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A LINK BETWEEN MENGER’S THEOREM
AND INFINITE EULER GRAPHS

L. BOZA, A. DIANEZ, A. MARQUEZ and A. QUINTERO (Sevilla)

1. Introduction

An infinite graph G is usually called Eulerian if there is an Eulerian trail
in G, i.e., a one-way or two-way infinite trail which contains all the edges
of G. In both cases, it is obviously necessary that V((G) be countable and
that G be, at most, two ended (in the case of one-way trail G must be one
ended, see [6]), which means that for each finite K C G there is, at most,
two infinite components in G — K (one infinite component in the case of one
ended).

It is the purpose of this note to extend the definition of an infinite Eule-
rian graph in such a way that the above restrictions on the number of ends
are not required, but such that in the cases previously considered the “old”
notion of Eulerian graph appears as a special case.

By an infinite graph we mean a graph G such that its vertex set V(G)
is countable and the degree in every vertex is finite. In particular the edge
set E(G) is also countable. In other words, G is a locally finite countable
graph. We will use the notations and definitions of [5], except vertex instead
of point and edge instead of line. And if A is a set we represent its cardinal
by |A].

If v is a vertex in a graph G, we denote by 6(v,G) its degree in G (or
by 8(v) when no confusion is possible), and by lk(v,G) we denote the set of
incident vertices with v. The set of vertices with odd degree in & will be
denoted by O(G).

If G and G’ are two graphs, and v € V(G) and v’ € V(G’) are two ver-
tices, by G Uy=, G’ we mean the graph obtained after identifying v with v’
in the disjoint union of G and G’.

Finally, we explictly define the notion of end. A Freudenthal end of a
non-compact space X is an element of the inverse limit F(X) = l‘iinﬂ'o(X

— K), where K ranges over the family of compact sets of X and mo stands
for the set of connected components. The cardinal of (X) is denoted by
e(X). When X is a graph we can use a countable sequence G1 £ G2 & ...
of finite subgraphs to obtain F(X) (see [1] for details).
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2. Menger’s theorems

DEFINITION 1. Let G be an infinite connected graph and A C V(G).
A is said to be Menger if there exists no subset M C E(G) with k < |A]
elements such that there are £+ 1 elements of A in finite components of
G-M.

We can reformulate [3, Satz 3] in the following way.

THEOREM 2. Let G be an infinite connected graph and v € V(G). Then
there are 6(v) edge-disjoint 1-paths starting at v if and only if lk(v) is Menger.

Theorem 2 is trivially equivalent to

THEOREM 3. Let G be an infinite connected graph and A a finite subset
of V(G). Then there exist |A| edge-disjoint 1-paths starting at each vertezx of
A if and only if A is Menger.

It is not difficult, by using Zorn’s Lemma, to extend Theorem 2 to graphs
with 6(v) = oo. But that technique does not work if we try to extend The-
orem 3 to infinite subsets of V(G). However, it is possible to adapt Halin’s
proof in order to achieve

THEOREM 4. Let G be an infinite connected graph and A C V(G), with
A possibly infinite. Then there exist |A| edge-disjoint 1-paths starting at each
vertez of A if and only if A is Menger.

Proor. Let {H, :n € N} be a family of finite subgraphs of G satisfy-
ing:

1. ]12 C H,’+1.

2. UH, =G.

As a consequence of Theorem 3, there exist |A,| edge-disjoint 1-paths start-
ing at each vertex of A, = AN H,. Let P, be that set of 1-paths and let
=P, NH,.

Since H; is finite, in the sequence {P}, P}, P},...} there must be an
element repeated infinitely many times; let P! be that element. In the same
way, in the sequence {PZ, P2, PZ ...} there must be an element repeated
infinitely many times and such that the intersection of that element with H;
agrees with P!; let P? be that element. By iterating this process, we get
an increasing sequence of sets of edges in G that defines |A| edge- d1s301nt
1-paths starting at each vertex of A. O

3. Eulerian graphs

We call a 1-path to a graph homeomorphic to the half-line and a 2-path
to a graph homeomorphic to the line. Thus, we can say that a graph G is
t-Eulerian (7 = 1,2) if there exists a morphism ¢ : P — G inducing a bijection
on the edges, where P is an ¢-path (¢ = 1,2) (cf. [6]).
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Following [4], we give the following definitions:

DEeriNiTION 5. We define a tree T to be a purely infinite tree if either it
is a 1-path or an infinite tree without vertex of degree 1.

In [4] it is pointed out that 1-paths and 2-paths are the only purely infi-
nite trees T' with e(T) = 1,2. We can now give the following definition.

DEFINITION 6. An infinite connected graph G is said to be Eulerian, if
there exists a morphism from a purely infinite tree T, ¢ : T — G inducing a
bijection on the edges.

Obviously, an Eulerian graph is connected because a morphism conserves
the number of connected components.

REMARK 7. As it was said above, if a graph is 1-Eulerian or 2-Eulerian,
then it is Eulerian in the sense of Definition 6. In [2] a definition of n-
Eulerian graphs is given, namely those graphs for which there exists a mor-
phism ¢ : W — G inducing a bijection on the edges, where W represents the
wedge of n 1-way paths. It is straightforward from that definition to check
that n-Eulerian graphs are also Fulerian in the sense of Definition 6.

In order to characterize Eulerian graphs, we are going to give the follow-
ing results:

LeMMA 8. If G is an infinite Eulerian graph and G’ is either another
infinite Eulerian graph or a finite graph with O(G') = 9; and v € V(G),
v’ € V(G"). Then G Uyey G is Eulerian.

Proor. The proof is a direct consequence of the definition. [J

ProrosiTION 9. If G is an infinite connected graph with O(G) = § then
G is Fulerian,

Proor. Let v be a vertex in G. We denote by E, the subgraph induced
by those vertices which are, at most, at a distance n from v.

We are going to give a sequence of purely infinite trees rooted at v and
morphisms %(Th d1), (T2, 82),... } such that

1. T; € T; for any ¢ > j and the distance from v to T}, — T,y is, at least,
n.

2. ¢, induces a bijection on the edges of E,.

3. géilTj = qﬁj for any ¢ > .

4. O(G - ¢a(Tn)) = 0.

5. G — ¢(Ty) has not finite components.
Considering Ty = ({v},0), we are going to give the method to get (Thy1,
¢n+1) from (g:n: ¢’n) .

If there are no edges in E, iy — ¢o(Ty), then (Tns1, Gnp1) = (Tn, dn)-
Otherwise, let {u,w} be an edge in E, 1y — ¢,(T},) with v € E,. As a con-
sequence of Theorem 3 and the characterization of finite Eulerian graphs,
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there exists a 2-path P in E,1; — ¢,(T,) containing {u,w} such that F,
— (¢n(T) U P) has no finite components. Thus, we add two 1-paths at a
vertex of T,, which is mapped in u and we extend ¢, to the new tree so ob-
tained. We repeat the same process with all the edges in E,+; — ¢,(T},) in
order to get (T41,Pny1). O

By using Lemma 8 we get as a corollary of Proposition 9.

COROLLARY 10. If G is an infinite connected graph with an FEulerian
subgraph G' such that O(G — G’) = 0, then G is Eulerian.

Now, we are going to give a generalization of Definition 1 which will be
used in the characterization of Eulerian graphs.

DEFINITION 11. Let G be an infinite connected graph and 4 C V(G).
A is said to be i-Menger if there exists no subset M C F(G) with k < |A4]

elements such that there are k — i 4+ 1 elements of A in finite components of
G- M.

It is not difficult to check that if 7" is a purely infinite tree then O(T) is
2-Menger.
Now, we can set up

THEOREM 12. An infinite connected graph G is Fulerian if and only if
O(G) is 2-Menger.

ProoOF. Let G be an Eulerian graph. There exists a purely infinite tree
T and a morphism ¢ : T — G such that ¢ induces a bijection on the edges.
If O(G) is not 2-Menger then there exists a set M of edges of G, with | M|
< |O(G)]|, such that there are |M| — 1 vertices of O(G) in the union C of

finite components of G — M. ¢~1(C) is the union of finite components of
T — ¢~1(M). As the number of elements of O(T)N ¢~'(C) is at least the
number of elements of O(G)NC and | ¢~ (M)| = | M|, O(T) is not 2-Menger,
but this is not possible, thus, O(G) must be 2-Menger.

Conversely, let G' be an infinite connected graph such that O(G) is 2-
Menger. By using the same technique as in Theorem 4, we are going to give
an Eulerian subgraph G’ of G such that O(G — G”) = §, thus by Corollary 10
we will achieve our result.

As in the proof of Theorem 4, let {H, :n € N} be a family of finite
subgraphs of G satisfying:

1. H; C H,’+1.

2.UH, =G,

As a consequence of Theorem 4, there exist edge-disjoint 1-paths starting
at each vertex of O, and a 2-path starting at a vertex v of H, where O,
= O(G)N H,,. Let P be the subgraph of G defined by union of those 1-paths
and the 2-path; it is clear that O(G — P) = . Now, we are going to “grow”
P in order to get an Eulerian subgraph G’ with P C G'.

Let P, be the union of the 2-path with the 1-paths starting at O,,. Since
O(H, — P,) =0, it is possible to apply [7, Theorem 2.2] in order to get an
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Eulerian graph D,, such that P, € D,. Basically, D, is obtained by adding
to P, either cycles or 2-paths in such a way that we get a connected graph.
As far as we keep adding only either Eulerian graphs — 2-paths — or cycles,
it is possible to apply Lemma 8 to assure that D, is Eulerian.

Now let D! = D, N H;. And, as in Theorem 4, we know that in the
sequence {D}, D1, D}, ...} there must be an element repeated infinitely
many times; let D! be that element. In the same way, in the sequence
{D?,D2,D2,...} there must be an element repeated infinitely many times
and such that the intersection of that element with H; agrees with D!; let
D? be that element. By iterating this process, we get an increasing sequence
DY C D? C ... of Eulerian subgraphs, and so G’ = |J D™ is trivially Eule-
rian. Now i 1t only remains to apply Corollary 10 to assure that G is Eulerian.
0
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