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Abstract. In this paper we propose an extension of the modelling framework based on P systems
which explicitly includes modularity. Modularisation in cellular systems can be produced by chemical
specificity and spatial localisation in different compartments. Both these features can be easily specified
and analysed in P systems using sets of rewriting rules to describe chemical specificity and membranes
to represent spatial localisation. Our methodology enables the assembly of cell systems biology models
by combining modules which represents functional subsystems. A case study consisting of a bacterial
colony system is presented to illustrate our approach.

1 Introduction

Systems biology seeks to achieve, for a variety of biological systems - particularly cellular ones-, a
deeper understanding of what is currently available. Molecular (micro)biology has focused mainly
on understanding the component features of biological systems but has not attempted to obtain an
integrative view that covers all the levels of biological organisation simultaneously. Systems biology
thus attempt to cover this gap and focuses on the nature of the interactions and links that connect
cellular (sub)systems and the functional states of the networks that result from the assembly of
such links [1, 17]. Due to the complexity of these connections and to the vast amount of -often
very noisy- data produced by experimentalists, computational/mathematical modelling, simulation
and analysis are essential techniques in this field. A deeper knowledge of the organisation and
functioning of cellular processes will allow us not only to understand what is already available in
nature but, perhaps more importantly, to engineer our own cellular systems exhibiting specific target
behaviours or producing predetermined outputs. Thus better computational modelling techniques
will also have an impact on the synthetic biology [2] arena.

The macroscopic continuous and deterministic approach based on ordinary differential equations
(ODEs) is the most widely used methodology in cellular modelling within systems and synthetic
biology. Although ODEs have been successfully applied in different systems there are two key as-
sumptions in this approach, namely continuity and determinism, that are not always fulfilled. There
are many systems where the number of particles of the reacting species are low and the reactions
involved are slow. In these systems the previous assumptions are invalid and mesoscopic, discrete
and stochastic approaches are more suitable [17]. These latter approaches have been implemented
in different computational frameworks for example Petri nets [8] and process algebra [14]. Although



these computational frameworks capture some of the information regarding cellular systems and
their components, none fully integrates the dynamics and structural details of the systems in an
understandable and relevant way. One of the main points which is neglected in most computational
frameworks so far is the key role played by membranes and compartmentalisation in the structure
and functioning of living cells.

In this paper we use P systems, which unifies studies of compartment, metabolism and infor-
mation processing. A P system [13] consists of a cell-like membrane structure, with compartments
containing multisets of objects encoding molecules that evolve according to given rules, which in
turn represent biochemical interactions. Rules are applied according to an extension of Gillespie’s
well known Stochastic Simulation Algorithm (SSA) [7] to the multicompartmental structure of P
system models [10].

Biological functions are the results of the interactions between modules made up of many molec-
ular species. By definition, a module is a discrete entity which performs a specific function that is to
some extent separable from those of other modules. Modules can be isolated or connected to each
other. Isolation allows a cell to carry out many diverse processes without interactions among these
processes that would harm the cell, whereas connectivity allows higher level functions to be built
by assembling different modules. Modules quasi-separation originates from the chemical specificity
between the molecular species and/or from the spatial localisation in different compartments [9].

Chemical specificity and spatial localisation can be easily specified and analysed in P systems
using rewriting rules to describe chemical specificity and membranes to represent spatial locali-
sation. In this paper we present a computational framework based on P systems which will help
elucidate how the modularisation and pattern of connections among functional modules results in
specific behaviours such as amplification, adaption, robustness, insulation, error correction, coinci-
dence detection, and so on.

The paper is organised as follows. The next section discusses stochastic P systems in cellular
modelling. Section 3 presents a brief description of the simulation algorithm used in our approach.
Modularisation in P systems is introduced in Section 4. A bacterial colony system is studied in
section 5 to illustrate our methodology. Finally some conclusions and future work are discussed.

2 Stochastic P Systems in Cellular Modelling

Among the various executable biology methodologies [18], P systems [12] is the only one that recog-
nises explicitly the role of biological compartments while implicitly representing metabolism and
information processing through rules and (multi)sets/strings rewriting. The cell wall demarcates
the boundaries of the cell’s “self” while internal membranes represent organelles and other internal
organisation. Far from being passive frontiers between the external environment and the living cell,
the membrane is, in itself, a complex and dynamic object that actively participates in the internal
dynamics of the cell and mediates its interaction with both the environment and other cells. Mem-
brane computing formalises and abstracts these features of living cells by introducing the notion of
P systems, also called membrane systems.

P systems, in their original motivation, were not intended to provide a comprehensive and accu-
rate model of the living cell, but rather to explore the computational nature of various phenomena
in cell biology (e.g. [19]. More recently, P systems have been used as executable biology tools. Ex-
amples of such models are: oscillatory systems [6], signal transduction [10], gene regulation control
[16], quorum sensing [4, 15] and metapopulations [11].

In what follows we present the main definition used in this paper.



Definition 1 (Individual P system).

An individual P system is a construct I = (X, L,pu, My, ..., M,, Ry,,..., Ry, ) where:
e Y is a finite alphabet of symbols representing individual molecular entities;
o L = {ly,...,ln} is a finite alphabet of symbols representing labels for the compartments and
identifying compartment types’;
e 11 is a membrane structure containing n > 1 membranes defining compartments arranged in a
hierarchical manner. Each membrane is identified in a one to one manner with values in {1,...,n}
and is given a label from L which determines its type. The membrane structure is represented
formally, as a rooted tree, where the nodes are called membranes, and the relationship of a membrane
being inside another one is represented by the relationship of the node being the descendent of
another one. The outermost membrane associated with the root is normally referred to as skin
membrane. Alternatively, Venn diagram or pairs of matching square brackets representations can
be used (see Figure 1);
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Fig. 1. Three possible representations of the same membrane structure consisting of three membranes.

o M; = (l;,w;), for each 1 < i < n, is the initial configuration of membrane i with l; € L, the
label of this membrane, w; € X* a finite multiset of objects from X. A multiset of objects, obj is
represented as obj = o1 + 02+ ...+ 0, with 01,...,0, € X.

o I}, = {rllt’ . ,riflt}, for each 1 <t <'m, is a finite set of multiset rewriting rules associated with

compartments of the type represented by the label Iy € L and of the following form:

ClvZt
rlt: obji [obja )i = by [objh i (1)
where obj1, 0bja, 0bj1, objh are finite multisets of objects with alphabet X and | a label from L. Rules,
operating on both sides of the membrane, rewrite the multiset. These multisets could be concurrently
replaced with a multiset obj] and a multiset objh, respectively. Note that a constant cz? 1s associated
specifically with each rule. This stochastic constant is used to compute the propensity of the rule,
that is, the probability that the rule will be applied in the next infinitesimal time step dt.

3 Multicompartment Gillespie algorithm
Non-determinism and maximal parallelism in the original P system formulation [12] give rise to
an incorrect rate of rule application that do not represents properly the time evolution of cellular

5 Compartments with the same label will be considered of the same type and thus the same set of rules will be
associated with them.



systems. These two problems are interdependent and, as with other computational approaches [8,
14], must be addressed when devising a relevant modelling framework for cellular systems.

In the field of membrane computing, the discrete aspect of the different components, as well as
the distributed and compartmentalised character of the structure where computation takes place,
are fundamental. This is not the case with the non-deterministic and maximal parallel semantics
as have been studied in different variants [5]. In this section the original approach will be replaced
with a strategy, termed the Multicompartment Gillespie Algorithm (MGA), based on Gillespie’s
theory of stochastic kinetics [7].

To provide P systems with a stochastic extension a constant ¢, used to determined the probabil-
ity and hence time-lag before applying the rule, is associated with each rule. This constant depends
only on the properties of the molecules involved in the reaction encoded in the rule and on other
physical parameters of the system such as temperature, pressure, etc. The starting point consists of
treating each compartment, delimited by a membrane, as a well mixed and fixed volume where the
classical Gillespie algorithm is applied. Then the compartments defined by membranes are notion-
ally ordered in a priority queue according to the time lapse required until the rules are scheduled to
be applied by the Gillespie algorithm (termed the waiting time). The first rule to be applied in the
entire system occurs in the compartment on top of the priority queue. Depending on the type of
rule that has been applied, the state of a single compartment or of two compartments is changed.
Therefore the waiting time and rule to be applied in these compartments must be recalculated. The
algorithm stops when a prefixed simulation time is reached or no more rules can be applied.

The pseudocode for the Optimised Multicompartment Gillespie Algorithm (oMGA) is given in
Algorithm 1. The algorithm employs the minimal stopping condition, halting when no more rules
can be applied (line 9). In practice, additional stopping conditions, such as execution for a certain
length of time, or until a certain number of rules have been applied, are also desirable. It is trivial to
incorporate such stopping conditions into line 9 of the algorithm. In order to efficiently implement
this stopping condition, the waiting time is initially set to a large value (indicated as oo in lines 2,
9 and 11). This value needs to be greater than any realistic waiting time, and can in practice be
set to a large number such as the DBL_MAX constant in C/C++.

Two functions, ExecuteRule and GillespieDirectMethod and called within the oMGA. The
ExecuteRule function takes the index of a rule and the index of the compartment which contains
this rule and applies the rule in the specified compartment in the standard way [7]. That is, the state
vector x giving the current number of molecules for each species in the compartment is updated by
adding the state change vector v for the specified rule. The state change vector defines the changes
in molecular populations caused by one application of a given rule.

The second function, GillespieDirectMethod, performs the waiting time and rules selection
steps of the Gillespie Direct Method [7] for the specified compartment. Pseudocode for this function
is given in Procedure 2. Within this function, the rand () function returns a uniformly distributed
random variable.

Formally, the oMGA is equivalent to the MGA, but employs a more computationally efficient
strategy to determine the next rule to apply. The next rule to apply is the rule with the smallest
waiting time 7, the time to the next application. In order to determine this rule, at the end of
every iteration of the main loop the original MGA sorts the list of waiting times in ascending
numerical order. The oMGA eliminates this sorting procedure, and instead keeps track of the
smallest application time as execution progresses through the main loop (lines 14-16, 20-22, 26-28).
This procedure makes less comparisons of waiting times (a maximum of n + 2, where n is the



Algorithm 1: Optimised Multicompartment Gillespie Algorithm

begin
// preprocess
1 set simulation time ¢ < 0.0
2 set time to next rule application 79 «— oo
3 for i — 1 to number of compartments do
// perform Gillespie Direct Method for each compartment
4 (74, pti) < GillespieDirectMethod (%)
// keep smallest waiting time
5 if 7, > 0.0 and 7; < 79 then
6 | (TOvMOJO)‘—(TmMiJ)
7 end
8 end
// main loop
9 while 79 # oo do
// advance simulation time
10 t—t+ 710
// reduce time to next rule application
11 set time to next rule application 7, « oo
12 for i < 1 to number of compartments do
13 Ti «— Ty — T0
// keep smallest waiting time
14 if 7, > 0.0 and 7; < 7, then
15 | (T"7H’"7in)<_ (Tivu'hi)
16 end
17 end
// apply rule po in compartment ig
18 ExecuteRule (u0,%0)
// perform Gillespie Direct Method for compartment ig
19 (Tig» Mig) < GillespieDirectMethod (ip)
// keep smallest waiting time
20 if 7, > 0.0 and 7, < 7, then
21 | (T"7Mn7in) — (Tiovﬂ/iovio)
22 end
// update target compartment of rule
23 if rule po in compartment ip is a communication rule then
24 set ¢ to index of target compartment of rule po
// perform Gillespie Direct Method for compartment i
25 (7i, i) < GillespieDirectMethod (i)
// keep smallest waiting time
26 if 7, > 0.0 and 7; < 7, then
27 | (T"7H’"7in)<_ (Tivu'hi)
28 end
29 end
// set next rule
30 (Tovuovio)(_(Tn7M"7i")
31 end
end

number of compartments) than sorting the waiting times list (a maximum of 2n comparisons), and
so is more efficient, especially for large numbers of compartments.

4 Modularisation in P Systems Models

Modularisation in cellular systems can be produced by chemical specificity and spatial location in
different compartments. In this section we present a methodology based on P systems which allows
us to assemble cell systems biology models in a modular way. On the one hand, modularisation due
to chemical specificity will be described using sets of rewriting rules which specify the interactions



Procedure GillespieDirectMethod (j)

Input: j = compartment index
Result: (79, o) = (time to next rule application, index of next rule)

1 begin
// calculate rule propensities and total propensity
2 set total propensity ag < 0
3 for i <— 1 to number of rules in compartment j do
4 a; < ¢; - x; // calculate propensity a; of rule 1
5 ap < ap + a; // add rule propensity to total propensity
6 end
// return if no rule can be applied
T if ap = 0.0 then
8 | return (0.0,0)
9 end
// calculate time to next rule application
10 set time to next rule application 79 = %jﬂd())
// calculate index of next rule
11 set target propensity am < rand() - ag
12 for i < 1 to number of rules in compartment j do
13 am < am — a; // reduce target propensity by rule i propensity
14 if am < 0.0 then
15 | exit for loop
16 end
17 end
18 set index of next rule pp < ¢
19 return (7o, o)
20 end

between certain molecular species represented by individual objects. On the other hand, modu-
larisation due to spatial localisation will be described using membranes delimiting compartments
which can be arranged in a hierarchical tree-like structure as in definition 1, or in a lattice where
each point is associated with a P system as discussed latter in this section.

Modularisation Due to Chemical Specificity:

Molecular interactions in P systems are specified as rewriting rules. As already stated, a cellular
module resulting from chemical specificity consists of certain interactions between specific molecular
species, and performs a particular function. Therefore, the following definition of a P system module

is introduced.

Definition 2 (P system Module).

A P system module is a set of rules of the form in (1) representing molecular interactions
which occur repetitively in many cell systems. A module is identified with a name and three sets
of variables, V', C and L. V represents variables that can be instantiated using objects describing
molecular species. C' represents the stochastic constants associated with each rule. L specifies the
labels of the compartments involved in the rules. A module, M, with variables V', constants C' and
labels L will be written as M(V,C,L).

More complex modules can be constructed from simple modules by applying set unions. In this
respect, the set of rules associated with a membrane in a P system model can be specified in a
modular way as the set union of several P system modules.

In order to illustrate this definition, we introduce some P system modules describing the most
common molecular interactions. These modules will be used in the section below describing our
case study.



e Complexation module: This module describes the process by which two molecules X and Y
collide and stick together forming a complex Z inside a compartment with label . This interaction
is reversible and Z can dissociate into its components X and Y. The propensities of these rules are
computed using the stochastic constants ¢; and co.

Com({X,Y, Z} {ev,exb A = { [X+Y ) <5 (2] (2] <% [X+Y )} (2)

e FEnzymatic module: Some chemical reactions are assisted by certain proteins called enzymes
located in specific compartments [. In an enzymatic module the enzyme X binds reversibly to the
substrate Y. Once the enzyme is bound to the substrate it can produce a change in it and then the
enzyme-substrate complex dissociates releasing the unchanged enzyme X and the product W. The
propensities of the rules in this module are computed using the stochastic constants cq, co and c3.

Cc1

(X+Y] % (2] (2] > [X+Y]l}

[Z], = [X+W], 3)

Enz({X,Y,Z, W} {c1,c2,c3}, {1}) = {

When the substrate is available in such quantities that it does not affect the dynamics of the
reactions this module can be simplified by considering the enzyme X as producing a product Y:

EnzS({X,Y}A{ch{) ={[X] — [X+Y ]} (4)

e Degradation module: The cell machinery degrades molecules in order to control their activity.

Furthermore, the number of molecules is also reduced by dilution due to cell growth and division.
These processes are specified in the following module where X represents the molecular specie being
degraded, c is the stochastic constant and [ is the label of the compartment.

Deg({X} {ch, {1h) ={[X 1 — [ 1} ()

e Passive diffusion module: Certain molecules, X can readily move in and out of specific compart-
ments [. In the diffusion module, in and out are described by rewriting rules that move the object
X from the outside of compartment [ to the inside or vice versa. The stochastic constants ¢; and
¢y are used to compute the propensities of the corresponding rules.

DiffX}{evseah, ) = { X [ 1 <5 [X ]y [X] <5 X[} (6)

e Unregulated gene expression module: Some genes are expressed constitutively and independently
of transcription factors. Such a gene, G, is transcribed continuously at the same rate into its
corresponding mRNA, R, which in turn is translated into a protein P. The mRNA and protein
can be degraded by the cell machinery. The propensities of these processes are determined by the
stochastic constants ¢y, ca, c3 and c4.

(7)

UnReg({aR’P}’{61762763764}7{1})_{ (Gl <% [G+R], [Rl = [R+P]L,}

(R, = [, [P =5[]

This module can be simplified under the assumption that the mRNA reaches its steady state much
faster than the protein. In this case one can overlook the mRNA and assume that from the gene G
the protein P is produced in a single process. For simplicity this assumption is adopted in all the
following modules describing gene expression processes.

UnRegS({G, P}, {er, b, i) = { G ) <% [G+PL [P} 2 [ 11} (8)

e Positive gene expression module: Unlike the previous case, some genes are only expressed in the

presence of specific transcription factors called activators. In this case an activator protein Act
binds reversibly to the gene G to form the complex Act.GG, which turns on the production of the




protein P. As in the previous case the protein can be degraded. The propensities of these processes
are computed using the stochastic constants ci, co, c3 and c4.

[Act + G i = [Act.G ],
[ACt.G]l 22, [ACt+G]l
[Act.G]; =5 [Act.G+ P,
[Pl =5[]

Pos({Act, G, Act.G, P},{c1,c2,c3,ca}, {l}) = 9)

e Negative regulated expression: In contrast to the previous case, in negative regulation a repressor
protein Rep binds reversibly to the gene G producing the complex Rep.G which does not produce
any protein. The propensities of the binding and debinding of the repressor to the gene are computed
using the stochastic constants ¢; and cs.

Neg({Rep, G, Rep.G}, {c1,c2}, {I}) :{ [Rep+ Gl % [Rep.G i, [ Rep.G ] - [R€p+G]z} (10)

Modularisation Due to Spatial Localisation:

The localisation of molecular species in different regions of cellular systems is represented in P
systems by placing the objects describing these molecules in specific compartments defined by mem-
branes. To date, there has been no explicit geometric distribution associated with any components
of P systems. In this section, we propose the association of geometric information to population
P systems [3] through the use of a finite lattice. Using this scheme, different individual P systems
can be located at different points on the lattice. These P systems will communicate by sending and
receiving objects.

Definition 3 (Lattice Population P system).

A lattice population P system is a construct P = (X, Lat, (111, ..., Iy), Pos, (Th,...,Tp)) where:
e Y is a finite alphabet of symbols representing molecular species;
e Lat is a finite lattice in R? or R3;
o IIy,...,II, are individual P systems as introduced in definition 1 sharing the same alphabet X;
e Pos: Lat — {II,,...,II,} is a function that associates a specific P system with each position
in the lattice; ‘
o T; ={r],...,m}, for each 1 < j < p, is a finite set of translocation rules to be added to the set
of rules associated with the skin membrane of each individual P system II;. Translocation rules are
of the following form:

v d v

vl fobjly =[] =5 [ 1< [obj] (11)

where obj € X* is a multiset of objects from X, v a vector in R? or R? and cZ s the stochastic
constant used to compute the propensity of the rule. This type of rules move objects from one P
system in the lattice to another. The application of rule r] in the P system II; located in position
p, Pos(p) = II;, moves the objects obj from the skin membrane of Il; to the P system II; located

in position p + v, Pos(p +v) = II;.

5 Case Study: Quorum Sensing a Bacterial Colony System

In this section our approach is illustrated using a Quorum Sensing (QS), a bacterial colony-level
phenotype. QS is a gene regulatory system that depends on cell density. It allows a population of
bacterial cells to communicate and thus regulate the coordinated expression of specific genes [21].



QS relies on the synthesis, accumulation and sensing of small diffusible signals molecules. In
most QS systems the receptor protein A which senses the signal S is expressed constitutively from
the gene geneA. The protein A interacts with the signal S to form the complex A.S. In contrast
to A, the enzyme FE responsible for the synthesis of the signal S, is first expressed constitutively
from the gene geneFE but is then positively regulated by the complex A.S. These interactions are
represented in the following module obtained by combining the elementary modules introduced
before.

QS({geneA,geneE, A, E, S, A.S, A.S.geneE}, {c1,...,c1a},{b}) =

UnRegS({geneA, A}, {c1,c2}, {b}) = [geneAcll — [geneA+ AL,
[A — [}
) [geneE]; s, [ geneE + E |y,
UnRegS({geneE, E}, {cs,ca},{b}) —{ (Bl <5 [,
EnzS({E, 5}, {cs}, {b}) ={[El = [E+5]
Dif f({S},{es}, {b}) ={[El = [B+5),
| Pegtish fen) ) = {151 <= ()
om cs. Co _ [A+S]L&>[AS]I
Com({A, S, A.S},{cs,co}, {1}) { [AS][ BN [A+S]l
Deg({A.S}, {ewo}. {b}) = {14s) == [,
[A.S 4 geneE ], 2% [A.S.geneE |,
) [A.SgeneE];, =2 [A.S + geneE ],
Pos({A.S,geneE, A.S.geneE, E}, {c11, c12,c13,c14},{b}) = [A.S.geneE | s, [A.S.geneE + F i,
[E] =5[]

QS allows the expression of specific genes in a coordinated fashion. One common regulatory
mechanism which produces the expression of a gene at a very specific time is an incoherent feedfor-
ward loop (IFFL) [1]. In our case, this mechanism is composed of positive regulation of two genes,
geneB and geneC by A.S, and negative regulation of geneC' by B. The following module represents
our IFFL.

IFFL({A.S,geneB, geneC, A.S.geneB, A.S.geneC, B.geneB}, {cis, ... ,coa}, {b}) =

[A.S +geneB], =% [ A.S.geneB];
[A.S.geneB], 2% [A.S + geneB |,
[A.S.geneB], 2% [A.S.geneB + B,
(Bl = [

[ A.S + geneC|; 22 [ A.S.geneC |,

[ A.S.geneC']; 2% [ A.S + geneC |,

[ A.S.geneC' ], 25 [ A.S.geneC + C' |y,
[Ch =2 [

[ B+ geneC]; =% [ B.geneC |

[ B.geneC' ), 2% [ B+ geneC |,

Pos({A.S,geneB, A.S.geneB, B}, {cis, ci6, c17, c18 }, {b}) =

Pos({A.S, geneC, A.S.geneC, C}, {c19, c20, c21, c22}, {b})

Neg({B, geneC, B.geneC'}, {cas, c2a}, {b}) = {

We study how a colony of bacteria expresses geneC' in a coordinated manner by using two
individual P systems Iy, and Il. to describe bacteria and environment. The rules associated with
the bacteria are obtained by combining the two previously defined modules QS and IFFL. Only



one rule is associated with the environment describing the degradation of the signal S. These two
P systems are distributed on a rectangular lattice following the scheme showed in Figure 2 right to
obtain a lattice P system modelling a colony of 2500 bacteria. Translocation rules are associated
with the bacteria and environments to move the signals S from one P systems to another one.

Fig. 2. Modular assembly of our bacterial colony system due to chemical specificity (left) and spatial localisation
(right).

We have run simulations of this colony for a simulated time of 10 hours. The top left graph
of Figure 3 shows the mean number of molecules of species A, A.S, B and C over all bacteria.
The other three graphs in Figure 3 show the number of molecules of these species for individual
bacteria. Initially, protein A is inactive and bacteria are producing signal S at a low rate. Over
time, S accumulates and, once a threshold is reached (¢ ~ 150 min) interacts with A to produce
the active transcription factor A.S, which in turn increases the production of S. At this point, the
negative regulator B and the target protein C' start to be expressed. Eventually (f ~ 300 min),
the accumulation of B begins to repress the production of C, and ultimately (¢ ~ 450 min) stops
expression of this target protein all together. The same mechanism is used by real bacteria to
coordinate the expression of target proteins such as C.

6 Conclusions and Future Work

In this paper we have proposed a framework based on P systems which enables the design of
cell systems biology models by combining modules representing functional subsystems. We defined
modularity based on chemical specificity and spatial localisation. Based on this we have extended
the P system modelling framework by introducing rule modules and spatial lattices. We have
illustrated our approach through the modelling of a large colony of bacterial cells. In order to
simulate this system in a computationally efficient manner we introduced an optimised version of
the multicompartmental Gillespie algorithm. Results from these simulations show that bacteria
which combine a QS and IFFL modules are able to express a specific gene in coordinated way at a
specific time during their evolution. A future research line consists of the use of the modules in our
framework to design artificial cell systems linking our research to synthetic biology and in coupling
this work with the automated discovery of modules assembly as recently reported in [20].
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Fig. 3. Simulations results for a colony of 2500 bacteria.
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