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Abstract . Multisymmetric polynomials are the r— fold diagonal invariants of the
symmetric group &,. Elementary multisymmetric polynomials are analogues of the
elementary symmetric polynomials , in the multisymmetric setting . In this paper ,

we give a necessary and sufficient condition on a r ing A for the algebra of multi -
symmetric polynomials with coefficients in A to be generated by the elementary
multisymmetric polynomials .

Introduction
It i s well - known that the r ing of symmetric polynomials with integer coefficients i s generated
by the elementary symmetric polynomials .  This result ( with the algebraic independence of

the elementary symmetric polynomials ) is often referred as “ the fundamental theorem of

"
symmetric polynomials

The multisymmetric polynomials are the r— fold diagonal invariants of the symmetric group
6,. When taken with coefficients in a r ing A, they constitute an A— algebra we denote by
Jr(A).  Multisymmetric polynomials are generalizations of symmetric polynomials ( recovered
with r=1). The elementary symmetric polynomials have analogues in the multisymmetric
setting , called elementary multisymmetric polynomials

It is quite an o Id theorem that J7(Q), the algebra of multisymmetric polynomials with
rational coefficients , i s generated by the elementary multisymmetric polynomials .  This was
established first by Schl 4 fli [ 20 | and also by MacMahon [ 1 5 | , and later other proofs were
given



by Emmy Noether [ 1 7 ] and Hermann Weyl [ 24 ] . On the other hand , various authors
[16,2,4, 5] gave counter - examples showing that the elementary multisymmetric
polynomials may ot generate J7(A), depending on the coefficient r ing A. In particular , John
Dalbec proved in  [4, 3] that J5(z), the ring of multisymmetric polynomials
with  integer  coefficients ; is generated by the elementary multisymmetric polynomials
only in the trivial cases n=1or r =1 and in the special case (n,r)=(2,2).

For which r ings A do the elementary multisymmetric polynomials generate 3J7(A)? The
purpose of this paper is to demonstrate that we have the fo llowing answer :
Theorem 1 . Let A be a ring and n and r be positive integers . The
elementary multisym - metric polynomials generate the A— algebra 37 (A) if and only if n!
is invertib le in A, except in the following special cas es :

i) (n,r)=(2,2).
(i1 ) (n,r)=(3,2) and 3 is invertib le in A.

(iii) r=1.

In thes e special cas es , the elementary multisymmetric polynomials generate
Jr(A), even if  the condition n! wnvertible does not hold .

Let us give a geometric motivation .  Let K be an algebraically closed field , and V be a (r+1)—
dimensional K- vector space . Let us consider the mapping formal product with values in

S"V, the n— th symmetric power of V :

vt — S
(V1,0e 4UR) UL UL

It induces an inj ective morphism ¢ of algebraic varieties from the n— th symmetric product
(PV)"/&,, of the proj ective space PV of | ines in V, to the projective space P(S"V) of lines in
sv. Its 1image is aclosed algebraic subvariety , called the  Chow variety
of multi - s ets of n points m PV. We denote it by C  how(0,n,PV). So
we  have two algebraic  varieties

parameterizing the length n multi - sets of points in PV : the symmetric product  (PV)*/&,
and the Chow variety C'  how(0,n,PV).

Neeman [16] showed that a mnecessary and  sufficient condition  for
these  two  algebraic varieties to be i somorphic i s that the elementary multisymmetric
polynomials generate the K- algebra Jn(K) (andifitisso, then ¢ is an isomorphism ) .

We deduce from Neeman ’ s result and Theorem 1 that (PV)"/&, and C' how(0,n,PV) are i
somorphic if and only i f at least one of the following conditions holds :

e the coefficient field K has characteristic zero ,
e the coefficient field K has positive characteristic greater than n,
e (n,7)=(2,2) (two points in the plane ) ,
e (n,r)=(3,2) (three points in the plane ) with K having characteristic two ,
e r=1 (any number of points on the | ine ) .
This paper i s organized as fo llows .
In the first s ection , multisymmetric polynomials are introduced .



The s econd section deals with the non - modular case ( following the terminology of invari -
ant theoretists ) , that i s the case when n!i s invertible in the coefficient r ing A. It is proved
that in this case , the elementary multisymmetric polynomials generate J”(A).

In the third section , it i s demonstrated that when n! 1is not invertible , the
elementary multisymmetric polynomials don ' t generate J7(A), provided r > 1 and (n,r) #

(2,2), (n,7) #

(3,2).
The last section is devoted to the two special cases (n,r)=(2,2) and (n,r) = (3,2).
In the sequel , theset of natural numbers is denoted by N; andfor o € N7
we set |a| =a;+---+a.. The zero vector of N"is denoted with a bold zero: 0
1. Multisymmetric polynomials
In this s ection we present the multisymmetric polynomials .  We introduce only the necessary
material . More can be found about these obj ects in the original works of MacMahon [15

and Junker [8,9, 10, 11, 12, 13],orinmodern accounts by Dalbec [ 3, 4
,by Rosas  [19] and by the author [ 1 ]

Let a,b,... ,zbe a finite alphabet with n letters . To each of these letters we associate r
variables indexed with the integers from 1 to r:

Aty ... 0p

bi,... b

Z1yeee 3 Rp.
We will use the fo llowing notations : the bold symbol a will denote the family of variables
(ai,... ,a.),and a“, where « € N", will denote the monomial af* ---a%".
Definition 1 . The multisymmetric polynomials mn the n  families of
r  wvariables a,.. ,z are the polynomials in the nxr wvariables a1,as,... ,z. that remain
unchanged under every permutation of the n letters a,b,... z.

Let A be a ring . The algebra of the multisymmetric polynomials in  n families of r

variab les with coefficients in A is denoted 37 (A).
Example . When n =r =2, the multisymmetric polynomials are those polynomials P in

ai, as, by, bosuchthat :
P(ai,a2,b1,b2) = P(b1,b2,a1,0az).

We provide j7(4) with a grading with values in N": the one obtained by giving to
every variable xz;( for z any letter in the alphabet a,.. ,z and i any index between 1 and r) as
it s multidegree the i— th vector of the canonical basis of Z" ( denoted with & in the sequel ) .

The multidegree of an homogeneous multisymmetric polynomial P will be denoted with mdeg
P.



As in the case of symmetric  polynomials , the algebra  of multisymmetric
polynomials admits an obvious module basis :  the one made of the symmetrizations  of the
monomials , called monomial ( multisymmetric ) functions .  Their symmetric analogues are
the monomial symmetric functions , indexed by the integer partitions . Integer partitions
are the finished decreasing s equences of positive integers, that we may  think
as  representing the  finished multi - sets of integers .  Let X be an integer partition with
length at most n. It is obtained by forgetting the ordering and the possible occurrences of 0 in
a length n integer sequence s = (s,,... ,s.). The monomial symmetric function in the variables
a,b,... ,zindexed with X is the symmetrization of the monomial with exponent s, thatis :

my = E aleb'h- - 2t
t

where t runs over the orbit of s under the permutations of it s n t erms .

In the same way , and mimicking the vocabulary associated to integer partitions , we set the
following definitions :
Definition 2 . A wector partition of N s a finished multi - s et of vectors of N7\ {0}. If the
vector partition p s ob tained from the s equence

(@M, .. o)

of vectors of N, by forgetting the ordering , and the possib le occurrences of
the zero vector , we will denote

p= [04(1),.‘. 7a(’“)].

If moreover al | of the o are non - zero , we will cal | them the parts of p, and say that k& is
the
length of p, denoted (.

The vector B =aM +-..+a® s cal led the sum of p, and denoted s(p). It will als o
be written pr B, and read that p s a partition of B.

Let o in Nr\{0}. Its multiplicity in p is denoted py(a). It is often us eful to
consider the multi - s et of multiplicities of p, thatis the multi - s et ob
tained from the s equence of the
multiplicities of the parts of p. It is denoted n,. Last,  the notation p,! s tands for the
product
of the pp(a)!, for « running in the parts of p.

Definition 3 . Let p be a vector partition of N with length at most n. There exists a s

equence

of mnwectors a=(a¥, .. a®) (with possib ly s ome of them being zero ) such that
p=[a .. o]

The monomial symmetric function indexed by p in  Jr(A) s

Z (a) ()
mp = aﬁ .. zﬁ

where  the  sum  is  carried  over  the s equences  (B,.. &) in  the
orbit of «a under the permutations of its n  terms .



Remark . The monomial multisymmetric function m, has multidegree s(p).

Two  special cases of monomial functions are, on the first hand, when the indexing
vector partition has all its parts members ofthe canonical basis (¢1,... &),
then we obtain an

elementary multisymmetric  polynomial'; and on the second hand , when the indexing vector

partition has  only one part , then we get  a multisymmetric power sum . Precise
definitions follow . Note that when r = 1 the elementary symmetric polynomials
and the symmetric power sums are recovered this way .

Definition 4 . Let o € N with 1 < |al] < n The e lementary

multisymmetric polynomial —with multidegree « is

ar].

ea =mig, 1g,2--- &

Otherwise stated , an elementary multisymmetric polynomial i s the symmetrization of a mono -
mial in which every letter appears at most once . It i s coherent to set :

60:1

and for a e N" with |a[>n

eq = 0.

Definition 5 . Let «aeN"\{0}. The multisymmetric power sum with multidegree « is

pa=mp = a® +b* + ... + 2%

Among them we will distinguish the first power sums : thos e pa with |a|<n.
We will also index the products of elementary multisymmetric polynomials and multisym -
metric power sums by vector partitions .  So if
p=[aM, . o]
then
€p = €(1) * * En(k)
and

Py =Pa(l) - palk).
Elementary multisymmetric polynomials and multisymmetric power sums are not only gener -

alizations of elementary symmetric polynomials and symmetric power sums . Actually , they
are  obtained through a systematic process , called polarization ,  from their = symmetric
ana - logues .  We present now this process , fo llowing the presentation given by Larry Smith
[21].

11 [23], a different natural multisymmetric generalization of the elementary symmetric polynomials ap - pears .



Let ae N with |« |=k  The polarization operator A’ is the function from the homoge -
neous component of degree k of Za,b,... 2] to the homogeneous component of multidegree « of
Zlay,as,... ,z:; obtained first by making the substitutions :

a = a1+..+a,
b — b1+...+br

Z2 = zZ1+t..+ 2

and next by s electing the homogeneous component of multidegree « in the result . For instance
, for a power of the variable a, one has :

sty = (E)a

where (%) 1is the multinomial coefficient :

[e3

k!

01!042! s a,.!.

From the definitions it is readily seen that polarization sends symmetric

polynomials  to multisymmetric polynomials .  Better ,
Proposition 2 . Polarization s ends e lementary symmetric polynomials to elementary multi
- symmetric polynomials , and symmetric power sums to iteger multiples of
multisymmetric
power sums . Precisely , for aeN'  with |a|=k,

Al (e) = eq
and if o #0,

auphy= (b )re

We will denote the subalgebra of 37 (A) generated by the polarized symmetric polynomials
by € (A).
Remark . Let f be any homogeneous symmetric polynomial with degree k. Then there is

a polynomial with integer coefficients P such that

f=Pler,... ,ex).

Let ae N with |a| =k Apply the polarization operator A7, this yields an expression of
A" (f) as a polynomial with integer coefficients in the elementary multisymmetric polynomi - als

This shows that €7 (A) i s generated by the elementary multisymmetric polynomials , and
the problem raised in the present paper i s also the problem of knowing when all the polarized
symmetric polynomials generate J7(A).



2. Non - modular case
In thissection, weprovethat ifn! is invertiblein Athen the elementary multisymmetric
polynomials generate J7(A). Our proofis essentially the proof already given by Richman
[ 18], but we think our presentation i s clearer .
The proof has three steps .
First , it i s shown that if n!i s invertible ;, then J7(A)i s generated by the power sums .

Next , an inductive formula ( the reduction formula for multisymmetric power sums , Propo
sition 4 ) is established ; this formula proves that any power sum is in the &/ (4)—
module
generated by the first power sums , under the condition n!invertible ( Corollary 5 ) .

The last step demonstrates that the first power sums are in ¢’ (4), under the condition

nlinvertible(Lemma6).

Theorem 3 . Let A be a ring in which n! is invertib le . Then the multisymmetric
power sums generate J.(A) as an A— algebra .
This theorem appears in [ 2 1 | , but with a gap in the proof . This gap i s closed the proof
that follows .  Another short proof of the theorem is given in [ 6] .
Proof . Let p= [aM,... ,a®] be a vector partition with length k£ <n. We want to show
that m, is in the subalgebra of J7(A) generated by the power sums .

It is known that there is a polynomial P with integer coefficients such that :

see [14] for cformulas .. . . . k .
(expression of k!el’lamﬂ lgIVIDgasapolynomialP)' APPIYWiththepOIamZatlonlntegercoeﬁ"icientsOperatorintheA(1,1 ’ 1)7 this

yeoee

(4)

sums . Now evaluate every variable z; to z“ The image of e;;,.,1 1is readily seen to
be an integer multiple of m,. To determine the multiplicative coefficient , note that m, i
s the sum of k!/u,! monomials, while e, ,1 is the sum of k! monomials . So the

multiplicative coefficient is p,!.
This map also sends multisymmetric power sums to multisymmetric power sums .

So it i s established that  klu,!m, 1 s a polynomial with integer coefficients in the multi -
symmetric power sums .  Note that klg,! isinvertible, since p,! 1is a product of integers
less than or equal to &k, and k<n. O
The fo llowing formula was suggested to me by Nicolas Thi é¢ry [22] .

Proposition 4 . ( Reduction formula )  Let n  be a positive integer . Let weN’
with |wl|=n. Let aeN'. Then, n Jr(Z),

(_

< Z >pw ta= > 1Tl < | g | >p/3+a' (1)

€n N7 770

fry=w

Note that < Z > is invertible as so on as n!i s invertible .



: Zla,b,... ,z] one Proof . In
has :

Z(—l)ieiaj =0

i+j=n

where the e; > s are the elementary symmetric polynomials in the variables a,.. ,z. Let us
apply A7, this yields :

(z_: 1)|7|67( Igl )aazo‘

o B=w

Let us multiply by a“:

S 8
3 1)767< IB\ >aﬁ+a_0'

+yB=w
A s imilar formula , with « replaced by any letter b,.. .z, can be obtained . Let us sum over
the expressions obtained this way and i so late the t erm with 4 = 0 to get formula (1). O
Corollary 5 . Let A be a ring in which n!is invertible . Then any power sum is in the
module
over ¢€r(A) generated by the first power sums .
Proof . This i s a direct consequence of the reduction formula above , by induction . O
Lemma 6 . Let A be a ring in which n! is invertib le . Then any of the first power sums
is in

¢ (A).

Proof .  Let ac N with |a|=k. There is a polynomial P with integer coefficients such that :

pk = P(e1,... ,eg).

Apply the polarization operator A7, this yields an expression of (¥)pa as a polynomial with
integer coefficients in the elementary multi - symmetric polynomials .
Now , s ince k <n, the multinomial coefficient (%) i s invertible in 4. O

3. Modular case
We now study the modular case , that i s the case when n!is not invertible in A.

First , several counter - examples for which ¢7(A) # 37 (A) are presented ( Lemmas 7,8 ,9 ) .
Next , it is shown that these counter - examples are sufficient to prove that , under the condition
n! non - invertible &7 (A) # 37 (A) for nearly every value of (n,r), except when r = 1 and two

) n

special cases whose study is reported to the last section .



Lemma 7
. Let k>2 be an odd number . Let A be a ring in which k is not invertib le .
Let
fk  be the monomial function :
fk = m[line7b7‘aceh,t'ipdownrigh,t—brace.htipdownle.ftfline(170)(1a0)"‘(170)(012)]'

k—1

Then fk is not inside the sub - algebra of 32(A) generated by the elementary multisym-
metric  polynomials .

T})lis lemma is inspired by a counter - example due to Fleischmann ( [ 5 ], proof of Theorem 4 .
7).

Proof . Let us suppose that fk1ies in the subalgebra generated by the elementary multi -
symmetric polynomials . Let us consider the proj ection from J3(4) to Ji(A), the algebra
of symmetric polynomials in ay,b;,... 2, obtained by sending every variable as, by, ... ,zo to 1
and leaving unchanged the variables ay,b1,... ,z;. It sends fkto ep_;. It also sends every
elementary multisymmetric polynomial e;; to an integer multiple of e;. Specially , the only e,
whose image contributes to e;_; are :

2
€k—1,1€0,1; €k—1,0€p,1, €k—1,0€0,2-

Their images are respectively :

k
ker—1, k’en_1, < 9 )%-1-

fth . lieintheideal ; ~ : byth : ko (this; beingodd ,
Allﬁino‘fﬂalcoefﬁment(lg;“ cideal | g g of‘j,lc(A)mult1plegenera‘ced0¥k).e Therofore, MTEEET liegiy the ( Sinteger;yc Ageneratedbythck
otherwise stated ,k1is invertiblein A. O

Lemma 8 . Let Abe a mingin which 2 is not invertible . The the power sum p1,1,1)

18 not

inside the subalgebra of 3J3(A)  generated by the elementary multisymmetric polynomials . This
counter - example  was  known by  Campbell , Hughes and Pollack ([2],
Section 6 and

Dalbec ([4],Section1.4and [3], Section2.1.4).

Proof . We suppose the contrary , that is that p1,1,1)is a A— linear combination of :

€1,0,0€0,1,0€0,0,1, €1,0,0€0,1,1, €0,1,0€1,0,1, €0,0,1€1,1,0- (2)

Let us consider the proj ection from J3(A4) to the algebra of symmetric polynomials Ji(A)
obtained by substituting 1 to every one of the variables as,bs,a3,b5. It sends p1,1,1) to pl =e;.
It also sends the polynomialsin (2 )  respectively to 4e;,2e;,2e; and 2e;. As a result , we
get that 2 is invertible in A. O

Lemma 9. Let Abe aringin which 2 is not invertible .  Then the power sum p3,2) is
not

inside the subalgebra of J32(A)  generated by the elementary multisymmetric polynomials .



Proof . Let us consider the algebra morphism from 32(A4) to Ji(A4), the algebra of symmetric
polynomials in  the wvariables ay,b1,¢1,d;, obtained by leaving  ay,b1,c1,d;  un-
changed and sending as,bs,c,d2 to 1.  The elementary multisymmetric polynomials
have their = images given by the following table :

€o,1 — 4 €0,2 = 6 €0,3 = 4 €0,4 = 1

€0 e €11+ 361 €12 — 361 €13 €1
€20 = €2 €21 > 262 €22 €9

€30 €3 €31+ €3

€4,0 = €4

The image of the multisymmetric power sum p3,2) is the symmetric power sum p3 = a}+
b3 +c3 +d3.  This power sum has a unique decomposition in t erms of elementary symmetric

polynomials :
p3 = 3eg — 3eqer + e:{’.

Let us suppose that p(3,2) lies in the subalgebra generated by the elementary multisymmetric
polynomials . The only monomials in the e, with proj ection contributing ez are

2
€3,0€p,1. €3,0€0,2; €3,1€0,1-

But their images are actually

1663, 663, 463.

This implies that the coefficient , 3, of e3, 1iesinside the ideal generated by 2 in A, and
so that 2 i s invertible in A. O
Now these counter - examples are used to produce counter - examples in nearly every 37 (A),
thanks to the fo llowing lemma :

Lemma 1 0 . Let A be aring . Let r,n be integers . If the algebra 37 (A) s not
generated by
the elementary multisymmetric polynomaials | then neither is  J7,,(4), mnor Jnti(A).
Proof . We prove the contrapositive .

There i s an algebra epimorphism from J7,,(A) to J7(A) that sends the elementary mul -
t i symmetric polynomials of J7,,(A4) to elementary multisymmetric polynomials of J7(A4). It
1 s the one obtained by s ending the variables associated to the last letter to 0 . So if Jr_.,(4)

i s generated by its elementary multisymmetric polynomials , so is 37 (A).
Let us consider the algebra epimorphism from J7t!(A4) to J7(A) obtained by annihilating the
variables  a,41,b41,... ,2z.41. It sends the elementary multisymmetric polynomials

of

Jr+1(A) to zero , or to elementary multisymmetric polynomials of J7(A). Therefore i f Jrt1(A)i
s generated by its elementary multisymmetric polynomials , so is J7(4). O

The final product of this section i s the following proposition .

Proposition 1 1 . If n! s not invertible in A, and r > 1, and (n,r) # (2,2),
and (n,r) #(3,2), then the e lementary multisymmetric polynomials do not generate

Jn(A).



Proof . If n! isnot invertible in A, then there exists a prime number k < n, not invertible in
A If £ is odd and » > 1, then Lemma 7 and Lemma 10 show
that  the elementary
multisymmetric polynomials do not generate J7(A). If k=2 then the same conclusion is
reached thanks to Lemma 8 and Lemma 1 0 when r > 3, and thanks to Lemma 9 and Lemma 1
0 when r=2with n>4. O
4. Special cases
The previous reasonings gave , up to now , no necessary and sufficient condition on A for the
elementary multisymmetric polynomials to generate J3(4) and J2(A).

In the case 3J3(A4) we have no condition at all , and in the case J2(A) we j ust know , after
Lemma 7 , the necessary condition that 3 has to be invertible .

In this section we show that there are no further conditions .
The main tool for these proofs i s a reduction algorithm due to Fleischmann [ 5 ] .

4. 1. Fleischmann ’ s reduction algorithm
Before presenting Fleischmann ’ s algorithm , we need a lemma about the product of monomial
functions .
Lemma 1 2. ( Product formula ) . Let p, q be vector partitions of N'.  Then :
my - mg =Y c(p, d; t)me.
where the coefficient c(p,q;¢) is defined as fol lows : a s equence of vectors v = (v,... 4©),
such that v = t© and that ¢ be no less than max (¢, 4), 18
arbitrarily chosen . Then this  coefficient is the number of decompositions :
A1) aD 1S,
e Ne) 3
G al® 3(0)
where
= b
[(BY,... B = .
Example . Let 6§ e N\ {0}. Then msomso = mpso +2miss. Indeed :

(7) = (o) +(3)

( only one decomposition , thus the co efficient of mys0 151 ) and

(5) = (o) (5) = () +(5)

( two decompositions , thus the co efficient of m;45is 2 ) .



Let
us recall that for any vector partition p one has :

my — Z 0@ Vpa® e
[0 @ a® o] =p
Let p and q be vector partitions , then :
my -y = Zaa<a>+5<a)ba(b>+ﬁ<h> RICRTD
the sum being carried over all couples of sequences
(@ .. ,a/(z))

(BW, .. B9)

such that (@@, ... Ja®)]=pand [(B@,.. 3] =q. So we are done . O
We will say that o € N©  dominates e N"if for all i,a; > Bi.
Fleischmann ” s algorithm is presented in the proof of the following lemma .

Lemma 13 . ([5], Theorem 4 . 6 )  The multisymmetric polynomials with multidegree
dominated by (n—1,n—1,.. ,n—1) generale 3JI"(Z) as an €’ (Z)— module .

Proof . The proof consists in a reduction algorithm , expressing any monomial function with
multidegree not dominated by (n—1,... ,n—1)as al inear combination , with coefficients in &7 (Z),

in the monomial functions with multidegree strict ly lower ( according to the dominance ordering

Let us choose a coordinate i e {1,... ,r}. To every p, vector partition of N" we associate
A(i;p) . the s equence of the i— th coordinates of the parts of p, in the decreasing order .  For
instance , to p=1((3,1)(2,0)(1,1)], it i s associated A(1;p) = (3,2,1) and A(2;p) = (1,1,0).

We define a partial ordering =; on the set of vector partitions of N" with length at most n in
the fo llowing way : p =;q ifand onlyif A(i;p) is smaller than A(i;q) in lexicographic
order .

Let p be a vector partition whose sum of it s i— th coordinates i s not less than n.

o If Xiép)=  (ti,te,... ,teky. ,k,0,... ,0)with ¢, >t > .. >t, >k>0, then we

set t the vector partition obtained from p by changing in the i— th coordinates of it s
parts t; into t; — 1.
The product formula shows that :

My = MeCsgs — Z Mg

for vector partitions q <; p.
o If Xi;p) = (kk,... ,k,0,... ,0) with s occurrences of k& > 1, then we s et t the vector
partition obtained from p by changing in the i— th coordinates of it s parts k into k — 1. The
product formula shows that :

My = MeCsg; — Z Mg

for vector partitions q <; p.



A(i;p) = (1,1,... ,1) with n o ccurrences of 1 , then one has the factorization :

Mp = Melngi

where tis the vector partition obtained form p by vanishing the i— th coordinates of it s
parts . By applying these three types of reduction, any monomial function with multidegree
a is expressed as a | inear combination , with coefficients in €7 (Z), in the monomial functions
with multidegree g, with g dominated by a, distinct from o, and Bi <n —1.

By  applying  successively this  procedure for i = 1, and next i =
2, .. , i = r it is obtained an expression as a polynomial with integer
coefficients ,  in  the elementary mul - tisymmetric polynomials and in the

monomial  functions with  multidegree  dominated by

(n—1,n—-1,... ,n—1). O
42. Case (n,r)= (2,2)

Here we want to prove that the elementary multisymmetric  polynomials
generate  J3(Z). After Lemma 1 3, this is reduced to prove that  every monomial
function with multidegree (1,0),(0,1) or (1,1) canbe expressed as al
inear combination with integer co efficients of products of elementary multisymmetric
polynomials . The  multisymmetric ~ polynomials  of multidegree ( 1, 0 ) ( or more
generally (k,0) for any k € N) are actually symmetric polynomials in the variables ay,b;, and thus
can be expressed as polynomials with integer coefficients in the elementary symmetric polynomials
in aj,by.  The latter are elementary multisymmetric

polynomials . The same reasoning holds for the multisymmetric polynomials of multidegree
(0,k) : they are symmetric polynomials in the variables as, bs.

So we have j ust to deal with the multidegree (1, 1) case .  There are two monomial
functions

of multidegree (1,1 )in 33 that are myy 1y and myu 0,01y It is easy to check that :

mia,1)) = €1,0€0,1 —€1,1
m[(1,0),(0,1)] = €1.1-
Therefore :
Proposition 14 . The e lementary multisymmetric polynomials generate the ring J3(Z).
This proposition 1 4 was proved by John Dalbecin [4].  Dalbec ’ s argument i s the following :

the elementary multisymmetric functions and the monomial functions m, 0)(0,1) form a SAGBI
basis of J3(7Z) for a certain ordering on the variables ay,as, by, bs.

Case (n,r)= (3,2) 4.3.

We want to prove that the elementary multisymmetric polynomials generate the algebra
J32(A), provided 3 i s invertible in A. After Proposition 1 3 , this i s reduced to prove that any
monomial function with multidegree among :

(1,0), (2,0), (0,1), (0,2),
(1,1, (2,1), (1,2), (2,2



| ies inside the subalgebra generated by the elementary multisymmetric polynomials .

The case of a monomial function with multidegree (1,0),(2,0),(0,1) or (0,
2) s trivial , as explained in the case (n,r) = (2,2). Moreover , any result valid for the case
(2,1) isalso valid for the case (1,2), by permutation of the coordinates .  So we
are done once we have established the result for multidegrees (1,1),(2,1)and (2,2).

There are two vector partitions indexing the monomial functions with multidegree (1,1 ),
as well as the products of elementary multisymmetric polynomials of this multidegree .  These
vector partitions are [ (1,1 ) ]and[(1,0),(0,1)], and we have :

mia,1)) = €1,0€0,1 — €11
m[(1,0)(0,1)] = €1,1-
There are four vector partitions indexing the monomial functions with multidegree (2,1 ) , as

well as the products of elementary multisymmetric polynomials of this multidegree . These
vector partitions are :

pl = [ 1], p2 = [(2,0)(0,1)],
p3 = [(171)(150)]’ pd = [(1,0)(1,0)(0,1)]

Let us introduce the conversion matriz from the family e to the family m in the multidegree ( 2
, 1) component of 32(z). This is the matrix whose entry in column e, and 1 ine m, 1is the
coefficient of m, in the decomposition of e, as alinear combination of monomial functions .
We computed it :

’ Table ignored! ‘

It is invertible over Z. Thus every monomial function with multidegree ( 2, 1) lies ins ide the
subring generated by the elementary multisymmetric polynomials .

There are eight vector partitions indexing the monomial functions with multidegree ( 2,2 ) |
that are :

al = [(2,2), o2 = [2,1)(0,1)],
a3 = [20)(0,2)], a4 = [(2,0)(0,1)(0,1)],
e = [(1,2)(1,0)], a6 = [(1,1)(1)],
a7 = [(1,D(L0)O,1)], ¢8 = [(1,0)(1,0)(0,2)].
There are also eight vector partitions indexing the products of elementary multisymmetric poly-
nomials with multidegree (2,2 ).  These are

92,93, 94, 95,96,q7, 938
andq9 = [(1,0)(1,0)(0,1)(0, 1)].



conversion matrix i The
S :

’ Table ignored!

It s determinant is 3. Therefore , the elementary multisymmetric polynomials generate the
multidegree ( 2, 2 ) component of J%(A) if and only i f 3 is invertible in A.

We have finally proved the following proposition :
Proposition 1 5 . The e lementary multisymmetric polynomials generate J2(A) if and only
of
3 1is invertible in  A.
This completes the proof of Theorem 1 .
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