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In this paper we develop a new computational technique called boundary scale-space theory.  This tech- 

nique is based on the topol1
 

 ogical paradigm consisting of representing a geometric subdivided object K 
using a one-parameter family of geometric objects { Ki  }i  ≥ 1 all of them having the same number of 

closed pieces than K.  Each piece of Ki  

( ∀i  ≥ 1) presents the same interior part than the 

corresponding one in K,  and a different boundary part depending on the scale i.  Working with 

coefficients in a field, a scale is installed for the algebraic boundary of each piece and a new invariant 

for cell complex isomorphisms is given in terms of the Betti numbers of the generated boundary-scale-

space cell complexes. Moreover, the so called homology boundary scale-space model of K ( hbss -model 

for short) is introduced here. This

model consists of a hierarchical graph whose nodes are the homology generators of the different 

bound- ary scale levels and whose edges are specified by homology generators of consecutive boundary 

scale

indices linked by ( hbss -transition maps) preserving homology classes. Various codes for each connected
subgraph of an hbss -model are defined, which besides being fast and efficient similarity measures for 

cel- lular structures, they are as well relevant interpretive tools for the hbss -model. Finally, 

experimentations mainly aimed at clarifying and understanding the notion of hbss -model, as well as 

conjecturing about new graph isomorphism invariants (seeing graphs as a 1-dimensional cell 

complexes), are performed.
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1. Introduction

Topological exploration of complex data sets is a key issue in

Data Science. In this direction, Persistent Homological Data Analy-

sis is a successful set of techniques, that uses the topological fea-

ture of persistent homology as its main analysis tool (see [1,2] ).

The inference problem of defining and computing the homology

of a cloud dataset is solved by constructing a cell complex struc-

ture (see, for instance, [3] for a review of this notion). Persistence

homology is mainly based on obtaining homological information,

that depends on a filtration of such initial cell complex. The es-

sential idea to use persistent homology is to generate a viewpoint-

dependent representation of high-dimensional data sets, in which

the homology classes that persist the longest through this filtration

are highlighted. 

In this paper, we are interested in searching analytical tools

based on a different topological paradigm. Geometric cell com-

plexes can be seen here as structures constituted by closed cells in

which their corresponding interior (connectivity piece) and bound-

ary frames (connectivity capacity of the piece) can be separately
∗ Corresponding author.
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anipulated. In the classical scale-space theory (see [4] for a re-

iew), “the quintessence is that scale provides topology” (see [5] ).

n the proposed boundary scale-space model ( bss -model, for short),

topology provides scale”. Given a geometric cell complex K , the

onnectivity pieces for each level of the bss -model are always the

nterior parts of the different dimensional cells of K . On the other

and, the connectivity capacity of each piece at a certain bound-

ry scale level changes, following a common structural boundary

attern. Let us emphasize that this idea is different from the classi-

al morphological scale-space paradigm in image analysis, in which

he change of scale affects both, the set of connectivity pieces and

he capacities of the cells (see [6,7] ). 

The proposed bss -model handles a given cell complex K at dif-

erent boundary scales, by representing K as a one-parameter fam-

ly { K i } i ≥ 1 of cell complexes, having all of them the same number

f closed cells than K , with identical interior parts than K , but dif-

erent boundaries that are “measured” in terms of a scale parame-

er. The boundary scale parameter i is a positive integer specifying

he common “topological size” of the boundary of the cells of the

ame dimension at that level. 

In Fig. 1 , a set of local geometric boundary operators of a 2-

imensional square that are susceptible to be applied in a bss -

odel are shown withing a square regular cell complex of size

 × 7. 

https://doi.org/10.1016/j.patrec.2020.02.028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.02.028&domain=pdf
mailto:real@us.es
https://doi.org/10.1016/j.patrec.2020.02.028


Fig. 1. Different boundaries (in yellow) of a 2-dimensional cell (interior part in or- 

ange) within a regular square cell complex of size 7 × 7. 
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In order to develop a computationally viable method, we place

he bss -theory in the context of an algebraic scenario and use ho-

ology features for determining a homology boundary scale-space

odel ( hbss -model, for short) for a geometric cell complex ( K , ∂).

oncretely, working with coefficients in a field F , the algebraic bss -

odel of the canonically associated chain complex (F ∗[ K] , ∂) (be-

ng F ∗[ K] the vector space of finite linear combinations of cells of

 ) is a one-parameter family { (F [ K] , ∂ i ) } i ≥0 of chain complexes sat-

sfying that ∂ 1 = ∂ , ∂ ∂ i = 0 = ∂ i ∂ ( ∀ i ≥ 1) and ∂ i ∂ j = 0 ( ∀ i, j ≥ 1).

ith these conditions, we guarantee that all the homology bound-

ry chain complexes have the same Euler-Poincaré characteristic

han K through all the levels of the hbss -model. The one-parameter

amily { β(F [ K] , ∂ i ) } i ≥0 of vectors β(F [ K] , ∂ i ) = (β i 
0 
, . . . , βn 

0 
) formed

y the respective Betti numbers of (F [ K] , ∂ i ) (given in increasing

imension order from left to right) turns out to be an invariant for

ell complex isomorphisms. 

The hbss -model consists of a hierarchical graph whose nodes

re homology generators of different boundary scale levels and

hose edges are specified by homology generators of consecutive

oundary scale indices linked by homology-maps ( hbss -transition

aps). All this information can be straightforwardly extracted from

 family of algebraic-topological models of (F [ K] , ∂ i ) , i ≥ 1 (AT-

odels, for short, see [8–11] ). 

Intuitively, the goal of hbss -models is to keep track of all the

omological information of a given cell complex that is dependant

f the boundary scale. Let us note that the hbss -model does not

atisfy in general the causality principle (see [12] ), that states that

or any pair of scales i and j with i < j , homological information

t scale j finds a “cause” at scale i . This principle is satisfied when

t is restricted to a connected subgraph of the model. In order to

larify, understand and value the topological discriminatory power

f the hbss -model, we work with lossy codes for each connected

ubgraph of an hbss -model. 

The following subsection of the paper summarizes some of

he published works that are related to the proposed model.

ection 2 is devoted to recall the combinatorial and algebraic ma-

hinery for computing the hbss -model. Next, the construction of

his models is presented in Section 3. Section 4 shows some ex-

mples that have been computed using an ad hoc implementation

f the method. Finally, the paper concludes in Section 5 . 

.1. Related works 

Concerning homotopy representation models of digital objects

nd images, there are numerous works arising from digital topol-

gy sources [13–15] , continuous or cellular topology [16–18] and
D shape search in which three clearly differentiated concepts ap-

ear: Reeb graphs [19,20] , skeletons [21–23] and boundary rep-

esentations [24–26] . Relative to the homology of cell complexes

here is plenty of literature, mainly based on a pure algebraic per-

pective, that is devoted to its computation. The classical method

s based on the diagonalization of cell-incidence matrices to Smith

ormal form (SNF) (see [27] ). In the following decades, some ad-

ances in the computation of the SNF have been achieved (see

28] ), but the most successful approaches consist of reducing the

umber of cells in the complex using discrete-vector-field dynam-

cs (Discrete Morse theory [29] ) before computing the SNF for the

mall resulting cell complex (see, for instance, [30–35] ). In this pa-

er we go beyond homological computation and design an algo-

ithm for computing a new representation based on homology. In

his sense, boundary scale-space theory extends and improves both

he algebraic model called Algebraic-Topological model (see [8–11] )

nd the combinatorial model called Homological Spanning Forest

HSF, for short, see [32,36,37] ), with respect to their aim of devel-

ping new topological representations within the digital object’s

ontext. 

. Preliminaries

We work in this paper with cell complex representations (com-

osed of cells and bounding relations between them), that allow

o model, for example, not only an n -dimensional digital object at

ub- n -xel level but also significant algebraic (co)homological infor-

ation (with coefficient in a field F ). 

First of all, we provide a slightly modified version of the classi-

al abstract cell complex notion (see [3] for a survey). 

We say that K = (K, B, dms ) is an abstract cell complex (or ACC,

or short) if: 

• C = { K q } q ∈ N ∪{ 0 } is a finite set with a gradation dms : K → N 

⋃ { 0 }
defined by dms (c) = q for c ∈ K q ;

• B : K × K → N ∪ { 0 } is a map such that satisfies the following

condition: B ( c, c ′ ) 	 = 0 implies c ∈ K q −1 , c 
′ ∈ K q .

We refer to the elements of C as cells and to B ( c, c ′ ) as the

ounding function of the ACC K applied to the couple ( c, c ′ ). If we

xtend the bounding function of the ACC in an antisymmetric and

ransitively way, we recover the classical notion of ACC. 

The connectivity-graph G (K, B, dms ) = (V, E) of an abstract cell

omplex ( K, B, dms ) is the graph whose set of nodes is K and an

dge { c, c ′ } ∈ E if B ( c, c ′ ) or B ( c ′ , c ) is different from zero. 

Now, let us define the (algebraic) notion of geometric cell com-

lex. We say that K = (K, κ, dms ) is a Lefschetz complex ( [38] ) if: 

• K = { K q } q ∈ N ∪{ 0 } is a finite set with a gradation dms : K →
N 

⋃ { 0 } defined by dms (c) = q for c ∈ K q ;
• κ : K × K → F is a map such that κ( c, c ′ ) 	 = 0 implies c ∈ K q −1 ,

c ′ ∈ K q . For any c, c ′′ ∈ K we have 
∑ 

c ′ ∈ K κ(c, c ′ ) κ(c ′ , c ′′ ) = 0 .

We refer to the elements of C as cells and to κ( x, y ) as the in-

idence coefficient of x, y . 

We are interested here in Lefschetz complexes satisfying that

or any c, c ′ ∈ C the incidence coefficient κ( c, c ′ ) is either zero

r ± 1 of F . These structures are simply called here geomet-

ic cell complexes . The identity function 1 K : K → K is defined by

 K (c) = c, ∀ c ∈ K . Associated to a geometric cell complex ( K, κ ,

ms ), there is a bounding function B : K × K → N ∪ { 0 } defined by

 (c, c ′ ) = 1 if κ( c, c ′ ) 	 = 0 and B (c, c ′ ) = 0 otherwise. If c ∈ K and

 is a set of cells of ( K, κ , dms ), we define the bounding function

 (c, R ) = 

∑ 

c ′ ∈ R B (c, c ′ ) (resp. B (R, c) = 

∑ 

c ′ ∈ R B (c, c ′ )) . 
In a purely algebraic context, a geometric cell complex ( K, κ ,

ms ) is determined by a free chain complex (F [ K] , ∂) with differ-

ntial or algebraic boundary ∂ q +1 : F [ K] q +1 → F [ K] q ( q = 0 , 1 , 2 , ... )

efined on generators (linear map) by ∂ q +1 (c) = 

∑ 

c ′ ∈ K κ(c ′ , c) c ′ . A



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 [AT-model construction] 

Input: A geometric cell complex K := { K, ∂, dms } . C a list with all 

the cells of K ordered by increasing dimension c 0 
1 
, . . . c 0 � 1

, c 1 1 , . . . ,

c 1 � 2
, . . . , c n 

1 
, . . . , c n � n 

.Here, dms (c k 
j 
) = k , ∀ k, j and 

∑ 

1 ≤q ≤n � q = � . Let

us also use the cell ordering c k 
j 
= c j+ ∑ 

q<k � q 
.The boundary operator

∂| F [ c 1 , ... ,c i ] is denoted by ∂ i . 

1: H 

∂ 
0 

← ∅ ; L 

φ
0 

← ∅ ; J 

φ
0 

← ∅ ; S pr 
0 

← ∅ ; 
2: for k = 0 to n do 

3: for j = 1 to � k do 

4: i ← j + 

∑ 

q<k � q ; 

5: φi −1 (c i ) ← 0 ; 

6: Bnd i ← { e ∈ ∂ i (c i ) } ; � Boundary of the current cell
7: c̄ i ← c i + φi −1 ∂ i (c i ) ; � Potential cycle assoc. to c i
8: Bnd i ← { e ∈ ∂ i ( ̄c i ) } ; � Algebraic boundary of c̄ i
9: H 

∂ 
i 

← H 

∂ 
i −1

⋃ { ̄c i } ; Lφ
i

← L 

φ
i −1

⋃ { c i } ;
10: J 

φ
i

← J 

φ
i −1

⋃ { c i } ; � Homology generators, critical
cells 

11: if ∂ i ( ̄c i ) == 0 then � Equivalent to Bnd i == ∅
12: for r = 1 to i do 

13: φi (c r ) ← φi −1 (c r ) ; 

14: else � In case c i does not generate a cycle
15: Choose one of the cells e ∈ Bnd i ; 
16: Choose one of the cells e ∈ Bnd i 

with e ∈ (1 F [ K] + ∂ i φi −1 )( e ) ; 

17: ˜ φ(e ) ← c i ;

18: ˜ φ(c) ← 0 for each c ∈ L 

φ
i −1

\ { e } ;
19: ē ← e + φi −1 ∂ i (e ) ; 
20: for q = 1 to i − 1 do 

21: φi (c q ) ← (φi −1 + (id C i 
− φi −1 ∂ i −1 ) ̃  φ(id C i 

−
∂ i −1 φi −1 ))(c q ) , ∀ c q ∈ C i

22: H 

∂ 
i

← H 

∂ 
i
\ { ̄e , c̄ i } ; � Updating homology

generators 

23: L 

φ
i

← L 

φ
i
\ { e } ; � Updating comb. homology

kernel 
24: J 

φ
i

← J 

φ
i

\ { e , c i } ; � Updating set of critical
cells 

Output: 
• An AT-model (C, ∂ � , φ� , dms ) and a combinatorial basis

(set of critical cells ) specified by J φ
� and ordered by in- 

creasing dimension { crt 
d 1 
1 , . . . , crt d m m 

} (with dms (crt 
d q 
q ) =

d q , 1 ≤ q ≤ m ) of the homology H(C , φ) . A set of repre- 
sentative cycles of the homology classes with regards to

∂ is given by H 

φ
� .
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chain map f q : F [ K q ] → F [ K 

′ 
q ] is a linear map satisfying f q −1 ∂ q =

∂ ′ q f q ( q ≥ 0). Its codifferencial or algebraic coboundary δq :

F [ K q ] → F [ K q +1 ] ( q ≥ 0) is defined on generators by δq (c) =
∑ 

c ′ ∈ K κ(c, c ′ ) c ′ . Its homology (resp. cohomology) groups { H q ( K, κ ,

dms )} (resp. { H 

q ( K, κ , dms )}) are defined as the homology groups

{ H q ( [ F ](K) , ∂) } of the chain complex (F [ K] , ∂) (resp. of (F [ K] , δ) ).

Hence, H q (K, κ, dms ) = Ker (∂ q ) /∂ q +1 (K) (resp. H 

q (K, κ, dms ) =
Ker (δq +1 ) /δq (K) ). The n th Betti number represents the rank of the

n th homology group. 

Let us note that if f : F [ K] → F [ K] is a linear map, Ker f = { c ∈
F [ K] / f (c) = 0 } and f (C) = { c ′ ∈ F [ K] /c ′ = f (c) } .

The definitions of homology make sense due to the fact that

∂ q +1 ∂ q = 0 and δq δq +1 = 0 , ∀ ( q ≥ 0). 

From now on, we use the hybrid combinatorial-algebraic nota-

tion ( K , ∂) for describing a geometric cell complex. The notation

c ′ ∈ f , being f ∈ F [ K] indicates that the cell c ′ is involved as a non-

null addend of this linear combination. 

It is straightforward to specify geometric cubical cell complexes

modeling n -dimensional digital images at sub- n -xel level. In fact,

we are mainly interested in testing the designed algorithms in dig-

ital objects (that are previously cellularized or polyhedrized), in or-

der to progress in topological acuity and representation within the

digital image context. 

2.1. AT-models 

Taking into consideration the previous definitions, we are now

able to define an AT-model ( K , ∂ , φ) of a geometric cell com-

plex ( K , ∂). The homomorphism φq : F [ K q ] → F [ K q +1 ] , called inte-

gral operator , satisfies the following three conditions: (a) φφ = 0 ;

(b) ∂ φ∂ = ∂ ; (c) φ∂ φ = φ.

Let us emphasize that the integral operator is, in particular, a

codifferential operator. 

An explicit homology equivalence between the chain complex

(F [ K] , ∂) and a free chain complex with null differential (which,

obviously, is isomorphic to the homology H ( K , ∂)) can be con-

structed using AT-models. The germ idea of the AT-model theory

comes back to the original notion of chain contraction, used by

Samuel Eilenberg and Saunder Mac Lane in their works of ho-

mological computation (see, for example, [39] ). If ( K , ∂) and ( K 

′ ,
∂ ′ ) are two geometric cell complexes (in fact, we take the associ-

ated chain complexes), a chain contraction is a triple ( f, g, ψ) of

chain maps f q : F [ K q ] → F [ K 

′ 
q ] , g q : F [ K 

′ 
q ] → F [ K q ] and ψ q : F [ K q ] →

F [ K 

′
q +1 

] satisfying the following conditions: (a) 1 F [ K] = g f + ∂ψ +
ψ∂; (b) f g = 1 

F [ K ′ ] ; (c) fψ = 0 ; (d) φg = 0 ; (e) ψψ = 0 . For in-

stance, a chain contraction ( f, g, ψ) that can be specified from

an AT-model ( K , ∂ , φ) has ψ = φ, f = 1 F [ K] − φ∂ − ∂φ and g :

Im (1 F [K] − φ∂ − ∂φ) → F [K] (inclusion map). 

The pseudocode for computing an AT-model (in fact, the inte-

gral operator defining the AT-model) of a finite geometric cell com-

plex K is shown in Algorithm 1 . The Betti numbers of K can be

straightforwardly extracted form the final value of the J variable

in the algorithm (line 24), by counting the number of critical cells

of each dimension. 

2.2. Homology-preserving maps 

Another fundamental piece of the boundary scale-space theory

are homology-preserving maps: 

Definition Given two chain complexes ( C ∗ , d ) and (C ′ ∗, d ′ ) , a lin-

ear map f : (C ∗, d) → (C ′ ∗, d ′ ) is a pseudo-chain map or homology-

preserving map if: 

• f (Ker d ) ⊂ Ker d ;
•
 f (d(C ∗) ⊂ d(C ∗) .
In other words, the map [ f ] d : H(C ∗, d) → H(C ′ ∗d ′ ) passing the

ap f to homology is well-defined. A chain map is also called

 strong homology-preserving map . A homology-preserving map

hich is not a chain map is called a weak homology-preserving map

In particular, the equality d ′ f d = 0 is satisfied for homology-

reserving maps. 

To our knowledge, the first reference dealing with homology-

reserving maps appears in the work of Levine in [40] . 

Examples of weak homology-preserving maps are the follow-

ng: 

• Let ( C ∗ , ∂ , φ) be an AT-model of a geometric cell complex.

Let us consider the map h (φ, ∂) = 1 C + φ∂ . On one hand,

h (φ, ∂) ∂ = ∂ + φ∂∂ = ∂ . On the other, ∂h (φ, ∂) = ∂ + ∂φ∂ =
(1 + ∂φ) ∂ = 0 . It is easy to prove that h ( φ, ∂) is a weak
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Fig. 2. Flowchart corresponding to the ith iteration of the hbss -model construction

algorithm.
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homology-preserving map. Analogously, we can prove that

h (∂, φ) = 1 C ∗ + ∂φ : (C ∗, ∂) → (C ∗, ∂) is also a weak homology-

preserving map. 
• If ( C , ∂) is a geometric cell complex, then the composition ∂δ:

( C , ∂ δ∂ ) → ( C , ∂ ) is a weak homology-preserving map.

Finally, we need a convenient definition of homology-

reserving equivalence between two chain complexes. 

efinition 2.1. Given two chain complexes ( C, d C ) and (C ′ , d C ′ ) , a

omology-preserving equivalence ( hpe , for short) between them is

 pair of maps ( f, g ), such that: 

• f : (C, d C ) → (C ′ , d C ′ ) and g : (C ′ , d C ′ ) → (C, d C ) are two

homology-preserving maps; 
• [ g] d ′ [ f ] d is the identity 1 H ( C ) : H 

∗ ( C, d C ) → H 

∗ ( C, d C ) at homology

level.

It is straightforward to prove that given an hpe from ( C, d C )

o (C ′ , d C ′ ) , their respective Euler-Poincaré characteristics are the

ame. Any chain contraction is in particular an hpe . In general, an

pe does not preserve Betti numbers. 

A simple example of hpe is provided by the following proposi-

ion: 

roposition 2.1. Let ( C ∗ , d, φ) be an AT-model of a finite chain com-

lex ( C ∗ , d ) . The pair of chain maps ( h ( d, φ), h ( φ, d )) constitutes an

pe from ( C ∗ , d ) to ( C ∗ , 0) . 

This means, that the Euler-Poincaré characteristic χ ( C ∗ , ∂) is

qual to χ ( C ∗ , 0). Therefore, we deduce a well-known result of

omputational topology: the Euler-Poincaré characteristic of ( C ∗ , ∂)

n terms of Betti numbers agrees with the alternate sum of the

ardinals of the sets of cells of different dimension. 

. The boundary scale-space model

Given a linear map ψ : ( C, d ) → ( C ′ , d ′ ) between chain com-

lexes, the notation ψ 

( n ) means the composition ψ . . . ψ n ∈ N . 

Given a finite geometric cell complex ( K , ∂), it is straightforward

o prove that any operator of the kind ∂ ( δ∂ ) ( m ) (resp. δ( ∂ δ) ( m ) )

 ≥ 0) is again a differential (resp. a codifferential) of K 

∗ . Let

s note that (δ∂) (0) = (∂δ) (0) = 1 F [ K] . Another type of differential

resp. codifferential) operators which can be derived from ∂ (and,

onsequently, δ) are given by the formula ∂ 
∑ m 

i =0 (δ∂) (i ) ( m ≥ 0).

In this paper, we will use t(n ) = ∂ 
∑ n −1 

i =0 (δ∂) i ( n ≥ 1) to build

he boundary scale model. Further analysis with other possibilities

ill be performed in the future. The differential t (0) coincides with

he zero map. 

The idea of the boundary scale-space model is to analyze the

lgebraic information related to the finite sequence of the homol-

gy vector spaces H(K, t(1)) , H(K, t(2)) , . . . H(K, t(n )) . 

For example, in the case of ( K , ∂) being a three-dimensional

eometric complex, each homology H ( K, t ( i )) is a vector of three

omponents ( H 0 ( K, t ( i )), H 1 ( K, t ( i )), H 2 ( K, t ( i ))), each one consid-

red here as a set with as many elements as (in case of H 0 ) con-

ected components, (in case of H 1 ) tunnels and (in case of H 2 ) cav-

ties the cell complex K has. In order to know how this stratified

nformation at consecutive boundary scales i and i + 1 is linked

ne to each other, we use the chain maps hpe (d i , d i +1 , φi , φi +1 )

f Proposition 2.1 applied to ( K , ∂), where d i = t(i ) , d i +1 = t(i + 1)

nd φi and φi +1 are the respective integral operators of AT-models

 K 

∗ , t ( i ), φi ) and (K ∗, t(i + 1) , φi +1 ) . In fact, these maps guaran-

ee that the homological transference in each transition of the

oundary scale-space model is a homologically consistent process.

hey form the set of boundary scale-space transition maps between

oundary scales i and i + 1 . 

We are now able to provide a definition of a boundary scale-

pace model for a geometric cell complex. 
efinition 3.1. Let ( K , ∂) and bss = (t(1) = ∂, t(2) , t(3) , .... ) be a

nite geometric cell complex and its boundary scale, respectively.

e use the following ingredients in the construction of our partic-

lar hbss -model BS 2 ( K , ∂ , bss ): 

• a sequence of AT-models ( K, t ( i ), φi ) ( i ≥ 1) and their associated

chain contractions ( f i , g i , φi ) strongly connecting ( K, t ( i )) with

its homology H 

∗ ( K, t ( i )).
• a sequence of homology boundary scale-space transition maps

m 

i 
i +1 

: H(K, t(i + 1)) → H(K, t(i )) ( hbss transition maps, for

short) given by:

m 

i
i +1 = f i (1 + φi t(i )) (1 + t(i + 1) φi +1 ) g i +1 , ∀ i ≥ 1 .

BS 2 ( K , ∂ , bss ) is then the hierarchical graph having as nodes at

oundary scale i the homology generators of ( K, t ( i )) and as edges

he homology generators at consecutive levels j and j + 1 linked by

he hbss transition map m 

j 
j+1

. 

This last definition makes it possible to establish a complete

raceability of each homology generator at any boundary scale. 

Starting from a homology preserving map h : ( K , ∂) → ( K 

′ , ∂)

oing from a geometric cell complex to another, it is also possible

o straightforwardly define a family of maps h i 
i ≥1 

between their re-

pective hbss -models, being each of them the appropriate compo-

ition of hbss -transition maps for ( K , ∂) and ( K 

′ , ∂ ′ ) and the map

 . 

. About the interpretability of the boundary scale-space

odel

The construction of the hbss -model is given in polynomial time,

ue to the fact that the main expensive step is the generation of

T-models at different boundary scale levels. O ( n 3 ) elementary op-

rations (being n , the number of cells of a geometric cell com-

lex ( K , ∂)) are needed for generating an AT-model of ( K , ∂). The

owchart showing each iteration of the algorithm is presented in

ig. 2 . 

The experimentation carried out in this section makes a head-

ay on: (a) understanding, interpreting and analyzing the sta-

ility of the model (under homotopy-preserving changes) and

b) discriminative power of the model for distinguishing non-

omeomorphic 1-dimensional geometric object. An ad-hoc imple-

entation of the hbss -model has been developed for this purpose

nd our tests will be executed with small instances of cell com-

lexes. 

Within BS 2 ( K , ∂ , bss ), it is now possible to tag with the same

abel homology generators (elements of a basis of the vector space

 ( K, t ( i ))) that are connected via transition maps and, conse-

uently, to specify hierarchical homological boundary scale-space

onnected graphs ( hbss -graph, for short) of homology generators of

he same dimension dms . 

Fixing a maximal boundary scale index m in our study of the

oundary scale-space model, each hbss -graph of label � and di-

ension dms is a hierarchical graph whose “birth” is at a certain

nitial boundary scale-space k 1 , having nodes in the consecutive

oundary scale levels until no more connected nodes are found

t a certain level or “death”. Each hbss -graph can admit multiple



Fig. 3. A cell complex of a torus and its corresponding hbss-Betti sequence for the

first three levels.

Fig. 4. Graph examples.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. hbss -Betti sequence corresponding to the graph examples in Fig. 3.
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“lossy” codes for representing them. For instance, a possible hbss -

code could be the vector formed from left to right by the number

of vertices, number of edges and its Euler-Poincaré characteristic

of the connected graph. 

Finally, we are able to define a new tool for topological analysis

that informs us about the transference of homological information

among boundary scale-space stages. 

Definition 4.1. Given a finite cell complex ( K , ∂) and an hbss -

model BS 2 ( K , ∂ , t ( i )), the homology boundary scale-space signature

BS 3 ( K , ∂ , t ( i ), m ) (being m the maximal boundary scale index in-

volved) is a set of hbss -codes, each of one specified by an hbss -

graph of the model BS 2 ( K , ∂ , t ( i )). 

In the subsequent subsections, we will do some experimenta-

tion related to the stability and topological discriminative power

of BS 2 ( K , ∂ , bss ) and BS 3 ( K , ∂ , n ), with regards to a particular

persistent-based hbss -code. More concretely, each hbss -graph is

classified using a persistent hbss-code ( crd, b, d, dms ), where crd es

is the number of graphs with homological dimension dms whose

boundary-scale “birth” is equal to b and boundary-scale “death” is

equal to d ( b, d ≤ n ). 
.1. About stability of the hbss-model 

Fig. 3 a) shows a cell complex of a torus with 832 cells that has

een use for experimenting about the stability of the hbss -model.

e have tested how the hbss -Betti sequence remains constant after

everal modifications of the initial complex, including rotation and

ertex and cell reordering. The Betti numbers are computed using

lgorithm 1 . The resulting sequence is shown in Fig. 3 b). Each

ow corresponds to an iteration in the model. In this example, only

he first three iterations are shown, due to the fact that the model

tabilizes at this point, and therefore the numbers keep constant

n the following iterations. 

.2. Analysing graphs using hbss-model 

The sequence of Betti numbers of the boundary scale-space

hain complexes of the hbss -model given in an increasing order

ith regards the boundary scale (from now on, hbss -Betti se-

uence) is a true invariant for isomorphism of geometric cell com-

lexes. This is due to the fact that each chain complex of a certain

oundary-scale index can be seen as an appropriate reorganization

f the boundary information of the original geometric object with

egards to a topological measure (boundary scale) and its homol-

gy is a homeomorphic invariant. 

We work here exclusively with 1-dimensional geometric com-

lex. Let us start by comparing the hbss -Betti sequence of two

omeomorphic graphs. 

We also compare the hbss -Betti sequence of various sets of non-

somorphic graphs (see Fig. 4 ) with the same degree sequence.

or orders n ≤ 5, there are no non-isomorphic trees with the

ame degree sequence. For n = 6 , the unique cases are shown

n Fig. 4 a) and b). The possibilities for n = 7 are pictured in

ig. 4 from c) to i), being the degree sequences: (3,3,2,1,1,1,1) for

) and d), (4,2,2,1,1,1,1) for e) and f) and (3,2,2,2,1,1,1) for g) and i).



Fig. 6. Persistent hbss -code corresponding to the graph examples in Fig. 3.
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ig. 5 shows the corresponding hbss -Betti sequence of such graphs

nd Fig. 6 shows the persistent hbss -codes. Note that d is not spec-

fied, due to the fact that such graphs persist during all the tested

terations (more than 100). 

. Conclusions

In this paper, a new paradigm for a scale-space topological

nalysis of geometric cell complexes is described. The resulting hi-

rarchical graph-based hbss -model is a well-defined and topolog-

cally consistent notion, whose nodes represent homology gener-

tors of the different hbss stages of the model and whose edges

re constructed mirroring a realization of a homology genera-

or at boundary scale i into the i − 1 stage. The ordered se-

uence of its homological nodes is an invariant for cell complex

somorphism. 

This paper primarily focuses on shaping a mathematically ro-

ust theory about a novel computational topological tool and

rocedures to simplify its still difficult, interpretatively speaking,

omological information. Accordingly, the experimentation car-

ied out on small instances fundamentally deals with the under-

tanding, interpretability and stability (under homotopy-preserving

hanges) of the model and its behavior within the context of geo-

etrical cell complexes of dimension 1. 

Future effort s need to be devoted to solve important problems: 

• to analyze hbss -models for boundary operation sequence with

transition maps exclusively preserving Euler-Poincaré character- 

istic.
• to visualize the homological hole information of the hbss -model

in terms of delineations and/or cuts composed by set of cells of

the original geometric cell complex;
• given an hbss -code, to try to derive an invariant for cell com-

plex isomorphism;
• to design a parallel algorithm for computing the hbss -model

based on HSF model.
• for any geometric cell complex, to fix a priori a boundary scale

index such that beyond it, we can guarantee that the homolog-

ical information provided by the hbss -model becomes “stable”

and uninformative;
• to describe a balanced hbss -model in terms of both boundary

and coboundary scales;
• to develop a bss -model exclusively in terms of homotopy infor-

mation of abstract cell complexes;
• to show the usefulness of this approach in computer vision and

pattern recognition applications. The generation of an efficient

and functional computational toolbox to analyze large amounts

of data using this new scale-based representation model is a

priority for the authors.
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