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In this work we describe the isoperimetric regions in complete symmetric annuli of revolution with 
Gauss curvature non-decreasing from the shortest parallel. This description allows us to complete 
the classification of isoperimetric regions in quadrics of revolution.

1. Introduction

It is well known that least-perimeter sets of given area in the plane, in hyperbolic
planes and in round spheres are geodesic discs [3]. However, even in very simple
surfaces, this isoperimetric problem has remained open. In 1996, Benjamini and
Cao [2] proved that the least-perimeter way to enclose a given area in a paraboloid
of revolution is by means of a circle of revolution. This result was recovered by
different methods by Pansu [9], Topping [12], Morgan et al . [8] and Ritoré [10].

In these works, the isoperimetric regions were classified for some new types of sur-
faces. Benjamini and Cao [2] solved the problem for complete planes of revolution
with non-increasing curvature from the origin which are convex at infinity. Morgan
et al . [8, § 4.3] removed this convexity assumption, and characterized the isoperi-
metric regions in real projective planes of revolution with non-increasing Gauss
curvature from the origin. In [10], amongst other results, the isoperimetric problem
was solved for spheres of revolution with an equatorial symmetry and Gauss cur-
vature either non-increasing or non-decreasing from the equator to the poles. An
approach to the classification of isoperimetric regions in tori of revolution has been
given by Cañete [4], who has classified the stable regions in such surfaces.

Even in this simple class of examples, the geometry of the perimeter-minimizing
regions of given area can be quite complex. In some planes [8] and spheres [10] of
revolution, these regions can be either discs or annuli, and in annuli of revolution
with decreasing curvature from one end of finite area the isoperimetric regions
are bounded by a single circle of revolution [8, 10]. On the other hand, in tori of
revolution, the boundary of a stable region can be composed of curves of constant
geodesic curvature which are not circles of revolution [4]. Moreover, in non-compact
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surfaces, isoperimetric regions may not exist. In general, a minimizing sequence of
sets of a given area whose perimeters converge to the infimum of perimeters for this
area may have a convergent part of smaller area and a diverging part of positive
area, so that in the limit we obtain an isoperimetric region of smaller area, and
possibly some minimizing object at infinity.

This paper is devoted to the classification of isoperimetric regions in a com-
plete annulus of revolution with an equatorial symmetry and Gauss curvature
which is non-decreasing from this equator. Examples of such annuli are minimal
catenoids and one-sheeted hyperboloids. We shall use techniques from the calculus
of variations to treat this problem by classifying the embedded curves with con-
stant geodesic curvature which can be part of the boundary of an isoperimetric
region. Our results allow us to complete the classification of isoperimetric regions
in quadrics of revolution. In the resolution of this problem we shall find all the
difficulties mentioned before: non-existence of isoperimetric regions, the break of a
minimizing sequence into two parts and the existence of isoperimetric regions of
several different types. We prove in our main result, theorem 3.9, that in a com-
plete symmetric annulus of revolution with non-decreasing Gauss curvature from
the shortest parallel, the isoperimetric regions may be

(i) a ‘disc at infinity’,

(ii) a symmetric annulus,

(iii) an asymmetric annulus, or

(iv) an annulus bounded by an unduloid-type curve and a circle of revolution.

All possibilities occur in different annuli, as shown in example 3.8, where we exhibit
isoperimetric regions of the last type, and in § 4.

We have organized the remainder of the paper into three sections. In § 2 we
establish notation and give preliminary results. In § 3, we shall prove our main
results, mainly that a minimizing sequence cannot be broken into two pieces, and
that there exist isoperimetric regions in these annuli which are not of revolution.
Finally, in § 4, we apply the previous results to the classification of isoperimetric
regions in the one-sheeted hyperboloid. This allows us to conclude, in corollary 4.4,
the classification for quadrics of revolution (invariant by a one-parameter group of
rotations around a line).

2. Preliminaries

2.1. Annuli of revolution with non-decreasing curvature

We shall denote by M the product S1 × R endowed with a complete warped metric

ds2 := f(t)2 dθ2 + dt2,

for t ∈ R, θ ∈ S
1 and f : R → R a smooth positive function. The Gauss curvature

depends only on the t-coordinate, and is given by

K(t) := −f ′′(t)
f(t)

. (2.1)
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Moreover, the length and the geodesic curvature of the parallels S
1×{t}, are given by

L(t) := 2πf(t), h(t) :=
f ′(t)
f(t)

. (2.2)

We shall suppose that the annulus M is symmetric with respect to the parallel
S

1 × {0}, which is equivalent to the symmetry f(t) = f(−t), and that the Gauss
curvature K is a non-decreasing function of the distance t from S

1 × {0}. We note
that the monotonicity of K(t) is equivalent to that of the function

(4π2)((f ′)2 − ff ′′)(t) = L2(K + h2)(t).

From the monotonicity of K, since there are no complete ends with positive curva-
ture, it follows that K � 0. Moreover, if K vanishes at some point t0, then K ≡ 0
in [t0,+∞), and so our annulus is flat near infinity. Since K is non-decreasing and
non-positive, we shall define

K∞ := lim
t→∞

K(t) � 0.

As K � 0, it follows that f ′′ � 0, and so f ′ is non-decreasing. Since f ′(0) = 0 by
the symmetry of f , we deduce that f ′ � 0 for t � 0 (and non-positive for t � 0).
Then f is non-decreasing for t � 0 and, consequently, M is complete and S

1×{0} is
a shortest parallel of M . We will refer to it as the shortest geodesic loop (although
it is not necessarily unique).

Given some Ω ⊂ M , we shall denote the Riemannian area of M by A(M). If
C is a rectifiable curve, the length of C will be denoted by L(C). If Ω is a finite
perimeter set in M , then its perimeter will be denoted by P(Ω).

We shall consider the isoperimetric problem of minimizing perimeter under an
area constraint in these symmetric annuli of revolution with non-decreasing Gauss
curvature from the shortest geodesic loop.

2.2. Isoperimetric regions

For a surface M , given a ∈ (0, A(M)), we consider the isoperimetric profile of
M , defined by

I(a) = inf{L(∂B) : B ⊂ M, smooth with A(B) = a}.

An isoperimetric region Ω ⊂ M is a finite perimeter set such that P(Ω) = I(A(Ω)).
The regularity results by Morgan [7] imply that an isoperimetric region has smooth
boundary. The existence of an isoperimetric region for a given area a > 0 is not
guaranteed in a non-compact surface, since a minimizing sequence {Ωn}n∈N of sets
of area a, and satisfying

lim
n→∞

L(∂Ωn) = I(a),

may lose all or part of its area at infinity. However, we have the following result.

Lemma 2.1 (Ritoré [10, lemma 1.8]). Let M be a Riemannian surface, A > 0, and
let {Ωn}n be a minimizing sequence for area A. Then Ωn can be decomposed as
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Ωn = Ωc
n ∪ Ωn

d, where

(i) Ωc
n converges to a set Ω ⊂ M , with A(Ω) ∈ [0, A],

(ii) Ωd
n diverges,

(iii) if Lc = limL(∂Ωc
n) and Ld = limL(∂Ωd

n), then Lc + Ld = I(A), and

(iv) Ω is an isoperimetric region of area A(Ω).

From this result, we may conclude that if the loss of area at infinity Ad =
limn→∞ area(Ωd

n) is zero, then Ω is an isoperimetric region for area A.

2.3. Constant geodesic curvature curves

Classical variational formulae for length and area [11], together with the reg-
ularity results for isoperimetric regions in surfaces, imply that the boundary of
an isoperimetric region has constant geodesic curvature with respect to the inner
normal.

Constant geodesic curvature curves in rotationally symmetric surfaces can be
classified due to the existence of a first integral coming from the one-parameter
group of isometries. From [4,10] we have the following result.

Theorem 2.2. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest geodesic loop. Let C be a curve with constant
geodesic curvature and finite length.

Then C is a parallel, a nodoid-type curve or an unduloid-type curve.

In nodoid-type curves, the tangent vector turns monotonically, presenting points
with vertical tangent vector. When these curves are closed, they bound discs in
the surface. On the other hand, unduloid-type curves are periodic graphs over θ,
symmetric with respect to every critical point of its t-coordinate. We define the
period of the latter as the θ-distance between two consecutive maxima (or minima)
points of the t-coordinate (see figure 1).

The following lemma gives necessary and sufficient conditions for these curves to
be closed and embedded.

Lemma 2.3 (Ritoré [10, proposition 1.3]). Let C be a curve with constant geodesic
curvature in a warped product S

1 × I.

(i) If C is a nodoid-type curve, it yields a closed embedded curve if and only if
the maximum and the minimum of t|C are in the same vertical line.

(ii) If C is an unduloid-type curve, it yields a closed embedded curve if and only
if the period of C is equal to 2π/k, with k ∈ N.

2.4. Stability

We shall say that a smooth curve C of finite length and constant geodesic cur-
vature is stable if it is actually a local minimum of the perimeter for variations
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Figure 1. Nodoid-type and unduloid-type curves in the product S
1 × I.

preserving the area. For such variations, the second derivative of length is given [1]
by

I(u) = −
∫

C

u

{
d2u

ds2 + (K + h2)u
}

ds, (2.3)

where u : C → R is the normal component of the vector field associated to the
variation and s is the arc-length parameter in C. We find that C is stable if and
only if

I(u) � 0 for any function u such that
∫

C

u ds = 0.

We will say that a Ω ⊂ M is a stable region if ∂Ω is an embedded stable curve
with constant geodesic curvature with respect to the inner normal. We remark that
any isoperimetric region is stable.

Related to (2.3), we consider the Jacobi operator defined by

J(u) =
d2u

ds2 + (K + h2)u, (2.4)

and, on every connected component C ′ ⊂ C, the corresponding eigenvalue problem

J(u) + λu = 0,

for C2 functions u : C ′ → R. The eigenvalues associated to the Jacobi operator will
be of interest throughout this paper. We note that a stable curve cannot have more
than one connected component with a negative first eigenvalue. We recall some
information about these eigenvalues in the following lemma (see [4] for details).

Lemma 2.4. Let C ⊂ M be a connected curve with constant geodesic curvature, and
consider λ1(C) the first eigenvalue associated to the Jacobi operator (2.4) in C.

(i) If C is a nodoid-type or an unduloid-type curve, then λ1(C) < 0.

(ii) If C is the parallel S
1 × {t}, then λ1(C) = −(K + h2)(t).

The following results discuss the stability of the curves described in theorem 2.2,
and of the horizontal annuli bounded by two parallels.

Lemma 2.5 (Ritoré [10, lemma 1.6]). A parallel S
1 ×{t} in M is stable if and only

if
L2(K + h2)(t) � 4π2, (2.5)

or, equivalently, if ((f ′)2 − ff ′′)(t) � 1.
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Lemma 2.6 (Ritoré [10, lemma 1.7]). A horizontal annulus S
1 × [t1, t2] ⊂ M is

stable if and only if the parallels S
1 × {ti} are stable (i = 1, 2) and

L−1(K + h2)(t1) + L−1(K + h2)(t2) � 0. (2.6)

Moreover, in the case of a symmetric annulus S
1 × [−t, t], condition (2.6) reduces

to
(K + h2)(t) � 0. (2.7)

Lemma 2.7. Let C ⊂ M be a closed embedded nodoid-type curve, not contained in
a region with constant Gauss curvature. Then C is unstable.

Proof. By [10, lemma 2.3], the only closed embedded nodoids will necessarily inter-
sect the parallel S

1 ×{0}. But, from [10, lemma 3.4], we conclude that such nodoids
are unstable, since S

1 × {0} is the parallel where K achieves its minimum.

Remark 2.8. We recall that closed embedded nodoids contained in regions with
constant Gauss curvature are stable, by the classical isoperimetric inequalities.

Applying the same reasoning as in [4, § 2], it can be proved that there exist closed
and embedded unduloid-type curves (and even stable ones) in some of our annuli.
Moreover, we shall see in § 3 that these curves actually appear as the boundaries
of isoperimetric regions. Let us recall a necessary condition for the stability of
unduloid-type curves.

Lemma 2.9 (Cañete [4, lemma 2.2]). Let C ⊂ M be a closed embedded stable un-
duloid-type curve, not contained in the region where (f ′)2 − ff ′′ = 1. Then the
curve C touches the regions where (f ′)2 − ff ′′ < 1 and (f ′)2 − ff ′′ > 1.

Stable symmetric annuli of small area satisfy dh/dA > 0. These annuli grow up
to reach the parallels where K +h2 = 0. At this point we obtain stable asymmetric
annuli by letting one of these boundary curves approach and the other move away
from the shortest parallel with the same geodesic curvature. In this process we
obtain asymmetric annuli with dh/dA < 0. The deformation continues until the
largest parallel in the boundary of the asymmetric annulus reaches a parallel with
L2(K + h2) = 4π2, where unduloids appear. This latter phenomenon has been
studied in detail in [4].

3. Main results

As in [4], from theorem 2.2 we can classify the stable regions in our surfaces.

Theorem 3.1. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest parallel.

Then the stable regions in M may be

(i) discs bounded by a nodoid-type curve, contained in a region with constant
Gauss curvature,

(ii) horizontal annuli symmetric with respect to the shortest parallel, and bounded
by two parallels contained in the region K + h2 � 0,
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(iii) non-symmetric horizontal annuli bounded by two parallels satisfying the sta-
bility condition (2.6), and contained in the region L2(K + h2) � 4π2,

(iv) annuli bounded by a stable unduloid-type curve, and a parallel contained in
K + h2 < 0, or

(v) unions of a disc of constant Gauss curvature, and a symmetric annulus con-
tained in K + h2 < 0, with the same geodesic curvature.

Proof. Let Ω be a stable region in M . Since the first eigenvalue of the Jacobi
operator (2.4) associated to a nodoid-type or an unduloid-type curve is negative, it
follows that ∂Ω will contain at most one of these curves. On the other hand, the
geodesic curvature h(t) of parallels has a different sign in each half of the annulus
and, consequently, ∂Ω will contain at most one parallel in each half.

If ∂Ω does not contain either a nodoid-type curve or an unduloid-type curve, then
Ω is a horizontal annulus of type (ii) or (iii) satisfying the conditions described in
lemma 2.6. If ∂Ω has a nodoid-type curve, by lemma 2.7 it turns out that Ω is of
type (i) or (v). If ∂Ω contains an unduloid-type curve, then Ω must be of type (iv),
satisfying the condition of lemma 2.9.

From now on we shall denote by M(K∞) the complete plane with constant Gauss
curvature K∞.

Theorem 3.2. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest geodesic loop. Consider A > 0, and a minimizing
sequence {Ωn}n∈N for area A.

If the area Ac of the convergent part and the area Ad of the divergent part are
both positive, then the value of the isoperimetric profile I(A) is given by the sum of
the perimeter of a stable symmetric annulus in M and the perimeter of a disc in
M(K∞), both with the same geodesic curvature.

Proof. Since Ld is finite, the boundary curves of the sets of the divergent part of the
minimizing sequence are homotopically trivial for n large enough. Since K � K∞,
applying the classical isoperimetric inequality to Ωd

n and passing to the limit we
get

L2
d � 4πAd − K∞A2

d.

Consider a disc D ⊂ M(K∞) of area Ad > 0. As K∞ � 0, the injectivity radius
of the complement of any compact set in M is infinite. From the isoperimetric
inequality it follows that

L(∂D)2 = 4πAd − K∞A2
d � L2

d,

where Ld denotes the limit length of the divergent part of the minimizing sequence
{Ωn}n. If L(∂D) < Ld, it is easy to get a contradiction from the minimizing char-
acter of {Ωn}n, simply by considering a family of geodesic discs in M of area Ad
whose centres diverge. Then L(∂D) = Ld.

The above reasoning shows that I(A) is given by the perimeter of the union D∪Ω,
where Ω is the limit set of the convergent part of {Ωn}n∈N. The configuration D∪Ω
in M(K∞)∪M cannot be unstable, since otherwise it could be deformed to a least
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perimeter configuration with the same area, and the deformation of D could be
approximated by a set in M , thus giving a contradiction. Since the first eigenvalue
associated to the Jacobi operator (2.4) in D is negative, we conclude that Ω must
be a symmetric annulus.

We shall see in the following results that the possibility of the previous theo-
rem 3.2 cannot hold.

Lemma 3.3. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest geodesic loop. If R is a stable symmetric annulus
of area A, perimeter L and geodesic curvature h, then

L > hA.

Proof. We shall prove the equivalent inequality L2 − LhA > 0. If R = S
1 × [−t, t],

t > 0, it suffices to check that

f(t)2 − f ′(t)
∫ t

0
f(s) ds > 0. (3.1)

Let g be the derivative with respect to t of the left-hand term of (3.1). We have

g(t) = f(t)f ′(t) + K(t)f(t)
∫ t

0
f(s) ds

and
g′(t) = h(t)g(t) + m(t),

with m(t) = K ′(t)f(t)
∫ t

0 f(s) ds.
As g(0) = 0, it follows (see [6, corollary 2.1, p. 48]) that

g(t) = exp
( ∫ t

0
h(s) ds

) ∫ t

0
exp

(
−

∫ s

0
h(u) du

)
m(s) ds � 0.

Therefore, the left-hand term in (3.1) is an increasing function, and the desired
inequality holds.

Proposition 3.4. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest geodesic loop. Let h > 0. Then the union of a
stable symmetric annulus Rh and a disc Dh in M(K∞) with the same geodesic
curvature h has a larger perimeter than the disc D in M(K∞) of area A(Rh) +
A(Dh).

Proof. Let −b2 := K∞ and A := A(Rh)+A(Dh). From the isoperimetric inequality
in M(−b2) we have

L(∂D)2 = 4πA + b2A2.

On the other hand, it is easy to check that, for the geodesic disc Dh of geodesic
curvature h in M(−b2), we have

hL(∂Dh) = 2π + b2A(Dh), (3.2)
h > b. (3.3)
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Let us prove that

(L(∂Dh) + L(∂Rh))2 > 4πA + b2A2. (3.4)

By applying the isoperimetric inequality in M(−b2) to Dh, and lemma 3.3 to Rh,
we have

(L(∂Dh) + L(∂Rh))2 = L(∂Dh)2 + L(∂Rh)2 + 2L(∂Dh)L(∂Rh)

> 4πA(Dh) + b2A(Dh)2 + h2A(Rh)2 + 2hL(∂Dh)A(Rh).
(3.5)

From (3.3) it is clear that

h2A(Rh)2 > b2A(Rh)2, (3.6)

Finally, by using (3.2) and (3.6), we obtain from (3.5) that

(L(∂Dh) + L(∂Rh))2 > 4π(A(Dh) + A(Rh)) + b2(A(Dh) + A(Rh))2,

which proves the statement.

From proposition 3.4 we obtain two interesting consequences.

Corollary 3.5. Consider a minimizing sequence for area A. Then the areas Ad,
Ac of the divergent and convergent parts cannot be positive simultaneously.

Corollary 3.6. The value of the isoperimetric profile for some given area A > 0
cannot be achieved by the sum of the perimeters of a stable symmetric annulus and
a disc in M(K∞).

In other words, the union of a stable symmetric annulus and a disc in M(K∞)
with the same geodesic curvature ‘cannot be an isoperimetric region’ in M .

Example 3.7. Let M be a minimal catenoid defined by

x2 + y2 = λ2 cosh2
(

z

λ

)
, λ > 0.

This surface is included in our family of annuli, and the corresponding warped
function is

f(t) = (t2 + λ2)1/2, t ∈ R.

As (f ′)2 − ff ′′ < 1, there are no stable closed unduloid-type curves in M . By a
comparison argument, it follows that the discs in M(K∞) = M(0) have a smaller
perimeter than horizontal annuli, and so the isoperimetric profile of the catenoids
is given by the planar isoperimetric inequality I(a) = (4πa)1/2. The validity of
the planar isoperimetric inequality in minimal surfaces is an extremely interesting
subject (see [5]).

We now give an example of a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest parallel, where the largest area stable asymmetric
annulus has a smaller perimeter than a disc in M(K∞). Then, by the continuity
of the isoperimetric profile, it turns out that annuli bounded by an unduloid-type
curve and a parallel are also isoperimetric regions.
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Example 3.8. Consider the function

f(t) := a − r cos(t/r), t ∈ [−πr, πr].

with a > r > 0. The largest area stable asymmetric annulus is R = S
1 × [t0, t1],

with t1 = 1
2πr, and

t0 = −r arccos
(

2ar

a2 + r2

)
.

The area A and the perimeter L of this annulus are given by

A = πar

(
π − 4ar

a2 + r2 + 2 arccos
(

2ar

a2 + r2

))
,

L = 4π
a3

a2 + r2 .

When a tends to r, it easily follows from the above expressions that

L2 < 4πA. (3.7)

Fix a, r satisfying (3.7), and consider now, for s < r, the function

fs(t) := a − r cos
(

t

s

)
, t ∈ [−πs, πs],

and the associated surface of revolution with boundary Ms. The Gauss curvature
Ks of Ms is increasing for t > 0, and the largest area stable asymmetric annulus
Rs = S

1 × [ts0, t
s
1], satisfying [(f ′

s)
2 − fsf

′′
s ](ts1) = 1, corresponds to

ts1 = s arccos
(

r2 − s2

ar

)
.

For s sufficiently close to r, we have

Ks(ts1) =
−r2 + s2

s2(a2 − r2 + s2)
< 0

and
L2(∂Rs) < 4πA(Rs), (3.8)

since the annulus Rs is close to R.
Now fix s close to r satisfying (3.8), and extend the Gauss curvature Ks :

[−ts1, t
s
1] → R to a smooth symmetric negative function K̃ : R → R increasing

for t > 0, and with limt→∞ K̃(t) = 0. Solving the ordinary differential equation
u′′ + K̃u = 0 with initial conditions u(0) = fs(0), u′(0) = 0, we obtain a symmetric
annulus of revolution M̃ so that Ms ⊂ M̃ .

Then, in M̃ , the stable asymmetric annulus with the largest area is Rs, which,
in view of (3.8), has a smaller perimeter than the disc of the same area contained
in M̃(K̃∞) = M(0). By the continuity of the isoperimetric profile, we deduce that
there are isoperimetric regions in M̃ which are annuli bounded by an unduloid-type
curve and a parallel.

In view of theorem 3.1 and the previous examples, we have the following theorem.
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Theorem 3.9. Let M be a symmetric annulus of revolution with non-decreasing
Gauss curvature from the shortest geodesic loop. Then the value of the isoperimetric
profile in M is achieved by the perimeter of the following sets.

(i) Geodesic discs in M(K∞); in this case, if K∞ is not attained in M , there is
non-existence of isoperimetric regions.

(ii) Horizontal annuli bounded by two circles of revolution, symmetric with respect
to the shortest geodesic loop.

(iii) Horizontal asymmetric annuli, bounded by two circles of revolution.

(iv) Annuli bounded by an unduloid-type curve and a circle of revolution, with the
same geodesic curvature.

If K + h2 � 0, then cases (iii) and (iv) can be excluded. If L2(K + h2) � 4π2, then
(iv) cannot happen.

All the possibilities described in theorem 3.9 can actually occur.

4. Classification of isoperimetric regions in quadrics of revolution

A particular family of surfaces included in our study consists of the one-sheeted
hyperboloids. The following result describes the isoperimetric regions in these sur-
faces.

Theorem 4.1. Consider a right circular one-sheeted hyperboloid given by

x2 + y2 − λ2z2 − µ2 = 0, λ, µ �= 0.

Then the value of the isoperimetric profile is achieved by

(i) a disc in M(K∞) = M(0),

(ii) a symmetric horizontal annulus or

(iii) an asymmetric horizontal annulus.

Proof. Consider the hyperboloid as a surface of revolution, given by

x2 + y2 = g(z)2,

with g(z) := (µ2 + λ2z2)1/2. Then the Gauss curvature and the geodesic curvature
of the circle with constant height z are given by

K(z) =
−g′′(z)
g(z)

1
(1 + g′(z)2)2

, h(z) =
g′(z)
g(z)

1√
1 + g′(z)2

.

In the one-sheeted hyperboloid

K(z) =
−λ2µ2

(µ2 + (λ2 + λ4)z2)2
,
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Figure 2. Two possible behaviours in one-sheeted hyperboloids:
(a) λ = 0.8, µ = 1; (b) λ = 0.3, µ = 1.

and so K∞ = 0 and

(4π2)−1L2(K + h2)(z) =
−λ2µ4 + (λ6 + λ8)z4

(µ2 + (λ2 + λ4)z2)2
,

which is strictly less than 1 everywhere. Consequently, stable closed unduloid-type
curves do not exist in these surfaces. Therefore, the ‘isoperimetric candidates’ are
discs in M(K∞) = M(0) (which actually occur for small areas), symmetric or
asymmetric annuli.

Corollary 4.2. The isoperimetric profile of a right circular one-sheeted hyper-
boloid

x2 + y2 − λ2z2 − µ2 = 0, λ, µ �= 0,

is given by
I(a) = min{(4πa)1/2, J(a)}, (4.1)

where J(a) is the perimeter of the only stable annulus (symmetric or asymmetric)
of area a. Moreover, for small values of a we have I(a) = (4πa)1/2 and, for large
enough values, I(a) = J(a).

Remark 4.3. The function J(a) can be computed in the following way: let z0 be
the height of the largest stable symmetric annulus, i.e. the only value for which
(K + h2)(z0) = 0, which is given by

z0 =
µ

(λ4 + λ6)1/4 .

The area of this annulus is given by

a0 =
2πµ2

λ
√

1 + λ2
(z0 + 1

2 sinh(2z0)).

It is easy to check that the perimeter and the area of the stable symmetric annuli
S

1 × [−z, z], with z ∈ [0, z0], is given by

Ls(z) = 4πg(z),

As(z) =
2πµ2

λ
√

1 + λ2
(z + 1

2 sinh(2z)).
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 Table 1. Non-degenerate quadrics of 

revolution

surface type equation parameters

right circular cylinder x2 + y2 = µ2 µ �= 0
sphere x2 + y2 + z2 = µ2 µ �= 0
prolate ellipsoid x2 + y2 + λ2z2 = µ2 λ2 < 1, µ �= 0
oblate ellipsoid x2 + y2 + λ2z2 = µ2 λ2 > 1, µ �= 0
paraboloid x2 + y2 = λz λ �= 0
one-sheeted hyperboloid x2 + y2 − λ2z2 − µ2 = 0 λ, µ �= 0
two-sheeted hyperboloid x2 + y2 − λ2z2 + µ2 = 0 λ, µ �= 0

Hence, J(a), for a ∈ [0, a0], is the function whose graph coincides with the para-
metric curve z 	→ (As(z), Ls(z)) for z ∈ [0, z0].

For a stable asymmetric annulus S
1 × [z1, z2], we have that z2 > z0 and

z1 =
−µ2

λ2z2
√

1 + λ2
.

The perimeter and the area of this asymmetric annulus are given by

La(z2) = 2π(g(z1) + g(z2)),

Aa(z2) =
πµ2

λ
√

1 + λ2
(z2 − z1 + 1

2 (sinh(2z2) − sinh(2z1))).

Hence, for a ∈ [a0,+∞), J(a) is given by the parametric curve z 	→ (Aa(z2), La(z2)),
for z2 ∈ [z0,+∞).

Proof. We need only to check that, for large values of z2, the quotient L2
a(z2)/Aa(z2)

of the stable asymmetric annulus S
1 × [z1, z2] is strictly smaller than 4π. Since g(z1)

is bounded and g(z2) = (λ2z2
2 +µ2)1/2, we have z−1

2 La(z2) → 2πλ when z2 → +∞.
On the other hand, z−2

2 Aa(z2) → +∞ when z2 → +∞. This implies that

lim
z2→+∞

L2
a(z2)

Aa(z2)
= 0,

which proves the claim.

We have numerically checked two different behaviours (see figure 2) depending
on the parameters λ, µ. In some situations the solutions are given by discs and
some asymmetric annuli (for instance, when λ = 0.8, µ = 1). In other cases the
isoperimetric regions are discs, some symmetric annuli and all stable asymmetric
annuli (for instance, when λ = 0.3, µ = 1).

Theorem 4.1 allows completion of the classification of isoperimetric regions in
non-degenerate quadrics of revolution, which are invariant by a one-parameter
group of rotations in Euclidean space. A complete list of such quadrics is given
by table 1.
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Corollary 4.4. The isoperimetric regions in the quadrics of revolution are as
follows:

(i) in the right circular cylinder, either geodesic discs or tubular neighbourhoods
of closed geodesics;

(ii) in paraboloids and connected components of two-sheeted hyperboloids, geodesic
discs centred at the point of maximum curvature;

(iii) in spheres, geodesic discs;

(iv) in prolate ellipsoids, discs centred at the poles and their complements;

(v) in oblate ellipsoids, a family of discs bounded by constant geodesic curvature
curves symmetric with respect to the equator, and their complements;

(vi) in the one-sheeted hyperboloid, either discs at infinity, symmetric annuli or
asymmetric annuli.

Proof. The case of the right circular cylinder is trivial since K ≡ 0. The isoperimet-
ric problem in the paraboloid of revolution was studied in [2]. The same arguments
can be applied in each connected component of the two-sheeted hyperboloids, since
the Gauss curvature is positive and decreasing from a pole. In both cases, the
solutions are geodesic disc centred at the pole.

The case of spheres follows from the classical isoperimetric inequality. Ellipsoids
were treated in [10, § 3], and also partially in [8]. Finally, for the one-sheeted hyper-
boloids, the solutions are described in theorem 4.1.

Finally, we note that it is possible to describe the isoperimetric profile in the
right hyperbolic paraboloid of equation

z = λxy, λ > 0.

Although these surfaces are not invariant by a one-parameter group of rotations in
Euclidean space, they exhibit a one-parameter group of intrinsic isometries induced
by the rotations in the plane xy with respect to the origin. The Gauss curvature in
these surfaces is given by

K(x, y) = − λ2

(1 + λ2(x2 + y2))2
,

and so it is negative, increasing and K∞ = 0. These surfaces were treated in [10],
where it was shown that there are no isoperimetric regions for any value of area,
and that the isoperimetric profile is given by the planar isoperimetric inequality.

Theorem 4.5. The isoperimetric profile of the right hyperbolic paraboloid Mλ of
equation z = λxy is given by I(a) = (4πa)1/2. The value of the profile is never
attained, so there are no isoperimetric regions in Mλ for any value of the area.
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