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ABSTRACT. We study the isoperimetric problem for Euclidean space endowed with a contin-
uous density. In dimension one, we characterize isoperimetric regions for a unimodal density.
In higher dimensions, we prove existence results and we derive stability conditions, which
lead to the conjecture that for a radial log-convex density, balls about the origin are isoperi-
metric regions. Finally, we prove this conjecture and the uniqueness of minimizers for the

density exp(|x|2) by using symmetrization techniques.

1. INTRODUCTION

The isoperimetric problem inside a Riemannian manifold seeks regions of least perimeter
enclosing a fixed amount of volume. This problem can also be studied in the more general
setting of a manifold with density, where a given continuous positive function on the man-
ifold is used to weight the Riemannian volume and boundary area. Such a density is not
equivalent to scaling the metric conformally by a factor λ, since in that case volume and
perimeter would scale by different powers of λ.

We shall consider the particular case of Euclidean space with a density f = eψ. For any

Borel set Ω in R
n+1, the (weighted) volume or measure of Ω, and the (weighted) perimeter

relative to an open set U in R
n+1 are given by

vol(Ω) =

∫

Ω

f dv, P(Ω, U) =

∫

∂Ω∩U
f da,

where dv and da are elements of Euclidean volume and area, in general provided by Lebes-

gue measure and n-dimensional Hausdorff measure on R
n+1. Let P(Ω) = P(Ω, R

n+1).

Much of the information of the isoperimetric problem is contained in the isoperimetric

profile, which is the function I f : (0, vol(Rn+1)) → R given by

I f (V) = inf {P(Ω) : Ω is a smooth open set with vol(Ω) = V}.

An isoperimetric region –or simply a minimizer– of volume V is an open set Ω such that
vol(Ω) = V and P(Ω) = I f (V).

In the last years the study of isoperimetric problems in manifolds with density has in-
creased. One of the first and most interesting examples, with applications in probability

and statistics, is the Gaussian density exp(−π|x|2). About 1975 C. Borell [Bor1] and V. N. Su-
dakov and B. S. Tirel’son [ST] independently proved that half-spaces minimize perimeter
under a volume constraint for this density. In 1982 A. Ehrhard [Eh1] gave a new proof
of the isoperimetric property of half-spaces by adapting symmetrization techniques to the
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Gaussian context. His proof can be simplified by following the generalization of Steiner
symmetrization to product measures given by A Ros [R]. More recently, S. Bobkov and
C. Houdré [BoH] considered “unimodal densities” with finite total measure in the real line.
These authors explicitly computed the isoperimetric profile for such densities and found
some of the isoperimetric solutions. M. Gromov [Gr] studied manifolds with density as
“mm spaces” and mentioned the natural generalization of mean curvature obtained by the
first variation of weighted area. V. Bayle [Ba] proved generalizations of the Lévy-Gromov
isoperimetric inequality and other geometric comparisons depending on a lower bound on
the generalized Ricci curvature of the manifold. For recent advances on manifolds with
density we refer the reader to [M4], [Ba] and references therein.

In this paper we first prove some existence results of isoperimetric regions for densities
in Euclidean space with infinite total measure (Theorems 2.2 and 2.6) and recall regular-
ity properties of minimizers (Theorem 2.8). In Section 3 we use a variational approach to
characterize stability of balls centered at the origin for radial densities (Theorem 3.10). This

result leads us to Conjecture 3.12: for radial log-convex densities in R
n+1, balls about the origin

provide minimizers of any given volume. We will prove this conjecture in the one-dimensional

case (Corollary 4.12) and for the radial density exp(|x|2) in any dimension (Theorem 5.2).

In Section 4 we completely describe isoperimetric regions in the real line endowed with
unimodal densities (Theorems 4.3 and 4.7). We use comparison arguments that provide at
the same time existence and uniqueness of minimizers. As interesting consequences we
solve the isoperimetric problem for log-concave and log-convex densities in the real line
(Corollaries 4.8 and 4.11), improving previous results by S. Bobkov and C. Houdré [BoH].
We also treat the isoperimetric problem and the free boundary problem for the closed half-
line [0,+∞) and for compact intervals.

In Section 5 we establish, in arbitrary dimension, the isoperimetric property of round

balls about the origin for the density exp(c|x|2), c > 0 (Theorem 5.2). A remarkable differ-

ence with respect to the Gaussian measure is that the density exp(c|x|2) for c > 0 has infi-
nite total volume and hence the existence of minimizers is a non-trivial question. The proof
of Theorem 5.2 goes as follows. First, we apply our previous results in Section 2 to ensure
existence of isoperimetric regions of any given volume. Second, we use the description of
minimizers for log-convex densities on the real line (Corollary 4.12) and the symmetriza-
tion in spaces with product measures given by A. Ros [R], to construct a counterpart to

Steiner symmetrization for the density exp(c|x|2). Then we use this symmetrization in axis
directions as employed by L. Bieberbach [Bi] to produce centrally symmetric minimizers
with connected boundary. Finally we conclude by Hsiang symmetrization [H] that such
a minimizer must be a round ball about the origin. As a corollary of Theorem 5.2 we de-

duce an eigenvalues comparison theorem for the density exp(c|x|2), c > 0, generalizing the
Faber-Krahn Inequality.

Usually the uniqueness of isoperimetric regions is difficult to prove. In the case of
the Gaussian density, the complete characterization of equality cases in the isoperimet-
ric inequality is due to E. A. Carlen and C. Kerce [CK], who proved that any perimeter
minimizer for fixed volume is, up to a set of measure zero, a half-space. They obtained
this result as consequence of the discussion of equality in a more general functional in-
equality due to S. Bobkov. Previous uniqueness results in the Gaussian setting involving a
Brunn-Minkowski type inequality were given by A. Ehrhard [Eh2]. In Theorem 5.2 we also
show the uniqueness of round balls centered at the origin as minimizers for the density

exp(c|x|2), c > 0. Since round balls appear as the result of finitely many symmetrizations,
it suffices to see that if an axis symmetrization of a minimizer produces a ball, then the
minimizer is a ball. We deduce this fact by standard arguments [Ch2, Lemma III.2.3].
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An interesting consequence of our characterization of stable balls in Theorem 3.10 ob-

served by K. Brakke is that any round ball about the origin is unstable in R
n+1 endowed

with a radial, strictly log-concave density. This fact, together with the isoperimetric prop-
erty of half-spaces in the Gaussian space and our Corollary 4.9, where we proved the
isoperimetric property of half-lines for densities on the real line, might suggest that half-

spaces are isoperimetric regions for any radial, log-concave density on R
n+1. In Corol-

lary 3.13 we give an example showing that this is not true in general. We believe that this is
a motivation to study in more detail the isoperimetric problem for these kind of densities
where unexpected shapes appear.

After circulating this manuscript we heard from Franck Barthe and Michel Ledoux that

the isoperimetric property of round balls about the origin for the density exp (c|x|2), c > 0,
was previously proved by C. Borell [Bor2, Theorem 4.1]. Borell’s proof uses a Brunn-
Minkowski inequality and does not yield uniqueness of minimizers.

Acknowledgements. This work began during Morgan’s lecturers on “Geometric Mea-
sure Theory and Isoperimetric Problems” at the 2004 Summer School on Minimal Sur-
faces and Variational Problems held in the Institut de Mathématiques de Jussieu in Paris.
We would like to thank the organizers: Pascal Romon, Marc Soret, Rabah Souam, Eric
Toubiana, Frédéric Hélein, David Hoffman, Antonio Ros and Harold Rosenberg. We also
thank Franck Barthe, Christer Borell and Michel Ledoux for bringing previous results on

the isoperimetric problem for the density exp (|x|2) to our attention.

2. EXISTENCE AND REGULARITY RESULTS

In this section we firstly deal existence of isoperimetric regions in Euclidean space with
density. In general, for a Riemannian manifold with density, standard compactness argu-
ments of Geometric Measure Theory (see [Si, 27.3 and 31.2] or [M2, 5.5 and 9.1], and [M1,
4.1] or [RiR, Thm. 2.1]) can be applied in order to provide isoperimetric regions, except that
there can be loss of volume at infinity (by regularity Theorem 2.8, these are open sets with
nice boundaries). In particular, if the total measure is finite, isoperimetric regions of any
prescribed volume exist. We will prove some existence results for densities with infinite
total volume. We begin with the following lemma:

Lemma 2.1. Let f be a positive, nondecreasing function on [0,+∞) satisfying f (r) → +∞ when
r → +∞. If the function ψ = log( f ) satisfies

ψ(r) 6 C

(

n + 1

n
− ε

)r/2

for some n ∈ N, C > 0 and ε ∈ (0, 1), then the sequence

ζ(m) =
f (m)

f (m + 2)n/(n+1)

tends to infinity.

Conversely, if {ζ(m)} → +∞, then there is r0 > 0 and C > 0 such that

ψ(r) 6 C

(

n + 1

n

)r/2

, r > r0.

Proof. We prove the first part of the statement by contradiction. Suppose that {ζ(m)}m∈N

does not tend to infinity. We can assume, by passing to a subsequence if necessary, that
there is K > 0 such that

f (m) 6 K f (m + 2)n/(n+1), m ∈ N,
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and therefore

ψ(m + 2) >
n + 1

n
(ψ(m)− log(K)), m ∈ N.

On the other hand, as {ψ(m)} → +∞ and ε > 0, we can find m0 ∈ N such that

ψ(m + 2) >

(

n + 1

n
− ε

2

)

ψ(m), m > m0,

ψ(m0 + 2k) >

(

n + 1

n
− ε

2

)k

ψ(m0).

Now take r > m0 + 2 and k ∈ N such that m0 + 2k 6 r 6 m0 + 2(k + 1). By using that ψ is
nondecreasing we have

ψ(r) > ψ(m0 + 2k) >

(

n + 1

n
− ε

2

)k

ψ(m0) >

(

n + 1

n
− ε

2

)r/2−m0/2−1

ψ(m0).

Hence, for r ≫ m0 + 2 we deduce

ψ(r) > C

(

n + 1

n
− ε

)r/2

,

and we get a contradiction.

Conversely, suppose that {ζ(m)} → +∞. Then, we can find m0 > 2 such that ψ(m0) > 0
and ζ(m) > 1 for m > m0. As a consequence

ψ(m + 2) 6

(

n + 1

n

)

ψ(m), m > m0,

ψ(m0 + 2k) 6

(

n + 1

n

)k

ψ(m0).

Finally, for r > m0 there is k ∈ N such that m0 + 2(k − 1) 6 r 6 m0 + 2k. Hence

ψ(r) 6 ψ(m0 + 2k) 6

(

n + 1

n

)k

ψ(m0) 6

(

n + 1

n

)r/2

ψ(m0).

�

Now, we can prove our first existence result.

Theorem 2.2. Let f = eψ be a density on R
n+1 such that f (x) → +∞ when |x| → +∞. Suppose

that one of the following conditions holds:

(i) The sequence defined by

ζ(m) =
min { f (x) : m 6 |x| 6 m + 2}

max { f (x)n/(n+1) : m 6 |x| 6 m + 2}
tends to infinity.

(ii) The density is radial, nondecreasing in |x| and satisfies

ψ(x) 6 C

(

n + 1

n
− ε

)|x|/2

,

for some constants C > 0 and ε ∈ (0, 1).

Then, minimizers of any given volume exist for this density and they are bounded subsets of R
n+1.

Remark 2.3. The proof of the statement shows that it suffices to suppose that the ratio

min f (x)/ max f (x)n/(n+1) on lattice cubes goes to infinity.
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Proof. By Lemma 2.1 we can assume that (i) holds. Denote by v(Ω) and a(∂Ω) the Eu-

clidean volume and boundary area of a set Ω. Partition R
n+1 into lattice open cubes of

diameter equal to 1 and Euclidean volume v0. There is an isoperimetric constant α > 0
such that any set Ω inside a cube C as above with v(Ω) 6 v0/2 satisfies

a(∂Ω ∩ C) > α v(Ω)n/(n+1).

On the other hand, there is m = m(C) ∈ N such that the cube C is contained in the annulus
{m 6 |x| 6 m + 2}. Thus, the definition of weighted volume and perimeter, together with
the definition of ζ(m), implies the inequality

(2.1) P(Ω, C) > α ζ(m) vol(Ω)n/(n+1),

for any Ω ⊂ C ⊂ {m 6 |x| 6 m + 2} with v(Ω) 6 v0/2.

Fix V > 0, and consider a sequence of smooth open sets of volume V with perimeters
approaching I f (V) and bounded from above by I f (V)+ 1. By using the Compactness Theo-
rem [M3, 9.1] we may assume that this sequence converges. Fix ε > 0. By hypothesis, there

is m0 ∈ N such that ζ(m) > (1/ε)n/(n+1) for any m > m0. On the other hand, as f (x) → +∞

when |x| → +∞, we can suppose that v(Ω) 6 v0/2 whenever Ω ⊂ C ⊂ {|x| > m0}. In
particular, we can apply (2.1) to such an Ω, so that we obtain

vol(Ω) 6

(

P(Ω, C)

α ζ(m)

)(n+1)/n

6 ε α′P(Ω, C)(n+1)/n.

By summing the previous inequality over the collection Cm of all cubes C contained in
{|x| > m} we deduce that for any set Ω of the given minimizing sequence and any m > m0

vol

(

Ω ∩ (
⋃

C∈ Cm

C)

)

6 ε α′
(

∑
C∈ Cm

P(Ω, C)

)(n+1)/n

6 ε α′P(Ω)(n+1)/n 6 ε α′ (I f (V) + 1)(n+1)/n.

Hence, there is no loss of volume at infinity and the limit of our sequence is an isoperimetric
region of volume V.

To prove that any minimizer Ω is a bounded subset of R
n+1, we can proceed as in

[M2, Lemma 13.6]. Consider any large cube Cr = [−r, r]n+1 about the origin and parti-
tion almost all its complement into congruent open cubes of diameter at most 1. Denote

V(r) = vol(Ω − Cr) and P(r) = P(Ω, R
n+1 − Cr). As above, we have

(2.2) V(r) 6 ε α′P(r)(n+1)/n, r ≫ 0.

On the other hand, there is a constant H > 0 depending on ∂Ω such that small volume
adjustments may be accomplished inside Cr at a cost

|∆P| 6 H |∆V|.
Thus replacing Ω − Cr costs at most H|∆V|+ |V′(r)| (due to the slice of ∂Cr) for almost all
large r. By using that Ω is a minimizer, we get

(2.3) P(r) 6 H V(r) + |V′(r)|, for almost all r ≫ 0.

Since V(r) is nonincreasing and tends to 0 when r → +∞, combining inequalities (2.2) and
(2.3) yields for some c > 0,

c V(r)n/(n+1) 6 −V′(r), for almost all r ≫ 0.

If we suppose that Ω is unbounded, then V(r) 6= 0 and

(n + 1) (V1/(n+1))′ = V−n/(n+1) V′ 6 −c < 0,
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for almost all large r > 0, a contradiction since V is positive and nonincreasing. �

Our next existence result is an improvement of Theorem 2.2 in dimension two. We need
the following lemma:

Lemma 2.4. Let f be a planar radial density nondecreasing on [r0,+∞). Then, for any smooth,
open set Ω ⊂ R

2 contained in {|x| > r0} and such that P(Ω) < 2πr0 f (r0), we have the isoperi-
metric inequality

P(Ω)2 > 2 f (r0) vol(Ω).

Proof. First, we can assume that Ω is connected. Moreover, the hypothesis on the perime-
ter implies that Ω is bounded and the closure of Ω cannot contain a circle about the origin.

Let r1 and r2 be the minimum and maximum distance from Ω to the origin, respectively.
The intersection Ωt of Ω with the circle of radius t ∈ (r1, r2) has Euclidean length strictly
less than 2πt, and the boundary ∂Ωt has at least two points. Therefore, the coarea formula
gives us

(2.4) P(Ω) >

∫ r2

r1

f (t) card(∂Ωt) dt > 2 f (r0) (r2 − r1),

where we have used that the density is nondecreasing on [r0,+∞).

On the other hand, we consider the map F : (r1, r2)× ∂Ω → R
2 given by F(t, x) = tx/|x|.

It is clear that Ω ⊆ F(A), where A is the open set of the pairs (t, x) where t < |x| and
f (tx/|x|) < f (x). For any (t, x) ∈ A the Jacobian of F is strictly less than 1. Thus, the
definition of A, together with the coarea formula and Fubini’s theorem implies

(2.5) vol(Ω) 6 vol(F(A)) 6

∫

A
f

(

tx

|x|

)

d(t, x) 6

∫

A
f (x) d(t, x) = (r2 − r1) P(Ω).

Multiplying the estimates (2.4) and (2.5) we obtain the desired inequality. �

Remark 2.5. We do not see how to generalize the previous lemma to R
n+1. The analog of

inequality (2.5) holds, but the estimation on the Euclidean boundary area a(∂Ωt) leading
to (2.4) becomes

a(∂Ωt) > α f (t)1/n v(Ωt)
(n−1)/n > C v(Ωt),

where v(Ωt) denotes Euclidean volume. The last inequality can be integrated to deduce
P(Ω) > C vol(Ω), which is inadequate to obtain an analog of Lemma 2.4.

Theorem 2.6. Consider the plane endowed with a nondecreasing, radial density f such that f (x) →
+∞ when |x| → +∞. Then, there are minimizers for this density of any given volume.

Proof. Consider a sequence of smooth open sets of volume V > 0 with perimeters ap-
proaching I f (V). Applying the Compactness Theorem [M3, 9.1] we can assume that this

sequence converges. We can also suppose that any set Ω of this sequence satisfies P(Ω) 6
I f (V) + 1. Moreover, as the density tends to +∞, there is m0 ∈ N such that I f (V) + 1 <

2πm f (m) for any m > m0. In particular, we can apply Lemma 2.4 to the union Ω′ of all
connected components of Ω inside {|x| > m}. Hence, we get

vol(Ω′) 6
P(Ω′)2

2 f (m)
6

(I f (V) + 1)2

2 f (m)
, m > m0.

As limm→+∞ f (m) = +∞ we conclude that there is no loss of volume at infinity and the
limit of our sequence solves the isoperimetric problem for volume V. �
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Example 2.7. We illustrate here that Theorem 2.6 need not hold if we do not require the

density to be nondecreasing. Consider in R
n+1 (n > 1) the density f (x) = 1 + |x|2. Now,

introduce bumps into the graph of f such that any volume Vk corresponding to a positive
rational can be enclosed with perimeter 1/k. Then, for any given volume we may find a
sequence of sets enclosing this volume and with arbitrarily small perimeter, which implies
that isoperimetric regions do not exist.

We finish this section by recalling regularity properties of the boundary of a minimizer in
Euclidean space with density. The result is also valid for any smooth Riemannian manifold
with density.

Theorem 2.8 ([M3, 3.10]). Consider a smooth density on R
n+1. If Ω is a minimizer, then the

boundary Σ = ∂Ω is a real-analytic embedded hypersurface, up to a closed set of singularities with
Euclidean Hausdorff dimension less than or equal to n − 7.

3. VARIATIONAL FORMULAE. STABLE BALLS FOR RADIAL DENSITIES

In this section we use a variational approach to derive some properties of sets minimiz-
ing perimeter up to second order for variations preserving volume.

Let f = eψ be a smooth density on R
n+1. Denote by Ω ⊂ R

n+1 a smooth open set with
boundary Σ and inward unit normal vector N. We consider a one-parameter variation

{φt}|t|<ε : R
n+1 → R

n+1 with associated infinitesimal vector field X = dφt/dt with normal

component u = 〈X, N〉. Let Ωt = φt(Ω) and Σt = φt(Σ). The volume and perimeter func-
tions of the variation are V(t) = vol(Ωt) and P(t) = P(Ωt), respectively. The first variation
of volume and perimeter are computed in [Ba, Chapter 3]. We include here a proof for the
sake of completeness.

Lemma 3.1. The first variation of volume and perimeter of a smooth region Ω with boundary Σ in

R
n+1 endowed with smooth density f = eψ for a flow with initial normal velocity u are given by

V′(0) = −
∫

Σ

f u dv, P′(0) = −
∫

Σ

(nH − 〈∇ψ, N〉) f u da,

where H is the Euclidean mean curvature of Σ with respect to N (that is, the arithmetic mean of the
principal curvatures of Σ) and ∇ψ is the Euclidean gradient of ψ.

Proof. Denote by div X (resp. divΣ X) the divergence of X in R
n+1 (resp. relative to Σ). Let

X( f ) = 〈∇ f , X〉. We have

V′(0) =
∫

Ω

X( f ) dv +

∫

Ω

f
d

dt

∣

∣

∣

∣

t=0

(dvt)

=

∫

Ω

(〈∇ f , X〉+ f div X) dv =

∫

Ω

div( f X) dv = −
∫

Σ

f u da.

In the second equality we have used that (d/dt)|t=0 (dvt) = (div X) dv, see [Si, §16]. In the
last one, we have applied the Gauss-Green theorem. For perimeter we have

P′(0) =
∫

Σ

X( f ) da +

∫

Σ

f
d

dt

∣

∣

∣

∣

t=0

(dat)

=

∫

Σ

(〈∇ f , X〉+ f divΣ X) da =

∫

Σ

(〈∇ f , uN〉+ divΣ( f X)) da

=

∫

Σ

f u 〈∇ψ, N〉 da −
∫

Σ

nH f u da = −
∫

Σ

(nH − 〈∇ψ, N〉) f u da.
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To obtain the fourth equality we have used that the integral over Σ of the divergence of the
tangent part of f X vanishes by virtue of the divergence theorem. �

We define, as in [Ba, Chapter 3], the (generalized) mean curvature of Σ with respect to N
as the function

(3.1) Hψ = nH − 〈∇ψ, N〉 ,

so that the first variation of perimeter can be written as

P′(0) = −
∫

Σ

Hψ f u da.

We say that a given variation {φt}t preserves volume if V(t) is constant for any small t. We
say that Ω is stationary if P′(0) = 0 for any volume-preserving variation. It is clear that any
isoperimetric region is also stationary. The following characterization of stationary sets is
similar to the one established by J. L. Barbosa and M. do Carmo [BdC, Proposition 2.7] for

the case of R
n+1 with the standard density f ≡ 1. The proof is based on Lemma 3.1 and on

the fact that any function u orthogonal to f in L2(Σ) is the normal component of a vector
field associated to a volume-preserving variation of Ω, see [BdC, Lemma 2.2].

Proposition 3.2. Consider a smooth density f = eψ on R
n+1. Then, for a smooth open set Ω, the

following conditions are equivalent:

(i) Ω is stationary.
(ii) Σ = ∂Ω has (generalized) constant mean curvature H0.

(iii) There is a constant H0 such that (P − H0V)′(0) = 0 for any variation of Ω.

Example 3.3. Let f = eψ be a smooth density defined on the real line. Then, it is easy to
show that a bounded interval (a, b) is stationary if and only if ψ′(a) = −ψ′(b).

Now, we introduce some examples of hypersurfaces with constant mean curvature in

R
n+1 with a radial density.

Example 3.4. Suppose f = eψ, where ψ(x) = δ(|x|) for any x ∈ R
n+1. The mean curvature

Hψ of a hypersurface Σ with respect to a unit normal vector N is given by

Hψ(p) = nH(p)− δ′(r)
r

〈p, N(p)〉 , r = |p|,

where H is the Euclidean mean curvature of Σ with respect to N. In particular, if Σ is a
sphere of radius r > 0, then it has constant mean curvature if and only if Σ is centered at
the origin. In this case, Hψ = n/r + δ′(r) with respect to the inner normal vector.

On the other hand, if Σ is the hyperplane defined by {x ∈ R
n+1 : 〈x, u〉 = c}, where

|u| = 1, then the mean curvature of Σ with respect to N = −u is

(3.2) Hψ(p) = −c
δ′(r)

r
, r = |p|.

It follows that any hyperplane passing through the origin is a minimal hypersurface of

R
n+1 with a radial density. In general, we cannot expect that any hyperplane has constant

mean curvature for a radial density. In fact, a straightforward analysis of equation (3.2)
leads us to the following:

Lemma 3.5. Let f = eψ be a smooth radial density on R
n+1. Suppose that there is a hyperplane Σ

which does not contain the origin and has constant mean curvature Hψ. Then, there are constants
a, b ∈ R and r0 > 0, such that

ψ(x) = e a|x|2+b, whenever |x| > r0.
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Now, we compute the second variation formula of the functional P − HψV for any vari-
ation of a stationary set.

Proposition 3.6 ([Ba, Section 3.4.6]). Consider a stationary open set Ω in R
n+1 endowed with

a smooth density f = eψ. Let N be the inward unit normal vector to Σ = ∂Ω, and Hψ the con-
stant mean curvature of Σ with respect to N. Consider a variation of Ω with associated vector field
X = uN on Σ. Then, we have

(3.3) (P − Hψ V)′′(0) = Qψ(u, u) :=

∫

Σ

f (|∇Σu|2 − |σ|2u2) da +

∫

Σ

f u2 (∇2ψ) (N, N) da,

where ∇Σu is the gradient of u relative to Σ, |σ|2 is the squared sum of the principal curvatures of
Σ, and ∇2ψ is the Euclidean Hessian of ψ.

Proof. The first variation formula for volume and perimeter gives us

(P − HψV)′(t) = −
∫

Σt

(Hψ)t f ut dat + Hψ

∫

Σt

f ut dat,

where (Hψ)t is the mean curvature of Σt. Hence

(3.4) (P − HψV)′′(0) = −
∫

Σ

H′
ψ(0) f u da,

so that we have to compute the derivative of the generalized mean curvature along Σt.

Denote by DUV the Levi-Civitá connection on R
n+1. By (3.1), we get

H′
ψ(0) = nH′(0)− 〈DX∇ψ, N〉 − 〈∇ψ, DX N〉

= nH′(0)− u (∇2ψ)(N, N) + 〈∇ψ,∇Σu〉 ,

where in the last equality we have used that DX N = −∇Σu. On the other hand, it is well
known [Ro] that

(3.5) nH′(0) = ∆Σu + |σ|2u,

where ∆Σ is the Laplacian relative to Σ. Thus, we have obtained

H′
ψ(0) = ∆Σu + |σ|2u − u (∇2ψ)(N, N) + 〈∇Σψ,∇Σu〉 .

By substituting this information into (3.4) we conclude that

(P − HψV)′′(0) =−
∫

Σ

f u (∆Σu + |σ|2u) da −
∫

Σ

f u 〈∇Σψ,∇Σu〉 da

+

∫

Σ

f u2 (∇2ψ) (N, N) da.

Finally, by using integration by parts, we deduce

−
∫

Σ

f u (∆Σu + |σ|2u) da −
∫

Σ

f u 〈∇Σψ,∇Σu〉 da =

∫

Σ

f (|∇Σu|2 − |σ|2u2) da,

and the result follows. �

Remark 3.7. In a smooth Riemannian manifold with density the second variation has an
additional term depending on the Ricci curvature of the manifold in the normal direction
N. This term comes from (3.5) and it is given by

−
∫

Σ

Ric(N, N) f u2 da.
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The expression (3.3) defines a quadratic form on C∞
0 (Σ) called the index form associated

to Σ. We say that a smooth open set Ω is stable if it is stationary and P′′(0) > 0 for any
volume-preserving variation of Ω. Stability can be characterized in terms of the index form
as in [BdC, Proposition 2.10]. More precisely, we have the following:

Lemma 3.8. Let Ω be a smooth open set in R
n+1 endowed with a smooth density f = eψ. Then, Ω

is stable if and only if it is stationary and the index form (3.3) of Σ = ∂Ω satisfies

Qψ(u, u) > 0 for any u ∈ C∞
0 (Σ) such that

∫

Σ

f u da = 0.

Observe that the term in the index form containing ∇2ψ indicates that the notion of sta-
bility is more restrictive when the density f = eψ is log-concave. In fact, by inserting in
(3.3) locally constant nowhere vanishing functions we easily deduce

Corollary 3.9. If Ω is a smooth stable region in R
n+1 with a smooth, log-concave density, then

the hypersurface Σ = ∂Ω is connected or totally geodesic. Moreover, if the density is strictly log-
concave, then Σ is connected.

Our main result in this section characterizes the stability of round balls about the origin
for radial densities.

Theorem 3.10. Consider a smooth density f = eψ on R
n+1 such that ψ(x) = δ(|x|). Then, the

round ball B about the origin of radius r > 0 is stable if and only if δ′′(r) > 0.

Proof. We use Lemma 3.8. Denote by Σ the boundary of B, and by N the inward unit normal
vector to Σ. Clearly the density is constant on Σ, so that a function u ∈ C∞(Σ) is orthogonal

to f in L2(Σ) if and only if it has mean zero on Σ. Moreover, (∇2ψ)(N, N) = δ′′(r) on Σ. As
consequence, the index form (3.3) is given by

Qψ(u, u) = f (r)

∫

Σ

(|∇Σu|2 − |σ|2u2) da + f (r) δ′′(r)
∫

Σ

u2 da.

Since Euclidean balls are stable regions in R
n+1 with the standard density f ≡ 1, the

first integral is nonnegative and vanishes for translations. Consequently, if δ′′(r) > 0, then
Qψ > 0 and B is stable. Conversely, if B is stable under infinitesimal translations, then
δ′′(r) > 0. �

As an immediate consequence of Theorem 3.10 we obtain

Corollary 3.11. In Euclidean space endowed with a smooth, radial, log-convex density, round balls
centered at the origin are stable regions.

The preceding corollary leads to the following conjecture inspired by Ken Brakke at
Jussieu:

Conjecture 3.12. In R
n+1 with a smooth, radial, log-convex density, balls about the origin provide

isoperimetric regions of any given volume.

In Sections 4 and 5 we will prove some special cases of this conjecture. Another interest-

ing consequence of Theorem 3.10 is the fact that for a strictly log-concave density on R
n+1,

round balls about the origin are unstable. This allows us to prove the following:

Corollary 3.13. There are smooth, radial, log-concave densities with finite volume in R
2 for which

isoperimetric regions are neither half-planes nor round balls.
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Proof. Consider the density f = eψ, with ψ(x) = −
√

|x|2 + 1. The total volume of this
density is finite and hence minimizers of any given volume exist, as was indicated at the
beginning of Section 2. The Hessian of ψ at any (x, y) ∈ R

2 is given by

(∇2ψ)(x,y)(a, b) =
−(bx − ay)2 − a2 − b2

(1 + x2 + y2)3/2
,

and hence f is strictly log-concave. It follows by Example 3.4 and Theorem 3.10 that any
round disk is unstable for this density. On the other hand, by taking into account Ex-
ample 3.4 and Lemma 3.5, we deduce that only planes passing through the origin have
constant mean curvature Hψ. As consequence, a minimizer with measure different from

the half volume of R
2 cannot be a disk nor a half-plane. �

4. ISOPERIMETRY IN THE REAL LINE WITH DENSITY

In this section we study the isoperimetric problem in the real line with a unimodal density:
a density which is increasing (or decreasing) on (−∞, x0) and decreasing (or increasing) on
(x0,+∞), for some x0 ∈ (−∞,+∞]. S. Bobkov and C. Houdré [BoH, Section 13] previ-
ously considered this setting under the further assumption of finite total measure. They
computed the isoperimetric profile and gave some examples of isoperimetric regions. We
provide here a simple, more general approach, which leads us to the complete description
of minimizers.

We begin by solving the isoperimetric problem for monotonic densities. We recall that,
for a function f , an end E = ±∞ has finite measure if f is integrable in a neighborhood of E.

Proposition 4.1. Let f be a monotonic density on R and denote by E the end where f attains its
infimum. If E has finite measure, then for any given volume, a half-line containing E is the unique
isoperimetric region. If E has infinite measure, then the isoperimetric profile coincides with 2 f (E),
and it is approached or attained by a bounded interval going off to E.

Proof. If E has finite measure, then any candidate other than the half-line of the same mea-
sure has at least two boundary points and hence greater perimeter since at least one of them
is beyond the half-line. If E has infinite measure, then any open set enclosing a given vol-
ume has at least two boundary points, so that the infimum perimeter is 2 f (E), approached
or attained as asserted. �

Example 4.2. For the density f (x) = ex the end E = −∞ has finite measure. Then the
half-lines (−∞, x) are the unique minimizers for fixed volume and the isoperimetric profile
is given by I f (V) = V, for any V > 0. For the density f ≡ 1 the profile is constant and

isoperimetric regions are bounded intervals. Finally, the density f (x) = ex + 1 is one for
which the profile is constant while minimizers do not exist.

We say that a function f is increasing-decreasing if there is x0 ∈ R such that f is increasing
on (−∞, x0) and decreasing on (x0,+∞), not necessarily strictly.

Theorem 4.3. Let f be an increasing-decreasing density on R. Then, if a minimizer for given vol-
ume exists, it is a half-line, a bounded interval where f attains its maximum or equals its one-sided
minimum, or the complement of one of these intervals. If it does not exist, the infimum perimeter is
approached by a bounded interval going off to ±∞.

Proof. Consider a smooth open set of the prescribed volume. If the closure contains a point
x0 where f attains its maximum, then we can replace the given set with an interval contain-
ing x0. Otherwise, we can assume by Proposition 4.1 that the set consists of one interval
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on one side, or an interval on each side of the maxima of f . Among intervals containing
x0 there is one of least perimeter. Among intervals on one side, the infimum perimeter is
2 min{ f (−∞), f (+∞)} or the unique minimizer is a half-line. The theorem follows. �

In the following examples we illustrate that the different possibilities in Theorem 4.3
may occur.

Example 4.4. Consider the density f (x) = e−|x|, which has finite total measure (see Fi-
gure 1). A straightforward computation shows that the isoperimetric candidates of volume
V = 1 (half-lines, bounded intervals containing the origin, and complements) have the
same perimeter. This illustrates that there is no uniqueness of minimizers for V = 1 since
the different possibilities appear. Moreover, though the density is symmetric with respect
to the origin, the bounded minimizers need not be symmetric.

0

0.2

0.4

0.6

0.8

1

–6 –4 –2 2 4 6

x

FIGURE 1. For density e−|x| all types of minimizers occur.

Example 4.5. Consider the density given by f (x) = e−|x| for x 6 log(6) and f (x) = 1/6 for
x > log(6). The left end has finite measure while the right one has infinite measure (see Fig-
ure 2). Thus, only half-lines containing −∞ and bounded intervals are possible minimizers
for a fixed measure. For volume V = 1/3, it can be shown that the isoperimetric regions are
the corresponding half-line containing −∞ and any bounded interval inside the half-line
[1/6,+∞). For a volume V > 1/3 only bounded intervals contained in [1/6,+∞) provide
minimizers. This illustrates that bounded minimizers need not contain a point where the
maximum of the density is achieved.

Example 4.6. Consider the density given by

f (x) =

{

e−|x| x 6 log(6),
1
9 + 1

x−log(6)+18 x > log(6),

which is depicted in Figure 3. As in the previous example, the ends −∞ and +∞ have
finite and infinite measure, respectively. It is not difficult to prove that for small volumes,
half-lines containing −∞ are minimizers. However, for V = 1/3, we can consider a se-
quence of bounded intervals of volume V converging to +∞ and whose perimeter tends
to 2/9. A direct computation shows that the half-line of volume V containing −∞ and any
bounded interval of volume V have strictly greater perimeter. As consequence, there are
no isoperimetric regions of volume 1/3 for this density.
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FIGURE 2. A density for which minimizers are half-lines and bounded intervals.
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FIGURE 3. A density for which minimizers do not always exist.

We say that a density f is decreasing-increasing if (− f ) is increasing-decreasing. For these
densities we have the following:

Theorem 4.7. Let f be a decreasing-increasing density on R. Then, isoperimetric regions exist for
any given volume and they are bounded intervals in whose closure f attains its minimum.

Proof. Take an open set Ω with finite volume and a point x0 where f attains its minimum.
It is easy to check that the bounded interval containing x0 and with the same volume as Ω

at both sides of x0 has less perimeter than Ω. Finally, among intervals with fixed volume
containing x0 in its closure there is one of least perimeter. �

Now, we give some applications and improvements of the previous results for the partic-
ular cases of log-concave and log-convex densities. We begin with the following corollary,
which is a direct consequence of Proposition 4.1, Theorem 4.3, and elementary properties
of concave functions.

Corollary 4.8. Let f be a log-concave density on R. Then we have
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(i) If the total measure is finite, then minimizers of any volume exist and they can be half-lines,
unions of two disjoint half-lines, or bounded intervals where the maximum of the density is
attained.

(ii) If both ends have infinite measure, then the density is constant and bounded intervals pro-
vide minimizers of any given volume.

(iii) If the density has infinite volume but one end has finite measure, then half-lines containing
this end are the unique isoperimetric regions for fixed volume.

Example 4.4 shows that all the different possibilities in Corollary 4.8 (i) can appear.
C Borell ([Bor3, Corollary 2.2], see also [BoH, Corollary 13.8]) proved that half-lines are
always minimizers for a log-concave density with finite total measure. In the next corol-
lary we give a different proof of this fact showing also uniqueness of minimizers for strictly
log-concave densities.

Corollary 4.9. Let f = eψ be a log-concave density on R with finite total measure. Then, half-
lines are always isoperimetric regions of any given volume. Moreover, if the density is strictly
log-concave, then half-lines are the unique minimizers.

Proof. We have to compare the perimeter of the candidates provided by Corollary 4.8 (i).
By taking complements we see that it is enough to compare the perimeter of bounded in-
tervals and half-lines of the same measure. Fix an amount V of volume. Let xV be the real
number such that vol((xV ,+∞)) = V. For any x ∈ (−∞, xV), let y(x) > x be the unique
value satisfying vol((x, y(x))) = V. The perimeter of all bounded intervals enclosing vol-
ume V is given by the function P(x) = f (x) + f (y(x)). Clearly, P(−∞) and P(xV) represent
the perimeter of the two half-lines of volume V. As y(x) is increasing and the density is
log-concave, we deduce that P(x) is an absolutely continuous function with left and right
derivatives at every point. In particular, the right derivative P′

r is given by

P′
r(x) = f (x) {ψ′

r(x) + ψ′
r(y(x))}, x ∈ (−∞, xV).

On the other hand, as ψ is concave, we get that ψ′
r is non-increasing and hence P′

r(x)/ f (x) is
also non-increasing. Thus, P(x) is monotonic or increasing–decreasing on (−∞, xV). Any-
way the infimum of P(x) is achieved in a half-line of volume V. Moreover, if f is strictly
log-concave, then the infimum of P(x) is not attained on (−∞, xV), so that the half-lines are
the unique minimizers. �

Remark 4.10. Two relevant examples in probability and statistics where Corollary 4.9 is

applied are the standard Gaussian density f (x) = e−πx2
and the logistic density f (x) =

e−x (1 + e−x)−2. As indicated in [Bo], for these densities it is also interesting to describe
minimizers under a volume constraint of the functionals vol(Ω + [−h, h]) for any h > 0. In
[BoH, Remark 13.9] it is pointed out that half-lines are solutions to this problem. In higher

dimension, we can consider the same problem with the cube [−h, h]n+1. It was shown in

[Bo, Theorem 1.1] that half-spaces are minimizers for any product measure µn+1 in R
n+1

provided µ is log-concave with finite total volume (see also [BoH, Corollary 15.3] for the
particular case of the logistic density).

Now we state a result similar to Corollary 4.8 where we completely describe isoperime-
tric regions for log-convex densities.

Corollary 4.11. Let f = eψ be a log-convex density on R. Then we have

(i) If both ends have infinite measure and f (−∞) = f (+∞) = +∞, then isoperimetric regions
of any volume exist and they are bounded intervals in whose closure the density attains its
minimum. Moreover, if f is strictly log-convex, then we have uniqueness of minimizers for
given volume.
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(ii) If both ends have infinite measure but there is one end E with f (E) < +∞, then the isoperi-
metric profile is constant and it is approached or attained by a bounded interval going off
to E.

(iii) If one end has finite measure, then the half-lines containing this end are the unique mini-
mizers for given volume.

Proof. The claim follows by using Proposition 4.1 and Theorem 4.7. The uniqueness in
statement (i) follows from the argument in the proof of Corollary 4.9 since strict convexity
of the density implies that the perimeter of bounded intervals with fixed volume achieves
its minimum only at one point. �

As a direct consequence of the previous corollary and Example 3.3 we deduce the follo-
wing result, which solves Conjecture 3.12 in dimension one.

Corollary 4.12. Let f be a smooth, symmetric, strictly log-convex density on R. Then, for a given
volume, the symmetric interval of this volume is the unique minimizer.

The comparison arguments in this section allow to study the isoperimetric problem in
[0,+∞) or in a bounded interval [a, b] with unimodal densities. In these settings we can
prove similar results to Proposition 4.1, Theorem 4.3 and Theorem 4.7. The proofs are left
to the reader.

Theorem 4.13. Let f be a unimodal density on [0,+∞). Then we have

(i) If f is increasing, then the unique minimizers are the intervals (0, x). If f is decreasing and
E = +∞ has finite measure, then the half-lines containing E are the unique minimizers. If
f is decreasing and E has infinite measure, then the isoperimetric profile equals 2 f (E) and
it is approached or attained by a bounded interval going off to +∞.

(ii) If f is increasing-decreasing and a minimizer of given volume exists, then it must coincide
with an interval (0, x), a half-line containing +∞, a bounded interval where f attains its
maximum or equals it one-sided minimum, or the complement of one of these intervals. If it
does not exist, the infimum perimeter is approached by a bounded interval going off to +∞.

(iii) If f is decreasing-increasing, then minimizers of any measure exist and they are bounded
intervals in whose closure f attains its minimum.

Now we shall state the corresponding result for the isoperimetric problem inside a
bounded interval [a, b]. Observe that in this case the existence of minimizers is ensured
by compactness.

Theorem 4.14. Let f be a unimodal density on a bounded interval [a, b]. Then we have

(i) If f is monotonic, then any isoperimetric region is an interval whose closure contains the
boundary point of [a, b] where f attains its minimum.

(ii) If f is increasing-decreasing, then a minimizer must coincide with an interval whose closure
contains a boundary point, an interval where f attains its maximum or equals its one-sided
minimum, or the complement of one of these intervals.

(iii) If f is decreasing-increasing, then any minimizer is an open interval in whose closure f
attains its minimum.

The techniques in this section can also be applied to study the free boundary problem in
[0,+∞) or [a, b] which consists of finding global minimizers under a volume constraint of
the perimeter relative to (0,+∞) or (a, b), respectively. This means that the boundary points
of these intervals do not contribute to perimeter. For the case of [0,+∞) we have:

Theorem 4.15. Let f be a unimodal density on [0,+∞). Then we have
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(i) If f is increasing, then the unique minimizers for the free boundary problem in [0,+∞) are
intervals of the form (0, x). If f is decreasing and E = +∞ has finite measure, then mini-
mizers exist and they are half-lines containing E. If E has infinite measure and a minimizer
exists, then it must coincide with an interval (0, x) or a bounded interval where f equals its
minimum. If a minimizer does not exist the infimum perimeter equals 2 f (E).

(ii) If f is increasing-decreasing and a minimizer of given volume exists, then it is an inter-
val (0, x), a half-line containing +∞, a bounded interval where f attains its maximum or
equals its right-side minimum, or the complement of one of these intervals. If it does not
exist, then the infimum perimeter is approached by a bounded interval going off to +∞.

(iii) If f is decreasing-increasing then minimizers of any given volume are provided by intervals
(0, x) or bounded intervals in whose closure f attains its minimum.

For the free boundary problem in [a, b], existence of minimizers is assured by compact-
ness. As to the description of isoperimetric regions, we can prove the following:

Theorem 4.16. Let f be a unimodal density on [a, b]. Then

(i) If f is monotonic then the unique minimizers for the free boundary problem are intervals
whose closure contains a boundary point.

(ii) If f is increasing-decreasing, then isoperimetric regions are provided by intervals where f
attains its maximum, or whose closure contains a boundary point of [a, b], or complements
of these intervals.

(iii) If f is decreasing-increasing, then minimizers are intervals whose closure contains a bound-
ary point of [a, b] or a value where the minimum of f is attained, or complements of these
intervals.

5. ISOPERIMETRIC INEQUALITY FOR THE DENSITY exp(|x|2)

In this last section of the paper we solve the isoperimetric problem in R
n+1 with the

radial log-convex density f (x) = exp(c|x|2), where c is a positive constant. Precisely, we
will prove that Conjecture 3.12 holds for this density: round balls about the origin provide
isoperimetric regions of any given volume, like Euclidean space (c = 0) and unlike Gauss
space (c < 0). As we pointed out in the Introduction, the proof combines Steiner sym-
metrization in axis directions as was employed by L. Bieberbach [Bi] together with Hsiang
symmetrization [H]. We will also show uniqueness by a detailed analysis of the situation
where an axis symmetrization of a minimizer produces a round ball.

The use of Steiner symmetrization in our setting is natural since the ambient density
can be seen as a rotationally invariant product measure. Let us recall some facts about this

construction; see [R, Section 3.2] for details. Let Ω be a compact set in R
n+1. Consider a

hyperplane π in R
n+1 containing the origin. The restriction of the ambient density to any

straight line orthogonal to π provides a smooth, symmetric, strictly log-convex density. We
define the symmetrization of Ω with respect to π as the set Ω∗ whose intersection with any
straight line R orthogonal to π is the isoperimetric region in R of the same weighted length
as Ω ∩ R. By Corollary 4.12 this will be an interval centered at π ∩ R. It is clear that Ω∗

is symmetric with respect to π. The main property of this construction is that it preserves
volume (by Fubini’s theorem) while decreasing perimeter.

Lemma 5.1 ([R, Proposition 8]). For any hyperplane π through the origin in R
n+1, the Steiner

symmetrization Ω∗ of a compact set Ω satisfies vol(Ω∗) = vol(Ω) and P(Ω∗) 6 P(Ω).

Now, we will proceed to prove our main result in this section.
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Theorem 5.2. In R
n+1 with the density f (x) = exp(c|x|2), c > 0, round balls about the origin

uniquely minimize perimeter for given volume.

Proof. First observe that bounded minimizers of any given volume exist for this density by
Theorem 2.2. Let us prove that round balls centered at the origin are isoperimetric regions.

Take a minimizer Ω of volume V > 0. We apply Steiner symmetrization to Ω with respect

to any coordinate hyperplane in R
n+1 so that we produce a minimizer Ω∗ which is sym-

metric with respect to any of these hyperplanes and has connected boundary. In particular,
Ω∗ is centrally symmetric. Thus any hyperplane π through the origin divides Ω∗ in two
sets Ω∗

i contained in the corresponding open half-spaces πi and with the same volume.
Note that the reflection with respect to π preserves the perimeter relative to any πi since
the density is radial. It follows that P(Ω1, π1) = P(Ω2, π2); otherwise, we would obtain by
reflection a set with the same volume as Ω∗ and strictly less perimeter. Therefore each Ω∗

i
together with its reflection is a new minimizer of volume V. By the regularity properties in
Theorem 2.8 and unique continuation for (real-analytic) generalized constant mean curva-
ture surfaces, ∂Ω∗ is symmetric across any hyperplane π through the origin. We conclude
that Ω∗ coincides with a ball centered at the origin.

To prove uniqueness, by induction it suffices to show that if symmetrization of a mini-
mizer Ω with respect to a coordinate hyperplane π produces a ball B, then Ω is a ball. We
can suppose that π = {xn+1 = 0}. Let D ⊂ π be the projection of Ω. By Theorem 2.8 and
Sard’s theorem, for almost all p ∈ D straight lines near p orthogonal to π intersect Σ = ∂Ω

transversally at a fixed even number of points pi, where Σ is the graph over Dp ⊂ D of a
smooth function hi (if we did not know that Ω is bounded, we would allow pi to be ±∞).
Denote by A ⊆ D the set of such points p. By the definition of Steiner symmetrization

∑
i odd

∫ hi+1

hi

f (x) dx = 2

∫ h∗

0
f (x) dx on Dp,

where h∗ is the height function of ∂B with respect to π. As a consequence

∑
i odd

( f (hi+1)∇hi+1 − f (hi)∇hi) = 2 f (h∗)∇h∗ on Dp,

so that we get

∑
j

f (hj) |∇hj| > 2 f (h∗) |∇h∗| on Dp.

On the other hand, by Corollary 4.12 we have

∑
j

f (hj) > 2 f (h∗) on Dp,

and equality holds if and only if the corresponding slice of Ω is an interval centered at π.

Now we apply Lemma 5.3 below with αj = f (hj(p)), aj = |∇hj(p)|, α = f (h∗(p)) and
a = |∇h∗(p)|. We get

(5.1) ∑
j

f (hj(p))
√

1 + |∇hj(p)|2 > 2 f (h∗(p))
√

1 + |∇h∗(p)|2, p ∈ A,

with equality if and only if |∇hj(p)| = |∇h∗(p)| for any j, and the slice of Ω passing through
p is an interval centered at π.
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Finally we use the coarea formula and inequality (5.1) to obtain

P(Ω) =

∫

Σ

f da >

∫

A

(

∑
j

f (hj(p))
√

1 + |∇hj(p)|2
)

da

>

∫

A
2 f (h∗(p))

√

1 + |∇h∗(p)|2 da = P(B),

where in the last equality we have used that D − A does not contribute to the perimeter of
B. As Ω is a minimizer we have equality above and hence in (5.1) too. It follows that for
every p ∈ A the slice of Ω passing through p is a symmetric interval of the same length as
the corresponding slice for B. Thus, up to a set of measure zero, Ω coincides with a round
ball about the origin. �

Lemma 5.3. Suppose that we have finitely many nonnegative real numbers with ∑j αj aj > 2α a

and ∑j αj > 2 α. Then the following inequality holds

∑
j

αj

√

1 + a2
j > 2α

√

1 + a2,

with equality if and only if aj = a for every j and ∑j αj = 2α.

Proof. The function g(x) =
√

1 + x2 is strictly convex with 0 < g′(x) < 1 for any x > 0. Let
α0 = ∑j αj. We claim that

∑
j

αj

α0
g(aj) > g

(

∑
j

αj

α0
aj

)

> g
(2α

α0
a
)

>
2α

α0
g(a).

The first inequality holds because g is convex. The second and third inequalities come
from the fact that 0 < g′(x) < 1 for x > 0. If equality holds in the second inequality, then

∑j αj aj = 2α a. If equality holds in the third inequality too, then 2α = α0 = ∑j αj. If equality

holds in the first inequality as well, then aj = a for every j. �

We finish the paper with an eigenvalues comparison theorem obtained as a consequence

of the isoperimetric inequality in Theorem 5.2. For a smooth bounded domain Ω in R
n+1,

we consider the second order differential operator L on C∞
0 (Ω) whose invariant measure

has density f (x) = exp(c|x|2) (c > 0), namely

(5.2) (Lu)(x) = (∆u)(x) − 2c 〈x, (∇u)(x)〉 , u ∈ C∞
0 (Ω), x ∈ Ω,

where ∆ denotes the Euclidean Laplace operator on Ω.

Corollary 5.4. Let Ω be a smooth bounded domain in R
n+1. Then, the lowest non-zero eigenvalue

λ1(Ω) for the second order differential operator (5.2) with Dirichlet boundary condition on ∂Ω

satisfies

λ1(Ω) > λ1(B),

where B is the round ball centered at the origin with the same volume as Ω for the density f (x) =
exp(c|x|2), c > 0. Moreover, equality holds if and only if Ω = B.

Proof. The comparison is an adaptation of the symmetrization technique used to prove the

Faber-Krahn Inequality in R
n+1 (see [Ch1, p. 87]), which corresponds to the desired in-

equality for the case c = 0. �
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