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Abstract. In this work we focus on the isoperimetric problem in R2 endowed with a piecewise
constant density. We will see that the boundary of an isoperimetric solution is not a smooth curve
in general, since some corners may appear according to a rule analogous to the Snell refraction law
from Optics.
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INTRODUCTION

Given a surface M, the isoperimetric problem looks for the least-perimeter set in M
enclosing a prescribed quantity of area. A priori, the existence of such a set is not
assured, and it will be called isoperimetric region if it exists. In the literature we can
find several papers classifying the isoperimetric regions for different surfaces ([9], [5],
[2]).

In the last years, this problem has been studied considering a density function on the
plane, which is just a positive function that weights the area and perimeter functionals
(see [1], [4], [8]). More precisely, if R2 is endowed with a density f : R2→R+, the area
and the perimeter of a set Ω⊂ R2 will be given by

A(Ω) =
∫

Ω

f da, P(Ω) =
∫

∂Ω

f dx, (1)

where da and dx are the area and perimeter elements [8]. Observe that when f = 1,
we obtain the standard Euclidean definitions of area and perimeter, but in general we
will have that the area and the perimeter of a set Ω will depend on the values of the
density on the points of Ω and ∂Ω. We remark that this new setting, apart from being
a generalization of the classical isoperimetric problem, corresponds to a change of the
measure in R2 (see [7] for further details).

In particular, in this work we will focus on piecewise constant densities defined on R2,
summarizing some interesting results we have obtained in [3]. We note that this kind of
densities will always have a set of discontinuities, and up to [3], the isoperimetric prob-
lem in a discontinuous density setting had not been treated in literature. Also observe
that, due to definitions (1), each different density will yield a different isoperimetric
problem.

Example 1 Fix µ ∈ R, µ > 1, and consider the function in R2 defined by taking value
one in the lower half-plane {x2≤ 0}, and taking value µ in the upper half-plane {x2 > 0}
(see Figure 1). This is a piecewise constant positive function, and so it gives a piecewise
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constant density called the half-plane density. For instance, observe that a ball of radius
r = 1/2 has different area and perimeter depending whether it is contained in the lower
or in the upper half-plane, from the definitions (1) given above (if it is contained in the
lower half-plane, the area is πr2 and the perimeter is 2πr, whereas if contained in the
upper half-plane, the area equals µπr2 and the perimeter is 2µπr). We will describe the
isoperimetric regions for this density in Subsection 2.1.

FIGURE 1. The half-plane density in R2

Example 2 Let B be the closed unit ball in the plane, and fix λ ∈ (0,1). We define the
ball density by the function in the plane taking value λ in B, and taking value one outside
B (see Figure 2). As this function is positive and piecewise constant, it yields a piecewise
constant density on the plane. We will also show the corresponding isoperimetric regions
for this density in Subsection 2.2.

FIGURE 2. The ball density in R2

In this setting, an interesting phenomenon arises due to the discontinuity of the density
function. In the case that the boundary curve of an isoperimetric region crosses the set
of discontinuities, a change of direction will happen and a corner will appear on the
crossing point. This behaviour is analogous to the one described in Optics by the Snell
refraction law (for instant, see [10]), which explains the change of direction of a ray
of ligth when passing through two different media. In that situation, the ray of light
looks for the least-time path, which is determined by means of the Snell law expression.
In some sense, this fact agrees with the general isoperimetric approach, which tries
to minimize the perimeter under an area constraint (that is, in both cases the aim is
minimizing the energy). We shall see in Theorem 1.2 that a similiar rule is satisfied in
our setting, with the constant values of the density playing the role of the refraction’s
coeficients.
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We remark that, in this piecewise constant density setting, this last property consti-
tutes the main difference with respect to the classical isoperimetric problem (without
considering a density), where the isoperimetric boundaries are always smooth curves
[6].

1. PROPERTIES OF THE ISOPERIMETRIC BOUNDARIES

Let {Ω1, . . . ,Ωk} be a family of closed sets partitioning R2, such that the interiors
Ω̊1, . . . ,Ω̊k are disjoint sets, and call

Γ =
k⋃

i=1

∂Ωi.

Consider a piecewise constant density f : R2 → R+, that is, a function defined in the
plane as

f (p) =
{

fi, p ∈ Ω̊i,
min{ fi : p ∈ ∂Ωi}, p ∈ Γ,

where f1, . . . , fk are positive real numbers. Note that Γ is the set of discontinuities of f .
Let E be an isoperimetric region in the plane with density f , and call Σ = ∂E its

boundary. In this setting, Σ satisfies an interesting property: the geodesic curvature of
Σ−Γ is constant (when considering the Euclidean metric), and so it will be composed
of arcs of a circle (all of them with the same radius), or of line segments. We point out
that this kind of density functions defined on the plane will not affect the value of the
geodesic curvature, since their derivatives vanish in each set Ω̊i (the definition of the
geodesic curvature for general densities can be found in [8, §. 3]). On the other hand, we
remark that some pieces of Γ may bound our isoperimetric region (that is, Σ may contain
pieces of Γ).

The main property in this setting is the following. It may happen that the isoperimetric
boundary Σ crosses transversally Γ, passing through regions of the plane with different
values of density. If this is the case, a similar rule to the Snell law must be satisfied, as
we will see in Theorem 1.2. In order to prove this fact, we need the first variations of
area and perimeter (see [3, Prop. 2.11 and eq. (11)]). Following Proposition 1.1 gives
these expressions in a more general way, for piecewise regular densities. These densities
are piecewise defined in each set Ω̊i by means of a smooth positive function fi. It is clear
that when fi are positive real numbers, we will have a piecewise constant density of our
family. A detailed proof of this Proposition can be found in [3].

Proposition 1.1 Let f be a piecewise regular density in R2, and Γ its set of dis-
continuities. Consider E ⊂ R2 and call Σ = ∂E its boundary. Assume Σ ∩ Γ 6= /0,
and consider p ∈ Σ∩ Γ with p ∈ ∂Ωi ∩ ∂Ω j. For a smooth one-parameter variation
{Φt : R2→ R2}t≥0 with compact support in a neighborhood of p, set A(t) = A(Φt(E))
and P(t) = P(Φt(E)). Then, if we denote by X the associated vector field of the varia-
tion, and by νΣ the inward unit normal vector to Σ, we have that the first variation of
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area and perimeter of E are given by

A′(0) =−
∫

Σ

f uda, (2)

and

P′(0) =
∫

Σ

〈∇ψ,νΣ〉 f udx −
∫

Σ

H f udx + fi 〈X ,νΣi〉(p) + f j
〈
X ,νΣ j

〉
(p), (3)

where u =: 〈X ,νΣ〉, f = eψ , H is the geodesic curvature of Σ and Σi = Σ∩Ωi.

When above Proposition 1.1 is applied for a piecewise constant density, we obtained
the following consequence, which constitutes the main result of our work:

Theorem 1.2 Let f be a piecewise constant density in R2, with Γ the set of discontinui-
ties. Let E be an isoperimetric region in the plane with density f , and Σ = ∂E. Assume
that Σ crosses transversally Γ at a point p ∈ ∂Ωi∩∂Ω j. Then

fi cosαi = f j cosα j, (4)

where αi, α j are the angles at p between Σ and Γ (see Figure 3).

 

 

 

FIGURE 3. Snell’s law in our isoperimetric setting

Proof. We give an sketch of the proof of (4). Consider a variation of E with compact
support contained in a neighborhood of p preserving the area enclosed, that is, A′(0) = 0,
with X(p) tangent to Γ (intuitively, you can construct such variation deforming E far
away from p in order to balance the area change, see [3, Prop. 2.13] or [8, §. 3] for further
details). As E is an isoperimetric region, we have that its boundary Σ is a stationary set,
and so P′(0) = 0. Observe that the first term in (3) vanishes since ∇ψ = 0 (recall that f
is piecewise constant, and so ψ is). Moreover, taking into account that the geodesic
curvature H of Σ is constant, the second term in (3) also vanishes due to the area-
preserving condition (2). Hence we have

fi 〈X ,νΣi〉(p)+ f j
〈
X ,νΣ j

〉
(p) = 0,
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which easily yields Snell’s law (4) by applying the standard definition of the scalar
product, taking into account that

cosαi = cos(−X(p),νΣi(p)), cosα j = cos(X(p),νΣ j(p)),

from Figure 3.

Remark 1.3 We note that Theorem 1.2 follows easily from Proposition 1.1, since the
density is piecewise constant. In a more general case, when considering piecewise
regular densities, this Theorem also holds (even in Rn), although the proof is more
elaborate. For interested readers, it can be found in [3, Prop. 2.13].

2. SOME PARTICULAR EXAMPLES

As particular situations, in this Section we will describe the isoperimetric regions for
the piecewise constant densities described in Examples 1 and 2 in the Introduction, the
half-plane density, and the ball density with λ ∈ (0,1). We shall check that the isoperi-
metric regions satisfy the Snell law (as stated in Theorem 1.2) when the boundaries cross
transversally the set of discontinuities of the density, and that different kinds of isoperi-
metric regions may appear for a given density, depending on the prescribed quantity of
area. We shall omit the proofs of Theorems 2.1 and 2.4, which can be found in [3, §. 3].

2.1. The half-plane density

Consider R2 endowed with the half-plane density from Example 1, taking value one in
the lower half-plane {x2≤ 0} and value µ > 1 in the upper half-plane {x2 > 0}. First, we
point out that the existence of isoperimetric regions for this density is assured for any
value of the area (essentially because any minimizing sequence is convergent, see [3,
Th. 3.2]). The key result in this case is that any isoperimetric solution must be contained
in the lower half-plane [3, Prop. 3.1]. Hence, from the standard classical isoperimetric
problem, we deduce the following consequence.

Theorem 2.1 ([3, Th. 3.2]) The isoperimetric region of area v in the plane for the half-
plane density with µ > 1 is a round ball contained in {x2 ≤ 0}.

Remark 2.2 Observe that the boundary of any isoperimetric region for this density does
not cross the corresponding set of discontinuities {x2 = 0}, and so the Snell law cannot
be applied in this case.

Remark 2.3 We note that the case 0 < µ < 1 in the half-plane density is analogous to
the above one, with the isoperimetric regions consisting of round balls contained in the
upper half-plane, where the density takes its minimum value.
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FIGURE 4. Isoperimetric regions in R2 for the half-plane density

2.2. The ball density

We now focus on the isoperimetric problem in R2 when considering the density
defined in the Example 2, the ball density with λ ∈ (0,1). Recall that this density takes
value λ in the closed unit ball B, and value one outside B, being the corresponding set of
discontinuities Γ equal to ∂B. As for the previous density, the existence of isoperimetric
solutions is guaranteed (since any minimizing sequence is convergent [3, Th. 3.18]). In
this case, after classifying the different isoperimetric candidates by using the properties
from Section 1, and discarding non-possible solutions, we finally have the following
result.

Theorem 2.4 ([3, Th. 3.23]) The isoperimetric region of area v in the plane for the ball
density with λ ∈ (0,1) is (see Figure 5):

i) a ball of type a), entirely contained in B, if v≤ λπ;
ii) a set of type b), bounded by a piece of Γ and an arc of circle outside B, if

λπ ≤ v≤ v1;
iii) a set of type b) or c), if v1 < v < v2;
iv) a ball of type c), crossing orthogonally ∂B, if v≥ v2.

where v1, v2 are certain real numbers depending on λ , v1,v2 > λπ .

FIGURE 5. Isoperimetric regions in R2 for the ball density, λ ∈ (0,1)
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Remark 2.5 We point out that Snell’s law (4) must be satisfied in the two vertices of sets
of type b), and therefore we have some isoperimetric boundaries which are not smooth
curves. On the other hand, notice that orthogonal crossing with the set of discontinuities
Γ is allowed by Snell’s law (4), and it actually occurs for sets of type c) below.

Remark 2.6 Regarding Theorem 2.4, we conjecture that v1 = v2, and so the possibility
iii) from the statement will not occur in any case, due to some numerical computations
we have done.

Remark 2.7 The description of the isoperimetric regions in the plane for others parti-
cular piecewise constant densities can be found in [3, §. 3], as well as some related open
questions.

ACKNOWLEDGMENTS

This work has been partially supported by the MCyT research project MTM2007-61919.

REFERENCES

1. C. BORELL, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207–216.
2. A. CAÑETE, The isoperimetric problem in surfaces of revolution, Proc. of the XV International

Workshop on Geometry and Physics 11, Publ. RSME (2007), 258–263.
3. A. CAÑETE, M. MIRANDA AND D. VITTONE, Some isoperimetric problems in planes with density,

J. Geom. Anal. 20 (2009), 243–290.
4. C. CARROLL, A. JACOB, C. QUINN AND R. WALTERS, The isoperimetric problem on planes with

density, Bull. Aust. Math. Soc. 78 (2008), 177–197.
5. H. HOWARDS, M. HUTCHINGS AND F. MORGAN, The isoperimetric problem on surfaces, Amer.

Math. Monthly 106 (1999), 430–439.
6. F. MORGAN, Geometric measure theory. A beginner’s guide. Fourth edition, Elsevier/Academic

Press, Amsterdam (2009).
7. F. MORGAN, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), 853–858.
8. C. ROSALES, A. CAÑETE, V. BAYLE AND F. MORGAN, On the isoperimetric problem in Euclidean

space with density, Calc. Var. Partial Differential Equations 31 (2008), 27–46.
9. E. SCHMIDT, Über eine neue Methode zur Behandlung einer Klasse isoperimetrischer Aufgaben im

Grossen, Math. Z. 47 (1942), 489–642.
10. J. W. SHIRLEY, An early experimental determination of Snell’s law, Amer. J. Phys. 19 (1951), 507–

508.

132


	copyright1: 


