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Abstract: Rieck and Nedelman (1991) introduced the sinh-normal distribution. This model was built
as a transformation of a N(0,1) distribution. In this paper, a generalization based on a flexible skew
normal distribution is introduced. In this way, a more general model is obtained that can describe a
range of asymmetric, unimodal and bimodal situations. The paper is divided into two parts. First,
the properties of this new model, called flexible sinh-normal distribution, are obtained. In the second
part, the flexible sinh-normal distribution is related to flexible Birnbaum–Saunders, introduced by
Martínez-Flórez et al. (2019), to propose a log-linear model for lifetime data. Applications to real
datasets are included to illustrate our findings.

Keywords: flexible Birnbaum–Saunders distribution; flexible Sinh-Normal distribution; lifetime
regression model; log Birnbaum–Saunders regression model

1. Introduction

In this paper, a generalization of the sinh-normal distribution introduced by Rieck and
Nedelman [1] is proposed. Recall that the sinh-normal model is defined as a transformation,
h(·), of a standard normal distribution

Y = h(Z) where Z ∼ N(0, 1). (1)

Rieck and Nedelman [1] showed that the probability density function (pdf) of Y is
symmetric and can be unimodal or bimodal. The most relevant application of (1) is that
the sinh-normal distribution can be used to propose a log-linear model for lifetime data
distributed as a Birnbaum–Saunders (see [1] for details). This point is of crucial importance
since the Birnbaum–Saunders distribution is used in a variety of situations, such as to
model lifetime, economics and environmental data. In these applications, departures of the
BS model are often found. In recent years, some improvements have been introduced to
deal with this problem. In this sense, we highlight the flexible Birnbaum–Saunders model,
proposed by Matínez-Flórez et al. [2], where two parameters, δ ∈ R, λ > 0, are added to
the usual Birnbaum–Saunders model, in such a way that λ controls asymmetry (skewness)
and δ is a shape parameter related to unimodality/bimodality of our proposal.

Throughout this paper, the next points are addressed.
First, details about the precedents, in which our proposal is based on, are given in

Section 2.
Second, the flexible sinh-normal distribution is defined as result of applying (1) to Z

distributed as a flexible skew-normal distribution, Z ∼ FSN(δ, λ) with δ ∈ R and λ > 0.
Recall that the FSN(δ, λ) model was introduced by Gómez et al. [3], as a generalization of
Azzalini skew-normal model [4], and it can deal with unimodal and bimodal situations.
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The properties of the flexible sinh-normal distribution are given in Section 3. These are
explicit expressions for the pdf and cumulative distribution function (cdf), shape and
modes of the distribution, location and scale changes, approximations, moments and
quantiles, among others. All of them are based on the fact that the flexible sinh-normal
is obtained as a given function of Z ∼ FSN(δ, λ). The obtained properties are compared
to those in the Rieck and Nedelman model. In addition, we discuss in which sense our
proposal is more general than others previously introduced in literature. The relationship
between the flexible sinh-normal distribution and the flexible Birnbaum–Saunders via
the exponential (or neperian logarithm), which allows us to build a regression model for
lifetime data, is also proven there. Section 4 is devoted to maximum likelihood estimation
for the parameters in the flexible sinh-normal distribution.

Third, the flexible Log-linear Birnbaum–Saunders regression model is studied in
Section 5. This can be used for non-negative lifetime variables following the flexible
Birnbaum–Saunders model given in [2]. The model is built, particular cases of interest are
cited, scores and maximum likelihood equations are given.

Applications to real datasets are included in Section 6. In Section 6.1, a positively
skewed environmental dataset is considered. There, it is proven that the flexible sinh-
normal model provides a better fit than other precedent skew models. In Section 6.2, a
symmetric bimodal dataset is considered. Only a few models in the literature exhibit both
properties. They are considered along with a mixture of normal distributions. It is shown
that the flexible sinh-normal submodel with skewness parameter equal to zero provides
a better fit than the other ones. Section 6.3 deals with failure time data in a fatigue test,
where the values of stress are considered as known covariate. It is shown that the flexible
log-linear Birnbaum–Saunders provides a superior fit to the log-Birnbaum–Saunders [1]
and the log-skew-Birnbaum–Saunders model. A simulation study is presented in Section 7.
A final discussion is given as Section 8.

2. Materials and Methods

For completeness, details about the most relevant precedents in which our proposal is
based are introduced next.

Flexible skew-normal distribution.

The flexible skew-normal (FSN) model was obtained and studied in detail by [5]. They
proved that the FSN model can be bimodal for certain values of δ. A random variable (rv)
Z follows a FSN distribution, Z ∼ FSN(δ, λ), if its pdf is given by

f (z; δ, λ) = cδφ(|z|+ δ)Φ(λz), z ∈ R, λ, δ ∈ R, (2)

where φ and Φ are the pdf and cdf of the N(0, 1) distribution, respectively, and c−1
δ = 1−Φ(δ).

Particular cases of interest in the flexible skew-normal are the following:

- Taking δ = 0 in (2), the skew-normal distribution proposed by Azzalini [4] is obtained.
- If λ = 0, then (2) reduces to the flexible normal distribution introduced by Martínez-

Flórez et al. [6].
- If δ = λ = 0, then Z ∼ N(0, 1).

Sinh-normal or log-Birnbaum–Saunders distribution.

Rieck and Nedelman [1] developed the sinh-normal (SHN) distribution, which is
given as the following transformation of a standard normal distribution

Y = arcsinh
(γ

2
Z
)

η + ξ where Z ∼ N(0, 1), (3)

γ > 0 is a shape parameter, ξ ∈ R is a location parameter and η > 0 is a scale parameter.
(3) is denoted as Y ∼ SHN(γ, ξ, η).



Mathematics 2021, 9, 1188 3 of 23

Proposition 1 (Properties of sinh-normal distribution). Let Y ∼ SHN(γ, ξ, η). Then,

1. Y is symmetric about the location parameter ξ.
2. The pdf of Y is unimodal for γ ≤ 2 and bimodal for γ > 2.
3. The mean and variance of Y are E[Y] = ξ and Var[Y] = η2v(γ), where v(γ) is the variance

when the scale parameter is equal to one (η = 1). There is no closed-expression for v(γ), but
Rieck and Nedelman [1] provided asymptotic approximations for small and large values of γ.

4. Let Yγ ∼ SHN(γ, ξ, η). Then, Uγ =
2(Yγ−ξ)

γη converges in law to a N(0, 1) distribution as
γ −→ 0+.

The next lemma considers the particular case of a sinh-normal distribution in which
the scale parameter is equal to 2, η = 2. This model is related to the Birnbaum–Saunders
(BS) distribution. This result is the basis of the use of this distribution as a regression model,
as shown in Section 5.

Lemma 1.

1. If Y ∼ SHN(γ, ξ, 2), then T = exp(Y) ∼ BS(γ, exp(ξ)).
2. Reciprocally, if T ∼ BS(α, β), then Y = log T follows a sinh-normal distribution with

shape parameter α, location parameter ξ = log β and scale parameter η = 2, that is Y ∼
SHN(α, log β, 2).

Proof. It can be seen in [1] (Theorem 1.1).

Due to the result given in Lemma 1, the sinh-normal distribution is also named
log-Birnbaum–Saunders distribution.

3. Results
Flexible sinh-normal distribution.

This model is obtained by applying the transformation introduced in (3) to Z ∼ FSN(δ, λ).
The new model is called the flexible sinh-normal (FSHN) distribution. It is denoted as Y ∼
FSHN(γ, ξ, η, δ, λ). By applying the change of variable formula, the pdf of Y, fY, is

fY(y) = fZ(aγ,ξ,η(y))a′γ,ξ,η(y) (4)

where fZ denotes the pdf of Z ∼ FSN(δ, λ) given in (2), aγ,ξ,η(y) and
a′γ,ξ,η(y) =

∂
∂y aγ,ξ,η(y) are

aγ,ξ,η(y) =
2
γ

sinh
(

y− ξ

η

)
, a′γ,ξ,η(y) =

2
ηγ

cosh
(

y− ξ

η

)
. (5)

Explicitly, (4) can be written as

fY(y) = cδ
2

ηγ
cosh

(
y− ξ

η

)
φ

(∣∣∣∣ 2
γ

sinh
(

y− ξ

η

)∣∣∣∣+ δ

)
Φ
(

λ
2
γ

sinh
(

y− ξ

η

))
, (6)

with cδ = (1−Φ(δ))−1.
The following are particular cases of interest in the FSHN model:

- If δ = 0, then the FSHN model reduces to the skew sinh-normal distribution studied
by Leiva et al. [7].

- If λ = 0, then a symmetric model denoted by FSHNλ=0(γ, ξ, η, δ) is obtained, which
allows us to model symmetric bimodal data.

- If δ = λ = 0, then the FSHN model reduces to the sinh-normal distribution introduced
by Rieck and Nedelman [1].

Next, some results dealing with the inverse transformation to that introduced in (3)
are given.
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Proposition 2. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then,

aγ,ξ,η(Y) =
2
γ

sinh
(

Y− ξ

η

)
∼ FSN(δ, λ).

Proof. It is obtained by considering Z = aγ,ξ,η(Y) and applying the inverse transformation
technique to

Y = h(Z) = arcsinh
(γ

2
Z
)

η + ξ, with Z ∼ FSN(δ, λ).

The following are particular cases of interest in Proposition 2:

1. If λ = 0, then Z = aγ,ξ,η(Y) follows the f lexible − normal(δ) model studied by
Castillo et al. [8].

2. If δ = 0, then Z = aγ,ξ,η(Y) ∼ Skew− Normal(λ).
3. If λ = δ = 0, then Z = aγ,ξ,η(Y) ∼ N(0, 1).

Next, an explicit expression for the cumulative distribution function (cdf) of a FSHN
distribution is given.

Theorem 1. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then, the cdf of Y is

FY(y) =



cδΦBNλ

(
λδ√
1+λ2 , a(y)− δ

)
, if y < ξ

cδ

[
ΦBNλ

(
λδ√
1+λ2 ,−δ

)
+ ΦBNλ

(
− λδ√

1+λ2 , a(y) + δ
)
−ΦBNλ

(
− λδ√

1+λ2 , δ
)]

,

if y ≥ ξ,

(7)

where a(y) = aγ,ξ,η(y) is defined in (5), ΦBNλ
(·, ·) denotes the cdf of a bivariate normal distribu-

tion, with mean vector µ′ = (0, 0) and covariance matrix

Ωλ =

(
1 ρλ

ρλ 1

)
where ρλ = − λ√

1+λ2 . (8)

Proof. Since Y ∼ FSHN(γ, ξ, η, δ, λ)

Y = arcsinh
(γ

2
Z
)

η + ξ , with Z ∼ FSN(δ, λ).

Taking into account that arcsinh(x) = log
(

x +
√

x2 + 1
)

is a monotonically increasing
function of x, we have the following relationship between the cdf’s de Y and Z:

FY(y) = FZ(aγ,ξ,η(y)) (9)

with aγ,ξ,η(y) = 2
γ sinh

(
y−ξ

η

)
.

By applying the expression for the cdf of Z ∼ FSN(δ, λ) given in [2] we have that, for
aγ,ξ,η(y) < 0, or, equivalently, for y < ξ

FZ(aγ,ξ,η(y)) = cδΦBNλ

(
λδ√

1 + λ2
, a(y)− δ

)
,

and for aγ,ξ,η(y) ≥ 0, or, equivalently, for y ≥ ξ

FZ(aγ,ξ,η(y)) =

cδ

[
ΦBNλ

(
λδ√

1 + λ2
,−δ

)
+ ΦBNλ

(
− λδ√

1 + λ2
, a(y) + δ

)
−ΦBNλ

(
− λδ√

1 + λ2
, δ

)]
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where ΦBNλ
(·, ·) denotes the cdf of a bivariate normal distribution, with mean vector

µ′ = (0, 0) and covariance matrix Ωλ given in (8). Thus, the proposed result holds

Next, some particular cases of interest for the cdf in the FSHN model are discussed.

Corollary 1. Let Y ∼ FSHN(γ, ξ, η, δ, λ).

1. If λ = 0, then the cdf of Y reduces to

FY(y) =


cδ
2 Φ(a(y)− δ), if y < ξ

cδ
2 {Φ(a(y) + δ) + 1− 2Φ(δ)}, if y ≥ ξ .

(10)

2. If δ = 0, then the cdf of Y reduces to FY(y) = 2ΦBNλ
(0, a(y)), for y ∈ R .

Proof. 1. If λ = 0, then ρλ = 0, where ρλ is given in (8). Recall that, in the bivariate
normal distribution, uncorrelation implies independence, therefore

ΦBNλ=0(x1, x2) = Φ(x1) Φ(x2), ∀(x1, x2) .

Taking into account that Φ(0) = 1/2 and Φ(−δ) = 1−Φ(δ), we have that (7) reduces
to (10).

2. If δ = 0, then we have the cdf of the skew-sinh-normal distribution.

The result in Corollary 1 for λ = 0 corresponds to the model studied by Olmos et al. [9],
whereas the result for δ = 0 is a particular case of models studied by Vilca-Labra and
Leiva-Sanchez [10].

Shape of fY(·).
Proposition 3. Let Y ∼ FSHN(γ, ξ, η, δ, λ). The pdf given in (16) can be bimodal. The modes
would be given as the solution of the following non-linear equations

1. y∗1 < ξ solution of

δ + λ
φ(λs(y))
Φ(λs(y))

+
s(y)
c2(y)

= s(y) , (11)

2. y∗2 > ξ solution of

− δ + λ
φ(λs(y))
Φ(λs(y))

+
s(y)
c2(y)

= s(y) , (12)

with s(y) = 2
γ sinh

(
y−ξ

η

)
and c(y) = 2

γ cosh
(

y−ξ
η

)
.

Proof. To obtain the maximums of fY, we take the natural logarithm of fY, except additive
terms not depending of y. Thus, let us consider

g(y) = ln(c(y)) + ln φ(|s(y)|+ δ) + ln Φ(λs(y))

where s(y) = 2
γ sinh

(
y−ξ

η

)
and c(y) = 2

γ cosh
(

y−ξ
η

)
. Taking the first derivative of g(y) with

respect to y, g′(y) = 0, after straightforward calculations, (11) and (12) are obtained.

Proposition 4. Let Y ∼ FSHN(γ, ξ, η, δ, λ) with λ = 0. Then, the pdf of Y is symmetrical with
respect to ξ and can be bimodal for δ < 0.

Proof. Symmetry follows from the fact that cosh(·) and φ(|z| + δ) are even functions.
Bimodality for δ < 0 follows from Proposition 3.

Proposition 5. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then, the pdf of Y is non-differentiable at y = ξ.
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Proof. This result follows from the fact that, if y = ξ, then s(ξ) = 2
γ sinh(0) = 0 and the

non-differentiability of the absolute value function at zero.

Some illustrative plots for the pdfs in the FSHN model are given in Figures 1–3. In
Figures 1 and 2, we mainly focus on the study of the shape parameters, δ and γ, so in
every figure a positive or negative value of δ is fixed, and a range of possible values is
considered for γ (less and greater than two), since our aim is to compare with the sinh-
normal distribution, which is strongly unimodal for γ ≤ 2 and bimodal for γ > 2 [1]. In
this way, the effect of δ and/or γ can be appreciated. Moreover, positive and negative
values of λ are considered to assess the effect of the skewness parameter. In Figure 3, λ = 0
is fixed and therefore the symmetric submodel is plotted. Additional details are given next
for every figure.
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Figure 1. FSHN pdfs: (a) FSHN (5.5, 0, 1, −2.75, −0.25) (black), FSHN (3.5, 0, 1, −2.75, −0.25)
(blue), FSHN (1.5, 0, 1, −2.75, 0.25) (orange) and FSHN (0.75, 0, 1, −2.75, 0.25) (red); and
(b) FSHN (5.5, 0, 1, 1.5,1) (black), FSHN (3.5, 0, 1, 1.5,1) (blue), FSHN (1.5, 0, 1, 1.5,1) (orange)
and FSHN (0.75, 0, 1, 1.5,1) (red).

In Figure 1, without loss of generality for our purposes, the location and scale parame-
ters are taken as ξ = 0 and η = 1. We intend to highlight the effect of δ on the bimodality
of FSHN model. In Figure 1a, small values are considered for the skewness parameter,
λ = −0.25 and 0.25, and a clearly negative value of δ = −2.75. All pdfs are bimodal. Note
that the parameter γ ∈ {0.75, 1.5, 3.5, 5.5} and even for values of γ ≤ 2 the pdf is bimodal.
These plots suggest that a negative value of δ induces bimodality and the effect of γ is
attenuated. It is also possible to appreciate the effect of the sign of skewness parameter λ
in Figure 1a; note that black and blue plots correspond to negative λ, whereas orange and
red ones correspond to positive λ. On the other hand, Figure 1b, a positive value of δ = 1.5
is considered (λ = 1). We highlight that the distribution is unimodal even for values of
γ > 2.

In Figure 2, a small value of δ is fixed (δ = 0.2 in Figure 2a and δ = −0.2 in Figure 2b);
the plots suggest that, in this case, the bimodality depends on the value of γ. However,
we must also be conscious that, in these plots λ = 0.4, for large values of λ unimodal
distributions are nearly always obtained for any values of γ and δ.
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Figure 2. FSHN pdfs: (a) FSHN (9.5, 0, 1, 0.2,0.4) (black), FSHN (5.5, 0, 1, 0.2,0.4) (blue), FSHN
(3, 0, 1, 0.2,0.4) (orange) and FSHN (1.5, 0, 1, 0.2,0.4) (red); and In (b) FSHN (9.5, 0, 1, −0.2,0.4)
(black), FSHN (5.5, 0, 1, −0.2,0.4) (blue), FSHN (3, 0, 1, −0.2,0.4) (orange) and FSHN (1.5, 0, 1,
−0.2,0.4) (red).

In Figure 3, the skewness parameter λ = 0 is fixed, therefore symmetric pdfs are
always obtained. In Figure 3a, a negative value of δ = −0.75 is fixed and all plots are
bimodal (even for values of the parameter γ < 2 in which the sinh-normal distribution
is unimodal). In Figure 3b, δ = 0.75 is fixed and unimodal symmetric distributions
are obtained.
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Figure 3. FSHN pdfs: (a) FSHN (4.5, 0, 2.5, −0.75,0) (black), FSHN (2.5, 0, 2.5, −0.75, 0) (blue),
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(1.25, 0, 2.5, 0.75, 0) (red).
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Next, we show that the FSHN model is closed under location and scale changes.

Proposition 6. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then,

1. aY ∼ FSHN(γ, aξ, aη, δ, λ), a > 0.
2. Y + b ∼ FSHN(γ, ξ + b, η, δ, λ), ∀b ∈ R.
3. −Y ∼ FSHN(γ,−ξ, η, δ,−λ).

Proof. 1. Let Z = aY with a > 0. The result proposed follows from the fact that
fZ(z) = 1

a fY
( z

a
)
.

2. Let Z = Y + b. Then, fZ(z) = fY(z− b).
3. Let Z = −Y. Then, fZ(z) = fY(−z). Taking into account that cosh(·) is an even

function, cosh(−x) = cosh(x)

2
γ

cosh
(
−z− ξ

η

)
=

2
γ

cosh
(

z + ξ

η

)
=

2
γ

cosh
(

z− (−ξ)

η

)
,

and, since sinh(·) is an odd function, sinh(−x) = −sinh(x)

2
γ

sinh
(
−z− ξ

η

)
= − 2

γ
sinh

(
z + ξ

η

)
= − 2

γ
sinh

(
z− (−ξ)

η

)
,

and the result proposed is obtained.

Corollary 2. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then,

Y− ξ

η
∼ FSHN(γ, 0, 1, δ, λ) .

Next, the limit behavior of FSHN model when γ approaches to 0+ is studied.

Proposition 7. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then, Uγ = 2(Y−ξ)
γη converges in distribution to

the flexible skew-normal FSN(δ, λ) distribution as γ −→ 0+.

Proof. Let Uγ = 2(Y−ξ)
γη . By applying Proposition 6, Uγ = 2(Y−ξ)

γη ∼ FSHN(γ, 0, 2
γ , δ, λ).

Therefore, its pdf is

fUγ(u) = cδcosh
(γu

2

)
φ

(∣∣∣∣ 2
γ

sinh
(γu

2

)∣∣∣∣+ δ

)
Φ
(

λ
2
γ

sinh
(γu

2

))
, u ∈ R. (13)

Considering that lim
γ→0+

cosh
(γu

2

)
= 1, by L’Hôpital–Bernoulli rule,

lim
γ→0+

2
γ

sinh
(γu

2

)
= u lim

γ→0+
cosh

(γu
2

)
= u .

Since φ(·) and Φ(·) are continuous differentiable functions,

fUγ(u) −→ cδφ(|u|+ δ) Φ(λu), u ∈ R as γ→ 0+,

which is the pdf of a flexible skew-normal(δ, λ) distribution. That is, the result pro-
posed.
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Remark 1. Given Y ∼ FSHN(γ, ξ, η, δ, λ) with γ close to zero, Proposition 7 allows us to
approximate the distribution of Y, properly normalized, by a flexible skew-normal(δ, λ) distribution.
In addition, note that this result is analogous to the property of the sinh-normal distribution given
in Proposition 1.

Next, it is shown that the pth quantile of Y can be obtained from the pth quantile of
Z ∼ FSN(δ, λ).

Theorem 2. Let Y ∼ FSHN(γ, ξ, η, δ, λ). Then, the pth quantile of Y, yp, with 0 < p < 1 is
given by

yp = ξ + η arcsinh
(γ

2
zp

)
(14)

where zp denotes the pth quantile of Z ∼ FSN(δ, λ).

Proof. It follows from (3) and the fact that the arcsinh function is monotonically
increasing.

Submodel with λ = 0.

For λ = 0, yp can be obtained from the quantiles of the N(0, 1) distribution.

Corollary 3. If λ = 0, then

yp =


ξ + η arcsinh

{ γ
2
[
δ + Φ−1(2p/cδ)

]}
, if p < 0.5

ξ + η arcsinh
{

γ
2

[
−δ + Φ−1

(
Φ(δ) + (2p−1)

cδ

)]}
, if p ≥ 0.5.

(15)

As it can be seen in [1], recall that the log-Birnbaum–Saunders regression model is based
on the relationship between the Birnbaum–Saunders and the sinh-normal distribution. In
our proposal, a regression model is introduced next that is based on the relationship between
the flexible Birnbaum–Saunders, studied in [2] and the FSHN distribution introduced in this
paper. First, we recall the expression of the pdf for the flexible Birnbaum–Saunders.

Flexible Birnbaum–Saunders.

Based on the flexible skew-normal model defined in (2), Martínez-Flórez et al. [2]
proposed the flexible Birnbaum–Saunders (FBS) distribution, T ∼ FBS(α, β, δ, λ), whose
pdf is given by

f (t; α, β, δ, λ) =
t−3/2(t + β)

2αβ1/2(1−Φ(δ))
φ(|at|+ δ)Φ(λat), t > 0, (16)

with at

at = at(α, β) =
1
α

(√
t
β
−
√

β

t

)
, (17)

α > 0, β > 0, δ ∈ R, λ ∈ R and φ(·) and Φ(·) the pdf and cdf of a N(0, 1), respectively.
In (16), δ and λ are shape parameters. We highlight that λ is a parameter that controls

asymmetry (or skewness) and δ is a shape parameter related to bimodality of FBS model.
Specifically, it can be seen in [2] that (16) can be bimodal for some combinations of δ and λ
parameters.

The following are particular cases of interest in (16):

- If λ = 0, then the model introduced by Olmos et al. [9] is obtained.
- If δ = 0, then the skew-Birnbaum–Saunders is obtained.
- If λ = δ = 0, then the Birnbaum–Saunders is obtained.

Theorem 3. Let Y ∼ FSHN(γ, ξ, 2, δ, λ). Then, T = exp(Y) ∼ FBS(γ, exp(ξ), δ, λ).
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Proof. This result is obtained by applying the transformation technique for random vari-
ables and taking into account (16).

In practice, it is usual to consider non-negative rv’s following a FBS(α, β, δ, λ). Then,
its neperian logarithm will follow a FSHN distribution, as established in next corollary.

Corollary 4. Let T ∼ FBS(α, β, δ, λ). Then,

Y = log(T) ∼ FSHN(α, ξ = log(β), η = 2, δ, λ) . (18)

If T depends on a known set of covariates then it is of interest to build a generalized
linear model related to T [11]. This issue is studied in Section 5.

Moments

Let Y ∼ FSHN(γ, ξ, η, δ, λ). Recall that

Y = ξ + ηarcsinh
(γ

2
Z
)

where Z ∼ FSN(δ, λ).

Thus, the moments of Y can be expressed in terms of the moments of arcsinh
( γ

2 Z
)

with respect to Z ∼ FSN(δ, λ). To simplify the notation, let us introduce

cj(γ, δ, λ) = EFSHN

[{
arcsinh

(γ

2
Z
)}j

]
j = 1, 2, . . . ,

V(γ, δ, λ) = VarFSHN

[
arcsinh

(γ

2
Z
)]

.

In particular, we have that

E[Y] = ξ + ηc1(γ, δ, λ), (19)

Var[Y] = η2V(γ, δ, λ) . (20)

4. Inference Based on Maximum Likelihood Estimation

Let Y ∼ FSHN(γ, ξ, η, δ, λ). Let us denote the vector of unknown parameters by
θ = (γ, ξ, η, δ, λ)T . Given Y1, . . . , Yn a random sample of Y ∼ FSHN(γ, ξ, η, δ, λ), let us
consider the log-likelihood function for the parameter vector θ = (γ, ξ, η, δ, λ), which
is given

`(θ) = n log cδ − n log η +
n

∑
i=1

log zi,1 +
n

∑
i=1

log φ(|zi,2|+ δ) +
n

∑
i=1

log Φ(λzi,2) + c, (21)

where c denotes a constant independent of θ and

zi,1 =
2
γ

cosh
(

yi − ξ

η

)
, zi,2 =

2
γ

sinh
(

yi − ξ

η

)
.

To maximize l(θ) in θ, consider the score functions, denoted as U(γ), U(ξ), U(η),
U(δ) and U(λ), and given as the first derivatives of l(θ) with respect to γ, ξ, η, δ and λ,
respectively. Maximum likelihood estimates for the parameters are given as the solutions
to U(γ) = 0, U(ξ) = 0, U(η) = 0, U(δ) = 0 and U(λ) = 0, which are equivalent to the
following equations

n

∑
i=1

z2
i,2 + δ

n

∑
i=1
|zi,2| − λ

n

∑
i=1

zi,2Ri,2 = n (22)

n

∑
i=1

(
zi,1zi,2 −

zi,2

zi,1

)
+ δ

n

∑
i=1

sgn(zi,2)zi,1 − λ
n

∑
i=1

zi,1Ri,2 = 0 (23)
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n

∑
i=1

(
yi − ξ

η

)(
zi,1zi,2 −

zi,2
zi,1

)
+ δ

n

∑
i=1

(
yi − ξ

η

)
sgn(zi,2)zi,1 − λ

n

∑
i=1

(
yi − ξ

η

)
zi,1Ri,2 = n (24)

φ(δ)

1−Φ(δ)
− δ =

n

∑
i=1
|zi,2|

n
(25)

n

∑
i=1

zi,2Ri,2 = 0 , (26)

where sgn(·) denotes the sign function and

Ri,2 =
φ(λzi,2)

Φ(λzi,2)
, i = 1, . . . , n .

Iterative methods must be used to solve these equations [12]. Details about the previ-
ous maximum likelihood estimators (MLEs) are postponed to Section 5, where the MLEs
for the parameters in the regression model based on the FSHN distribution are studied.

5. The Flexible Log-Birnbaum–Saunders Regression Model

In this section the flexible log-Birnbaum–Saunders regression model is introduced.
Let T1, . . . , Tn be independent positive continuous random variables such as

Ti ∼ FBS(γi, τi, δi, λi) . (27)

Let us assume that the distribution of Ti, proposed in (27), depends on a set of known
explanatory variables, Xi,1, . . . , Xi,p−1, satisfying for i = 1, . . . , n

1. τi = exp(xT
i β) where xi = (1, xi,1, . . . , xi,p−1)

T and β = (β0, β1, . . . , βp−1)
T is a p-

dimensional vector of unknown parameters.
2. The shape and skewness parameters in (27) do not involve xi, that is, γi = γ, δi = δ

and λi = λ.

Let us consider Yi = log(Ti). By applying Corollary 4, Yi ∼ FSHN(γ, xT
i β, 2, δ, λ).

Thus, Yi can be written as a linear model

Yi = xT
i β + εi (28)

where the error term εi ∼ FSHN(γ, 0, 2, δ, λ) (Proposition 6 is applied) and ε′is are inde-
pendent. As for the expectation, variance of εi and covariance of εi and εj (i 6= j), taking
into account (19), we have for i = 1, . . . , n

E[εi] = 2c1(γ, δ, λ)

Var[εi] = 4V(γ, δ, λ)

Cov(εi, εj) = 0, i 6= j.

Taking
β∗0 = β0 + 2c1(γ, δ, λ) ,

we can write
E[Yi] = xT

i β∗ with β∗ = (β∗0, βT
1 )

T (29)

where the initial vector of unknown parameters has been partitioned into β = (β0, β1
T)T

with β1 = (β1 . . . , βp−1)
T .

By applying the ordinary least squares approach, an unbiased linear estimator of β∗ is

β̂
∗
= (XTX)−1XTy,



Mathematics 2021, 9, 1188 12 of 23

where y = (y1, . . . , yn)T and

X =


1 x1,1 x1,2 · · · x1,p−1
1 x2,1 x2,2 · · · x2,p−1
· · · · · · · · · · · · · · ·
1 xn,1 xn,2 · · · xn,p−1

.

The covariance matrix of β̂
∗

is given by

Cov(β̂
∗
) = 4V(γ, δ, λ)(XTX)−1 .

The model previously introduced is named flexible log-Birnbaum–Saunders regression
model and is denoted by FLBS(γ, xT

i β, 2, δ, λ).

Particular cases of interest.

1. If δ = λ = 0, then we have the log-Birnbaum–Saunders regression model proposed
by Rieck and Nedelman [1], which is based on the sinh-normal distribution [1].

2. If δ = 0, then (28) reduces to the skewed log-Birnbaum–Saunders regression model
studied by Lemonte [13], which is based on the skewed sinh-normal distribution
introduced in Leiva et al. [7].

3. If λ = 0, then (28) reduces to the submodel flexible log-Birnbaum–Saunders, denoted
by FLBSλ=0(γ, xT

i β, 2, δ), which is based on the FSHNλ=0(γ, 0, 2, δ) distribution in-
troduced in this paper.

Likelihood Equations in the Regression Model

Let us consider the log-likelihood function for the parameter vector θ = (γ, βT , δ, λ)T ,
which is given

`(θ) = n log cδ +
n

∑
i=1

log ξi,1 +
n

∑
i=1

log φ(|ξi,2|+ δ) +
n

∑
i=1

log Φ(λξi,2) + c, (30)

where c denotes a constant independent of θ and

ξi,1 =
2
γ

cosh

(
yi − xT

i β

2

)
, ξi,2 =

2
γ

sinh

(
yi − xT

i β

2

)
.

To maximize l(θ) in θ, consider the score functions, given as the first derivatives of
l(θ) with respect to γ, β j (with j = 0, . . . , p− 1), δ and λ, respectively. They are denoted as
U(γ), U(β j) with j = 0, 1, . . . , p− 1, U(δ) and U(λ),

U(γ) = − n
γ
+

1
γ

n

∑
i=1

ξ2
i,2 +

δ

γ

n

∑
i=1

sgn(ξi,2)ξi,2 −
λ

γ

n

∑
i=1

ξi,2wi,2 (31)

U(β j) =
1
2

n

∑
i=1

xi,j

(
ξi,1ξi,2 −

ξi,2

ξi,1

)
+

δ

2

n

∑
i=1

xi,jsgn(ξi,2)ξi,1 −
λ

2

n

∑
i=1

xi,jξi,1 , wi,2 (32)

with j = 0, 1, . . . , p− 1.

U(δ) = n
φ(δ)

1−Φ(δ)
−

n

∑
i=1

sgn(ξi,2)ξi,2 − nδ, (33)

U(λ) =
n

∑
i=1

ξi,2wi,2, (34)
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where sgn(·) denotes the sign function and

wi,2 =
φ(λξi,2)

Φ(λξi,2)
, i = 1, . . . , n .

Maximum likelihood estimators for the parameters are given as the solutions to
U(γ) = 0, U(β j) = 0, j = 0, . . . , p− 1 , U(δ) = 0 and U(λ) = 0, which requires numeri-
cal techniques.

6. Applications
6.1. Illustration 1

Dataset 1 consists of n = 116 observations of daily ozone mean concentration in the
atmosphere (in ppb= ppm× 1000) in New York taken from May to September 1973 [14].
The average concentration of pollutants in the air is of interest in epidemiological studies
due to its serious adverse effects on the human health. It is usually assumed that these data
are independent, and therefore they do not require a cyclic trend analysis, see for instance
the works of Gokhale and Khare [15], Nadarajah [16] and Leiva et al. [7], where this dataset
is also studied.

Descriptive summaries. The sample mean, variance, skewness and kurtosis coeffi-
cients are: ȳ = 42.1293, s2 = 1088.2010,

√
b1 = 1.2098 and b2 = 1.1122. From these sum-

maries and Figure 4, we can conclude that this dataset is positively (or right) skewed. Thus,
sinh-normal, skew sinh-normal, Birnbaum–Saunders, extended Birnbaum–Saunders [7]
and FSHN distributions can be considered as models for this dataset. Their performance is
compared throughout the Akaike information criterion, AIC = −2l̂(·) + 2k and Bayesian
information criterion, BIC = −2l̂(·) + log(n)k, where l̂(·) denotes the log-likelihood func-
tion evaluated at the MLEs of parameters and k is the number of parameters in the model.
From the results in Table 1, the FSHN distribution provides the best fit to these data since
its AIC and BIC are the smallest [17,18].

Table 1. Estimates of parameters and their standard errors in parentheses for sinh-Normal (SHN),
skew-SHN, BS, extended BS and FSHN models.

Estimator SHN Skew-SHN BS Extended BS FSHN

γ̂ 0.437 0.729 0.982 3.381 3.021
(0.170) (0.205) (0.064) (0.766) (1.349)

ξ̂ 43.445 4.199 1.113 7.043
(3.218) (1.484) (0.448) (1.868)

η̂ 155.008 147.882 28.021 2.037 88.949
(56.170) (35.000) (2.264) (0.206) (15.259)

δ̂ −0.778 2.845
(0.205) (1.422)

λ̂ 21.035 2.905 26.549
(9.841) (0.914) (10.4072)

AIC 1147.49 1096.41 1102.19 1091.29 1091.23
BIC 1155.75 1107.43 1107.70 1105.06 1105.00

On the other hand, since the sinh-normal, skew sinh-normal and FSHN are nested
models, they can be compared by using the likelihood ratio test, [19].

First, let us consider the test

H0 : (δ, λ) = (0, 0) vs H1 : (δ, λ) 6= (0, 0),
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which is equivalent to testing the sinh-normal (SHN) versus a FSHN distribution. The
associated likelihood ratio statistic is

Λ1 =
LSHN(γ̂, ξ̂, η̂)

LFSHN(γ̂, ξ̂, η̂, δ̂, λ̂)
,

which is asymptotically distributed as a chi-square variable with two degrees of freedom
(df). After substituting the estimated values of the parameters, we obtain −2 log(Λ1) =
60.261, which is greater than the 5% chi-square critical value with 2 df, which is 5.99.
Therefore, the FSHN model is preferred to the SHN model for this dataset.
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Figure 4. Estimated pdfs: (a) FSHN (blue), skew-SHN (red) and SHN (green); and (b) FSHN (blue),
extended BS (red) and BS (green).

Second, we compare the FSHN model to the skew sinh-normal (skew-SHN) model.
Let us now consider the following likelihood ratio statistic

Λ2 =
LSkew−SHN(γ̂, ξ̂, η̂, λ̂)

LFSHN(γ̂, ξ̂, η̂, δ̂, λ̂)
,

which is asymptotically distributed as a chi-square variable with d f = 1, χ2
1.

After substituting the estimated values, we obtain −2 log(Λ2) = 7.182, which is
greater than the 5% chi-square critical value with 1 df, which is 3.84. Therefore, FSHN is
preferred to skew-SHN model for this dataset.

Figure 4 presents the histogram and the fitted pdfs. Note that FSHN and extended BS
provide a good fit to this dataset.

6.2. Illustration 2

Dataset 2 consists of n = 500 observations of fetus weight (in grams) before birth
obtained by ultrasound technique. Descriptive summaries are given in Table 2. The data
are available at http://www.mat.uda.cl/hsalinas/cursos/2011/R/weight.rar (accessed
on 17 May 2021). The variables b.weigt (fetal weight in grams) and a.weigt (birth weight in
grams) can be found there. We study the b.weight variable.

Table 2. Descriptive summaries for b.weight variable.

n ȳ s2 Median
√

b1

500 3210.356 695,710.6 3175 0.0712

http://www.mat.uda.cl/hsalinas/cursos/2011/R/weight.rar


Mathematics 2021, 9, 1188 15 of 23

In Table 2, note that the mean and median are similar and the sample asymmetry coef-
ficient

√
b1 is close to zero. Therefore, the distribution is fairly symmetrical. This fact can be

seen in the histogram plotted in Figure 5, where we can also appreciate the bimodality of
this dataset. Bimodality is due to the difference in weight, at the gestation stage, between
males and females. Therefore, a symmetric bimodal model must be considered. In the
literature, there are few models which exhibit both properties [20]. We propose the bimodal
normal [21], the two-piece skew normal [22], the sinh-normal with γ > 2 and the submodel
FSHN with λ = 0. In addition, we consider a mixture of two normal distributions whose
pdf is

f (y) =
α

σ1
φ

(
y− µ1

σ1

)
+

1− α

σ2
φ

(
y− µ2

σ2

)
y ∈ R , (35)

with 0 < α < 1, µi ∈ R and σi > 0, i = 1, 2.
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Figure 5. b.weight histogram and fitted bimodal models: (a) FSHN (blue), mixture normal (red) and
SHN (green); and (b) FSHN (blue), two-piece skew normal (red) and bimodal normal (green).

The estimated parameters in these models, along with their standard errors in paren-
theses, are given in Table 3. In this table, the following abbreviations are used: SHN
(sinh-normal), TN (two-piece skew normal [22]), BN (bimodal normal [21]), MN (mixture
of two normals given in (35)), FSHNλ=0 (FSHN with λ = 0). From AIC and BIC in Table 3,
we can conclude that the mixture of two normals and the FSHNλ=0 model provide the best
fit to this dataset. However, it is of interest to point out that the use of mixtures is a quite
controversial issue in statistics, mainly due to non-identifiability problems (see, e.g., [23]).

Table 3. Estimates of parameters, (standard errors) in models fitted in Dataset 2.

Estimator SHN TN BN MN FSHNλ=0

γ̂|µ̂1 2.216 2501.859 0.355
(0.296) (51.012) (0.141)

ξ̂|µ̂2 3237.546 3207.422 3201.666 3880.479 3218.617
(29.560) (26.083) (5.620) (59.509) (22.821)

η̂|σ̂1 972.770 772.688 481.088 436.380 2976.591
(82.977) (25.760) (8.782) (33.756) (1043.259)

δ̂|σ̂2 497.050 −1.156
(40.223) (0.133)

α̂ 1.771 0.4860
(0.539) (0.040)

AIC 8103.25 8109.67 8238.39 8096.99 8089.38
BIC 8111.51 8122.31 8246.82 8118.06 8112.45
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Since SHN and FSHNλ=0 are nested models, we can test

H0 : δ = 0 versus H1 : δ 6= 0,

which is equivalent to compare SHN versus FSHNλ=0. Taking into account that the
Fisher information matrix is non-singular at (δ, λ) = (0, 0), we can consider the likelihood
ratio statistic

Λ1 =
LSHN(γ̂, ξ̂, η̂)

LFSHN(γ̂, ξ̂, η̂, δ̂)
.

It is obtained that −2 log(Λ1) = 15.868, which is greater than the χ2
1,0.05 = 3.84. Thus,

H0 is rejected, leading to the conclusion that the proposed FSHNλ=0 model fits better than
the SHN considered in this case.

In Figure 5, the histogram of bebe weights is plotted along with the proposed bimodal
models. There, the good fit provided by our proposal can be checked.

6.3. Illustration 3

Dataset 3 consists of 40 independent observations, which correspond to the failure
time, T, for hardened steel specimens in a rolling contact fatigue test. The observations
were taken at each of four values of contact stress, which is the covariate x in our proposal.
This dataset can be seen in the work of Chan et al. [24]. Let Yi = log Ti and consider
the regression model

Yi = β0 + β1 log xi + εi, i = 1, . . . , 40. (36)

We fit the log-Birnbaum–Saunders, the log-skew-Birnbaum–Saunders proposed by
Lemonte et al. [13] and the log-flexible Birnbaum–Saunders introduced in this paper to
this dataset. The estimated parameters along with the AIC and BIC are given in Table 4.
According to AIC and BIC, log-flexible Birnbaum–Saunders provides a better fit than the
other ones, so this model would be preferred.

Table 4. MLEs in LBS, LSBS and LFBS models.

Parameters LBS LSBS LFBS

γ 1.279 2.011 1.988
(0.143) (0.313) (0.527)

β0 0.097 −0.961 −2.053
(0.170) (0.166) (0.530)

β∗0 0.165 −0.392
β1 −14.116 −13.870 −13.812

(1.571) (1.602) (1.248)
δ −1.565

(0.430)
λ −0.932 2.073

(0.174) (0.910)
AIC 129.23 125.36 121.885
BIC 134.30 132.11 130.32

7. Simulation

Next, a simulation study is presented to illustrate the performance of our results.
Two features are studied: (1) the global performance of MLEs of parameters if the sample
size increases; and (2) the effect of varying every shape parameter, γ, δ and λ, on the
performance of the rest of estimators under consideration. Both issues are studied in the
use of the flexible sinh-normal distribution as a regression model.
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7.1. Simulation I

The flexible sinh-normal distribution as a regression model with one covariate is
considered, that is

Yi = β0 + β1xi + εi, i = 1, . . . , n,

where εi ∼ FSHN(γ, 0, 2, δ, λ) or, equivalently, Yi ∼ FSHN(γ, β0 + β1xi, 2, δ, λ) indepen-
dent for i = 1, . . . , n. The vector of unknown parameters is (γ, β0, β1, δ, λ).

As sample sizes, we consider n ∈ {25, 50, 75, 100, 500}, m = 5000 simulations and
values of the parameters (γ, β0, β1, δ, λ) = (1, 1.75, 1.25,−1.5, 2). As x, covariate values of
a U(0, 1) distribution are considered. Values of the FSHN were generated from values of
the FSN distribution, which were obtained by using the stochastic representation of FSN
model given in [5]. The results are listed in Tables 5–7. As for measures of performance,
the mean of estimates, their standard errors (sd) in parentheses, the relative bias and the
square root of the mean squared error (MSE) are given.

Table 5. Simulations for γ̂.

n γ̂ (sd) bias (γ̂)
√

MSE

25 0.9968 (0.2878) 0.2026 0.3833
50 1.0674 (0.2338) 0.1461 0.2966
75 1.0972 (0.2221) 0.1222 0.2696

100 1.1235 (0.2196) 0.1012 0.2534
500 1.0960 (0.2114) 0.0432 0.2181

Table 6. Simulations for β̂0, β̂1 .

n β̂0 (sd) bias (β̂0)
√

MSE β̂1 (sd) bias (β̂1)
√

MSE

25 1.8205 (0.4539) 0.0403 0.4593 1.2866 (0.5022) 0.0293 0.5034
50 1.7290 (0.4054) 0.0120 0.4059 1.2681 (0.3424) 0.0145 0.3428
75 1.6813 (0.4027) 0.0393 0.4085 1.2621 (0.2702) 0.0097 0.2704
100 1.6348 (0.4074) 0.0659 0.4234 1.2617 (0.2373) 0.0094 0.2376
500 1.7141 (0.4475) 0.0205 0.5058 1.2514 (0.1027) 0.0011 0.1027

Table 7. Simulations for δ̂ and λ̂.

n δ̂ (sd) bias (δ̂)
√

MSE λ̂ (sd) bias (λ̂)
√

MSE

25 −1.6190 (0.4530) 0.0793 0.4683 1.8495 (2.4948) 0.0753 2.4991
50 −1.6021 (0.3325) 0.0680 0.3478 2.0366 (1.0632) 0.0183 1.0638
75 −1.6048 (0.3013) 0.0699 0.3190 2.1029 (1.0358) 0.0515 1.0408
100 −1.6239 (0.2934) 0.0826 0.3185 2.1537 (1.0253) 0.0769 1.0366
500 −1.6025 (0.2981) 0.1083 0.3395 2.1683 (1.3550) 0.2342 1.4335

From the results in Tables 5–7, we can conclude that the MLEs are biased; in general,
the standard error, relative bias and the squared root of MSE decrease if the sample size n
increases. We highlight that, in this simulation, β̂1 exhibits a good behavior, whereas the
greater variability corresponds to λ̂.

Simulations were carried out by using the optim function of software R [25] by
applying the Nelder–Mead method.

7.2. Simulation II

Next, a sensitivity study about the effect of varying the shape parameters (and the
sample size) on the estimates of other parameters is presented.

Summaries varying the γ parameter are given in Table 8. Similarly, results varying
the parameters δ and λ are given in Tables 9 and 10, respectively.
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Table 8. Empirical sd, relative bias and
√

MSE for the FSHN(γ, 1.75, 1.25,−1.5, 2) model.

γ̂ β̂0 β̂1 δ̂ λ̂

γ n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

25 0.1223 0.0841 0.1241 0.1108 0.0214 0.1169 0.1600 0.0012 0.1600 0.7379 0.0040 0.7378 1.7371 0.0332 1.7382
50 0.0362 0.048 0.0381 0.0851 0.0124 0.0878 0.1122 0.0003 0.1122 0.3840 0.0005 0.3839 0.9076 0.0463 0.9123
75 0.0285 0.0338 0.0297 0.0732 0.0091 0.0749 0.0913 0.0019 0.0914 0.3288 0.0023 0.3288 0.8327 0.0698 0.8443

0.25 100 0.0246 0.0246 0.0254 0.0647 0.0078 0.0661 0.0766 0.0000 0.0766 0.3012 0.0093 0.3015 0.7395 0.0607 0.7494
200 0.0174 0.0126 0.0177 0.0508 0.0037 0.0512 0.0548 0.0005 0.0548 0.2465 0.0028 0.2465 0.4737 0.0365 0.4793
25 0.1801 0.0819 0.1903 0.3016 0.0561 0.3171 0.4195 0.0164 0.4199 0.5691 0.0069 0.5692 1.0871 0.0487 1.0914
50 0.1285 0.0437 0.1326 0.2413 0.0327 0.2479 0.2896 0.0012 0.2895 0.4314 0.0075 0.4315 1.1060 0.0696 1.1146
75 0.0989 0.0284 0.1012 0.2055 0.0208 0.2087 0.2326 0.0077 0.2327 0.3555 0.0071 0.3557 1.2154 0.0833 1.2266

0.75 100 0.0853 0.0221 0.0869 0.1829 0.0129 0.1843 0.1987 0.0023 0.1987 0.3147 0.0017 0.3147 0.8197 0.0753 0.8334
200 0.0596 0.0100 0.0600 0.1444 0.0062 0.1448 0.1401 0.0013 0.1401 0.2387 0.0007 0.2387 0.5718 0.0478 0.5797
25 0.3304 0.1037 0.3549 0.4336 0.1015 0.4685 0.5576 0.0212 0.5582 0.5984 0.0069 0.5985 3.4611 0.0179 3.4610
50 0.2370 0.0551 0.2468 0.3606 0.0534 0.3725 0.3872 0.0046 0.3872 0.4080 0.0031 0.4079 1.0082 0.0505 1.0131
75 0.1951 0.0388 0.2010 0.3106 0.0353 0.3166 0.3065 0.0065 0.3066 0.3286 0.0030 0.3286 0.9589 0.0750 0.9705

1.25 100 0.1703 0.0279 0.1738 0.2803 0.0255 0.2839 0.2596 0.0011 0.2596 0.2942 0.0010 0.2942 1.0168 0.0834 1.0303
200 0.1278 0.0138 0.1290 0.2219 0.0110 0.2228 0.1858 0.0027 0.1858 0.2198 0.0025 0.2198 0.6109 0.0472 0.6181
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Table 9. Empirical sd, relative bias and
√

MSE for the FSHN(1, 1.75, 1.25, δ, 2) model.

γ̂ β̂0 β̂1 δ̂ λ̂

δ n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

25 0.7149 0.0835 0.7197 0.3610 0.0488 0.3709 0.5022 0.0080 0.5023 1.2311 0.1081 1.2358 5.1219 0.0603 5.1228
50 0.5221 0.0493 0.5244 0.2857 0.0213 0.2881 0.3528 0.0022 0.3528 0.7337 0.0750 0.7374 1.3591 0.0676 1.3657
75 0.1679 0.0347 0.1714 0.2515 0.0071 0.2518 0.2918 0.0073 0.2919 0.4105 0.0572 0.4144 0.9445 0.0657 0.9535

−1 100 0.1450 0.0270 0.1475 0.2311 0.0101 0.2317 0.2482 0.0003 0.2482 0.3644 0.0357 0.3661 0.8753 0.0660 0.8851
200 0.1009 0.0138 0.1018 0.1842 0.0041 0.1843 0.1683 0.0016 0.1683 0.2750 0.0186 0.2756 0.6144 0.0355 0.6185
25 0.9140 0.0934 0.9187 0.3478 0.0137 0.3486 0.4973 0.0149 0.4976 1.388 0.5287 1.4128 6.2775 0.0923 6.2795
50 0.3620 0.0535 0.3659 0.2714 0.0018 0.2714 0.3426 0.0003 0.3426 0.7485 0.3018 0.7635 1.3659 0.0951 1.3790
75 0.2473 0.0403 0.2506 0.2482 0.0012 0.2482 0.2754 0.0056 0.2755 0.5598 0.2215 0.5706 1.0731 0.0816 1.0853

−0.5 100 0.1735 0.0348 0.1770 0.2217 0.0041 0.2217 0.2415 0.0005 0.2415 0.4555 0.1987 0.4662 1.6011 0.0805 1.6090
200 0.1195 0.0216 0.1214 0.1850 0.0025 0.1850 0.1643 0.0005 0.1643 0.3406 0.1183 0.3456 0.7319 0.0442 0.7371
25 1.3881 0.0596 1.3892 0.3364 0.0093 0.3368 0.4892 0.0094 0.4893 2.0955 1.0817 2.1126 7.9980 0.2026 8.0075
50 0.6369 0.0448 0.6384 0.2713 0.0036 0.2713 0.3298 0.0109 0.3301 1.1466 0.6245 1.1570 2.6481 0.1318 2.6609
75 0.2728 0.0372 0.2753 0.2455 0.0026 0.2455 0.2654 0.0004 0.2653 0.6709 0.4761 0.6813 1.4155 0.1159 1.4342

−0.25 100 0.2067 0.0266 0.2084 0.2292 0.0074 0.2296 0.2272 0.0006 0.2272 0.5568 0.3704 0.5644 1.2191 0.1269 1.2451
200 0.1518 0.0164 0.1527 0.1963 0.0050 0.1965 0.1603 0.0002 0.1603 0.4422 0.2235 0.4456 0.9483 0.0807 0.9619
25 2.0897 0.1139 2.0925 0.3216 0.0211 0.3237 0.4466 0.0009 0.4466 3.4203 0.4546 3.4218 11.1958 0.479 11.2356
50 0.8816 0.0242 0.8818 0.2650 0.0007 0.2650 0.3036 0.0053 0.3037 1.6859 0.0111 1.6857 2.8473 0.2296 2.8838
75 0.5832 0.0087 0.5832 0.2383 0.0067 0.2386 0.2372 0.0038 0.2372 1.1711 0.1668 1.1717 2.1403 0.2225 2.1859

0.25 100 0.3810 0.0155 0.3813 0.2211 0.0100 0.2218 0.2083 0.0008 0.2083 0.9596 0.0649 0.9597 1.4984 0.2060 1.5538
200 0.1888 0.0036 0.1888 0.1847 0.0116 0.1858 0.1459 0.0002 0.1459 0.5933 0.1700 0.5947 0.9973 0.1412 1.0364
25 1.9152 0.1240 1.9191 0.2973 0.0191 0.2991 0.4197 0.0051 0.4197 3.4184 0.4688 3.4261 15.9834 0.5792 16.0237
50 1.0250 0.0667 1.0271 0.2435 0.0022 0.2435 0.2802 0.0050 0.2802 2.0445 0.2053 2.0469 3.6007 0.3098 3.6533
75 0.7143 0.0455 0.7157 0.2228 0.0076 0.2232 0.2284 0.0015 0.2284 1.4870 0.0934 1.4876 2.7262 0.2506 2.7716

0.5 100 0.3324 0.0137 0.3326 0.2076 0.0102 0.2084 0.1904 0.0029 0.1904 0.9070 0.0385 0.9071 1.3857 0.1926 1.4381
200 0.2089 0.0110 0.2091 0.1698 0.0124 0.1711 0.1359 0.0002 0.1359 0.6743 0.0530 0.6747 0.9694 0.1442 1.0113
25 1.9723 0.2052 1.9828 0.2573 0.0170 0.2590 0.3659 0.0037 0.3659 3.8193 0.5343 3.8562 18.1767 0.7324 18.2338
50 1.3344 0.1345 1.3410 0.2116 0.0025 0.2116 0.2548 0.0034 0.2548 2.8532 0.3136 2.8701 4.7951 0.3444 4.8439
75 0.8267 0.0764 0.8302 0.1906 0.0063 0.1909 0.2034 0.0013 0.2034 1.9203 0.1296 1.9245 2.4815 0.2837 2.5453

1.0 100 0.7316 0.0690 0.7347 0.1743 0.0106 0.1753 0.1711 0.0014 0.1711 1.7036 0.1055 1.7067 2.0484 0.2545 2.1105
200 0.4334 0.0374 0.4350 0.1350 0.0105 0.1362 0.1184 0.0000 0.1183 1.1408 0.0382 1.1413 1.1312 0.1508 1.1706
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Table 10. Empirical sd, relative bias and
√

MSE for the FSHN(1, 1.75, 1.25,−1.5, λ) model.

γ̂ β̂0 β̂1 δ̂ λ̂

λ n sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE sd RB
√

MSE

25 0.2404 0.1088 0.2639 0.3883 0.0407 0.3948 0.5086 0.0004 0.5085 0.5320 0.1424 0.5732 0.5807 0.0151 0.5809
50 0.1763 0.0508 0.1835 0.3073 0.0110 0.3079 0.3521 0.0068 0.3522 0.3709 0.0838 0.3916 0.4488 0.0282 0.4496
75 0.1510 0.0325 0.1544 0.2648 0.0011 0.2648 0.2838 0.0019 0.2838 0.2999 0.0606 0.3134 0.3266 0.0193 0.3272

−1 100 0.1343 0.0284 0.1372 0.2301 0.0053 0.2303 0.2445 0.0029 0.2445 0.2604 0.0468 0.2696 0.2926 0.0096 0.2927
200 0.0979 0.0099 0.0983 0.1628 0.0013 0.1628 0.1693 0.0020 0.1693 0.1828 0.0194 0.1851 0.1893 0.0066 0.1894
25 0.2206 0.0935 0.2396 0.3742 0.0102 0.3746 0.5369 0.0040 0.5369 0.4774 0.1842 0.5515 0.3220 0.0099 0.3220
50 0.1729 0.0363 0.1766 0.2690 0.0003 0.2690 0.3778 0.0045 0.3778 0.3421 0.0819 0.3635 0.2121 0.0134 0.2122
75 0.1446 0.0258 0.1468 0.2160 0.0008 0.2160 0.2956 0.0060 0.2957 0.2785 0.0565 0.2911 0.1656 0.0009 0.1655

−0.5 100 0.1235 0.0212 0.1253 0.1817 0.0016 0.1817 0.2532 0.0014 0.2532 0.2390 0.0438 0.2479 0.1413 0.0004 0.1413
200 0.0870 0.0102 0.0876 0.1277 0.0008 0.1277 0.1754 0.0028 0.1754 0.1702 0.0224 0.1734 0.0984 0.0008 0.0984
25 0.2086 0.0831 0.2245 0.3642 0.0052 0.3643 0.5740 0.0008 0.5739 0.4812 0.1713 0.5454 0.2217 0.0212 0.2217
50 0.1527 0.0389 0.1576 0.2436 0.0003 0.2436 0.3869 0.0011 0.3869 0.3409 0.0785 0.3606 0.1442 0.0008 0.1442
75 0.1245 0.0247 0.1269 0.1979 0.0008 0.1979 0.3083 0.0039 0.3083 0.2841 0.0510 0.2942 0.1142 0.0040 0.1142

−0.25 100 0.1068 0.0194 0.1086 0.1714 0.0002 0.1714 0.2675 0.0016 0.2675 0.2410 0.0398 0.2482 0.0962 0.0064 0.0962
200 0.0774 0.0097 0.0780 0.1168 0.0008 0.1168 0.1813 0.0002 0.1813 0.1729 0.0183 0.1750 0.0688 0.0051 0.0688
25 0.2099 0.0859 0.2267 0.3646 0.0075 0.3648 0.5633 0.0033 0.5633 0.4799 0.1791 0.5499 0.2034 0.0335 0.2035
50 0.1537 0.0407 0.1590 0.2517 0.0003 0.2517 0.3856 0.0064 0.3857 0.3423 0.0830 0.3642 0.1473 0.0040 0.1473
75 0.1263 0.0288 0.1296 0.1979 0.0011 0.1979 0.3079 0.0018 0.3079 0.2813 0.0566 0.2938 0.1142 0.0006 0.1142

0.25 100 0.1094 0.0194 0.1111 0.1696 0.0032 0.1697 0.2644 0.0031 0.2644 0.2449 0.0399 0.2521 0.0984 0.0127 0.0984
200 0.0757 0.0092 0.0762 0.1185 0.0001 0.1185 0.1858 0.0011 0.1858 0.1689 0.0194 0.1714 0.0683 0.0008 0.0683
25 0.2258 0.0986 0.2463 0.3932 0.0166 0.3942 0.5549 0.0022 0.5549 0.4783 0.1898 0.5566 0.3089 0.0263 0.3091
50 0.1761 0.0447 0.1817 0.2753 0.0032 0.2754 0.373 0.0040 0.3730 0.3343 0.0893 0.3601 0.2124 0.0042 0.2124
75 0.1420 0.0317 0.1455 0.2131 0.0031 0.2131 0.2950 0.0021 0.2950 0.2779 0.0630 0.2935 0.1695 0.0016 0.1694

0.5 100 0.1236 0.0216 0.1255 0.1885 0.0037 0.1886 0.2571 0.0060 0.2572 0.2379 0.0434 0.2466 0.1416 0.0017 0.1416
200 0.088 0.0087 0.0884 0.1294 0.0014 0.1294 0.1765 0.0002 0.1765 0.1695 0.0175 0.1715 0.0969 0.0007 0.0969
25 0.2453 0.1065 0.2674 0.3931 0.0453 0.401 0.5165 0.0009 0.5165 0.5063 0.1383 0.5471 0.5795 0.0012 0.5795
50 0.1809 0.0613 0.1910 0.3007 0.0230 0.3034 0.3507 0.0021 0.3507 0.3503 0.0803 0.3704 0.4679 0.0108 0.4680
75 0.1550 0.0380 0.1595 0.2602 0.0117 0.2609 0.2878 0.0018 0.2877 0.2877 0.0541 0.2989 0.3588 0.0176 0.3592

1.0 100 0.1345 0.0308 0.1380 0.2310 0.0087 0.2315 0.2468 0.0000 0.2467 0.2534 0.0421 0.2611 0.2835 0.0060 0.2835
200 0.0982 0.0140 0.0992 0.1662 0.0037 0.1663 0.1725 0.0030 0.1726 0.1814 0.0223 0.1845 0.1915 0.0028 0.1915
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Comments to Table 8 (varying γ > 0).

In this table, we consider β0 = 1.75, β1 = 1.25, δ = −1.5, λ = 2, γ ∈ {0.25, 0.75, 1.25}
and sample sizes n ∈ {25, 50, 75, 100, 200}. For β̂0 and β̂1, it can be seen that the relative
biases are small. Moreover, we can appreciate that the relative bias, standard error and√

MSE decrease when the sample size increases, especially for β̂1. δ̂ and λ̂ exhibit greater
variability, but their relative bias, sd and

√
MSE also decrease when the sample size

increases. As for γ̂, we can point out that this estimator is also well behaved when n
increases. Its relative bias for small sample sizes, n = 25, is small and the

√
MSE is a

moderate value.

Comments to Table 9 (varying δ ∈ R).

In this table, we consider γ = 1, β0 = 1.75, β1 = 1.25, λ = 2, δ ∈ {−1,−0.5,−0.25,
0.25, 0.5, 1} and n ∈ {25, 50, 75, 100, 200}. We can see that, for β̂0 and β̂1, the relative bias
is small even for n = 25, and the relative bias, sd and

√
MSE decrease when n increases.

Again, δ̂ and λ̂ exhibit greater variability than the other estimators, but the error measures
under consideration are satisfactory. The relative bias, sd and

√
MSE of γ̂ decrease when n

increases, and their values are moderate even for small sample sizes.

Comments to Table 10 (varying λ ∈ R).

In this case, we consider γ = 1, β0 = 1.75, β1 = 1.25, δ = −1.5, λ ∈ {−1,−0.5,−0.25,
0.25, 0.5, 1} and n ∈ {25, 50, 75, 100, 200}. Again, a similar behavior to the previously
explained is obtained.

As final conclusion, we point out that these simulation studies cover a variety of
situations as for the shapes of the FSHN distribution (unimodal and bimodal) and suggest
that the estimators of the parameters are consistent when the sample size increases [26].

8. Discussion

The BS distribution is an asymmetric model used for survival time data and material
lifetime subject to stress as it can be seen in [27]. Due to its practical and theoretical interest,
a number of generalizations can be found in literature. We can cite the extensions provided
in [28] to the family of elliptical distributions; in [10] based on the elliptical asymmetric
distributions; and the extended Birnbaum–Saunders (EBS) distribution introduced in [7].

Other generalizations intend to solve specific deficiencies observed when this model
is fitted to a dataset. In this sense, we can cite the epsilon-Birnbaum–Saunders model
introduced in [8] to accommodate outliers; the extension based on the slash-elliptical family
of distributions given in [3]; and the generalized modified slash Birnbaum–Saunders, which
is based on the work in [29] and proposed in [30]. All these extensions are appropriate to fit
data with greater or smaller asymmetry (or kurtosis) than that of the usual BS model, but
they are not appropriate for fitting bimodal data. This issue is of great interest, as discussed
by Olmos et al. [9], Bolfarine et al. [31], Martínez-Flórez et al. [2] and Elal-Olivero et al. [32].
The flexible BS distribution was proposed to model skewness and to fit data with and
without bimodality. In this paper, this model is spread out to be used as a regression model
in those situations in which regression models based on other generalizations of BS, such
as those proposed in [7,13,33–37], do not provide a satisfactory fit.
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The following abbreviations are used in this manuscript:

BS Birnbaum–Saunders
cdf cumulative distribution function
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FSHN Flexible sinh-normal
FSN Flexible skew Normal
pdf probability density function
SHN Sinh-normal
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