the composite of finite unramified subex-
tensions of LL′|K. This means, by Definition III.2.10, that it suffices prove the result in
the case where L|K and L′|K are finite extensions.

If L|K is unramified, so is LL′|L′ by Proposition III.2.12. Then, since we are dealing
with finite extensions, we have

[LL′ : K] = [LL′ : L′][L′ : K] = [kLL′ : kL′ ][kL′ : kK ] = [kLL′ : kK ]

and kLL′ |kK is separable by the transitivity of separability, so that LL′|K is unramified.

The last result allows to define:

Definition III.2.15. Let L|K be an algebraic extension. Then the composite T |K of
all unramified subextensions of L|K is called the maximal unramified subextension
of L|K.

When L = K, it is denoted Knr (nr stands for “non ramifiée”) and called the
maximal unramified extension of K.

Proposition III.2.16. Let T be the maximal unramified subextension of L|K. Then
the residue class field of T is ks, the separable closure of kK in kL. The value group of
T equals that of K.

Proof. Let ks be the separable closure of kK in kL and kT be the residue class field of
T . kT |kK is the composite of the separable residue class field extensions kK′ |kK , where
K ′|K ranges over all unramified subextensions of L|K, so it follows that kT |kK is a
separable subextension of kL|kK , hence kT ⊂ ks.

Conversely, let α ∈ kL be separable over kK . We have to show that α ∈ kT . Let
f(x) ∈ kK [x] the minimal polynomial of α over kK . Let f(x) ∈ OK [x] be a monic
polynomial that reduces to f modulo pK . Since it preserves its degree in the reduction,
f(x) is irreducible (for if f(x) is the product of two nontrivial factors, so is f after the
reduction). Then by Hensel’s Lemma there exists α ∈ L such that α ≡ α (mod pL) and
f(α) = 0, so f is the minimal polynomial of α. Therefore,

[K(α) : K] = [kK(α) : kK ]

kK(α) = kK(α) is the residue field of K(α) and since α is separable so is the extension
kK(α)|kK . This implies that K(α)|K is unramified, so that K(α) ⊂ T , hence α ∈ kT .

Finally, let v be the valuation of K and w the valuation of T extending v. In order
to prove that w (T×) = v (K×) we may suppose that L|K is finite (since each element
of T× is in some finite subextension of L|K). Then

[T : K]
III.2.7
≥

(
w
(
T×
)

: v
(
K×
))

[kT : kK ] =
(
w
(
T×
)

: v
(
K×
))

[T : K]

so that (w (T×) : v (K×)) = 1.
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There are other notions accompanying that of an unramified extension: tamely ram-
ified, wildly ramified, totally (or purely) ramified,... We will not use them in this text.
Nevertheless, is worth mentioning something about the first one, which is defined only
when char(kK) is positive.

Definition III.2.17. An algebraic extension L|K, with maximal unramified subexten-
sion T |K, is called tamely ramified if

1. char(kK) = p > 0.

2. The extension kL | kK of the residue class fields is separable.

3. ([L : T ], p) = 1.

In the infinite case, this latter condition is taken to mean that the degree of each finite
subextension of L|T is prime to p.

Proposition III.2.18. A finite extension L | K, with maximal unramified subextension
T |K, is tamely ramified if and only the extension L|T is generated by radicals

L = T ( m1
√
a1, . . . , mr

√
ar)

such that (mi, p) = 1. In this case the fundamental identity always holds:

[L : K] = ef

Proof. [12, Ch. II, Proposition 7.7, page 155]

We have analogous to Proposition III.2.12 and Corollary III.2.14.

Corolary III.2.19. Let L|K and K ′|K be two extensions inside the algebraic closure
K|K, and L′ = LK ′. Then we have:

L|K tamely ramified =⇒ L′|K ′ tamely ramified

Every subextension of a tamely ramified extension is tamely ramified.

Proof. [12, Ch. II, Proposition 7.8, page 156]

Corolary III.2.20. The composite of tamely ramified extensions is tamely ramified.

Proof. [12, Ch. II, Proposition 7.9, page 157]

We can also define the maximal tamely ramified subextension V |K of an alge-
braic extension L|K as the composite of every tamely ramified subextension of L|K.
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III.3 The Inertia subgroup

In Chapter V, to prove the Néron-Ogg-Shafarevich Criterion, we will work with a field
K complete with respect to a nonarchimedean discrete valuation v. In particular, the
valuation can be extended uniquely to any algebraic extension L|K, and the fundamental
identity III.2.7 holds. We will also require for K and its residue class field to be perfect,
so that their algebraic extensions are separable. Nevertheless, most of the the time, this
last condition of K and kK being perfect will not be needed.

Of course, local fields satisfy the previous conditions. In practice, most results will
be applied to local fields, in particular to Qp and its finite extensions.

If E|F is an algebraic field extension, we will use the notation AutF (E) for the group
of automorphism of E that fix K pointwise. E|F is a Galois extension if it is normal
and separable, and in this case we write AutF (E) = Gal(E/F ). If E|F is finite, other
well known equivalent conditions for the extension E|K to be Galois are:

� # AutF (E) = [E : F ].

� F is the fixed field of AutF (E).

Remark III.3.1. We are going to work with Galois extensions that are not necessarily
finite. Therefore, it is necessary to understand the basics of infinite Galois theory. The
reference I used to introduce myself to this topic was [12, Ch. IV, §1, pages 261-264]. As
a brief overview, if L|K is an infinite Galois, then the fundamental theorem of (finite)
Galois theory concerning the 1-1 correspondence between subgroups of Gal(L/K) and
the intermediate extensions of L|K, ceases to hold, because there are more subgroups
than intermediate fields. To salvage this, one considers a canonical topology on the group
Gal(L/K), called the Krull topology. It is defined by assigning to each σ ∈ Gal(L/K)
the (local) basis of neighbourhoods σGal(L/M), where M |K ranges over the finite
Galois subextensions of L|K. (If L|K were to be finite, then the finite group Gal(L|K)
turns into a discrete topological group). The elements of σGal(L/M) are simply the
K-automorphisms of L that behave as σ over M . This topology turns Gal(L/K) into
a compact Hausdorff space ([12, Ch. IV, Proposition 1.1, page 262]). Then the
fundamental theorem of (infinite) Galois theory can be stated as:

Theorem III.3.2. Let L|K be a (finite or infinite) Galois extension. Then the assig-
ment

F 7−→ Gal(L/F )

is a 1-1 correspondece between the subextensions F |K of L|K and the closed subgroups
of Gal(L/K). The open subgroups of Gal(L/K) correspond precisely to the finite subex-
tensions of L|K.

Proof. [12, Ch. IV, Theorem 1.2, page 263]

Throughout this entire section, L|K will be a Galois extension (finite or
infinite) of a Henselian field (K, v). In particular, the valuation v can be uniquely
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extended to a valuation w of L. If the extension of the valuation was not unique, a
slight modification of the theory that follows would be needed, which implies working
with the decomposition group* instead of the whole Gal(L/K) (see [12, Ch.2, §8 &
§9]). Nevertheless, our scarce results on the inertia group will only be applied to fields as
mentioned at the beginning of this section, so this generality is sufficient. The extension
K|K should be our main focus.

NOTATION: G := Gal(L/K) will be the Galois group of the Galois extension L|K.

Proposition III.3.3. For every σ ∈ G we have

w ◦ σ = w.

Proof. Since L|K is the composite of its finite Galois subextensions, if we prove the
result when L|K is finite, we would have proven it in general. If [L : K] = n is finite, we
have a formula for the extension w (Theorem III.2.2).

w(α) =
1

n
v(NL|K(α)) for every α ∈ L×.

Let σ ∈ G. Of course, w(x) = w(σx) for every x ∈ K. Since L|K is Galois, we have:

NL|K(x) =
∏
δ∈G

δx.

This implies that NL|K(α) = NL|K(σα), for if δ ranges through G, so does δσ. Therefore
we have w(α) = w(σα), as we wanted.

The last proposition also shows that every σ ∈ G is a continuous map L→ L.

Definition III.3.4. The inertia group of L|K is

Iw = Iw(L/K) = {σ ∈ Gal(L/K) | σx ≡ x (mod pL) ∀x ∈ OL} .

In other words, the elements of the inertia group Iw are the σ ∈ Gal(L/K) that
act as the identity in the residue class field kL (this is precised below). It is clearly a
subgroup of G. Recall that w stands for the extended valuation of L.

We have w = w ◦ σ for every σ ∈ G (Proposition III.3.3), hence σOL = OL and
σpL = pL. This immediately implies that every σ ∈ G induces a well defined ring
endomorphism of kL:

σ : OL/pL −→ OL/pL, x mod pL 7−→ σx mod pL.

We have just described a canonical group morphism from G to AutkK (kL):

ϕ : Gal(L/K)→ AutkK (kL), σ 7−→ σ

whose kernel is clearly Iw.

*For an extension w of v, the decomposition group is defined as

Gw = Gw(L/K) = {σ ∈ Gal(L/K) | w ◦ σ = w}

When K is Henselian, Gw = Gal(L/K) as Proposition III.3.3 shows.
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Proposition III.3.5. Iw = Iw(L/K) is a closed subgroup of G = Gal(L/K).

Proof. Let σ ∈ G be an element of the closure of Iw. This means that for every finite
Galois subextension M |K of L there is some δM ∈ Iw∩σGal(L/M), because σGal(L/M)
is a neighbourhood of σ. Since δM ∈ σGal(L/M), we have δM |M = σ|M . Therefore

σx = δMx ≡ x (mod pL) for every x ∈M ∩ OL

and this holds for every finite Galois subextension M |K. Since every x ∈ L is in at least
one of these finite extensions M , the last equations yields

σx ≡ x (mod pL) for every x ∈ OL.

which means that σ ∈ Iw.

Proposition III.3.6. Let L|K be a Galois extension. Then kL|kK is a normal exten-
sion.

Proof. Let θ ∈ kL and let θ ∈ OL be a representative. Let f(x) ∈ OK [X] be the
minimal polynomial of θ over K and g(x) ∈ kK [x] the minimal polynomial of θ over kK .
Reducing f(θ) = 0 modulo pK we see that f(θ) = 0, which means that g(x) divides f(x).
Since L|K is normal, f(x) splits into lineal factors in OL[x], and reducing modulo pK
we see that f(x) also splits into linear factors over kK (and the same quantity because
deg(f) = deg(f)). Thus, the same is true for g(x). This shows that kL|kK is a normal
extension.

At this point is better to assume for the rest of the chapter that the extension kL|kK
is separable. This is the only thing that we need for this extension to be Galois, as
the previous proposition shows. It is the case, for example, if kK is perfect or L|K is
unramified.

Our aim is to obtain an exact sequence:

1 −→ Iw −→ Gal(L/K)
ϕ−→ Gal(kL/kK) −→ 1.

The only thing that remains to be shown is the surjectivity of ϕ : Gal(L/K) →
Gal(kL/kK), but first we need to show that it is a continuous map.

Proposition III.3.7. The canonical morphism ϕ : Gal(L/K) −→ Gal(kL/kK), σ → σ
is continuous.

Proof. Let θ ∈ kL, and let θ ∈ OL be a representative. Recall then that ϕ(σ) is defined
as ϕ(σ)θ := σθ mod pL.

Since Gal(kL/kK) is a topological group, it suffices to show that the preimage of a
fundamental neighbourhood of idkL is open, i.e. we want to see that ϕ−1(Gal(kL/µ)) is
an open set of Gal(L/K), where µ|kK is a finite subextension of kL|kK . The minimal
polynomial over kK of every element of µ must be separable, because kL|kK is separable.
By the Primitive Element Theorem, there exists α ∈ µ \ kK such that µ = kK(α). Let
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g(x) ∈ kK [x] be its minimal polynomial over K, which must be separable, and lift it to
a monic polynomial g(x) ∈ OK [x] of the same degree. g(x) must be irreducible, since
otherwise, after reducing modulo kK , g(x) would be reducible. By Hensel’s lemma, there
exists a unique root α ∈ OL of g(x) such that α ∼= α (mod pL) (The root α must be unique
since otherwise, after reducing, the root α of g(x) would not be simple, contradicting
the fact that g is separable). Therefore, g(x) is the minimal polynomial of α over K.
Define F = K(α), which is a finite (unramified) extension of degree [F : K] = [µ : kK ].
We are going to show that ϕ−1(Gal(kL/µ)) = Gal(L/F )

Let σ ∈ Gal(L/K) and note that σ ∈ ϕ−1(Gal(kL/µ)) if and only if ϕ(σ) is the
identity over µ = kK(α), i.e. if and only if σ(α) ∼= α (mod pL). Now, if σ ∈ Gal(L/F ),
then σα = α, and hence σ ∈ ϕ−1(Gal(kL/µ)). Conversely, let σ ∈ ϕ−1(Gal(kL/µ)), so
that σ(α) ∼= α (mod pL). Then σα = γ, where γ is a root of g(x). We must have γ = α,
because otherwise, there would be two different roots of g that reduce to α , which is
not possible since, as we said before, α can be lifted to only one root of g.

As a curiosity, the following result is also true if kL|kK is not separable (see [12, Ch.
I, Proposition 9.4]), using AutkK (kL) instead of Gal(L/K), though we will not need this
observation.

Proposition III.3.8. If L|K is a Galois extension and kL|kK is separable, the canonical
morphism

ϕ : Gal(L/K)→ Gal(kL/kK)

is surjective. It is also injective (hence a isomorphism) if L|K is unramified.

Proof. Le us first deal with the finite case. If L|K is finite, so is kL|kK by Lemma
III.1.4. Let δ ∈ Gal(kL|kK). By the Primitive Element Theorem, there exists θ ∈ kL
such that kL = kK(θ). Let g(x) ∈ kK [x] the minimal polynomial of θ over kK , of degree
f = [kL : kK ] = # Gal(kL|kK). Let g(x) ∈ OK [x] be a monic polynomial of the same
degree that reduces to g modulo pK . g(x) must be irreducible over K since otherwise
g(x) would be reducible. Hensel’s Lemma allows us to lift the root θ ∈ kL of g(x) to
a root θ ∈ OL of g(x). We can do the same with the root δθ of g, lifting it to a root*

θ′ ∈ OL of g. There exist σ ∈ Gal(L/K) such that θ′ = σθ. Reducing modulo pL, this
means that

ϕ(σ)θ = σθ = θ′ = δθ

hence δ = ϕ(σ). This shows that ϕ is surjective. Moreover, if L|K is unramified then

# Gal(L/K) = [L : K] = [kL : kK ] = # Gal(kL/kK)

which forces ϕ to be injective and an isomorphism.
Now suppose that L|K is an infinite Galois extension. In order to prove the sur-

jectivity of ϕ : G → Gal(kL/kK) it suffices to show that ϕ(G) is dense in Gal(kL/kK),

*At this point it should be obvious that the f roots of g are in bijection with the f roots of g′, since
g splits into different linear factors over kL[x] and we can lift them to different factors of g.
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because ϕ(G), being the continuous image of a compact space, is itself a compact subset
of Gal(kL/kK), hence closed since Gal(kL/kK) is Hausdorff. Let δ ∈ Gal(kL/kK) and
λ|kK be a finite Galois subextension of kL|kK , so that δGal(kL/λ) is a neighbourhood
of δ. All we have to prove is that this neighbourhood contains the image ϕ(σ) of some
σ ∈ G. Let M |K be a finite subextension of L|K whose residue class field kM contains
λ. By the finite case we proved earlier, the canonical map Gal(M/K) → Gal(kM/kK)
is surjective. Therefore, the composite:

Gal(L/K) −→ Gal(M/K) −→ Gal(kM/kK) −→ Gal(λ/kK)

is surjective, since all three maps are surjective. The first and last maps are induced
by restrictions. For example α ∈ Gal(L/K) 7→ α|M ∈ Gal(M/K), which are clearly
surjective*. Call ψ the above composition. There must exist some σ ∈ Gal(L/K) such
that ψ(σ) = δ|λ ∈ Gal(λ/kK). Since ψ(σ) = σ|λ, this means that ϕ(σ) ∈ δGal(kL/λ)
(ϕ(σ) = σ is a kK-automorphism of kL that behaves as δ on λ, and these are precisely
the elements of δGal(kL/λ)).

If L|K is unramified, it is the union of finite unramified extensions. Injectivity of
ϕ : Gal(L/K) → Gal(kL/kK) holds again thanks to the finite case: Assume there are
σ1, σ2 ∈ Gal(L/K), σ1 6= σ2 and ϕ(σ1) = ϕ(σ2). Let M |K be a finite unramified Galois
subextension of L|K such that σ1|M 6= σ2|M . Then, by the finite case,

ϕM : Gal(M/K)→ Gal(kM |kK)

is injective, which is a contradiction since then

ϕ(σ1)|kM = ϕM (σ1|M ) 6= ϕM (σ2|M ) = ϕ(σ2)|kM .

We now have the short exact sequence:

1 −→ Iw(L/K) −→ Gal(L/K)
ϕ−→ Gal(kL/kK) −→ 1

and if L|K is unramified, then

Iw(L/K) = 1 = {idL} and Gal(L/K)
ϕ∼= Gal(kL/kK).

Now let T be the maximal unramified subextension of L. Since the Galois closure of T
is the composite of the conjugates σT , we see that T |K is a Galois extension, because
its conjugates σT are again unramified (w ◦ σ = w =⇒ e(σT |K) = e(T |K) = 1), hence
σT ⊂ T and T equals its Galois closure. Therefore,

Iw(T/K) = 1 and Gal(T/K)
ϕ∼= Gal(ks/kK)

because the residue class field of T is ks, the separable closure of kk in kL (Proposition
III.2.16). Though under our assumptions, ks = kL.

*A basic result usually studied in Galois theory is that every K automorphism of a field extension
M |K can be extended to a K-automorphism of a bigger field extension L|K.
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Definition III.3.9. The fixed field of Iw(L/K) is

Tw = {x ∈ L | σx = x ∀σ ∈ Iw} .

Of course Iw = Gal(L/Tw).

Proposition III.3.10. The fixed field of Iw is the maximal unramified subextension, T ,
of L|K.

Proof. As explained above, we have:

Gal(T/K)
ϕ∼= Gal(kL/kK).

And of course
Gal(L/K)

Gal(L/T )
∼= Gal(T/K). Since Iw = Gal(L/Tw) is the kernel of

Gal(L/K)
ϕ−→ Gal(kL/kK), we also have

Gal(kL/kK) ∼=
Gal(L/K)

Gal(L/Tw)
∼= Gal(L/Tw)

which means that Gal(L/T ) ∼= Gal(L/Tw), hence Tw = T (to the closed subgroup Iw of
Gal(L/K) only one intermediate extension of L|K can be assigned).

To finish this chapter, we sum up our results of the inertia group for the extension
K|K. Let k be the residue class field of K, which we assume perfect. We will also denote
by v the unique extension of the valuation v of K to K. The residue class field of K
is k, an algebraic closure of k as Proposition III.2.9 shows. The residue class field of
the maximal subramified extension of K, Knr, is also k (Proposition III.2.16), since k is
perfect. We have the short exact sequence:

1 −→ Iv(K/K) −→ Gal(K/K)
ϕ−→ Gal(k/k) −→ 1

and also
Iv = Gal(K/Knr) and Gal(Knr/K) ∼= Gal(k/k).

The isomorphism Gal(Knr/K) ∼= Gal(k/k) is also an homeomorphism because is a
continuous bijection between compact Hausdorff spaces. Therefore, by the fundamental
theorem of (infinite) Galois Theory, the subextensions M |K of Knr|K are in a 1 − 1
correspondence with the subextensions kM |kK of k|k.
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Chapter IV

Formal groups

IV.1 Completion of a ring: the I-adic topology

This section is a brief compilation of results about topological rings and their comple-
tion at an ideal I, using the Krull topology, also called de I-adic topology. It is a
generalization of the concept of completion with respect an absolute value (in the end,
a metric) that we studied in Chapter I, as sometimes the I-adic topology will not come
from a metric. Nevertheless, it will be clear that the completion, with this apparently
new process, of a discretely valued field with respect to the maximal ideal of its valuation
ring will be the same as the completion with respect to the nonarchimedean valuation.

Here I am going to be rather brief. More details can be found for example, in [2,
Ch. 10]. This is because we mainly need a few concepts and vocabulary in order to
comfortably state the main result of this section: Hensel’s lemma in its I-adic form
(IV.1.5).

Definition IV.1.1. Let R be a ring and M an R-module. Then each ideal I of R
determines a topology on M called the I-adic topology defined as follows: a subset U ⊂M
is open if and only if for each x ∈ U there exist an integer n > 0 such that:

x+ InM ⊂ U.

In other words, this topology is defined giving a nested basis of neighbourhoods of x,
namely {x+ InM : n > 0}.

For this topology, the module operations are continuous. The closure of a submodule
N is

⋂
n>0 (N + InM). The neighbourhoods x+ InM are both closed and open.

M is a Hausdorff topological space with this topology if and only if ∩n>0I
nM = {0}.

The completion of M at I is:

M̂ = lim
←−

M/InM

with the topology being the initial topology for the canonical morphisms

φk : lim
←−

M/InM →M/IkM
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and the discrete topology on M/IkM .
We regard M as a subring of lim

←−
M/InM in the obvious way: we assign to each

x ∈ R the class of the sequence (x, x, . . . ).
We will use these completions when M = R, i.e., we will be working with rings and

their completions. So a ring complete with respect to an ideal I is by definition one that
satisfies:

R ∼= lim
←−

R/In.

A Cauchy sequence in this context is a sequence (xn)n∈N verifying that for every k ≥ 0,
there exists k′ ≥ 0 such that for every m,n ≥ k′, xm − xn ∈ Ik.

Example IV.1.2. If R = K[X1 . . . , Xn] is a polynomial ring over a field K, then the
completion at the maximal ideal m = (X1, . . . , Xn) is R̂ = lim

←−
R/In = K[[X1 . . . , Xn]],

the ring of formal power series.

Example IV.1.3. (Important) If R = Z and I = (p) where p is a prime integer, then
Ẑ = Zp, the p-adic numbers (Proposition II.2.1). In general, let K be field, complete
with respect to a discrete valuation. Its valuation ring O is also complete, as it is a closed
subset of K. Then O is complete with respect to the maximal ideal p of its valuation
ring, since the p-adic topology and the topology originated from the valuation are the
same. Proposition I.2.10 also shows directly that O is p-adically complete.

We have the following proposition, which is not true for an arbitrary ideal of a ring.

Proposition IV.1.4. Let A be a ring complete with respect to an ideal I. Then 1 + I ⊂
A×. More generally, A× + I = A×.

Proof. Let x ∈ I. If there exists z = (1 +x)−1, then z =
∑+∞

ν=0(−x)ν . It remains only to
show that if Sn =

∑n
ν=0(−x)ν then {Sn}n∈N is a Cauchy sequence in A, and therefore

corverges in A to an element that must be (1 + x)−1. Let k ≥ 0. For m,n ≥ k we have:

Sn − Sm =
n∑

ν=m+1

(−x)ν ∈ Im+1 ⊂ Im ⊂ Ik.

So {Sn}n∈N is a Cauchy sequence.
Finally, since the elements in 1 + I are units:

A× + I = A×(1 + I) = A×.

The first equality is due to the fact that if u ∈ A×, x ∈ I then

u+ x = u(1 + u−1x) ∈ A×(1 + I) and u(1 + x) = u+ ux ∈ A× + I.

Now we can give the following version of Hensel’s lemma, which we will use several
times throughout this chapter. The version I am giving here is slightly stronger than
the version that can be found on Silverman’s book [16, Ch. IV, Lemma 1.2], which I am
following, since I am giving a proof valid for power series, not only polynomials, and I
do not require that R is a integral domain to obtain uniqueness.
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Lemma IV.1.5. (Hensel’s lemma, I-adic form). Let R be a ring that is complete
with respect to some ideal I ⊂ R, and let F (w) ∈ R[[w]] be a power series. Suppose that
there are an integer n ≥ 1 and an element a ∈ I satisfying

F (a) ∈ In and F ′(a) ∈ R×.

Then for any α ∈ R satisfying α ≡ F ′(a) (mod I), the sequence

w0 = a, wm+1 = wm −
F (wm)

α

converges to an element b ∈ R satisfying

F (b) = 0 and b ≡ a (mod In) ,

and b is the only element of R with this property.

Proof. We first note that any α like the one in the statement of the lemma is a unit:

α ∈ F ′(a) + I ⊂ R× + I = R× (by Proposition IV.1.4).

Define F̃ (w) = F (w + a)/α, w̃0 = 0 and w̃m+1 = w̃m − F̃ (w̃m). Then by induction we
see that wm − w̃m = a and F (wm)/α = F̃ (w̃m). Indeed, for m = 0.

w0 − w̃0 = a and F (w0)/α = F (a)/α = F (0 + a)/α = F̃ (w̃0).

Assume that for m ≥ 0 we have wm − w̃m = a and F (wm)/α = F̃ (w̃m). Then

wm+1 − w̃m+1 = wm − w̃m − (F (wm)/α− F̃ (w̃m)) = a+ 0.

Hence
F (wm+1)/α = F (w̃m+1 + a)/α = F̃ (w̃m+1).

With this in mind, the conditions of the theorem translate into:

w̃0 = 0, F̃ (0) = F (a)/α ∈ In, F̃ ′(0) = F ′(a)/α ≡ 1 (mod I).

Dropping the tildes to ease notation, we can now prove the theorem under the conditions:

w0 = 0, F (0) ∈ In, F ′(0) ≡ 1 (mod I), wm+1 = wm − F (wm) .

At a practical level, replacing F (w) with F (w + a)α−1 has allowed us to assume that
a = 0 = w0 and now α does not appear in our sequence. Of course, the b we are now
looking for must satisfy b ≡ 0 (mod In).

We want to show that wm ∈ In for every m ≥ 0. It is obviously true for m = 0. If we
suppose it true for integers not greater than m, then F (wm) ∈ In (because F (0) ∈ In),
and therefore we have the induction step:

wm+1 = wm − F (wm) ∈ In.
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Now we will show by induction that

wm ≡ wm+1 (mod Im+n) ∀m ≥ 0.

Which in particular proves that wm is a Cauchy sequence.
For m = 0 this just says that F (0) ≡ 0 (mod In), which is one of our assumptions.

Suposse that the congruence is true for all integers strictly smaller than m. If X and Y
are independent variables, then we can factor:

F (X)− F (Y ) = (X − Y )
(
F ′(0) +XG(X,Y ) + Y H(X,Y )

)
(IV.1)

for certain G,H ∈ A[[Y,Z]]. To see this we just have to look at the difference F (X) −
F (Y ) monomial by monomial. If we denote by cn the n-th coefficient of F , the degree
n component of F (X)− F (Y ) is:

cnX
n − cnY n = cn(X − Y )

∑
i+j=n−1

XiY j , for every n ≥ 1,

which yields (IV.1) noticing that c1 = F ′(0).
Then we have:

wm+1 − wm = (wm − F (wm))− (wm−1 − F (wm−1))

= (wm − wm−1)− (F (wm)− F (wm−1))

= (wm − wm−1)︸ ︷︷ ︸
∈Im+n−1

1− F ′(0)︸ ︷︷ ︸
∈I

−wmG (wm, wm−1)− wm−1H (wm, wm−1)︸ ︷︷ ︸
∈In

 ∈ Im+n.

And we have proven that:

wm ≡ wm+1

(
mod Im+n

)
∀m ≥ 0.

So, as we said, wm is a Cauchy sequence and therefore converges to an element b ∈ R.
Since every wm ∈ In, we must have b ∈ In because In is closed. And taking limits in
the relation wm+1 = wm − F (wm), we see that b = b− F (b), so F (b) = 0 as we wanted.

For the uniqueness, assume that there are b, c ∈ In with F (b) = F (c) = 0. Then:

0 = (b− c)(1 + bG(b, c) + cH(b, c))

which implies b = c since 1 + I ⊂ A× by Proposition IV.1.4.

Finally, we have the following useful lemma:

Lemma IV.1.6. (Inverse for composition). Let f(X) =
∑∞

n=0 fnX
n ∈ R[[X]] be a

power series such that f0 = f(0) = 0, f1 = f ′(0) ∈ R×. That is, f(X) is of the form:

f(X) = f1X + (higher-order terms), f1 ∈ R×.

Then there is a unique power series g(X) ∈ R[[X]] satisfying

f(g(X)) = X.

The series g(X) also satisfies g(f(X)) = X.
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Proof. Let A = R[[X]], I = (X) the ideal with respect to which A is complete, and
define F (Y ) := f(Y )−X ∈ A[[Y ]]. Let a = f−11 X ∈ A. We have

F (a) = f(a)−X = f2f
−2
1 X2 + f3f

−3
1 X3 + · · · ≡ 0 (mod I2)

F ′(a) = f1 + (higher-order terms) ∈ A×.

Hensel’s Lemma in its I-adic form (Proposition IV.1.5) applied to a = f−11 X, gives us
a unique b = g(X) ∈ A such that F (g(X)) = 0 and g(x) ≡ a (mod I2), which then
translates into:

f(g(X)) = X g(X) = f−11 X + (higher-order terms).

The same argument applied to g(X) instead of f(X) tells us that there is a unique
h(X) = f1X + (higher-order terms) ∈ A such that g(h(X)) = X. Now:

f(X) = f(g(h(X))) = (f ◦ g)(h(X)) = h(X)

and we have proven that f(g(X)) = g(f(X)) = X.
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IV.2 General facts about formal groups

First we recall a basic fact about formal power series.

Proposition IV.2.1. Let A be a ring. Then f =
∑∞

n=0 anx
n ∈ A[[x]] is a unit if and

only if a0 ∈ A×. In that case, the coefficients of f−1 can be computed inductively as:

b0 = a−10 , bk = −a−10

k∑
j=1

ajbk−j .

Proof. First recall that if g(x) =
∑∞

n=0 bnx
n ∈ A[[x]], then:

f(x)g(x) =
∞∑
n=0

 n∑
j=0

ajbn−j

xn.

Assume first that there exists g such that f(x)g(x) = 1. Then, equating the degree 0
terms, we see that a0b0 = 1, so a0 is a unit.

Now assume that a0 is a unit. We are going to construct the inverse g(x) =∑∞
n=0 bnx

n of f(x) inductively. By equating the terms of degree 0 in 1 = f(x)g(x)
we get that b0 = a−10 . For k ≥ 1, suppose we have computed the coefficients bj , j < k .
Then, since the k-th coefficient of f(x)g(x) must be 0, we have

k∑
j=0

ajbk−j = 0 =⇒ bk = −a−10

k∑
j=1

ajbk−j

which finishes the proof.

Definition IV.2.2. A (one parameter) commutative formal group F over R is a power
series F (X,Y ) ∈ R[[X,Y ]] with the following properties:

(a) F (X,Y ) = X + Y + ( terms of degree ≥ 2).

(b) F (X,F (Y, Z)) = F (F (X,Y ), Z) (associativity).

(c) F (X,Y ) = F (Y,X) (commutativity).

All formal groups that we are going to see are of this kind: commutative one-
parameter formal groups, and we will simply call them formal groups. If we want to
emphasize the ring R, we write F/R. Sometimes we will write (F , F ) if what we want
to emphasize is the power series F (X,Y ).

We should think of formal groups as a way to define the group operation without
the underlying set. The power series F serves as the group operation (F (X,Y ) instead
of X + Y or XY ).

From (a) and (b) in the last definition we deduce the following properties
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Proposition IV.2.3. If F (X,Y ) ∈ R[[X,Y ]] defines a formal group over R, then:

(d) F (X, 0) = X and F (0, Y ) = Y .

(e) There is a unique power series i(T ) ∈ R[[T ]] satisfying i(T ) 6= 0 and F (T, i(T )) = 0
(an ”inverse” for T ), and it has the form

i(T ) = −T + (higher-order terms).

Proof. (a) We can write F as

F (X,Y ) = X + Y +
∑
i+j≥2

cijX
iY j = f(X) + g(Y ) +XYH(X,Y )

where

f(X) := F (X, 0) = X +

+∞∑
i=2

ci0X
i

g(Y ) := F (0, Y ) = Y +

+∞∑
j=2

c0jY
j .

By associativity we have F (X,F (0, Y )) = F (F (X, 0), Y ), or equivalently:

f(X) + g(g(Y )) +Xg(Y )H(X, g(Y )) = f(f(X)) + g(Y ) + f(X)Y H(f(X), Y ).

Equating the parts independent from X and those independent from Y , we get, respec-
tively:

f(X) = f(f(X)) and g(Y ) = g(g(Y )).

This implies that f(X) = X and g(Y ) = Y . Indeed, since f(0) = 0, f ′(0) = 1 ∈ R×, by
Lemma IV.1.6, there exists an inverse f−1 of f for composition, so:

f(X) = f(f(X))
f−1◦
=⇒ X = f(X) (IV.2)

and the same goes for g(X).
(b) Let A = R[[X]], complete with respect to the ideal I = (X). Thanks to (a), we

know that F (X,Y ) = X + Y + XYH(X,Y ), with H(X,Y ) ∈ R[[X,Y ]] = A[[Y ]]. We
define G(Y ) = F (X,Y ) ∈ A[[Y ]]. Then

G(−X) = −X2H(X,−X) ∈ I2 G′(−X) = 1 + ( higher-order terms in X ) ∈ A×.

So Hensel’s lemma in its I-adic form (Lemma IV.1.5), applied to a = −X,n = 2,
tell us that there exists a unique power series i(X) ∈ A such that G(i(X)) = 0 and
i(X) ≡ −X (mod I2). Therefore, F (X, i(X)) = 0 and

i(X) = −X + (higher-order terms)

as we wanted.
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The following two examples are easily verified to define a formal group.

Example IV.2.4. The formal additive group, denoted by Ĝa, is defined by:

F (X,Y ) = X + Y.

Example IV.2.5. The formal multiplicative group, denoted by Ĝm, is defined by:

F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1.

As it is customary, after defining the mathematical objects, we give the morphisms
between them.

Definition IV.2.6. Let (F , F ) and (G, G) be formal groups defined over R. A homo-
morphism from F to G defined over R is a power series f ∈ R[[T ]] (with no constant
term) that satisfies

f(F (X,Y )) = G(f(X), f(Y )).

The formal groups F and G are isomorphic over R if there are homomorphisms f : F →
G and g : G → F defined over R such that

f(g(T )) = g(f(T )) = T.

Proposition IV.2.7. Let (F , F ) be a formal group and let f : F → F , f ∈ R[[T ]] be
a formal group homomorphism that has an inverse for composition g ∈ R[[T ]]. Then
g : F → F is a formal group homomorphism. Consequently f is an automorphism of F .

Proof. Since f(g(X)) = g(f(X)) = X and f is a homomorphism, we have:

F (X,Y ) = F (f ◦ g(X), f ◦ g(Y )) = f(F (g(X), g(Y ))).

Thus
g(F (X,Y )) = g ◦ f(F (g(X), g(Y ))) = F (g(X), g(Y )).

Proposition IV.2.8. The unique power series i(T ) such that F (T, i(T )) = 0 is a formal
group homomorphism from F to F .

Proof. We have to prove that

i(F (X,Y )) = F (i(X), i(Y )).

It suffices to show that H(X,Y ) := F (F (X,Y ), F (i(X), i(Y ))) = 0, since then

F (i(F (X,Y )), H(X,Y )) = i(F (X,Y ))

but thanks to associativity we also have:

F (i(F (X,Y )), H(X,Y )) = F (F (i(F (X,Y )), F (X,Y )), F (i(X), i(Y )))

= F (0, F (i(X), i(Y ))) = F (i(X), i(Y ))
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Indeed, we have

F (F (X,Y ), F (i(X), i(Y ))) = F (F (F (Y,X), i(X)), i(Y )) = F (F (Y, F (X, i(X))), i(Y ))

= F (F (Y, 0), i(Y )) = F (Y, i(Y )) = 0

as we wanted.

Definition IV.2.9. (Multiplication by m). Let (F , F ) be a formal group. We define
inductively:

[0](T ) = 0, [m+ 1](T ) = F ([m](T ), T ), [m− 1](T ) = F ([m](T ), i(T )).

for m ∈ Z.

Proposition IV.2.10. The multiplication-by-m map [m] : F → F defined in (IV.2.9)
is a homomorphism in the sense of Definition IV.2.6

Proof. For m = 0 it is obvious:

[0]F (X,Y ) = 0 = F (0, 0) = F ([0]X, [0]Y ).

Now, suppose that it is true for m ∈ Z, which means that:

[m]F (X,Y ) = F ([m]X, [m]Y ).

Then, we are going to see that this is also true for m + 1 and m − 1. Using the the
induction hypothesis and the properties of F we have:

[m+ 1]F (X,Y ) = F ([m]F (X,Y ), F (X,Y )) = F (F ([m]X, [m]Y ), F (X,Y ))

= F (F ([m]X, [m]Y ), F (Y,X)) = F ([m]X,F ([m]Y, F (Y,X)))

= F ([m]X,F (F ([m]Y, Y ), X)) = F ([m]X,F ([m+ 1]Y,X))

= F ([m]X,F (X, [m+ 1]Y )) = F (F ([m]X,X), [m+ 1]Y )

= F ([m+ 1]X, [m+ 1]Y ).

And also using that i(T ) is a formal group homomorphism we have:

[m− 1]F (X,Y ) = F ([m]F (X,Y ), i(F (X,Y ))) = F (F ([m]X, [m]Y ), F (i(X), i(Y )))

= F (F (F ([m]Y, [m]X), i(X)), i(Y )) = F (F ([m]Y, F ([m]X, i(X))), i(Y ))

= F (F ([m]Y, [m− 1]X), i(Y )) = F (F ([m− 1]X, [m]Y ), i(Y ))

= F ([m− 1]X,F ([m]Y, i(Y ))) = F ([m− 1]X, [m− 1]Y ),

which finishes the proof. Let us notice that commutativity has been essential.

Proposition IV.2.11. Let F be a formal group over a ring R and let m ∈ Z.

(a) [m](T ) = mT + (higher order terms).
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(b) If m ∈ R×, then [m] : F → F is an isomorphism.

Proof. (a) We are going to prove this by induction on m. For m = 0, [0](T ) = 0 and for
m = 1, [1](T ) = F ([0](T ), T ) = F (0, T ) = T , so the result holds. Now, suppose that the
result holds for m ∈ Z. Let us see first the upward induction:

[m+ 1](T ) = F ([m](T ), T ) = [m](T ) + T + · · · = (m+ 1)T + (higher order terms).

For the downward induction, we have:

[m−1](T ) = F ([m](T ), i(T )) = [m](T )+i(T )+· · · = mT−T+· · · = (m−1)T+(higher order terms).

(b) From (a) and Lemma IV.1.6 it follows inmediately that [m] has an inverse for com-
position. Then Proposition IV.2.7 guarantees that this inverse is a formal group homo-
morphism, hence [m] is an isomorphism.

IV.2.1 Groups associated to formal groups

Notation: Throughout all this section, R is a complete local ring, with maximal ideal
M and residue field k. F will be a formal group over R with formal group law F (X,Y ).

When we evaluate F (X,Y ) in elements of the maximal ideal M, the power series
converges and therefore F gives M the structure of an abelian group.

Definition IV.2.12. The group associated to F/R, denoted by F(M), is the set M
endowed with the group operations

x⊕F y = F (x, y) addition for x, y ∈M.

	Fx = i(x) inversion for x ∈M.

Similarly, F(Mn) is the set Mn with the above group operations. The fact that R
is complete implies that both F (x, y) and i(x) converge for all x, y ∈M. The properties
of F makes F(M) inmediately into a group.

A formal group homomorphism f : (F , F ) → (G, G) induces a group morphism
between the corresponding groups, in the obvious way:

f(x⊕F y) = f(F (x, y)) = G(f(x), f(y)) = f(x)⊕G f(y).

Therefore, if the formal group homomorphism is an isomorphism, so is the induced
morphism on the associated groups.

Example IV.2.13. The additive group Ĝa(M) associated to the additive formal group
given in Example IV.2.4, is just M+, i.e. M with its usual addition law.

The multiplicative group Ĝm(M), associated to the multiplicative formal group
G(X,Y ) = (1 + X)(1 + Y ) − 1, given in Example IV.2.5, is isomorphic to the group
of principal units: 1 +M with multiplication as group law. To see this, let f : M →
1 +M, f(x) = 1 + x. Then for x, y ∈M:

f(x⊕G y) = (1 + x)(1 + y) = f(x)f(y)
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So f is a group morphism between Ĝm(M) and 1 +M , with inverse f−1(y) = y− 1 and
therefore f is an isomorphism.

Let us notice the exact sequences:

0 −→ Ĝa(M) −→ R −→ k −→ 0

0 −→ Ĝm(M)
z 7→1+z−→ R× −→ k× −→ 1.

They follow from the description of Ĝa(M) y Ĝm(M) given above and the fact that the
kernel of the reduction modulo M, R× → k× is the group of principal units 1 +M.

Proposition IV.2.14. Let F/R be a formal group defined over a complete local ring.

(a) For each n ≥ 1, the map
F (Mn)

F (Mn+1)
−→ Mn

Mn+1

induced by the identity map on sets is an isomorphism of groups.

(b) Let p be the characteristic of the residue field k, where p is allowed to equal 0.
Then every element of finite order in F(M) has an order that is a power of p.

Proof. (a) Since the underlying sets are the sames, it suffices to show that the identity
map is a morphism of groups. For any x, y ∈Mn we have:

x⊕F y = F (x, y) = x+ y + ( higher-order terms ) ≡ x+ y
(
mod M2n

)
and the congruence also holds mod Mn+1 since M2n ⊂Mn+1 for every n ≥ 1.

(b) Let x be a torsion element and m ∈ N its order. If we write m = m′pvp(m), then
p - m′ and 0 = mx = m′(pvp(m)x), which tell us that it suffices to prove that there are no
non-zero torsion elements of order prime to p. So let m ∈ Z such that p - m (for p = 0
this means that m is arbitrary) and suppose there exists x ∈ M such that [m]x = 0.
But since m is prime to p, m /∈ M so that m ∈ R×, since R is a local ring. Then, by
Proposition IV.2.11, [m] : F → F is a formal group automorphism, thus it induces an
automorfism in F(M), so [m] has trivial kernel and therefore x = 0.
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IV.3 The formal group of an elliptic curve

We are going to examine the group structure of an elliptic curve near the point at infinity.
But before that, we will want to move it to the origin, that is, the affine* point [0 : 0 : 1].

Let us start with an elliptic curve given by a Weierstrass equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Now we dehomogenize by making Y = 1, instead of Z = 1 which is what we are used to.
This just means that we have moved to the affine chart Y = 1 where the line at infinity
is Y = 0, instead of Z = 0. Here, the equation of our elliptic curve is:

z + a1xz + a3z
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

Now we substitute v = −x,w = −z and obtain:

−w + a1vw + a3w
2 = −v3 − a2v2w − a4vw2 − a6w3.

Or equivalently:

w = a1vw + a3w
2 + v3 + a2v

2w + a4vw
2 + a6w

3.

After the composition of the change of charts and this last change of variables, the points
of the form [a : 1 : b] are sent to the point (−a,−b) in the affine chart Y = 1. So, in
particular, O = [0 : 1 : 0] is sent to O = (0, 0). The rest of points of the curve, of the

form [x : y : 1], if they are on the new affine plane Y = 1, are sent to
[
−x
y : 1 : − 1

y

]
(since y 6= 0), or

(
−x
y ,−

1
y

)
in our new system of coordinates.

We are going to rename v = z for convenience, because v will be our valuation later
on. Summarizing, the new equation for our elliptic curve, with which we will be working
this whole section, is:

w = a1zw + a3w
2 + z3 + a2z

2w + a4zw
2 + a6w

3 = f(z, w) (IV.3)

and the change of coordinates that has transformed the original Weierstrass equation
into this one is: 

z = −x
y

w = −1

y

or


x =

z

w

y = − 1

w

(IV.4)

The equation (IV.3) allows us to substitute

w = f(z, w) = f(z, f(z, w)) = . . .

*By default, we choose Z = 0 as the line at infinite. Consequently, we inject the affine point (x, y)
into the projective plane as [x : y : 1].
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in order to write w as a power series in z. More precisely, we want to prove that the
sequence

wm+1(z) = f(z, wm(z)), w0(z) = 0 (IV.5)

converges to an element w(z) ∈ Z[a1, . . . , a6][[z]], verifying w(z) = f(z, w(z)), which we
will prove using Hensel’s Lemma IV.1.5.

A single substitution show us that:

w = z3 +
(
a1z + a2z

2
)
w + (a3 + a4z)w

2 + a6w
3

= z3 +
(
a1z + a2z

2
) [
z3 +

(
a1z + a2z

2
)
w + (a3 + a4z)w

2 + a6w
3
]

+ (a3 + a4z)
[
z3 +

(
a1z + a2z

2
)
w + (a3 + a4z)w

2 + a6w
3
]2

+ a6
[
z3 +

(
a1z + a2z

2
)
w + (a3 + a4z)w

2 + a6w
3
]3

...

= z3 + a1z
4 +

(
a21 + a2

)
z5 +

(
a31 + 2a1a2 + a3

)
z6

+
(
a41 + 3a21a2 + 3a1a3 + a22 + a4

)
z7 + · · ·

= z3
(
1 +A1z +A2z

2 + · · ·
)

where each An ∈ Z[a1, . . . , a6] is a polynomial in the coefficients of E. This is easy to
notice when we regroup the coefficients, because for each monomial zk, substitutions will
eventually stop contributing to its coefficient.

Proposition IV.3.1. The procedure described above converges to a power series

w(z) = z3
(
1 +A1z +A2z

2 + · · ·
)
∈ Z[a1, . . . , a6][[z]]

and w(z) is the unique power series in Z[a1, . . . , a6][[z]] satisfying

w(0) = 0 and w(z) = f(z, w(z)).

Proof. We just have to use Hensel’s lemma in its I-adic form (Lemma IV.1.5) in the ring
R = Z[a1, . . . , a1][[z]] complete with respect to the ideal I = (z). Let F (w) = f(z, w)−w,
a = 0. Then

F (a) = f(z, 0)− 0 = z3 ∈ I3

F ′(a) =
∂f(z, w)

∂w

∣∣∣∣
w=0

− 1 = −1 + a1z + a2z
2 ∈ R×.

Moreover, F ′(a) ≡ −1 (mod I). So Hensel’s lemma, with these data and α = −1 tell
us that there exists a unique w(z) ∈ R such that F (w(z)) = 0 and w(z) ∈ I3. This
translates respectively into w(z) = f(z, w(z)) and

w(z) = z3
(
1 +A1z +A2z

2 + · · ·
)
∈ Z[a1, . . . , a6][[z]]; w(0) = 0.

And the sequence converging to w(z) that the statement of Lemma IV.1.5 gives us is

wm+1(z) = wm(z)− F (wm(z))/(−1) = f(z, wm(z))

and this is the sequence we constructed in (IV.5) earlier, which proves our claims.
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Using Proposition IV.2.1, it is inmediate to compute the Laurent series for x and y:

x(z) =
z

w(z)
=

1

z2 (1 +A1z +A2z2 + · · · )
=

1

z2
− a1

z
− a2 − a3z − (a4 + a1a3) z

2 − · · ·

y(z) = − 1

w(z)
= − 1

z3 (1 +A1z +A2z2 + · · · )
= − 1

z3
+
a1
z2

+
a2
z

+ a3 + (a4 + a1a3) z − · · ·

The pair (x(z), y(z)) provides a formal solution to the original Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

i.e., a solution over K((z)). In order to make sense of the point (x(z), y(z)) we must
work over a field K complete with respect to a discrete valuation, with valuation ring
R and maximal ideal M. Then, if a1, . . . , a6 ∈ R, x(z) and y(z) will converge for every
z ∈M \ {0} and this way we get a point (x(z), y(z)) ∈ E(K). The map

M→ E(K), z 7→ (x(z), y(z)), 0 7→ O (IV.6)

is injective since it has a left inverse (x, y) 7→ −x/y (by IV.4).
What we are looking for is the formal power series giving formally the group law of

E.
Recall that the change of coordinates we did at the beginning of this section leaves

us in the (z, w)-plane, where a point (z0, w0) is in E if and only if w0 = f(z0, w0). (IV.3).
What we want is the group law on this plane.

First, we compute the third point of intersection, (z3, w3), of E with the line through
the two points of E that we are adding. Then the addition of the two points is the
inverse of (z3, w3) but we ought to make all computations with power series.

Let z1, z2 be indeterminates and wi = w(zi) for i = 1, 2, so that if zi ∈ M, then
(zi, wi) is a point of E(K). The line connecting (z1, w1) and (z2, w2) has slope:

λ = λ (z1, z2) =
w2 − w1

z2 − z1
=
∞∑
n=3

An−3
zn2 − zn1
z2 − z1

∈ Z [a1, . . . , a6] [[z1, z2]]

by (IV.3.1). We understand that A0 = 1. Let’s note that λ(z1, z2) only has terms

of degree 2 or greater since the division
zn2−zn1
z2−z1 is exact and results in a homogeneus

polynomial of degree n− 1.
We let

ν = ν (z1, z2) = w1 − λz1 ∈ Z [a1, . . . , a6] [[z1, z2]]

so the line we were looking for has equation: w = λz + ν. If we substitute this into
the equation for E: w = f(z, w) we get a cubic g(z), and two of itse roots must be z1
and z2. The third root is the z-coordinate of the third point of intersection of the line
w = λz+ν with E. By actually making the substitution of the line into E, and equating
the second-degree term of g to (−z1 − z2 − z3), times the leading coefficient, we arrive
at:

z3 = z3 (z1, z2)

= −z1 − z2 +
a1λ+ a3λ

2 + a2y + 2a4λν + 3a6λ
2ν

1 + a2λ+ a4λ2 + a6λ3
∈ Z [a1, . . . , a6] [[z1, z2]]
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since 1 + a2λ+ a4λ
2 + a6λ

3 is a unit in Z [a1, . . . , a6] [[z1, z2]].
We then let w3 = λ (z1, z2) z3 (z1, z2) + ν (z1, z2). Since (z1, w1), (z1, w1) and (z3, w3)

are collinear on E, they add to O in the (z, w)-plane using the group law. Furthermore
we have w(z3) = f(z3, w(z3)) because (z3, w3) ∈ E by construction, so we must have
w3 = w(z3), since w(z3) is the only power series verifying w(z3) = f(z3, w(z3)) by
Proposition IV.3.1.

So far we have
(z3, w3) = − ((z1, w1) + (z2, w2)) .

So we need the formula for the negative of a point in the (z, w) plane. If suffices to
have the formula i(z) for the z-coordinate of the negative a point, since then (z1, w1) +
(z2, w2) = (i(z3), w(i(z3))).

In the (x, y)-plane, the inverse of (x, y) is (x,−y − a1x− a3). Using that z = −x/y
we find that the z-coordinate of the inverse in the (z, w)-plane is:

i(z) =
x(z)

y(z) + a1x(z) + a3
=

z−2 − a1z−1 − · · ·
−z−3 + 2a1z−2 + · · ·

∈ Z [a1, . . . , a6] [[z]] (IV.7)

The w-coordinate of the inverse (z,−y − a1x− a3) is:

w′ = −1

y
=

z3

−1 + 2a1z + · · ·
∈ Z [a1, . . . , a6] [[z]].

Since (i(z), w′) ∈ E, it verifies w′ = f(i(z), w′) and, as before, w(i(z)) is the only power
series with this property by Proposition IV.3.1, so we must have w′ = w(i(z)).

We have arrived at the power series giving formally the z-coordinate of the sum of
the points (z1, w1), (z2, w2):

F (z1, z2) = i (z3 (z1, z2))

= z1 + z2 − a1z1z2 − a2
(
z21z2 + z1z

2
2

)
+
(
2a3z

3
1z2 + (a1a2 − 3a3) z

2
1z

2
2 + 2a3z1z

3
2

)
+ · · · ∈ Z [a1, . . . , a6] [[z1, z2]]

Although it is very tedious, we can compute as many terms as we want since, as we
did at the begining of this section, we can compute arbitrarily many of the polynomials
Ai ∈ Z[a1, . . . , an] by making more subtutions of the equation w = f(z, w) to itself. This
allows us to compute also as many terms as we want of λ and ν and therefore also of z3.
The same goes for i(z) in (IV.7), so we can compute F (z1, z2).

F (z1, z2) is in fact a formal group since we have:

F (z1, z2) = z1 + z2 + higher-order terms

and the conmmutativity and associativity of the group law inmediately imply:

F (z1, z2) = F (z2, z1)

F (z1, F (z2, z)) = F (F (z1, z2) , z) .

Furthermore, i(z) is, as the notation suggest, the inverse for the formal group law:

F (z, i(z)) = z-coordinate of the origin (0,0) = 0.
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Definition IV.3.2. (Formal group of an elliptic curve). For an elliptic curve E/R, the
power series F (z1, z2) described above define a formal group (over R) called the formal
group associated to E, denoted Ê.

Observation IV.3.3. We have described F (z1, z2) for z1 6= z2 since we have used the

expresion
zn2−zn1
z2−z1 . But this expression also has a limit when z2 → z1 so the expresion for

F (z1, z2) is always valid.
When E is defined over a local ring R complete with respect to the maximal ideal

M, then F (z1, z2) is continuous in M×M. Furthermore, in this case, the power series
x(z), y(z) give a well defined map

M−→ E(K), z −→ Pz = (x(z), y(z))

that is a group morphism between Ê and E(K) since by construction PF (z,z′) = Pz +Pz′

for z 6= z′ and we sorted out above what happens for z = z′.
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Chapter V

The Néron-Ogg-Shafarevich
Criterion

First, we fix the following notation for the entire chapter.

� K will be a complete field with respect to a discrete normalized valuation v.

� | · | any of the (equivalent) nonarchimedean absolute values asociated to v.

� R = {x ∈ K : v(x) ≥ 0} = {x ∈ K : |x| ≤ 1} the valuation ring� of K

� R× = {x ∈ K : v(x) = 0} = {x ∈ K : |x| = 1} the group of units of R.

� M = {x ∈ K : v(x) > 0} = {x ∈ K : |x| < 1} the maximal ideal of R.

� π a uniformizer of R, i.e. a generator of M. Recall that every x ∈ K× is of the
form x = uπn with n ∈ Z, u ∈ R×.

� k = R/M the residue field of R.

We further assume that K and k are always perfect.
In other words, in this chapter we are going to use the modern definition of Local

Field : A perfect field K complete with respect to a discrete valuation and with residue
field k also perfect. Nonetheless, we will reserve the term Local Field for the smaller
class of fields that satisfies the classic definition, i.e. when k is finite. Even though in
practice almost all fields we use are local fields in the classical sense, we will need that
the results in these chapters do not rely on the fact that k is finite, because in the proof
of the Criterion we will work with extensions of K whose residue field is algebraically
closed.

The concepts and tools developed in this chapter are all oriented to prove the Crite-
rion of Néron-Ogg-Shafarevic, and can all be found in Silvermans’s book [16], mainly in
Chapter VII. The notation and some results about elliptic curves that we will
use in this chapter can be found in Appendix A.

�I do not denote the valuation ring as O because here O is reserved for the point at infinity (zero
element of the group) of our elliptic curves.
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V.1 Minimal Weierstrass Equations

Let E/K be an elliptic curve with Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

At first the coefficients are only inK, but if we make the substitution (x, y) 7→ (u−2x, u−3y)
followed by multipliying the equation by u6 we obtain a new Weierstrass equation:

E : y2 + a1uxy + a3u
3y = x3 + a2u

2x2 + a4u
4x+ a6u

6

in which the original coefficients ai has been replaced by uiai. Therefore, if we take
u = πn for a sufficiently large n ∈ N, by this method we obtain a Weierstrass equation
whose coefficients are all in R, so we have ∆ ∈ R, i.e. v(∆) ≥ 0. Now, since v is discrete,
among all Weiertrass equations with coefficients in R, we can choose one that minimizes
the quantity v(∆), so we have the following definition.

Definition V.1.1. Let E/K be an elliptic curve. A minimal Weierstrass equation (for
E at v) is a Weierstrass equation for E/K that minimizes de value v(∆) subject to the
conditions that its coefficients are all in R.

The minimal value of v(∆) under this conditions is called the minimal discriminant
of E at v.

As proven above, we have:

Proposition V.1.2. Every elliptic curve E/K has a minimal Weierstrass equation.

Following the notation established in (A.3), we have

Proposition V.1.3. Let E/K be an elliptic curve with a Weierstrass equation with
coefficients in R. Then any of the following conditions are sufficient for the equation to
be minimal.

1. v(∆) < 12.

2. v(c4) < 4.

3. v(c6) < 6.

Proof. If ai ∈ R for all i, then obviously ∆, c4, c6 ∈ R. By (A.3) we know that any
change of variables that produces a new Weierstrass equation* has as new discriminat
∆′ = u−12∆ and that also c′4 = u−4c4, c

′
6 = u−6c6, for some u ∈ K. So v(∆), v(c4) and

v(c6) can only be changed by multiples of 12, 4 and 6 respectively, which added to the
condition v(∆), v(c4), v(c6) ≥ 0 gives us the result.

If char k 6= 2, 3, then we only need to look at ∆ and c4. More precisely:

*We will denote the quantities related to the new equation with a prime.
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Proposition V.1.4. Let E/K be an elliptic curve with a Weierstrass equation with
coefficients in R. If char k 6= 2, 3, then the equation is minimal if and only if v(∆) < 12
or v(c4) < 4. Furthermore, we can always find a minimal reduced Weierstrass form.

Before the proof is worth noticing the following

Observation V.1.5. If char(k) 6= p, then char(K) 6= p.
This is true in a more general set up. Assume R is a subring of K with a maximal

ideal m and that k = R/m. If char(K) = p, then 1R + · · · 1R︸ ︷︷ ︸
p times

= 0. Reducing modulo m,

we have 1k + · · · 1k︸ ︷︷ ︸
p times

= 0, so that char k is positive and divides p, hence char(k) = p.

Proof. (of Proposition V.1.4) The “if ” part has already been proved above. Assume
that we have a minimal equation y2 = x3 + Ax + B. Recall that c4 = −48A and
∆ = −16(4A3 + 27B2). Assume that v(∆) ≥ 4 and v(c4) ≥ 12. Then

4 ≤ v(c4) = v(48) + v(A) = v(A)

2v(B) = v(−B2) = v(∆ + 16 · 4A3) ≥ min {v(∆), 3v(A)} ≥ 12

where we have used that v(2n3m) = nv(2) + mv(3) = 0 for every m,n ∈ Z, because
char(k) 6= 2, 3. In other words, we have v(A) ≥ 4 and v(B) ≥ 6. Then we make the
change of coordinates:

x = π2x′, y = π3y′

and we get a new reduced Weierstrass equation:

(y′)2 = (x′)3 +A′x+B′, where A′ = π−4A,B′ = π−6B.

Now v(A′) = v(π−4A) = −4 + v(A) ≥ 0 and v(B′) = v(π−6B) = −6 + v(A) ≥ 0 which
means that our new equation (y′)2 = (x′)3 +A′x+B′ has coefficients in R and

0 ≤ v(c′4) = v(c4)− 4 < v(c4)

0 ≤ v(∆′) = v(∆)− 12 < v(∆).

Which contradicts the fact that our original equation was minimal. Therefore we must
have either v(∆) < 12 or v(c4) < 4.

Finally, since char(k) 6= 2, 3 implies that char(K) 6= 2, 3, every elliptic curve E has a
reduced Weierstass equation y2 = x3 +Ax+B, not necessarily minimal. We can get the
coefficients to lie in R easily as we described at the beginning of the section. Then we
can repeat the process described above, always obtaining a reduced Weierstrass equation
over R, until either v(∆) < 12 or v(c4) < 4 and then our equation would be minimal.
This proves we can always get a minimal reduced Weiertrass equation.

Example V.1.6. The Weierstrass equation

y2 = x3 + x

has discriminant ∆ = −26, so by (V.1.3) is minimal over Qp for all primes p.
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Now we characterize all the changes of variables that achieve and maintain the mini-
mality of a Weierstrass equation. Note that if the coefficients ai of a Weierstrass equation
for E are in R, then every quantity in (A.3) is also is R, except maybe the j-invariant,
since all of them are polynomial in the ai. In particular this is true for minimal Weier-
strass equations.

Proposition V.1.7. (a) A minimal Weierstrass equation is unique up to change of
variables

x = u2x′ + r, y = u3y′ + u2sx′ + t (V.1)

with u ∈ R× and r, s, t ∈ R.

(b) Conversely, if a change of coordinates (V.1) transforms a Weierstrass equation
into a minimal one, then u, r, s, t ∈ R.

Proof. (a) We know from (A.1.2) that any change of variables that transforms a Weier-
strass equation into another is of the form (V.1) with u, r, s, t ∈ K,u 6= 0. If both our
original Weierstrass equation and the new one are minimal, then v(∆) = v(∆′), and
since u12∆′ = ∆, we must have v(u) = 0, i.e., u ∈ R×. The transformation formulas for
b6 and b8 are respectively

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4.

First, we notice that v(4) and v(3) cannot both be positive because otherwise 0 = v(1) =
v(4− 3) ≥ min {v(3), v(4)} > 0, a contradiction.

Suppose first that v(4) = 0, then the above transformation formula for b6 tells us
that:

4r3 = d0 + d1r + d2r
2, di ∈ R.

And taking valuations, while writing n = v(r), we have:

3n = v(4r3) = v(d0 + d1r + d2r
2) ≥ min(v(d0), v(d1r), v(d2r

2)) ≥ min(0, n, 2n).

If n < 0, then we have 3n ≥ 2n, i.e. n ≥ 0, a contradiction. So we must have
v(r) = n ≥ 0.

In the other case, v(3) = 0, working with the transformation formula for b8 we get
exactly the same result. Therefore r ∈ R.

The transformation formula for a2 is:

u2a′2 = a2 − sa1 + 3r − s2.

Which then translates again into

s2 = d0 + d1s, for some di ∈ R.

So 2v(s) = v(s2) = v(d0 + d1s) ≥ min(0, v(s)). This implies, as it did with r, that
v(s) ≥ 0.
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The transformation formula for a6 is:

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

And again we write it as:

t2 = d0 + d1t, for some di ∈ R

So 2v(t) = v(t2) = v(d0 + d1t) ≥ min(0, v(t)). This implies again that v(t) ≥ 0.
We have proven that r, s, t ∈ R. It is worth noticing that the order in doing so has

been important.
(b) Since the new equation is minimal, we must have v(∆′) ≤ v(∆). But u12∆′ = ∆

so it follows that v(u) ≥ 0, i.e. u ∈ R. Now we can repeat the proof in (a) to obtain
that r, s, t ∈ R, in that order.
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V.2 Reduction Modulo π

We denote the natural projection map from R to its residue field by a tilde:

R→ R/M, t 7→ t̃ = t+ πR.

Let P = [x0 : x1 : · · · : xn] ∈ Pn(K). Then dividing by the coordinate with the
greatest absolute value (in particular it is nonzero), we get coordinates for P that are
all in R and at least one is in R×.

Then it makes sense to reduce them modulo π, which gives us a map:

Pn(K)→ Pn(k), P = [x0 : · · · : xn] 7→ P̃ = [x̃0 : · · · : x̃n]

that is well defined, because we are dividing by a coordinate, which cancels out the scalar
factor that relates two different representatives of P . To make the reduction of P , of
course, we need to have all the coordinates of P lying in R and at least one of them in
R×, but we have just seen that this is always possible.

We are interested in this map for P2(K). More specifically, to its restriction to E(K),
which will also be denoted by a tilde.

Having chosen a minimal Weierstrass equation for E/K, we can reduce its coefficients
modulo π, so we get a possibly singular curve over k:

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.

The curve E/k is called the reduction of E modulo π. The fact that we started with
a minimal Weiertrass equation for E guarantees us (Proposition V.1.7) that this new
equation is unique up to the standard changes of variables (A.1.2 (b)) over k.

Of course, if a point satisfies the minimal Weiertrass equation of E, taking the
reduction modulo π shows us that P̃ ∈ Ẽ(k). So the reduction modulo π restricts to a
map:

E(K)→ Ẽ(k), P = [x0 : x1 : x2] 7→ P̃ = [x̃0 : x̃1 : x̃2].

Observation V.2.1. If E1 and E2 are two elliptic curves and φ : E1 → E2 is a map
verifying

1. φ(−P ) = −φ(P ) for every P ∈ E1.

2. P1 + P2 + P3 = O =⇒ φ(P1) + φ(P2) + φ(P3) = O,

then φ is a group morphism. This is because under these assumptions:

φ(P1 + P2) = φ(−P3) = −φ(P3) = φ(P1) + φ(P2)

Even though Ẽ/k may be singular, Ẽns(k) is always a group (Proposition A.2.6). We
define the following subsets of E(K):

E0(K) =
{
P ∈ E(K) : P̃ ∈ Ẽns(k)

}
E1(K) = {P ∈ E(K) : P̃ = Õ}
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We say that E0(K) are the points with nonsingular reduction and E1(K) is the kernel
of the reduction.

E1(K) is obviously a subgroup of E(K). E0 is also a subgroup, but this is not
inmediate. In fact, it is part of the following:

Proposition V.2.2. There is an exact sequence of abelian groups

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0

where the right-hand map is reduction modulo π and the left-hand map is the inclusion.

Proof. Since E1 is the kernel of the reduction and is a subset of E0(K), there are three
things to prove:

1. The reduction modulo π map E0(K) −→ Ẽns(k) is surjective.

2. E0(K) is a subgroup of E(K)

3. The reduction modulo π map is a group morphism.

To prove the first, let

f(x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0.

be a minimal equation for E. After reducing it modulo π we get an equation f̃(x, y) for
Ẽ. Let P̃ = (α̃, β̃) ∈ Ẽns(k). Since P̃ is nonsingular, we must be in at least one of the
following situations:

∂f̃

∂x
(P̃ ) 6= 0 or

∂f̃

∂y
(P̃ ) 6= 0.

Assume we are in the first case. Let y0 ∈ R such that ỹ0 = β̃. Then the equation
f(x, y0) = 0, when reduced modulo π has α̃ as a single root since (∂f̃/∂x)(α̃, ỹ0) 6= 0.
Since K is complete with respect a discrete valuation, Hensel’s Lemma (I.2.12) tells us
that we can lift this mod π root α̃ to a x0 ∈ R such that x̃0 = α̃ and f(x0, y0) = 0. This

implies that Q = (x0, y0) ∈ E(K) and Q̃ = P̃ , so Q ∈ E0(K). The case ∂f̃
∂y (P̃ ) 6= 0 is

carried out in exactly the same way, lifting the root β̃ of the the reduction of f(x0, y) to
some y0 such that f(x0, y0) = 0.

To prove that E0(K) is a subgroup of E(K), observe that both the group laws of
E(K) and Ẽns(k) are defined by taking intersections in P2(K) and P2(k) respectively.
For any line of P2(K) we can find an equation:

L : Ax+By + cZ = 0

with A,B,C ∈ R and one of them in R×. Then it makes sense to take the reduction of
its coefficients:

L̃ : Ãx+ B̃y + C̃z = 0.

If a point P is in L then obviously P̃ ∈ L̃.
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The reduction map obviously sends O ∈ E(K) to Ẽns(k). Let P = (x, y) ∈ E0(K).
Then

(̃−P ) = (x̃,−ỹ − ã1x̃− ã3) = −(x̃, ỹ) = −P̃ .

Since Ẽns(k) is a group:

P ∈ E0(K) =⇒ P̃ ∈ Ẽns(k) =⇒ −P̃ = (̃−P ) ∈ Ẽns(k) =⇒ −P ∈ E0(K).

By Observation (V.2.1), it suffices to show that if three points are collinear (they add
up to O), their reductions are also collinear in Ẽns(K).

With all this in mind, let P1, P2 ∈ E0(K) and P3 ∈ E(K) such that P1+P2+P3 = O.
So there is a line L that intersects E at P1, P2, P3 with the appropriate multiplicities.
(for example, if P1 = P2 6= P3, then L intersects E at P1 with multiplicity 2 and at P3

with multiplicity 1). If we prove that L̃ intersects Ẽ at P̃1, P̃2, P̃3 with the corresponding
multiplicities, i.e. P̃1 + P̃2 + P̃3 = Õ, it will follow that P̃3 = −(P̃1 + P̃2) ∈ Ens(k),
so P3 ∈ E0(k). This would imply that the reduction modulo π sends sums of points of
E0(K) to the sum of the reduced points in Ens(k). So E0 a subgroup of E(K) and the
reduction map is a morphism.

It only remains to prove that P̃1 + P̃2 + P̃3 = Õ. There are many cases to consider,
and we will show only the first one, since the rest are quite lenghty.

First, assume that P̃1, P̃2, P̃3 = Õ are all distinct. Then

L̃ ∩ Ẽ =
{
P̃1, P̃2, P̃3

}
are all distinct points and therefore P̃1 + P̃2 + P̃3 = Õ.

The case where two distinct points have the same reduction can be found in [16,
Proposition 2.1, Ch. VII, pages 189,190], and the rest are similar to this last one ([16,
Exercise 7.15, page 205]).

Proposition V.2.3. Let E/K be given by a minimal Weierstrass equation, let Ê/R be
the formal group associated to E as in IV.3.2, and let w(z) ∈ R[x] be the power series
from IV.3.1. Then the map

Ê(M) −→ E1(K), z 7−→
(

z

w(z)
,− 1

w(z)

)
is an isomorphism of groups. (We understand that z = 0 goes to O ∈ E1(K)).

Proof. We have
w(z) = z3(1 + . . . ) ∈ R[[z]]

so w(z) converges for every z ∈M and (x, y) = (z/w(z),−1/w(z)) ∈ E(K) (see IV.3.1).
Furthermore, the reduction of [z/w(z) : −1/w(z) : 1] = [−z : 1 : −w(z)] is [0 : 1 :

0] = O, which shows that (z/w(z),−1/w(z)) ∈ E1(K). Furthermore the map:

Ê(M) −→ E1(K), z 7−→
(

z

w(z)
,− 1

w(z)

)
(V.2)
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is injective since it has left inverse (x, y) 7→ −x/y. It is also a group morphism because
the group law of Ê(M) was computed using the group law of E in the (z, w) plane, and
this map simply changes E from the (z, w)-plane to the (x, y)-plane (See Observation
IV.3.3). It remains to see that it is surjective.

Let (x, y) ∈ E1(K). A representative of [x : y : 1], with homogeneous coordinates
in R, must reduce to the point at infinity O = [0 : 1 : 0]. Such a set of coordinates
is obtained dividing by the coordinate of [x : y : 1] with maximum absolute value.
Therefore y cannot be zero and we must have max {|x| , |y|} = |y| > 1. So [x : y : 1] =
[x/y : 1 : 1/y] and [x/y : 1 : 1/y] can be reduced directly to O moduloM. In particular,
−x/y ∈M and the map:

E1(K) −→ Ê(M), (x, y) 7−→ z = −x
y

(V.3)

is well defined. It is clearly injective since it has the previous map (V.2) as a left inverse.
We have proved that both morphisms (V.2) and (V.3) are isomorphisms since they

are mutual inverses.
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V.3 Good and Bad Reduction

Let E/K be an elliptic curve. The reduction Ẽ can only be of three types, according to
a basic general result on elliptic curves: nonsingular, singular with a node or singular
with a cusp (Proposition A.1.5). In accordance, we define:

Definition V.3.1. Let E/K be an elliptic curve, and let Ẽ be the reduction modulo M
of a minimal Weierstrass equation for E.

1. (a) E has good (or stable) reduction if Ẽ is nonsingular.

2. (b) E has multiplicative (or semistable) reduction if Ẽ has a node.

3. (c) E has additive (or unstable) reduction if Ẽ has a cusp.

In cases (b) and (c) we say that E has bad reduction. If E has multiplicative reduc-
tion, then the reduction is said to be split if the slopes of the tangent lines at the node
are in k, and otherwise it is said to be nonsplit.

Proposition V.3.2. Let E/K be an elliptic curve given by a minimal Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let ∆ be the discriminant of this equation, and let c4 be the usual expression involving
a1, . . . , a6 as described in (A.3).

(a) E has good reduction if and only if v(∆) = 0, i.e., ∆ ∈ R×. In this case Ẽ/k is
an elliptic curve.

(b) E has multiplicative reduction if and only if v(∆) > 0 and v (c4) = 0 i.e., ∆ ∈M
and c4 ∈ R×. In this case Ẽns is the multiplicative group,

Ẽns(k) ∼= k
×
.

(c) E has additive reduction if and only if v(∆) > 0 and v (c4) > 0 i.e., ∆, c4 ∈ M. In
this case Ẽns is the additive group

Ẽns(k) ∼= k
+
.

Proof. Its a direct consequence of Definition V.3.1 and Proposition A.2.6. Notice that
for every x ∈ R

v(x) > 0 ⇐⇒ x̃ = 0.

Observation V.3.3. The reduction type of E over K does not depend on the minimal
Weierstrass equation of E, since any two such equations are related by a change of
coordinates of the form:

x = u2x′ + r, y = u3y′ + u2sx′ + t

with u ∈ R×. And since ∆ = u12∆′ and c4 = u4c′4, we have v(∆) = v(∆′) and v(c4) =
v(c′4), so both minimal equations give the same type of reduction for E.
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Example V.3.4. Let p ≥ 5 be a prime. We define the following elliptic curves over Qp:

E1 : y2 = x3 + px2 + 1; E2 = y2 = x3 + x2 + p; E3 : y2 = x3 + p.

with respective discriminants:

∆1 = −26p3 − 33; ∆2 = −26p− 33p2; ∆3 = −2433p2.

Reducing modulo p, we se that E1 has good reduction over Qp, and E2, E3 have bad

reduction. In fact, c̃4(E2) 6= 0 and c̃4(E3) = 0. Therefore, E2 has multiplicative (split*)
reduction, and E3 has additive reduction.

Much more can be said about the types of reduction and how they change when the
ground field is extended. See for example [16, Ch.7, §5]. The only result we are going
to use in the proof of the criterion of Néron-Ogg-Shafarevich is:

Proposition V.3.5. Let E/K be an elliptic curve and K ′/K be an unramified extension.
Then the reduction type of E over K (good,multiplicative or additive) is the same as the
reduction type of E over K ′.

Proof. We set the notation R′ for the valuation ring of K ′ and v′ for the valuation on
K ′ extending v.

For arbitrary characteristic, this result follows from Tate’s algorithm, which can be
found in [14, Ch. IV, §9]. We prove the result in the cases where char(k) ≥ 5, so that
by Proposition V.1.4, E has a minimal Weierstrass equation over K of the form:

E : y2 = x3 +Ax+B

Being an extension of K, char(K ′) ≥ 5, so we can find minimal Weierstrass equations
for E over K ′ that are reduced. Let

x =
(
u′
)2
x′, y =

(
u′
)3
y′

be a change of coordinates that produces a reduced minimal Weierstrass equation over
K ′. The change of coordinates must be of this kind since these are the only change of
coordinates that preserve the reduced Weierstrass form (see Appendix A, §1).

Since K ′/K is unramified we can find an u ∈ K with the same valuation as u′, so
that u/u′ ∈ R′×. And we can replace u′ with u in the change of variables that we used
to get a minimal Weierstrass equation over K ′:

x = u2x′, y = u3y′.

But this new equation has coefficients in R, so by the minimality of the original
equation over K, we must have v(u) = 0. Therefore, the original equation was also
minimal over K ′. Since v′ extends v, we have v(∆) = v′(∆) and v(c4) = v′(c4), so it
follows that the reduction type of E over K is the same as the reduction type of E over
K ′.

*The formulas for the slopes of the tangent lines at the singular point can be found in Appendix A.
They involve a square root of a quantity of k = Fp. If this square root exists in Fp, then the multiplicative
reduction is split, and if it isn’t in Fp, the reduction is nonsplit.

83



V.4. THE TATE MODULE

V.4 The Tate Module

Definition V.4.1. Let E/K be an elliptic curve*. The m-torsion points of E, denoted
E[m], are the points whose order divides m, i.e.

E[m] = {P ∈ E : [m]P = 0} = ker([m]).

Proposition V.4.2. Let E/K be an elliptic curve. For every m ∈ Z relatively prime
with char(K) we have an isomorphism of abelian groups:

E[m] ∼=
Z
mZ
× Z
mZ

Proof. [16, Ch. 3, Corollary 6.4, page 86].

In particular, every E[m] is finite. The above isomorphism does not holds over K
in general, only over the algebraically closed field K. In other words, the inclusion
E(K)[m] ⊂ E[m] is strict in general.

There is a little more structure in E[m], since every σ ∈ Gal(K/K) acts on E[m]
thanks to Observation A.2.4:

[m] (P σ) = ([m]P )σ = Oσ = O.

We thus obtain a representation

Gal(K/K) −→ Aut(E[m]) ∼= GL2(Z/mZ)

where the latter isomorphism involves choosing a basis for E[m].
If order to get a characteristic 0 representation, we recreate the construction of the

`-adics as the inverse limit of the finite groups Z/`nZ, but with E[`n]. So we define:

Definition V.4.3. Let E/K be an elliptic curve and ` ∈ Z a prime number. The `-adic
Tate module of E is the group

T`(E) = lim
←−

E[`n],

the inverse limit being taken with respect to the natural maps

E[`n+1]
[`]−→ E[`n].

Since each E[`n] is a Z/`nZ module, we see that the Tate module has a natural
structure as a Z` module.

Since Gal(K/K) acts on E[m] for every m ∈ Z, Gal(K/K) also acts on T`(E),
componentwise. This action is well defined due to the action of Gal(K/K) commuting
with the multiplication-by-` map.

*Recall that if E is defined over K, we understand that E = E(K), i.e., a generic point P ∈ E has
coordinates in K.
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V.5 Points of Finite Order

The points of finite order or torsion points of E are:

Etors =

∞⋃
m=1

E[m]

and if E is defined over K, we are usually interested in the corresponding subgroup:
Etors(K) = Etors ∩ E(K). If K is a number field, Etors(K) is always a finite group
because the Mordell-Weil theorem tell us that E(K) is a finitely generated (abelian)
group, and Etors(K) is just its torsion subgroup, so it is finite.

In this section we analyze Etors(K), mainly by means of the next proposition, which
will be a crucial tool in the proof of the Néron-Ogg-Shafarevich Criterion.

Proposition V.5.1. Let E/K be an elliptic curve and let m ≥ 1 be an integer relatively
prime to char(k).

(a) The subgroup E1(K) has no nontrivial points of order m.
(b) Assume further that the reduced curve Ẽ/k is nonsingular. Then the reduction

map
E(K)[m] −→ Ẽ(k)

is injective, where E(K)[m] denotes the set of points of order m in E(K).

Proof. From Proposition V.2.3 we know that E1(K) ∼= Ê(M). Our general result on
formal groups IV.2.14 tell us that Ê(M) has no nontrivial points of order m, so neither
does E1(M). This proves (a).

Proposition V.2.2 gives us an exact sequence:

0 −→ E1(K) −→ E0(K) −→ Ẽns(k) −→ 0.

If we assume that Ẽ is nonsingular, then E0(K) = E(K) and Ẽns(k) = Ẽ(k). Since
there is no nontrivial m-torsion of E(K) in the kernel of the reduction map (i.e. in
E1(K)), the m-torsion of E(K) injects into Ẽ(k), which proves (b).

There is a stronger version for this result only valid when the curve is defined over
Q. If we have an elliptic curve

E : y2 = x3 + ax2 + bx+ c, a, b, c ∈ Q

Let D be the least common denominator of a, b and c. If we multiply the equation for
E by D6 and make the change of coordinates

(D2x,D3, y) 7→ (x, y)

we get an equation with integers coefficients E′ : y2 = f(x), and of course:

(x, y) ∈ E(Q)⇐⇒
(
D2x,D3y

)
∈ E′(Q)
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So that this change of coordinates is an isomorphism of algebraic varieties than preserve
the rational points.

Now that we have and equation with integer coefficients, we can reduce modulo p
the coefficients (reduction modulo p is again denoted with a tilde). If this reduced curve,
Ẽ, is nonsingular we say that E has good reduction at p. We would need to know that
under these conditions the points of E(Q)tors have integer coordinates, a result know as
Nagell-Lutz Theorem. We only state the part that we are interested in.

Theorem V.5.2. (Nagell-Lutz Theorem) Let

y2 = x3 + ax2 + bx+ c

be an elliptic curve with integer coefficients. If P = (x, y) is a rational point of finite
order, then x, y ∈ Z.

Proof. [15, Theorem 2.5, page 56]

The result we mentioned before is as follows.

Proposition V.5.3. Let E/Q be an elliptic curve with Weierstrass equation y2 = x3 +
ax2+bx+c = f(x), where a, b, c ∈ Z, such that E has good reduction at the prime p ∈ Z.
Then the map:

φ : E(Q)tors → Ẽ(Fp), O 7→ Õ, (x, y) 7→ (x̃, ỹ)

is an injective group morphism. Therefore, E(Q)tors is isomorphic to a subgroup of
Ẽ(Fp).

Before seeing the proof, is worth noticing that this Proposition tell us that |E(Q)tors|
divides

∣∣∣Ẽ(Fp)
∣∣∣ for every prime at which E has good reduction. Therefore, it provides

another proof for the finiteness of Etors(K), though only when K = Q.

Proof. First of all, φ is well defined thanks to Theorem V.5.2. Next we show that φ is
a morphism. We have

φ(−P ) = φ(x,−y) = (x̃,−ỹ) = −φ(P )

Therefore, in order to prove φ(P + Q) = φ(P ) + φ(Q), it suffices to show that if P =
(x1, y1), Q = (x2, y2), R = (x3, y3) ∈ E(Q)tors are collinear (add to O) then

φ(P ) + φ(Q) + φ(R) = P̃ + Q̃+ R̃ = Õ.

This equation obviously holds if P,Q or R are O using that φ(−P ) = −φ(P ). So we can
assume that P,Q,R 6= O, and since they are collinear affine points, we have:

f(x)− (λx+ ν)2 = (x− x1) (x− x2) (x− x3) (V.4)
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where λ, ν ∈ Q and y = λx + ν is the line that passes through the three points. Since
a, b, c, x1, x2, x3 are integers, λ and ν must also be integers, so we can reduce (V.4)
modulo p. This implies that P̃ , Q̃ y R̃ are collinear and therefore add up to Õ. This
proves that φ is a morphism*.

Because of how φ is defined we have ker(φ) = O, so φ is injective.

Next we show several illustrative examples of applications of this propositions. We
first notice that: E(Q) ⊂ E(Qp) for every prime p.

Also, it is worth having in mind how to compute E[2]. In general, the condition
P = −P gives us a cubic polynomial in x, whose roots are the x-coordinates of the 3
affine points of E[2]. But when the curve has equation E : y2 = x3+ax2+bx+c = f(x),
it is even easier. In this case

E[2] = {O, (α1, 0), (α2, 0), (α3, 0)}

where αi, i = 1, 2, 3 are the roots� of f(x).

Observation V.5.4. If E(K)[p] = {O} for every prime p, then E(K)[m] = {O} for
every m ∈ Z and therefore E(K)tors = {O}.

To see this write m = pm′ for a prime divisor p of m. Then p(m′P ) = mP = O
implies m′P = O, since E(K)[p] = {O}. We can apply this reassoning to m′ = m/p and
repeat it until there is only a prime factor remaining, which will imply that P = O.

Example 1. Let E/Q be the elliptic curve

E : y2 + y = x3 − x+ 1.

Its discriminant is ∆ = −611, so Ẽ is nonsingular modulo 2. It is immediate to see that
Ẽ(F2) = {O}. Then Proposition V.5.1 tell us that for every prime number p 6= 2

E(Q2)[p] ↪→ Ẽ(F2) = {O} .

So E(Q)[p] ↪→ E(Q2)[p] = {O}. But since it is easily checked that E(Q)[2] = {O}, we
have E(Q)tors = {O}.

We are going to solve the following example first with Proposition V.5.1 and next
with Proposition V.5.3.

Example 2. (Using Proposition V.5.1) Let E/Q be the elliptic curve

E : y2 = x3 + x.

*We had already proven that the reduction map on E(Qp) was a group morphism, so restricted to
the subgroup E(Q)tors it is also a group morphism. But I have chosen to include this proof because is
simpler, though only valid for K = Q.

�The roots αi are necessarily different since if E is of the form E : y2 = x3 + ax2 + bx + c = f(x),
then E is non-singular if and only f the 3 roots of f(x) are simple.
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Its discriminant is ∆ = −64, thus E has good reduction modulo p for every prime p 6= 2.
The reduction modulo p of E will be denoted Ẽp. We compute:

Ẽ3 (F3) = {O, (0, 0), (2, 1), (2, 2)} ∼= Z/4Z
Ẽ5 (F5) = {O, (0, 0), (2, 0), (3, 0)} ∼= (Z/2Z)2.

(V.5)

Using Proposition V.5.1, we have:

E(Q)[m] ⊂ E(Q3)[m] ↪→ Ẽ3 (F3) ∼= Z/4Z for every integer m coprime with 3.

E(Q)[m] ⊂ E(Q5)[m] ↪→ Ẽ5 (F5) ∼= (Z/2Z)2 for every integer m coprime with 5.

So for every integer m coprime with 3 and 5, E(Q)[m] inyects into both Ẽ3 (F3) and
Ẽ5 (F5) so the only nontrivial m-torsion point must be a 2-torsion point that reduces to
(0, 0). Since (0, 0) is effectively a point of order 2, this is the only nontrivial rational
m-torsion point for m relatively prime to 3 and 5.

Furthermore E(Q)[3] is a subgroup of (Z/2Z)2 where every nontrivial element has
order 3, so E(Q)[3] = {O}. E(Q)[5] is a subgroup of Z/4Z where every nontrivial
element has order 5, so E(Q)[5] = {O}. Therefore, there is no m-torsion if 3 or 5 divides
m.

We have proven that E(Q)tors = {O, (0, 0)}.
Example 2. (Using Proposition V.5.3) As before the elliptic curve over Q:

E : y2 = x3 + x

has good reduction modulo 2 and we have (V.5). Proposition V.5.3 tell us that E(Q)tors
injects in both Ẽ3 (F3) and Ẽ5 (F5). As a consequence, E(Q)tors has O and a point P of
order 2 that reduces to (0, 0) as its two only possible points. The only rational root of
x3 + x is 0. Therefore E(Q)[2] = {O, (0, 0)}, and hence

E(Q)tors = {O, (0, 0)} .

Example 3. Let E : y2 = x3 − x = x(x+ 1)(x− 1).
We easily get E[2] = {O, (0, 0), (1, 0), (−1, 0)} = E(Q)[2], so |E(Q)tors| ≥ 4. In order

to get an upper bound, we use Proposition V.5.3. Since ∆ = 64, E has good reduction
modulo p = 3. Making the reduction we get the curve Ẽ : y2 = x3 − x over F3. For
every x ∈ F3 we have x3 − x = 0, so that

Ẽ (F3) = {Õ, (0, 0), (1, 0), (2, 0)}.

(We see that this is just E[2] reduced modulo 3). Therefore,
∣∣∣Ẽ (F3)

∣∣∣ = 4, which means

that |E(Q)tors| divides 4. This implies |E(Q)tors| = 4 and therefore

E(Q)tors = E[2] = {O, (0, 0), (1, 0), (−1, 0)} ∼= Z/2Z× Z/2Z.
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V.6 The Action of the Inertia Group

Recall that the inertia subgroup Iv of K/K is the set of elements of Gal(K/K) that
act trivially on the residue field k, and that we had Iv = Gal(K/Knr) (see the end of
section III.3). Also recall the short exact sequence

1 −→ Gal
(
K/Knr

)
−→ Gal

(
K/K

)
−→ Gal

(
k/k

)
−→ 1

and that Gal (Knr/K) ∼= Gal
(
k/k

)
.

Definition V.6.1. Suposse that Gal
(
K/K

)
acts on a set Σ. We say that Σ is unram-

ified at v if the action of Iv on Σ is trivial.

From Section V.4 we know that Gal
(
K/K

)
acts on E[m] and T`(E)

Proposition V.6.2. Let E/K be an elliptic curve with good reduction.
(a) Let m ≥ 1 be an integer that is relatively prime to char(k), i.e., satisfying v(m) =

0. Then E[m] is unramified at v.
(b) Let ` be a prime with ` 6= char(k). Then T`(E) is unramified at v.

Proof. Since E[m] is finite, there exists a finite extension K ′/K such that E[m] ⊂ E(K ′)
(for example, K(E[m])). Let v′ be the valuation extending v to K ′. The notation
R′,M′, k′ is self explanatory.

The fact that E has nonsingular reduction means that if we take a minimal Weier-
strass equation for E at v, the discriminant satisfies v(∆) = 0 = v′(∆). Therefore, our
Weierstrass equation is also minimal over K ′ and the reduced curve Ẽ/k′ is nonsingular.
Then, Proposition V.5.1 (b) tells us that the reduction map:

E(K ′)[m] = E[m] −→ Ẽ(k′)

is injective.
Let σ ∈ Iv and P ∈ E[m]. We have to prove that P σ = P . What we know

is that P̃ σ = P̃ because σ acts trivially on E(k) ⊃ E(k′), and since reduction is a
homomorphism, we have:

P̃ σ − P = P̃ σ − P̃ = Õ

Since P σ − P ∈ E[m], it must be P σ − P = O by the above-mentioned injection.
(b) It is a direct consequence of (a) and the fact that the action of Gal

(
K/Knr

)
on

T`(E) is componentwise.

This result is an important part of the Néron-Ogg-Shafarevich Criterion.
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V.7 The Proof of the Criterion

To prove the criterion, we need a previous result: the finiteness of the group E(K)/E0(K).
As mentioned at the begining of the chapter, K is any field complete with respect a dis-
crete valuation, with residue field not necessarily finite, since we are going to need to
apply this result to the extension K̂nr/K where K̂nr is the completion of maximal un-
ramified extension of K. The result follows from the existence of the Néron model ([14],
Ch. IV, §§5,6), which is a group scheme over Spec(R) with generic fiber E/K. The
proof of the existence of this model is beyond the scope of this text. Nonetheless, we
state our result exactly as we need it and give the proper reference.

Lemma V.7.1. (Kodaira-Néron) Let K be a complete discretely valued field. Then the
group E(K)/E0(K) is finite.

Proof. [14, Ch. IV, Corollary 9.2 (d), pag 362].

Now we can state and prove the Criterion.

Theorem V.7.2. (Néron-Ogg-Shafarevich Criterion) Let E be an elliptic curve over a
complete, discretely valued field K. Let p = char(k). Then the following statements are
equivalent:

(a) E has good reduction.

(b) E[m] is unramified at v for all integers m ≥ 1 that are relatively prime to p.

(c) The Tate module T`(E) is unramified for some (all) primes ` 6= p.

(d) E[m] is unramified at v for infinitely many integers m ≥ 1 that are relatively prime
to p.

Proof. We have already proven the implication (a) =⇒ (b) in Proposition V.6.2 (a).
Due to the action of Iv on T`(E) being componentwise (i.e. T`(E) is unramified at v if
and only if E[`n] is unramified at v for all n ≥ 1), the implications (b) =⇒ (c) =⇒ (d)
are obvious. In (b) =⇒ (c), (c) should read “... for all primes ` 6= p”. In (c) =⇒ (d)
it suffices that (c) reads “... for a prime ` 6= p”. It remains to prove that (d) =⇒ (a).

Let K̂nr be the completion with respect to v of the maximal unramified extension,
Knr, of K. Assume (d), then we can find m ∈ Z verifying:

(I) m is relatively prime to p.

(II) m > #E(K̂nr)/E0(K̂
nr).

(III) E[m] is unramified at v.
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Let us recall that E(K̂nr)/E0(K̂
nr) is a finite group thanks to the result of Kodaira-

Néron (Lemma V.7.1), so all three properties of m are guaranteed to coexist thanks to
(d). Then we have the following short exact sequences:

0 −→ E0

(
K̂nr

)
−→ E

(
K̂nr

)
−→ E

(
K̂nr

)
/E0

(
K̂nr

)
−→ 0

0 −→ E1

(
K̂nr

)
−→ E0

(
K̂nr

)
−→ Ẽns(k) −→ 0.

The first one is clear and the second one is from Proposition V.2.2, because the residue
field of K̂nr is k (by Proposition I.2.7 the residue class field of K̂nr is the same as the one
of Knr, which is ks, the separable closure of k. But since k is perfect, we have ks = k).

Iv acts trivially on E[m], so for every P = (x, y) ∈ E[m] and σ ∈ Iv, we have

σ(P ) = P . That is to say P ∈ E[K
Iv

]. And because Knr ⊂ K̂nr is the fixed field of
Iv, what we have said is tantamount to E[m] ⊂ E(K̂nr). So E(K̂nr) has a subgroup
isomorphic to (Z/mZ)2. But from (II) we have that #E(K̂nr)/E0(K̂

nr) < m. Let us
see that this implies that there exists a prime ` dividing m such that E0(K̂

nr) has a
subgroup isomorphic to (Z/`Z)2. Let

ϕ : E[m] −→ E
(
K̂nr

)
/E0

(
K̂nr

)
be the quotient map restricted to E[m] with kernel E0

(
K̂nr

)
∩E[m]. Since E[m]/ kerϕ

is a subgroup of E
(
K̂nr

)
/E0

(
K̂nr

)
, we must have

#(E[m]/ kerϕ) ≤ #
(
E
(
K̂nr

)
/E0

(
K̂nr

))
< m

If E[m] = ZP1 × ZP2 for P1, P2 points of exact order m, let a, b ∈ Z be divisors of m so

that kerϕ ∼= ZaP1 × ZbP2 ⊂ E0

(
K̂nr

)
(all subgroups of E[m] are of this form). Now, if

a and b are relatively prime, then ab|m. So

m ≤ m

ab
m = #(E[m]/ kerϕ) < m

which is a contradiction. So there exists a common prime divisor, `, of a and b, and

therefore E0

(
K̂nr

)
contains a subgroup isomorphic to (Z/`Z)2.

Since E1

(
K̂nr

)
contains no nontrivial `-torsion (Proposition V.5.1 (a)), by the second

exact sequence this means that Ẽns(k) contains a subgroup isomorphic to (Z/`Z)2.
Now suppose that E has bad reduction over K̂nr. There are two cases to consider.
First suppose that the reduction is multiplicative, then by Proposition V.3.2, Ẽns(k) ∼=

k
×

as multiplicative groups, so the `-torsion is µ` =
{
x ∈ k× | x` = 1

}
∼= Z/`Z (`-roots

of unity), a contradiction because the `-torsion of Ẽns(k) should at least contain a sub-
group isomorphic to (Z/`Z)2.

If the reduction over K̂nr is additive then we have Ẽns(k) ∼= k
+

as additive groups,
so Ẽns(k) cannot have `-torsion because ` is relatively prime to char k.
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Having discarded all types of bad reduction that E could have, it follows that E
has good reduction over K̂nr. Finally, since K̂nr/K is unramified*, we conclude, by
Proposition V.3.5 that E has good reduction over K.

*K̂nr|Knr may not be an algebraic extension, but its ramification index is clearly 1, which is the only

thing we used to prove Proposition V.3.5. To see this note that, being the completion of Knr, K̂nr has
the same value group as Knr, and of course Knr|K is unramified, so that their composite K̂nr|K has
ramification index equal to 1.
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Appendix A

Basic facts about Elliptic Curves

This appendix is basically a compilation of useful facts about elliptic curves that have
been used throughout this text. They have been mostly taken from [16, Ch. III].

We begin by defining our main object of study:

Definition A.0.1. An elliptic curve is a nonsigular curve of genus one together with a
point O ∈ E.

We say that E is defined over K, written E/K, if E is defined over K as an algebraic
curve and O ∈ E(K). Recall that an algebraic variety, V , is defined over K if its
polynomial ideal I(V ) can be generated by polynomials with coefficients in K. For an
elliptic curve, this will mean that the coefficients of its equation are in K even though
the points of the curve are understood to be in E(K).

A.1 Weierstrass equations

Definition A.1.1. A Weierstrass equation (over K) is an equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

where ai ∈ K for all i.

The curve defined by this equation is, of course, the set of points [X : Y : Z] ∈ P2(K)
that satisfy the homogeneous version of the previous equation:

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z
2 −X3 − a2X2Z − a4XZ2 − a6Z3 = 0.

As we can see, these curves have a single point in the line at infinity Z = 0, namely

O = [0 : 1 : 0], which is never singular since
∂F

∂Z
(O) 6= 0.

As the next proposition tell us, every elliptic curve can be thought of as a non-
singular, plane projective curve given by a Weierstrass equation.
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Proposition A.1.2. Let E be an elliptic curve defined over K.

(a) There exist functions x, y ∈ K(E) such that the map

φ : E −→ P2, φ = [x : y : 1]

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coefficients a1, . . . , a6 ∈ K and satisfying φ(O) = [0 : 1 : 0]. The functions x
and y are called Weierstrass coordinates for the elliptic curve E.

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of
variables of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t

with u ∈ K× and r, s, t ∈ K.

(c) Conversely, every smooth cubic curve C given by a Weierstrass equation as in (a)
is an elliptic curve defined over K with base point O = [0 : 1 : 0].

Proof. [16, Ch. III, Proposition 3.1, pag 59]

In the last proposition, (b) also tells us the form of every change of coordinates that
preserves the Weierstrass form.

Sometimes, elliptic curves are defined as non-singular cubics, i.e., non-singular curves
given by a cubic polynomial. It turns out that we can transform any cubic homogeneous
polynomial f(X,Y, Z) ∈ P2(K) into a Weierstrass equation over K by means of projec-
tive transformations, which turn out to be rational functions over K. So the previous
proposition tells us that the two definitions coincide. I covered this approach in [11].

Let E : f(x, y) = y2 + a1xy+ a3y− x3− a2x2− a4x− a6 = 0 be an elliptic curve. As
showed before, O is non-singular. All the remaining points are affine. One such point
P = (x0, y0) is singular if:

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

In order to compute the tangent lines* of E at P , we need to factor into linear equations
the second-order term in the Taylor expansion of f around P . We have:

∂f
∂x = a1y − 3x2 − 2a2x− a4, ∂f

∂y = 2y + a1x+ a3
∂2f
∂x2

= −6x− 2a2,
∂2f
∂y2

= 2, ∂2f
∂x∂y = a1 = ∂2f

∂y∂x .

*For an algebraic curve C given by the equation f(x, y) = 0, at a singular point P , even though you
cannot define the tangent line by the usual formula due to ∂f

∂x
(P ) = ∂f

∂y
(P ) = 0, what happens is that

there are more than one tangent (or one with multiplicity greater than one). For a point P = (x0, y0) ∈ C,
these tangents are defined as the factors in the linear-factor decomposition of the smallest nonzero
homogeneus component of the Taylor expansion of f around P . To see this in more detail we refer the
reader to [7, Ch. 3,§1]
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And the only non-zero derivative of order 3 is ∂3f
∂x3

= −6. Thus, the Taylor series expasion
of f(x, y) around P is

f(x, y) =f(x, y)− f (x0, y0)

=
1

2!

(
∂2f

∂x2
(P ) (x− x0)2 + 2

∂2f

∂x∂y
(P ) (x− x0) (y − y0) +

∂2f

∂y2
(P ) (y − y0)2

)
+

1

3!

∂3f

∂x3
(x− x0)3

= (−3x0 − a2) (x− x0)2 + a1 (x− x0) (y − y0) + (y − y0)2 − (x− x0)3

= ((y − y0)− α (x− x0)) ((y − y0)− β (x− x0))− (x− x0)3

where

α =
a1 +

√
a21 + 4 (3x0 + a2)

2
, β =

a1 −
√
a21 + 4 (3x0 + a2)

2
(A.1)

are the roots of (−3x0 − a2) + a1Y + Y 2 ∈ K[Y ], where we have fixed one of the square
roots of a21 + 4 (3x0 + a2). We notice that α and β are conjugates over K.

Definition A.1.3. With notation as above, the singular point P is a node if α 6= β. In
this case, the lines

y − y0 = α (x− x0) and y − y0 = β (x− x0)

are the tangent lines at P. Conversely, if α = β, then we say that P is a cusp, in which
case the tangent line at P is given by

y − y0 = α (x− x0) .

Suppose we have a Weierstrass equation as in (A.1.1). If char(K) 6= 2 then we can
complete the square, and the substitution

y → 1

2
(y − a1x− a3)

gives an equation of the form:

E : y2 = 4x3 + b2x
2 + 2b4x+ b6

where
b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6. (A.2)

Associated to our Weierstrass equation we also define the quantities:

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

c4 = b22 − 24b4

c6 = −b32 + 36b2b4 − 216b6

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

j = c34/∆.

(A.3)
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That verify the following relations:

4b8 = b2b6 − b24 and 1728∆ = c34 − c26.

Furthermore, if char(K) 6= 2, 3 then the substitution:

(x, y) 7−→
(
x− 3b2

36
,
y

108

)
removes the x2 term from (A.2), yielding the equation:

E : y2 = x3 − 27c4x− 54c6. (A.4)

The only changes of variables that preserve the Weierstrass form (A.1.2 (b)) also
change the quantities (A.3) associated to them. How they change them is collected in
the following table ([16, Ch. III, pag 45]). The quantities for the equation obtained after
such a change are denoted with a prime.

ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t

u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st

u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1
u2b′2 = b2 + 12r

u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆

j′ = j

(A.5)

Definition A.1.4. The quantity ∆ is the discriminant of the Weiertrass equation and
j is called the j-invariant of the elliptic curve.

The reason for their names can be found in the following proposition:

Proposition A.1.5. (a) The curve given by a Weierstrass equation satisfies:

(i) It is nonsingular if and only if ∆ 6= 0.

(ii) It has a node if and only if ∆ = 0 and c4 6= 0.

(iii) It has a cusp if and only if ∆ = c4 = 0.

In cases (ii) and (iii), there is only one singular point.

96



A.2. THE GROUP LAW ON AN ELLIPTIC CURVE

(b) Two elliptic curves are isomorphic over K if and only if they both have the same
j-invariant.

(c) Let j0 ∈ K. There exists an elliptic curve defined over K (j0) whose j-invariant is
equal to j0.

Proof. [16, Ch. III, Proposition 1.4]

Let us recall that if char(K) 6= 2, 3, every elliptic curve over K has an equation of
the form:

y2 = x3 +Ax+B, A,B ∈ K.

Which is called a reduced Weierstrass form. For this kind of equation, the discriminant
and j-invariant are as follow:

∆ = −16
(
4A3 + 27B2

)
and j = −1728

(4A)3

∆
.

The only change of coordinates that preserve the reduced Weierstrass form are easily
checked to be:

x = u2x′ and y = u3y′ for some u ∈ K×.

A.2 The Group Law on an Elliptic Curve

Let E be an elliptic curve given by a Weierstrass equation. Since E is a cubic, by Bezout’s
Theorem, every line in P2(K) intersects E at exactly 3 points (counting multiplicities).
So, given two points P,Q ∈ E, the line that passes through them (which is the tangent
line at P if P = Q), must intersect the curve in a third point, that we will call P ∗ Q.
Notice that the point O is of order 3 for E: The third point of intersection of the tangent
line of E at O is again O. With this in mind, a group law can be defined in E, as follows.

Definition A.2.1. Let P,Q ∈ E, let L be the line through P and Q (if P = Q, let L be
the tangent line to E at P ), and let R be the third point of intersection of L with E. Let
L′ be the line through R and O. Then L′ intersects E at R, O, and a third point. We
denote that third point by P +Q

Or more concisely:
P +Q = (P ∗Q) ∗ O. (A.6)

One can easily verify that this composition law makes E into an abelian group with O
as the zero element, except for the associativity. To check associativity is better to use
the explicit formulas for the group law that I am going to give later, although it is still
a long and tedious case by case consideration. Furthermore, it worth noticing that if a
line L intersects E at the (not necessarily distinct) points P,Q,R, then P +Q+R = O.
It follows that the negative of a point is P ∗O, i.e. the third point of intersection of the
line through P and O, because

O = P + (P ∗ O) +O = P + (P ∗ O)
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Figure A.1: Addition of distinct points

so −P = P ∗ O.
Over a field K of characteristic different from 2 or 3, every elliptic curve has a

Weierstrass equation of the form

y2 = x3 +Ax+B (A.7)

and in this case the group law is shown in Figure. A.1 Adding or substracting a point
P to itself m ∈ N times will be denoted as [m]P or [−m] respectively. For example
[2]P = P + P , [−3]P = −P − P − P .

By working with the equation of a line that passes through two points of E and the
equation for E we get explicit formulas for the group law:

Proposition A.2.2. Let E be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(a) Let P = (x, y) ∈ E. Then

−P = (x,−y − a1x− a3) .

Next let
P1 + P2 = P3 with Pi = (xi, yi) ∈ E for i = 1, 2, 3.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.

Otherwise, the coordinates of P1 + P2 are

x3 = λ2 + a1λ− a2 − x1 − x2
y3 = − (λ+ a1)x3 − ν − a3
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where λ and ν are:

λ ν

x1 6= x2
y2 − y1
x2 − x1

y1x2 − y2x1
x2 − x1

x1 = x2
3x21 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x31 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

With this notation, y = λx + ν is the line through P1 and P2, or tangent to E at P1 if
P1 = P2.

Proof. [16, pages 53,54]

We see that for a reduced Weierstrass form: y2 = x3 + Ax + B, the inverse of the
point (x, y) is (x,−y).

Definition A.2.3. (Multiplication-by-m map) The multiplication by m map on an elip-
tic curve is just the map [m] : E → E,P 7→ [m]P = P + P + · · ·+ P︸ ︷︷ ︸

m times

.

Observation A.2.4. We can compose the addition formula with itself m times to get
an explicit formula for multiplication-by-m map. It is very impractical to do so, and gets
messy very fast, but we do not need the actual formula. What is important is to notice
that for an elliptic curve defined over K and a point P = (x, y) ∈ E, the coordinates of
[m]P are in K(x, y) since the ones of P + P are K(x, y) by the formulas we just gave.
Which is to say that [m] is, component-wise, a rational function on x, y with coefficients
in K.

Therefore, [m] commutes with the action* of Gal(K/K) for every m ∈ Z.

Finally, we show how is the group structure of the nonsingular points of a singular
curve given by a Weierstrass equation

Definition A.2.5. Let E be a (possibly singular) curve given by a Weierstrass equation
over K. We define Ens(K) as the subset of nonsingular points of E.

Similarly, Ens(K) = Ens(K) ∩ E(K) is the set of non singular points of E(K)

Let us recall (Proposition A.1.5) that if E is singular, it has a unique singular point.

Proposition A.2.6. Let E be a curve given by a Weierstrass equation over K with
∆ = 0, so E has a singular point S. Then the group law (Definition A.2.1) makes
Ens(K) into an abelian group.

(a) Suppose that c4 6= 0, so E has a node, and let

y = α1x+ β1 and y = α2x+ β2

*Recall that the action of Gal(K/K) in the points of E is coordinate-wise.
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be the distinct tangent lines to E at S. Then the map

Ens(K) −→ K
×
, (x, y) 7−→ y − α1x− β1

y − α2x− β2

is an isomorphism of abelian groups.

(b) Suppose that c4 = 0, so E has a cusp, and let

y = αx+ β

be the tangent line to E at S. Then the map

Ens −→ K
+
, (x, y) 7−→ x− x(S)

y − αx− β

is an isomorphism of abelian groups.

Proof. [16, Ch. III, Proposition 2.5].

In the previous proposition, K
+

stands for the additive group (K,+).
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[11] Navas Orozco, Jesús. Curvas eĺıpticas y el Teorema de Mordell. Final project to
obtain the Mathematics Degree Title. Avalaible at:
https://drive.google.com/file/d/15UZm2gUQYYcGXSY-mjTJdJkY3QIAI58C/

view?usp=sharing

[12] Neukirch, Jürgen. Algebraic Number Theory, (1992). Translated from the German
by Norbert Schappacher. Springer.

101

http://hdl.handle.net/10993/13303
https://www.math.u-bordeaux.fr/~abesheno/bilu.pdf
www.jmilne.org/math/
http://www.math.ubc.ca/~reichst/FormalGroups.pdf
https://drive.google.com/file/d/15UZm2gUQYYcGXSY-mjTJdJkY3QIAI58C/view?usp=sharing
https://drive.google.com/file/d/15UZm2gUQYYcGXSY-mjTJdJkY3QIAI58C/view?usp=sharing


BIBLIOGRAPHY

[13] Rotman, Joseph J. Advanced modern Algebra, part 2. Third edition. Americal Math-
ematical Society (2017).

[14] Silverman, Joseph H. Advances Topics on the Arithmetic of Elliptic Curves.
Springer-Verlag (1994).

[15] Silverman, Joseph H., John T. Tate. Rational Points on Elliptic Curves. Under-
graduate Texts in Mathematics, Springer. 2nd Edition. (2015).

[16] Silverman, Joseph H. The Arithmetic of Elliptic Curves. Second edition (2009).
Corrected second printing (2016).

102


	Abstract
	List of Symbols
	Introduction
	Valuation Theory
	Elementary valuation theory
	Completions

	p-adic Numbers
	Classic Definition of p-adic Numbers
	p-adics as an Inverse Limit
	p-adics as a Completion of Q
	p-adics as a Quotient Ring of Formal Power Series

	Local Fields, Ramification and Inertia
	Local Fields
	Ramification
	The Inertia subgroup

	Formal groups
	Completion of a ring: the I-adic topology
	General facts about formal groups
	Groups associated to formal groups

	The formal group of an elliptic curve

	The Néron-Ogg-Shafarevich Criterion
	Minimal Weierstrass Equations
	Reduction Modulo 
	Good and Bad Reduction
	The Tate Module
	Points of Finite Order
	The Action of the Inertia Group 
	The Proof of the Criterion

	Basic facts about Elliptic Curves
	Weierstrass equations
	The Group Law on an Elliptic Curve

	Bibliography

