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Abstract. It has been recently shown by Abresch and Rosenberg that a cer-
tain Hopf differential is holomorphic on every constant mean curvature surface
in a Riemannian homogeneous 3-manifold with isometry group of dimension
4. In this paper we describe all the surfaces with holomorphic Hopf differential
in the homogeneous 3-manifolds isometric to H2

×R or having isometry group
isomorphic either to the one of the universal cover of PSL(2,R), or to the one

of a certain class of Berger spheres. It turns out that, except for the case of
these Berger spheres, there exist some exceptional surfaces with holomorphic
Hopf differential and non-constant mean curvature.

1. Introduction

An extremely useful tool in surface theory is the fact that the Hopf differential of
a surface in a 3-dimensional space form is holomorphic if and only if the surface has
constant mean curvature (CMC). Inspired by this result, Abresch and Rosenberg
proved in [2] that for CMC surfaces in the product spaces H2×R and S

2×R there is
a certain perturbed Hopf differential which is holomorphic. This differential may be
seen as the usual Hopf differential of the surface plus a certain correction term. Even
more generally, Abresch showed in [1] the existence of such a holomorphic Hopf-type
differential for CMC surfaces immersed in 3-dimensional homogeneous manifolds
with 4-dimensional isometry group. These results have made of CMC surfaces in
homogeneous 3-manifolds a fashion research topic, on which many interesting works
are being produced at the present time. An almost up-to-date reference list on this
subject may be consulted in [7].

There is, however, a natural question that remains unanswered: are CMC sur-
faces in homogeneous 3-manifolds the only surfaces for which the Hopf-type dif-
ferential introduced by Abresch and Rosenberg is holomorphic? In other words,
one wishes to know if the converse of the above mentioned results by Abresch and
Rosenberg hold. This has been a frequently discussed problem among people work-
ing on this area. The only known particular solution to this problem was found by
Berdinsky and Taimanov in [4], where is it proved that the converse holds when
the homogeneous target space is the 3-dimensional Heisenberg group Nil3.

In this paper we will give an answer to the above question for certain homo-
geneous 3-manifolds. But first, in order to state our result, some basic comments
on Riemannian homogeneous 3-manifolds should be made. The details may be
consulted in [1, 4, 6], for instance.

The homogeneous 3-manifolds with 4-dimensional isometry group can be classi-
fied in terms of a pair of real numbers (κ, τ) satisfying κ 6= 4τ2. Indeed, all these
manifolds are fibrations over a complete simply-connected surface M2(κ) of con-
stant curvature κ. Translations along the fibers are isometries and therefore they
generate a Killing field, ξ, also called the vertical field. The number τ is the one
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such that ∇Xξ = τX × ξ holds for any vector field X on the manifold. Here ∇ is
the Levi-Civita connection of the manifold and × denotes the cross product.

It is important to notice that for τ = 0 this fibration becomes trivial and thus we
get the product spaces M2(κ) × R. When τ 6= 0 the manifolds have the isometry
group of the Heisenberg space if κ = 0, of the Berger spheres if κ > 0, or the one
of the universal covering of PSL(2,R) when κ < 0.

In what follows E3(κ, τ) will represent a homogeneous 3-manifold with isometry
group of dimension 4, where κ and τ are the real numbers described above.

For an immersion ψ : Σ → E3(κ, τ), let pdz2 be its Hopf differential, i.e. the (2, 0)
part of its complexified second fundamental form. Then there exists a quadratic
differential Ldz2 defined in terms of κ, τ , the mean curvature H of ψ and the
restriction of the vertical field ξ on the surface, such that Qdz2 := pdz2 + Ldz2 is
holomorphic whenever H is constant [1, 2] (see Section 2 for the details). We shall
call Qdz2 the Abresch-Rosenberg differential of the surface.

With all of this, our main result is the following:

Theorem 1.1. Let E3(κ, τ) be a homogeneous 3-manifold of base curvature κ and
bundle curvature τ , and let ψ : Σ → E3(κ, τ) be a surface with holomorphic Abresch-
Rosenberg differential. Then

(1) If 0 < κ/8 ≤ τ2, i.e. the group of isometries of E3(κ, τ) is isomorphic to
the one of a Berger sphere of a certain type, then ψ is a CMC surface.

(2) If κ < 0 and τ = 0 (i.e. E3(κ, τ) ≡ H2(k)× R), then ψ is a CMC surface,
or it is one of the rotational surfaces in Example 3.2.

(3) If κ < 0 and τ < 0 (i.e. E3(κ, τ) has isometry group isomorphic to the one
of the universal cover of PSL(2,R)), then ψ is a CMC surface, or it is one
of the surfaces in Example 3.3.

Some remarks should be made regarding our result.

(1) The proof of this theorem will also show that the surfaces with holomorphic
Abresch-Rosenberg differential in the Heisenberg 3-space are CMC surfaces.
This was proved in [4].

(2) It remains unsolved whether CMC surfaces are the only surfaces in S2 ×R

or in the Berger spheres E3(κ, τ) with 0 < 8τ2 < κ that have holomorphic
Abresch-Rosenberg differential.

(3) We shall prove that a compact surface in E3(κ, τ) with holomorphic Abresch-
Rosenberg differential (and non-zero Euler characteristic if τ 6= 0) is always
a CMC surface.

The outline of the paper goes as follows. In Section 2 we will describe the inte-
grability equations for surfaces in the homogeneous 3-manifolds E3(κ, τ) in terms
of an isothermal coordinate patch. We hope that this approach will be useful
for the application of integrable systems techniques to the study of CMC surfaces
in these spaces. We shall also show in Section 2 that a surface with vanishing
Abresch-Rosenberg differential is a CMC surface. In Section 3 we will expose some
exceptional surfaces in certain homogeneous spaces E3(κ, τ) that have holomorphic
Abresch-Rosenberg differential, but which have non-constant mean curvature. In
Section 4 we shall prove Theorem 1.1. We will also show there that a compact
surface with holomorphic Abresch-Rosenberg differential (and non-zero Euler char-
acteristic if τ 6= 0) is always a CMC surface.

We finally wish to point out that the techniques of this paper can be used
in some other related geometrical theories. For instance, a holomorphic quadratic
differential for surfaces of constant curvature in H2×R and S2×R has been recently
found in [3], and it is likely that our considerations here may be extended to that
setting.
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2. Surfaces in homogeneous 3-manifolds

In this section we will describe the fundamental equations for an immersed sur-
face ψ : Σ → E3(κ, τ) in terms of a conformal parameter z on the surface. So,
we will consider Σ as a Riemann surface with the conformal structure given by
its induced metric via ψ, and we will let z denote a conformal parameter of Σ.
Associated to z = s+ it, we will consider the usual operators ∂z = (∂s − i∂t)/2 and
∂z̄ = (∂s + i∂t)/2. With all of this, we will define the following fundamental data.

Definition 2.1. In the above setting, let η be the unit normal map of ψ, and let ξ
denote the vertical unit Killing field of E3(κ, τ). We will call the fundamental data
of ψ to the uple (λ, u,H, p,A) ∈ R+ × [−1, 1]× R× C2, where

λ is the conformal factor of the induced metric in Σ, λ = 2〈ψz, ψz̄〉.
u is the normal component of the vertical field ξ, u = 〈η, ξ〉.
H is the mean curvature of ψ.
p dz2 is the Hopf differential of ψ, p = −〈ψz, ηz〉.
A = 〈ξ, ψz〉 = 〈T, ∂z〉 where T ∈ X(Σ) is given by dψ(T ) = ξ − uη.

Remark 2.2. When τ = 0 (i.e., E3(κ, τ) = M2(κ) × R) the vertical field ξ is
nothing but ξ = (0, 1) ∈ X(M2(κ)) × R. Therefore, if we write ψ = (N, h) : Σ →
M2(κ) × R then A = hz. As a consequence, if A is identically zero the surface is
a piece of a horizontal slice, which has H = 0. However, if τ 6= 0 A cannot vanish
on an open subset of Σ (see equations (C.2) and (C.4) in Theorem 2.3).

Theorem 2.3. The fundamental data of an immersed surface ψ : Σ → E3(κ, τ)
satisfy the following integrability conditions:

(2.1)



































(C.1) pz̄ =
λ

2
(Hz + uA(κ− 4τ2)).

(C.2) Az̄ =
uλ

2
(H + iτ).

(C.3) uz = −(H − iτ)A − 2p

λ
Ā.

(C.4)
4|A|2
λ

= 1− u2.

Conversely, let us choose functions λ, u,H : Σ → R with λ > 0, −1 ≤ u ≤ 1 and
p,A : Σ → C on a simply connected Riemann surface Σ, verifying (2.1) for some
real constants κ, τ with κ− 4τ2 6= 0.

Then there exists a unique (up to congruences) surface ψ : Σ → E3(κ, τ) whose
fundamental data are {λ, u,H, p,A}.
Proof. The proof of this theorem follows from Theorem 4.3 in [6] where a neces-
sary and sufficient condition for the existence of an isometric immersion from a
Riemannian surface Σ into E3(κ, τ) is given in terms of the following compatibility
equations for any vector fields X, Y on Σ:

(i) ‖T ‖2 + u2 = 1,

(ii) du(X) + 〈SX − τJX, T 〉 = 0,

(iii) ∇XT = u(SX − τJX),

(iv) ∇XSY −∇Y SX − S[X,Y ] = (κ− 4τ2)u
(

〈Y, T 〉X − 〈X,T 〉Y
)

,

(v) K = detS + τ2 + (κ− 4τ2)u2.

Here ∇ denotes the Levi-Civita connection on the surface, K is its Gauss curva-
ture, S is the shape operator and J is the complex structure on Σ. Thus, we just
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need to check that our fundamental equations (C.1) to (C.4) are equivalent to the
above ones.

More specifically, let ψ : Σ → E3(κ, τ) be a surface with fundamental data
(λ, u,H, p,A) with respect to a conformal parameter z of Σ. We will keep the
above notations for T, S,∇,K and J . Then, by the definition of p and H we have

(2.2) 〈S(∂z), ∂z〉 = p, 〈S(∂z), ∂z̄〉 =
λH

2
.

Moreover, since A = 〈T, ∂z〉, we can write

(2.3) T =
2

λ

(

Ādz +Adz̄
)

.

In addition, we also have the following intrinsic metric relations on Σ:

(2.4)
〈∂z , ∂z〉 = 0 〈∂z , ∂z̄〉 =

λ

2
K =

−2(logλ)zz̄
λ

∇∂z
∂z =

λz
λ
∂z ∇∂z

∂z̄ = 0 J(∂z) = i∂z.

With this, let (λ, u,H, p,A) be an uple in the conditions of Definition 2.1, and let
us consider in terms of them the Riemannian surface (Σ, λ|dz|2), whose fundamental
data are given by (2.4), the symmetric endomorphism S : X(Σ) → X(Σ) described
by (2.2) and the unit tangent field T ∈ X(Σ) of (2.3). We are going to show that
(λ, u,H, p,A) satisfy (C.1) to (C.4) if and only if (S, T,∇, u, J,K) verify (i) to
(v). This will finish the proof, by Theorem 4.3 in [6].

First of all, it is direct to observe that, by (2.3), (i) is equivalent to (C.4).
Secondly, (ii) is a linear expression in the variable X , and hence it suffices to

show that this equality holds for X = ∂z. But this coincides with (C.3) so both
equations are also equivalent.

Likewise, we just need to check that (iii) holds for X = ∂z . This is equivalent
to show that

(2.5) 〈∇∂z
T , ∂z̄〉 =

uλ

2
(H − i τ) and 〈∇∂z

T , ∂z〉 = u p.

By using the fact that 〈∇XT, Y 〉 = X〈T, Y 〉−〈T,∇XY 〉, as well as the identities in
(2.4), it is not hard to see that the first equation in (2.5) is precisely the conjugate
expression of (C.2), while the second one can be rewritten as

(C.0) Az −
λz
λ
A = up.

This equation (C.0) is obtained by deriving (C.4) with respect to z and using
(C.2) and (C.3).

Our aim now is to show that (iv) is equivalent to (C.1). Indeed, (iv) is an anti-
symmetric bilinear expression in the variables X ,Y and so it suffices to check it for
X = ∂z, Y = ∂z̄. Moreover, it is enough to see that if we take scalar product with
∂z then the equality holds (by taking scalar products with ∂z̄ we get the conjugate
expression). Using the same ideas as above, and after some calculations, we see
that this is exactly (C.1), so we are done.

Finally, taking into account that

K =
−2(logλ)zz̄

λ
and detS = H2 − 4|p|2

λ2

we can write (v) as

(logλ)zz̄ =
2|p|2
λ

− λ

2
u2(κ− 4τ2)− λ

2
(H2 + τ2).

Straightforward computations show that this equation is obtained by deriving (C.0)
with respect to z̄ and using (C.1), (C.2) and (C.3). This finishes the proof. �
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The Codazzi equation (C.1) can be expressed in an alternative way that will
be more useful to us. For this, let us first define for an immersed surface ψ : Σ →
E3(κ, τ) its Abresch-Rosenberg differential as the quadratic differential

Qdz2 =

(

2p− κ− 4τ2

H + iτ
A2

)

dz2,

following the above notations, and defined away from points with H = 0 if τ = 0.
We will assume from now on that the surfaces have non-vanishing mean curvature
if τ = 0. There is no loss of generality with that, since our study is basically local.
We are just excluding the minimal surfaces in S2 × R and H2 × R, that are better
studied by other methods.

It is then easy to see by means of (C.2) that the Codazzi equation can be
rephrased in terms of Q as

(2.6) Qz̄ = λHz + (κ− 4τ2)
Hz̄A

2

(H + iτ)2
.

Consequently, one has

Corollary 2.4. [1, 2] Qdz2 is a holomorphic quadratic differential on any CMC
surface in E3(κ, τ).

Our purpose in this work is to describe to what extent the holomorphicity of the
Abresch-Rosenberg differential characterizes the CMC surfaces in the homogeneous
3-manifolds E3(κ, τ). As a preliminary step for this, let us describe first of all the
case in which Q vanishes identically.

Proposition 2.5. Any surface in E3(κ, τ) with vanishing Abresch-Rosenberg dif-
ferential is a CMC surface.

Proof. Assume thatH is non-constant in some open set of Σ. Then we may suppose
without loss of generality that Hz 6= 0 and A 6≡ 0. As Q ≡ 0, by its own definition
we obtain

(2.7) 2p =
κ− 4τ2

H + iτ
A2.

Taking modulus on the Codazzi equation (2.6), and using Hz 6= 0 we find that

(2.8)
|A|2
λ

=
H2 + τ2

|κ− 4τ2| .

If we substitute now equations (2.7) and (2.8) into (C.3) we end up with

(2.9) −uz = (H − iτ)A

(

1 +
κ− 4τ2

|κ− 4τ2|

)

.

Consequently, if κ − 4τ2 < 0 we infer that u is constant. But on the other hand,
putting together (2.8) and (C.4) we obtain

(2.10) 1− u2 =
4(H2 + τ2)

|κ− 4τ2| .

So H should be constant in this case, and this is not possible. Hence κ− 4τ2 > 0.
This indicates via (2.6) that Hz(H+iτ)Ā ∈ iR. Therefore, by differentiating (2.10)
we find that uz(H + iτ)Ā ∈ iR. But this is not possible, by (2.9). This concludes
the proof.

�
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Remark 2.6. The way we have defined the quadratic differential Qdz2 is not ex-
actly the way it was defined in [2] and [1]. Indeed, in these works the authors work
with the differential Pdz2 = (H + iτ)Qdz2. This obviously makes no difference
when working with CMC surfaces, but it does in the present situation. The def-
inition of the Abresch-Rosenberg differential we have adopted here is taken from
Berdinsky-Taimanov [4], which is the first paper in where the converse of Corollary
2.4 is treated. Indeed, for the case τ 6= 0, the definition of the Abresch-Rosenberg
differential as Qdz2 is from a certain viewpoint more natural, as it is constructed
by adding to the usual Hopf differential pdz2 a certain correction term Ldz2.

We will discuss briefly the situation for the quadratic differential Pdz2 in the
product spaces S2 × R and H2 × R in Example 3.1.

3. Some exceptional examples

Example 3.1. Let a, b ∈ R be two real constants with a 6= 0, set κ = ±1, and
consider the real function h(s) given by

(3.1) h′(s) =















−1

sinh(as+ b)
if κ = −1,

1

cosh(as+ b)
if κ = 1,

defined for as+ b > 0. So, h′(s) is the general solution of the autonomous ODE

(3.2) y′ = −a y
√

1− κ y2.

Next, define in terms of h′(s) the following quantities

(3.3)

u =
a√

1 + a2
, λ = (1 + a2)(h′)2,

H = − 1

2
√
1 + a2

√

−κ+ 1

(h′)2
, p =

−λH
2

.

It follows by an elementary computation using (3.2) and (3.3) that the quantities
{λ, u,H, p,A := h′/2} verify equations (C.1) to (C.4) for τ = 0 in terms of
the complex parameter z = s + it, where t is an arbitrary real parameter. As a
consequence, we obtain a surface immersed in E3(κ, 0) = M2(κ) × R having non-
constant mean curvature H. Moreover,

Pdz2 = HQdz2 =
−1

4
dz2

is holomorphic, even though H is non constant.

At last, let us point out that the surfaces described in this way are rotational in
M2(κ)×R. For any t0 ∈ R the map (s, t) 7→ (s, t+ t0) preserve all the fundamental
data {λ(s), u(s), p(s), H(s), A(s)} and consequently ψ has a continuous 1-parameter
group of self-congruences. In other words, for every t0 ∈ R there is a rigid motion
Ψt0 of M2(κ) × R satisfying ψ(s, t + t0) = Ψt0(ψ(s, t)). So, {Ψt0 : t0 ∈ R}
is a continuous 1-parameter group of isometries of M2(κ) × R i.e., it consists of
helicoidal motions. At last, as h(s, t + t0) = h(s, t) and h is precisely the last
coordinate function of the immersion ψ (see Remark 2.2), we conclude that all the
Ψt0 ’s are rotations. Thus the surface is rotationally invariant.

Example 3.2. Let α = α(r) be a solution of the following second order autonomous
ODE:

(3.4) α′′ = (α′)2 cotα− δ cosα,
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where δ = ±1. Define the following data:

(3.5)

λ =
1

(α′)2
, H =

sinα

2
, u = cosα,

p =
1

2
− δ sinα

4(α′)2
, A =

δ1/2 sinα

2α′
,

whenever α′(r) 6= 0. Straightforward computations show that these data satisfy
equations (C.1) to (C.4) with κ = −1, τ = 0, for the parameter z = r + i θ if
δ = 1, or z = θ + i r if δ = −1. Here θ is a real parameter. Consequently, by
Theorem 3.1 they are the fundamental data of an immersed surface in H2 ×R with
Qdz2 = dz2 and non-constant mean curvature. Moreover, using the argument in
Example 3.1, and bearing in mind that A ∈ R if δ = 1 and A ∈ iR if δ = −1, we
infer that this surface is rotationally invariant.

Example 3.3. Let κ, τ ∈ R with κ < 0, τ 6= 0 and κ − 4τ2 < 0. Let us consider
z = s+ it a complex parameter and H(s, t) a non-constant solution of the following
overdetermined system of PDEs:

(3.6)











(

log(H2 + τ2)
)

zz̄
=

8H2|Hz|2
(H2 + τ2)(4H2 + κ)

+
H2

z (H + iτ)(4H2 + κ)

4|Hz|2(H2 + τ2)
,

H2
z (H + iτ) ∈ R i.e., τ(H2

s −H2
t ) = 2HHsHt,

with the condition 4H2 + κ < 0 and Hz 6= 0.
Define next in terms of H the quantities:

(3.7)

u =

√

4H2 + κ

κ− 4τ2
, A =

u(H2 + τ2)

4HHz
,

p =
1

2

(

1 +
κ− 4τ2

H + iτ
A2

)

, λ =
−|A|2(κ− 4τ2)

H2 + τ2
.

Then, an elementary computation indicates that {λ, u,H, p,A} satisfy conditions
(C.1), (C.3) and (C.4) in Theorem 2.3. Moreover, they also verify (C.2). To
see this, we first observe that by (3.7)

u

2A
=

2HHz

H2 + τ2
= (log(H2 + τ2))z .

With this, by deriving this expression with respect to z̄, and using (C.3) together
with the first formula in (3.6), we obtain (C.2).

As a consequence, the data in (3.7), (3.6) define a surface in E3(κ, τ) with holo-
morphic Abresch-Rosenberg differential, Qdz2 = dz2, and non-constant mean cur-
vature H. To finish this example, we need to ensure that the system (3.6) has some
solution. In order to do so, let us define f(x) = −x

τ ±
√

1 + (xτ )
2. Then the second

equation in (3.6) can be written as

(3.8) Ht = f(H)Hs.

This equation has two basic consequences. On one hand, by inserting this relation
into the first equation in (3.6), and after some computations, we find that

(3.9) Hss = F(H,Hs, κ, τ)

for some real analytic function F . On the other hand, (3.8) can be solved, and the
general solution is given by the implicit relation

(3.10) s+ t f(H) = g(H),
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where g is an arbitrary smooth real function. By differentiating this relation we get,

(3.11) Hs =
1

g′(H)− tf ′(H)
and Hss = − g′′(H)− t f ′′(H)

(g′(H)− t f ′(H))3
.

So, plugging these expressions into (3.9) it is obtained

(3.12) g′′(H) = t f ′′(H)−
(

g′(H)− tf ′(H)
)3F

(

H,
1

g′(H)− t f ′(H)
, κ, τ

)

.

In other words, g(x) is a solution of an ODE of the form

(3.13) g′′ = G(H, g, g′, κ, τ, t),
where here t is considered as a real parameter, and G is an analytic function induced
by F via (3.12).

Now, given g(x) = g(x, κ, τ, t) a solution of (3.13), consider H(s, t) given im-
plicitly by (3.10) (this can be always achieved locally if we assume that g′(x) 6= 0).
Then by (3.11) and (3.12) together with (3.10) we find that H verifies (3.8) and
(3.9). Consequently, H must satisfy (3.6). This ensures the existence of these
examples.

4. Proof of Theorem 1.1

Let ψ : Σ → E3(κ, τ) be an immersed surface with holomorphic Abresch-
Rosenberg differential Qdz2, and let us assume that it is not a CMC surface. By
Lemma 2.5, Q does not vanish identically, and consequently Q has isolated zeros.
So, working in a simply connected piece of Σ away from these zeros, it is possible
to introduce a new complex parameter (which will also be denoted by z) so that
Qdz2 ≡ dz2, i.e. Q ≡ 1. Therefore it holds

(4.1) 2p− 1 =
κ− 4τ2

H + iτ
A2.

Besides, the Codazzi equation (2.6) gives

(4.2) −λ|Hz|2 = (κ− 4τ2)

(

AHz̄

H + iτ

)2

.

Taking modulus in (4.2) and using (C.4) as well as Hz 6= 0, we get

(4.3) 1 ≥ 1− u2 =
4|A|2
λ

=
4(H2 + τ2)

|κ− 4τ2| .

This inequality implies that if κ ≥ 0 and κ − 4τ2 < 0, the surface ψ cannot exist.
The same can be said if κ− 4τ2 > 0 but κ− 8τ2 ≤ 0. In this way we have proved
the first part of the theorem. We have also shown at this point that all surfaces
with holomorphic Abresch-Rosenberg differential in the Heisenberg 3-space (κ = 0)
are CMC surfaces (this is a result in [4]).

Let us assume from now on that κ− 4τ2 < 0. Then (4.3) provides 4H2 + κ ≤ 0
and

(4.4) u =

√

4H2 + κ

κ− 4τ2

(up to a ± sign, that can be changed by reversing orientation if necessary). More-
over, differentiation of (4.3) gives us

(4.5) 4HHz = (κ− 4τ2)uuz.

Now, putting together (C.3), (4.1) and (4.3), we obtain

(4.6) uz = −Ā/λ,
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and so (4.3) and (4.5) provide

(4.7) A =
u(H2 + τ2)

4HHz
.

Hence, AHz ∈ R. Thus, since by (4.2) we find that ĀHz(H + iτ) ∈ R (recall that
κ− 4τ2 < 0), we can conclude that H2

z (H + iτ) ∈ R. After writing z = s+ it, this
equation can be rephrased into

(4.8) τ(H2
s −H2

t ) = 2HHsHt.

If τ = 0, and thus E
3(κ, τ) ≡ H

2(k) × R, then either Hs ≡ 0 or Ht ≡ 0, i.e.
either H = H(t) or H = H(s). In any of these two cases, by the above formulas,
we obtain that the fundamental data {λ,H, u, p, A} of the surface depend only on
one of the real variables s and t. We will label this variable as r. We need to show
that the surface is an open piece of one of the surfaces in Example 3.2.

In order to do so, we will assume, up to dilations, that κ = −1. From (4.3)
we infer the existence of a unique (up to 2kπ addition, k ∈ Z) smooth function
α = α(r) such that

(4.9) u = cosα 2H = sinα.

As usual, denote by h the last coordinate of the immersion ψ : Σ → E3(κ, τ) ≡
H2 × R. Then A2 = (hz)

2 = δ(h′(r))2/4, where δ = 1 if r = s or δ = −1 if r = t.
Hence, equations (4.1), (4.6) and (4.7), together with (4.9) give that the funda-

mental data of the immersion coincide with those defined in (3.5). Moreover, from
(C.2) we infer that α satisfies the differential equation (3.4) in Example 3.2 and
therefore ψ is an open piece of one of the examples described there. This proves
the second part of the theorem.

Now, assume that τ 6= 0. Then, using (C.2) as well as (4.3) and (4.6) it is
obtained

( u

2A

)

z̄
=

H2 + τ2

2|A|2(κ− 4τ2)
− λu2(H + iτ)

4A2
.

So, by (4.7) and (4.4) we infer from this last equation that

(4.10) (log(H2 + τ2))zz̄ =
8H2|Hz|2

(H2 + τ2)(4H2 + κ)
+
H2

z (H + iτ)(4H2 + κ)

4|Hz|2(H2 + τ2)
.

Summing up now (4.1), (4.3), (4.4), (4.7), (4.8) and (4.10) we conclude that ψ
is the one of the surfaces constructed in Example 3.2. This ends up the proof of
Theorem 1.1.

A closing remark : We close this work by analyzing the compact case. So,
let ψ : Σ → E3(κ, τ) be a compact surface with holomorphic Abresch-Rosenberg
Qdz2, and non-constant mean curvature. If τ = 0, it is obvious that there is some
point z0 ∈ Σ with dh(z0) = 0, i.e. u(z0) = ±1. Consequently, from (4.3), we
must have H(z0) = 0. However, this is not possible, since when τ = 0 we need
H 6= 0 at every point in order to have Qdz2 well defined. So, compact surfaces with
holomorphic Qdz2 are CMC surfaces when τ = 0. The same result holds when
Pdz2 is considered instead of Qdz2 (see [5]).

Finally, assume that τ 6= 0, and suppose that Σ has non-zero Euler characteristic.
Then there is some point z0 ∈ Σ such that the tangent vector field T ∈ X(Σ) given
in Definition 2.1 vanishes at z0. This implies by (C.4) that u(z0) = ±1, which is
again impossible by (4.3). Therefore, we conclude that compact surfaces of non-zero
Euler characteristic and holomorphic Abresch-Rosenberg differential in E3(κ, τ) are
CMC surfaces.
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