A LINK BETWEEN MENGER'S THEOREM AND INFINITE EULER GRAPHS

L. BOZA, A. DIÁNEZ, A. MÁRQUEZ and A. QUINTERO (Sevilla)

1. Introduction

An infinite graph G is usually called Eulerian if there is an Eulerian trail in G, i.e., a one-way or two-way infinite trail which contains all the edges of G. In both cases, it is obviously necessary that V(G) be countable and that G be, at most, two ended (in the case of one-way trail G must be one ended, see [6]), which means that for each finite $K \subset G$ there is, at most, two infinite components in G - K (one infinite component in the case of one ended).

It is the purpose of this note to extend the definition of an infinite Eulerian graph in such a way that the above restrictions on the number of ends are not required, but such that in the cases previously considered the "old" notion of Eulerian graph appears as a special case.

By an infinite graph we mean a graph G such that its vertex set V(G) is countable and the degree in every vertex is finite. In particular the edge set E(G) is also countable. In other words, G is a locally finite countable graph. We will use the notations and definitions of [5], except vertex instead of point and edge instead of line. And if A is a set we represent its cardinal by |A|.

If v is a vertex in a graph G, we denote by $\delta(v,G)$ its degree in G (or by $\delta(v)$ when no confusion is possible), and by lk(v,G) we denote the set of incident vertices with v. The set of vertices with odd degree in G will be denoted by $\mathcal{O}(G)$.

If G and G' are two graphs, and $v \in V(G)$ and $v' \in V(G')$ are two vertices, by $G \cup_{v=v'} G'$ we mean the graph obtained after identifying v with v' in the disjoint union of G and G'.

Finally, we explicitly define the notion of end. A Freudenthal end of a non-compact space X is an element of the inverse limit $\mathcal{F}(X) = \lim_{K \to 0} \pi_0(X - K)$, where K ranges over the family of compact sets of X and π_0 stands for the set of connected components. The cardinal of $\mathcal{F}(X)$ is denoted by e(X). When X is a graph we can use a countable sequence $G_1 \subseteq G_2 \subseteq \ldots$ of finite subgraphs to obtain $\mathcal{F}(X)$ (see [1] for details).

2. Menger's theorems

DEFINITION 1. Let G be an infinite connected graph and $A \subset V(G)$. A is said to be Menger if there exists no subset $M \subset E(G)$ with k < |A| elements such that there are k+1 elements of A in finite components of G - M.

We can reformulate [3, Satz 3] in the following way.

THEOREM 2. Let G be an infinite connected graph and $v \in V(G)$. Then there are $\delta(v)$ edge-disjoint 1-paths starting at v if and only if lk(v) is Menger.

Theorem 2 is trivially equivalent to

THEOREM 3. Let G be an infinite connected graph and A a finite subset of V(G). Then there exist |A| edge-disjoint 1-paths starting at each vertex of A if and only if A is Menger.

It is not difficult, by using Zorn's Lemma, to extend Theorem 2 to graphs with $\delta(v) = \infty$. But that technique does not work if we try to extend Theorem 3 to infinite subsets of V(G). However, it is possible to adapt Halin's proof in order to achieve

THEOREM 4. Let G be an infinite connected graph and $A \subset V(G)$, with A possibly infinite. Then there exist |A| edge-disjoint 1-paths starting at each vertex of A if and only if A is Menger.

PROOF. Let $\{H_n : n \in N\}$ be a family of finite subgraphs of G satisfying:

1. $H_i \subset H_{i+1}$.

2. $\cup H_n = G$. As a consequence of Theorem 3, there exist $|A_n|$ edge-disjoint 1-paths start-

ing at each vertex of $A_n = A \cap H_n$. Let P_n be that set of 1-paths and let $P_n^i = P_n \cap H_i$.

Since H_1 is finite, in the sequence $\{P_1^1, P_2^1, P_3^1, \ldots\}$ there must be an element repeated infinitely many times; let P^1 be that element. In the same way, in the sequence $\{P_1^2, P_2^2, P_3^2, \ldots\}$ there must be an element repeated infinitely many times and such that the intersection of that element with H_1 agrees with P^1 ; let P^2 be that element. By iterating this process, we get an increasing sequence of sets of edges in G that defines |A| edge-disjoint 1-paths starting at each vertex of A. \Box

3. Eulerian graphs

We call a 1-path to a graph homeomorphic to the half-line and a 2-path to a graph homeomorphic to the line. Thus, we can say that a graph G is *i*-Eulerian (i = 1, 2) if there exists a morphism $\phi : P \to G$ inducing a bijection on the edges, where P is an *i*-path (i = 1, 2) (cf. [6]). Following [4], we give the following definitions:

DEFINITION 5. We define a tree T to be a purely infinite tree if either it is a 1-path or an infinite tree without vertex of degree 1.

In [4] it is pointed out that 1-paths and 2-paths are the only purely infinite trees T with e(T) = 1, 2. We can now give the following definition.

DEFINITION 6. An infinite connected graph G is said to be Eulerian, if there exists a morphism from a purely infinite tree T, $\phi: T \to G$ inducing a bijection on the edges.

Obviously, an Eulerian graph is connected because a morphism conserves the number of connected components.

REMARK 7. As it was said above, if a graph is 1-Eulerian or 2-Eulerian, then it is Eulerian in the sense of Definition 6. In [2] a definition of *n*-Eulerian graphs is given, namely those graphs for which there exists a morphism $\phi: W \to G$ inducing a bijection on the edges, where W represents the wedge of *n* 1-way paths. It is straightforward from that definition to check that *n*-Eulerian graphs are also Eulerian in the sense of Definition 6.

In order to characterize Eulerian graphs, we are going to give the following results:

LEMMA 8. If G is an infinite Eulerian graph and G' is either another infinite Eulerian graph or a finite graph with $\mathcal{O}(G') = \emptyset$; and $v \in V(G)$, $v' \in V(G')$. Then $G \cup_{v=v'} G'$ is Eulerian.

PROOF. The proof is a direct consequence of the definition. \Box

PROPOSITION 9. If G is an infinite connected graph with $\mathcal{O}(G) = \emptyset$ then G is Eulerian.

PROOF. Let v be a vertex in G. We denote by E_n the subgraph induced by those vertices which are, at most, at a distance n from v.

We are going to give a sequence of purely infinite trees rooted at v and morphisms $\{(T_1, \phi_1), (T_2, \phi_2), \ldots\}$ such that

1. $T_j \subseteq T_i$ for any i > j and the distance from v to $T_n - T_{n-1}$ is, at least, n.

2. ϕ_n induces a bijection on the edges of E_n .

3. $\phi_i | T_j = \phi_j$ for any i > j.

4. $\mathcal{O}(G - \phi_n(T_n)) = \emptyset$.

5. $G - \phi(T_n)$ has not finite components.

Considering $T_0 = (\{v\}, \emptyset)$, we are going to give the method to get (T_{n+1}, ϕ_{n+1}) from (T_n, ϕ_n) .

If there are no edges in $E_{n+1} - \phi_n(T_n)$, then $(T_{n+1}, \phi_{n+1}) = (T_n, \phi_n)$. Otherwise, let $\{u, w\}$ be an edge in $E_{n+1} - \phi_n(T_n)$ with $u \in E_n$. As a consequence of Theorem 3 and the characterization of finite Eulerian graphs, there exists a 2-path P in $E_{n+1} - \phi_n(T_n)$ containing $\{u, w\}$ such that $E_{n+1} - (\phi_n(T_n) \cup P)$ has no finite components. Thus, we add two 1-paths at a vertex of T_n which is mapped in u and we extend ϕ_n to the new tree so obtained. We repeat the same process with all the edges in $E_{n+1} - \phi_n(T_n)$ in order to get (T_{n+1}, ϕ_{n+1}) . \Box

By using Lemma 8 we get as a corollary of Proposition 9.

COROLLARY 10. If G is an infinite connected graph with an Eulerian subgraph G' such that $\mathcal{O}(G - G') = \emptyset$, then G is Eulerian.

Now, we are going to give a generalization of Definition 1 which will be used in the characterization of Eulerian graphs.

DEFINITION 11. Let G be an infinite connected graph and $A \subset V(G)$. A is said to be *i*-Menger if there exists no subset $M \subset E(G)$ with k < |A| elements such that there are k - i + 1 elements of A in finite components of G - M.

It is not difficult to check that if T is a purely infinite tree then $\mathcal{O}(T)$ is 2-Menger.

Now, we can set up

THEOREM 12. An infinite connected graph G is Eulerian if and only if $\mathcal{O}(G)$ is 2-Menger.

PROOF. Let G be an Eulerian graph. There exists a purely infinite tree T and a morphism $\phi: T \to G$ such that ϕ induces a bijection on the edges. If $\mathcal{O}(G)$ is not 2-Menger then there exists a set M of edges of G, with $|M| < |\mathcal{O}(G)|$, such that there are |M| - 1 vertices of $\mathcal{O}(G)$ in the union C of finite components of G - M. $\phi^{-1}(C)$ is the union of finite components of $T - \phi^{-1}(M)$. As the number of elements of $\mathcal{O}(T) \cap \phi^{-1}(C)$ is at least the number of elements of $\mathcal{O}(G) \cap C$ and $|\phi^{-1}(M)| = |M|, \mathcal{O}(T)$ is not 2-Menger, but this is not possible, thus, $\mathcal{O}(G)$ must be 2-Menger.

Conversely, let G be an infinite connected graph such that $\mathcal{O}(G)$ is 2-Menger. By using the same technique as in Theorem 4, we are going to give an Eulerian subgraph G' of G such that $\mathcal{O}(G-G') = \emptyset$, thus by Corollary 10 we will achieve our result.

As in the proof of Theorem 4, let $\{H_n : n \in N\}$ be a family of finite subgraphs of G satisfying:

1. $H_i \subset H_{i+1}$.

 $2. \cup H_n = G.$

As a consequence of Theorem 4, there exist edge-disjoint 1-paths starting at each vertex of \mathcal{O}_n and a 2-path starting at a vertex v of H_n where \mathcal{O}_n $= \mathcal{O}(G) \cap H_n$. Let P be the subgraph of G defined by union of those 1-paths and the 2-path; it is clear that $\mathcal{O}(G-P) = \emptyset$. Now, we are going to "grow" P in order to get an Eulerian subgraph G' with $P \subseteq G'$.

Let P_n be the union of the 2-path with the 1-paths starting at \mathcal{O}_n . Since $\mathcal{O}(H_n - P_n) = \emptyset$, it is possible to apply [7, Theorem 2.2] in order to get an

Eulerian graph D_n such that $P_n \subseteq D_n$. Basically, D_n is obtained by adding to P_n either cycles or 2-paths in such a way that we get a connected graph. As far as we keep adding only either Eulerian graphs – 2-paths – or cycles, it is possible to apply Lemma 8 to assure that D_n is Eulerian.

Now let $D_n^i = D_n \cap H_i$. And, as in Theorem 4, we know that in the sequence $\{D_1^1, D_2^1, D_3^1, \ldots\}$ there must be an element repeated infinitely many times; let D^1 be that element. In the same way, in the sequence $\{D_1^2, D_2^2, D_3^2, \ldots\}$ there must be an element repeated infinitely many times and such that the intersection of that element with H_1 agrees with D^1 ; let D^2 be that element. By iterating this process, we get an increasing sequence $D^1 \subseteq D^2 \subseteq \ldots$ of Eulerian subgraphs, and so $G' = \bigcup D^n$ is trivially Eulerian. Now it only remains to apply Corollary 10 to assure that G is Eulerian. \Box

References

- R. Ayala, E. Domínguez, A. Márquez and A. Quintero, Proper homotopy classification of graphs, Bull. London Math. Soc., 22 (1990), 417-421.
- [2] L. Boza, A. Diánez, A. Márquez and A. Quintero, A generalization of eulerian graphs, Preprint.
- [3] R. Halin, Über Trennende Eckenmengen in Graphen und den Mengerschen Satz, Math. Ann., 157 (1964), 34-41.
- [4] R. Halin, On the notion of infinite hamiltonian graph, Journal of Graph Theory, 7 (1983), 437-440.
- [5] F. Harary, Graph Theory, Addison Wesley (Reading, Mass., 1969).
- [6] O. Ore, Theory of Graphs, Volume 38 of Colloquium Publications (AMS, 1962).
- [7] G. Sabidussi, Infinite Euler graphs, Canadian Journal of Mathematics, XVI (1964), 821-838.

(Received May 29, 1995; revised September 25, 1995)

DEPARTAMENTO DE MATEMÁTICA APLICADA I ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA UNIVERSIDAD DE SEVILLA 41012-SEVILLA SPAIN E-MAIL: BOZA**G**OBELIX.CICA.ES

DEPARTAMENTO DE MATEMÁTICA APLICADA I ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA UNIVERSIDAD DE SEVILLA 41012-SEVILLA SPAIN E-MAIL: ANAROSA**Q**OBELIX.CICA.ES

DEPARTAMENTO DE MATEMÁTICA APLICADA I FACULTAD DE INFORMÁTICA Y ESTADÍSTICA UNIVERSIDAD DE SEVILLA 41012-SEVILLA SPAIN E-MAIL: ALMAR**Q**OBELIX.CICA.ES

DEPARTAMENTO DE ÁLGEBRA, COMPUTACIÓN, GEOMETRÍA Y TOPOLOGÍA FACULTAD DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA 41012-SEVILLA SPAIN