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Abstract—Recent advances in wireless technologies have given
rise to the emergence of vehicular ad hoc networks (VANETs). In
such networks, the limited coverage of WiFi and the high mobility
of the nodes generate frequent topology changes and network
fragmentations. For these reasons, and taking into account that
there is no central manager entity, routing packets through the
network is a challenging task. Therefore, offering an efficient rout-
ing strategy is crucial to the deployment of VANETs. This paper
deals with the optimal parameter setting of the optimized link state
routing (OLSR), which is a well-known mobile ad hoc network
routing protocol, by defining an optimization problem. This way, a
series of representative metaheuristic algorithms (particle swarm
optimization, differential evolution, genetic algorithm, and simu-
lated annealing) are studied in this paper to find automatically
optimal configurations of this routing protocol. In addition, a set of
realistic VANET scenarios (based in the city of Málaga) have been
defined to accurately evaluate the performance of the network
under our automatic OLSR. In the experiments, our tuned OLSR
configurations result in better quality of service (QoS) than the
standard request for comments (RFC 3626), as well as several
human experts, making it amenable for utilization in VANET
configurations.

Index Terms—Metaheuristics, optimization algorithms, opti-
mized link state routing (OLSR), vehicular ad hoc networks
(VANET).

I. INTRODUCTION

V EHICULAR ad hoc networks (VANETs) [1] are self-
configuring networks where the nodes are vehicles

(equipped with onboard computers), elements of roadside in-
frastructure, sensors, and pedestrian personal devices. WiFi
(IEEE 802.11-based) technologies are used for deploying such
kind of networks. At present, the IEEE group is completing the
IEEE 802.11p and IEEE 1609 final drafts, which are known
as “Standard Wireless Access in Vehicular Environments”
(WAVE), specifically designed for VANETs. This technology
presents the opportunity to develop powerful car systems ca-
pable of gathering, processing, and distributing information.
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For example, a driver assistance system could collect accurate
and up-to-date data about the surrounding environment, detect
potentially dangerous situations, and notify the driver [2].

In VANETs, the WiFi limitations in coverage and capacity
of the channel, the high mobility of the nodes, and the presence
of obstacles generate packet loss, frequent topology changes,
and network fragmentation. Thus, a great deal of effort is
dedicated to offer new medium access control access strategies
[3] and to design efficient routing protocols [4], [5]. In turn,
in such kind of networks, routing is a challenging task since
there is no central entity in charge of finding the routing paths
among the nodes. Different routing strategies have been defined
based on prior ad hoc network architectures by targeting the
specific VANET needs of scenarios and applications. These
protocols can be grouped into topology based (proactive, e.g.,
destination-sequenced distance-vector and optimized link state
routing (OLSR), reactive, e.g., ad hoc On demand distance
vector (AODV) and dynamic source routing (DSR), carry-
and-forwarding, etc.), position based (e.g., greedy perimeter
stateless routing (GPSR) and greedy perimeter coordinator
routing), cluster based (e.g., clustering for open IVC network
and location-based routing algorithm with cluster-based
flooding), and broadcasting (e.g., BROADCOMM and history
enhanced vector based tracing detection) protocols [5].

Most of the VANET applications critically rely on routing
protocols. Thus, an optimal routing strategy that makes better
use of resources is crucial to deploy efficient VANETs that ac-
tually work in volatile networks. Finding well-suited parameter
configurations of existing mobile ad hoc network (MANET)
protocols is a way of improving their performance, even making
the difference between a network that does work or does not,
e.g., networks with high routing load suffer from congestion
and cannot ensure timely and reliable delivery of messages [6].

In the present paper, we aim at defining and solving an
offline optimization problem to efficiently and automatically
tune OLSR [7], which is a widely used MANET unicast
proactive routing protocol. Although specific routing protocols
are emerging for VANET networks, a number of authors are
currently using OLSR to deploy vehicular networks [8]–[11].
This protocol has been chosen mainly because it presents a
series of features that make it well suited for VANETs. It
exhibits very competitive delays in the transmission of data
packets in large networks (which is an important feature for
VANET applications), it adapts well to continuous topology
changes, and the OLSR has simple operation that allows it
to be easily integrated into different kinds of systems. More
details about the use of OLSR in VANETs are provided in the
following section.



However, the continuous exchange of routing control packets
causes the appearance of network congestion, then limiting the
global performance of the VANET. Thus, the quality-of-service
(QoS) of OLSR significantly depends on the selection of its pa-
rameters, which determine the protocol operation. As shown in
the results presented in [12] and in the present paper, OLSR has
a wide range of improvements by changing the configuration
parameters. Therefore, computing an optimal configuration for
the parameters of this protocol is crucial before deploying any
VANET, since it could decisively improve the QoS, with a high
implication on enlarging the network data rates and reducing
the network load. Then, all these features make OLSR a good
candidate to be optimally tuned.

In this paper, we define an optimization problem to tune the
OLSR protocol, obtaining automatically the configuration that
best fits the specific characteristics of VANETs. An optimiza-
tion problem is defined by a search space and a quality or fitness
function. The search space restricts the possible configurations
of a solution vector, which is associated with a numerical cost
by the fitness function. Thus, solving an optimization problem
consists of finding the least-cost configuration of a solution vec-
tor. In spite of the moderate number of configurable parameters
that govern OLSR [7], the number of possible combinations of
values that they can take makes this task very hard.

Due to the high complexity that these kinds of problems
usually show, the use of automatic intelligent tools is a manda-
tory requirement when facing them. In this sense, metaheuristic
algorithms [13] emerge as efficient stochastic techniques able
to solve optimization problems. Indeed, these algorithms are
currently employed in a multitude of engineering problems
[14], [15], showing a successful performance. Unfortunately,
the use of metaheuristics in the optimization of ad hoc networks
(and concretely in VANETs) is still limited, and just a few
related approaches can be found in the literature.

In [16], a specialized cellular multiobjective genetic algo-
rithm was used for finding an optimal broadcasting strategy in
urban MANETs. In [17], six versions of a genetic algorithm
(GA) (panmictic and decentralized) were evaluated and used
in the design of ad hoc injection networks. A GA was also
employed by Cheng and Yang [18] for solving the multi-
cast routing problem in MANETs. Due to its specific design,
Shokrani and Jabbehdari [19] developed new routing protocols
for MANETs based on ant colony optimization. Particle swarm
optimization (PSO) algorithm has been used to manage the
network resources by Huang et al. [20], proposing a new
routing protocol based on this algorithm to make scheduling
decisions for reducing the packet loss rate in a theoretical
VANET scenario. More recently, García-Nieto et al. [21] opti-
mized the file transfer service (vehicular data transfer protocol)
in realistic VANET scenarios (urban and highway) by using
different metaheuristic techniques.

We evaluate here four different techniques: 1) PSO [22];
2) differential evolution (DE) [23]; 3) GA [24]; and 4) sim-
ulated annealing (SA) [25]. We have chosen these algorithms
because they represent a wide and varied set of solvers for real
parameter optimization based on different search/optimization
schemes and strategies. The popular network simulator ns − 2
[26] is used in the fitness function evaluation of the solutions

(tentative OLSR parameters) generated by the optimization
algorithms to guide the search process. A set of VANET in-
stances have been defined by using real data (road specification
and mobility) concerning an urban area in the city of Málaga,
Spain.

In summary, the main contributions of this paper are the
following.

1) We propose an optimization strategy in which a number
of metaheuristic algorithms are (separately) coupled
with a network simulator (ns − 2) to find quasi-optimal
solutions.

2) This optimization strategy is used in this paper to find
as fine-tuned as possible configuration parameters of the
OLSR protocol, although it could directly be used also for
a number of other routing protocols (AODV, PROAODV,
GPSR, FSR, DSR, etc.).

3) We obtain OLSR configurations that automatically out-
perform the standard one and those used by human ex-
perts in the current state of the art.

4) We generate a set of realistic VANET scenarios based in
the real area of Málaga, Spain. These instances are pub-
licly available online for the sake of future experiments.

The remainder of this paper is organized as follows. In
the next section, the OLSR routing protocol is introduced.
Section III describes the optimization design followed to tackle
the problem. Section IV presents the experiments carried out.
Results, comparisons, and analyses are shown in Section V. Fi-
nally, conclusions and future work are considered in Section VI.

II. PROBLEM OVERVIEW

Exchanging up-to-date information among vehicles is the
most salient feature of a VANET. To do so, the packets have to
travel through the network from one node to the others, which is
a complex task in networks having high mobility and no central
authority. The routing protocol operates in the core of VANETs,
finding updated paths among the nodes to allow the effective
exchange of data packets. For this reason, this paper deals with
the optimization of a routing protocol, specifically the OLSR
protocol [7].

This protocol has been chosen since it presents a series
of features that make it suitable for highly dynamic ad hoc
networks and concretely for VANETs. These features are the
following.

1) OLSR is a routing protocol that follows a proactive strat-
egy, which increases the suitability for ad hoc networks
with nodes of high mobility generating frequent and rapid
topological changes, like in VANETs [27], [28].

2) Using OLSR, the status of the links is immediately
known. Additionally, it is possible to extend the protocol
information that is exchanged with some data of quality
of the links to allow the hosts to know in advance the
quality of the network routes.

3) The simple operation of OLSR allows easy integration
into existing operating systems and devices (including
smartphones, embedded systems, etc.) without changing
the format of the header of the IP messages [27].



4) The OLSR protocol is well suited for high density net-
works, where most of the communication is concentrated
between a large number of nodes (as in VANETs) [28].

5) OLSR is particularly appropriate for networks with appli-
cations that require short transmission delays (as most of
warning information VANET applications) [28].

6) Thanks to its capability of managing multiple interface
addresses of the same host, VANET nodes can use dif-
ferent network interfaces (WiFi, Bluetooth, etc.) and act
as gateways to other possible network infrastructures and
devices (as drivers and pedestrian smartphones, VANET
base stations, etc.) [7].

The main drawback of OLSR is the necessity of maintaining
the routing table for all the possible routes. Such a drawback is
negligible for scenarios with few nodes, but for large dense net-
works, the overhead of control messages could use additional
bandwidth and provoke network congestion. This constrains the
scalability of the studied protocol.

However, this precise performance of OLSR significantly
depends on the selection of its parameters [9], [12], [29]. For ex-
ample, the detection of topological changes can be adjusted by
changing the time interval for broadcasting HELLO messages.
Thus, computing an optimal configuration for the parameters
of this protocol is crucial before deploying any VANET, since
it could decisively improve the QoS, with a high implication
on enlarging the network data rates and reducing the network
load. In addition, we have not considered a target application
in particular for this paper, although we are more interested
on final end-user services like infotainment, vehicle-to-vehicle
multiplayer gaming, content distribution and sharing, etc. Such
services rely on peer-to-peer communications and therefore
unicast routing protocols like OLSR.

All these features make OLSR a good candidate to be opti-
mally tuned and justifies our election, but nothing prevents our
methodology to be applied on new VANET protocols.

A. OLSR Protocol

OLSR is a proactive link-state routing protocol designed for
MANETs (VANETs), which show low bandwidth and high
mobility. OLSR is a type of classical link-state routing protocol
that relies on employing an efficient periodic flooding of control
information using special nodes that act as multipoint relays
(MPRs). The use of MPRs reduces the number of required
transmissions [30].

OLSR daemons periodically exchange different messages to
maintain the topology information of the entire network in the
presence of mobility and failures. The core functionality is
performed mainly by using three different types of messages:
1) HELLO; 2) topology control (TC); and 3) multiple interface
declaration (MID) messages.

1) HELLO messages are exchanged between neighbor
nodes (one-hop distance). They are employed to accom-
modate link sensing, neighborhood detection, and MPR
selection signaling. These messages are generated peri-
odically, containing information about the neighbor nodes
and about the links between their network interfaces.

TABLE I
MAIN OLSR PARAMETERS AND RFC 3626 SPECIFIED VALUES

2) TC messages are generated periodically by MPRs to
indicate which other nodes have selected it as their MPR.
This information is stored in the topology information
base of each network node, which is used for routing table
calculations. Such messages are forwarded to the other
nodes through the entire network. Since TC messages
are broadcast periodically, a sequence number is used to
distinguish between recent and old ones.

3) MID messages are sent by the nodes to report information
about their network interfaces employed to participate in
the network. Such information is needed since the nodes
may have multiple interfaces with distinct addresses par-
ticipating in the communications.

The OLSR mechanisms are regulated by a set of parame-
ters predefined in the OLSR RFC 3626 [7] (see Table I).
These parameters have been tuned by different authors with-
out using any automatic tool in [12] and [29], and they
are the timeouts before resending HELLO, MID, and TC
messages (HELLO_INTERVAL, REFRESH_INTERVAL, and
TC_INTERVAL, respectively); the “validity time” of the in-
formation received via these three message types, which
are NEIGHB_HOLD_TIME (HELLO), MID_HOLD_TIME
(MID), and TOP_HOLD_TIME (TC); the WILLINGNESS of
a node to act as an MPR (to carry and forward traffic to other
nodes); and DUP_HOLD_TIME, which represents the time
during which the MPRs record information about the forwarded
packets.

B. OLSR Parameter Tuning

The standard configuration of OLSR offers a moderate QoS
when used in VANETs [11]. Hence, taking into account the
impact of the parameter configuration in the whole network
performance, we tackled here the problem of the optimal OLSR
parameter tuning to discover the best protocol configuration
previously to the deployment of VANET. The standard OLSR
parameters are defined without clear values for their ranges.
Table I shows the standard OLSR parameter values, as specified
in the OLSR RFC 3626 [7]. The range of values each parameter
can take has been defined here by following OLSR restrictions
with the aim of avoiding pointless configurations.

According to that, we can use the OLSR parameters to
define a solution vector of real variables, each one representing
a given OLSR parameter. This way, the solution vector can
automatically be fine-tuned by an optimization technique, with
the aim of obtaining efficient OLSR parameter configurations
for VANETs, hopefully outperforming the standard one defined
in the RFC 3626 [7]. Additionally, analytic comparisons of



Fig. 1. Optimization framework for automatic OLSR configuration in VANETs. The algorithms invoke the ns − 2 simulator for solution evaluation.

different OLSR configurations and their performances as those
done in this paper can help the experts identify the main source
of communication problems and assist them in the design of
new routing protocols.

To evaluate the quality or fitness of the different OLSR
configurations (tentative solutions), we have defined a
communication cost function in terms of three of the most
commonly used QoS metrics in this area [9], [29]: 1) the packet
delivery ratio (PDR), which is the fraction of data packets
originated by an application that is completely and correctly
delivered; 2) the network routing load (NRL), which is the ratio
of administrative routing packet transmissions to data packets
delivered, where each hop is counted separately; and finally, 3)
the end-to-end delay (E2ED), which is the difference between
the time a data packet is originated by an application and the
time this packet is received at its destination.

III. OPTIMIZATION FRAMEWORK

As previously commented, the optimization strategy used to
obtain automatically efficient OLSR parameter configurations
is carried out by coupling two different stages: 1) an opti-
mization procedure and 2) a simulation stage. The optimization
block is carried out by a metaheuristic method, in this case one
of those previously mentioned, i.e., PSO, DE, GA, and SA.
These four methods were conceived to find optimal (or quasi-
optimal) solutions in continuous search spaces, which is the
case in this paper. We use a simulation procedure for assigning a
quantitative quality value (fitness) to the OLSR performance of
computed configurations in terms of communication cost. This
procedure is carried out by means of the ns − 2 [26] network
simulator widely used to simulate VANETs accurately [31]. For
this paper, ns − 2 has been modified to interact automatically
with the optimization procedure with the aim of accepting new
routing parameters, opening the way for similar future research.

As Fig. 1 illustrates, when the used metaheuristic requires
the evaluation of a solution, it invokes the simulation procedure
of the tentative OLSR configuration over the defined VANET
scenario. Then, ns − 2 is started and evaluates the VANET un-
der the circumstances defined by the OLSR routing parameters
generated by the optimization algorithm. After the simulation,

ns − 2 returns global information about the PDR, the NRL,
and the E2ED of the whole mobile vehicular network scenario,
where there were 10 independent data transfers among the
vehicles. This information is used in turn to compute the
communication cost (comm_cost) function as follows:

comm_cost = w2 · NRL + w3 · E2ED − w1 · PDR. (1)

The communication cost function represents the fitness func-
tion of the optimization problem addressed in this paper. To
improve the QoS, the objective here consists of maximizing the
PDR and minimizing both NRL and E2ED. As expressed in
(1), we used an aggregative minimizing function, and for this
reason, PDR was formulated with a negative sign. In this equa-
tion, factors w1, w2, and w3 were used to weigh the influence
of each metric on the resultant fitness value. These values were
set in a previous experimentation, although resulting in poor
solutions with low PDR and high NRL. We observed that in
VANETs (highly dynamic environments), the OLSR delivers
a great number of administrative packets, which increases the
NRL, hence damaging the PDR. Since we are interested in
promoting the PDR for the sake of an efficient communication
of packets, we decided in this approach to use different biased
weighs in the fitness function, being w1 = 0.5, w2 = 0.2, and
w3 = 0.3. This way, PDR takes priority over NRL and E2ED
since we first look for the routing effectiveness and second (but
also important) for the communication efficiency.

IV. EXPERIMENTS

The simulation task should offer a network environment as
close as possible to the real world environment. Following this
idea, we make an effort to define realistic scenarios, where
VANETs may be deployed. In this section, we define the urban
scenario used in our simulations. Next, we present the experi-
mental setup, taking into account the parameter settings for both
the metaheuristic algorithms and the ns − 2 simulation.

A. Urban VANET Scenario

Since ns − 2 is a network simulator of general purpose, it
does not offer a way for directly defining realistic VANET
simulations, where the nodes follow the behavior of vehicles



Fig. 2. Málaga real urban VANET scenario.

in a road, traffic lights, traffic signs, etc. To solve this problem,
we have used the Simulation of Urban MObility (SUMO) road
traffic simulator to generate realistic mobility models [32].
This tool returns traces with the mobility definitions that can
be used by ns − 2. The main advantage of employing traffic
simulators is that they can be used to generate realistic VANET
environments by automatically selecting real areas from freely
available digital maps (OpenStreetMap,1 as specified in Fig. 2),
taking into account road directions, traffic lights and signs,
etc. The VANET instance defined in this paper contains 30
cars moving through the roads selected of an area of 1200 ×
1200 m2 from the city downtown of Málaga (Spain) during 3
min. The area inside the dotted line box of Fig. 2 shows the
roads taken into account to define the VANET urban scenario
for our experiments. Through the simulation time, a set of cars
exchange data, and as in an urban road, their speed fluctuates
between 10 km/h (2.78 m/s) and 50 km/h (13.88 m/s).

For this VANET scenario, we have defined a specific data
flow trustworthy representing different possible communica-
tions that may exist. The data flow model performs 10 sessions
of a constant bit rate (CBR) data generator that operates over
user datagram protocol (UDP) agents defined in the nodes
(vehicles). This way, the interconnected vehicles exchange the
data generated by the CBR agents. The CBR data packet size
is 512 B, and the packet rate is 4 packets/s. The remaining
simulation parameters are summarized in Table II for future
reproduction purposes. We have chosen a fixed data rate since
we do not aim to study the maximum throughput, but we want
to investigate the ability of OLSR to successfully find and keep
routes.

B. Experimental Setting

The experiments have been carried out by using four meta-
heuristics (PSO, DE, GA, and SA). The implementation of
these algorithms is provided by MALLBA [33]: a C++-based
framework of metaheuristics for solving optimization prob-
lems. Additionally, we have employed a random search al-
gorithm (RAND) also developed in C++. To compare these

1http://www.openstreetmap.org/

TABLE II
MAIN PARAMETERS DEFINED FOR THE ns − 2 SIMULATION

TABLE III
PARAMETERIZATION OF THE OPTIMIZATION ALGORITHMS

five methods in the OLSR parameter tuning, they have been
executed to reach the same stop condition, i.e., 1000 fitness
function evaluations. SA and RAND are performed 1000 itera-
tion steps, and the population-based algorithms performed 100
generations with populations of 10 individuals (100 × 10 =
1000) for each one of them. The main parameters of these
algorithms are summarized in Table III. The simulation phase
is carried out by running ns − 2 simulator version ns − 2.34
using the UM-OLSR (version 0.8.8)2 implementation of OLSR.
We have performed 30 independent runs of every optimization
technique on machines with Pentium IV 2.4-GHz core, 1 GB of
RAM, and O.S. Linux Fedora core 6.

2http://masimum.dif.um.es/?Software:UM- OLSR



TABLE IV
RESULTS OBTAINED BY METAHEURISTIC AND RANDS IN THE

OPTIMIZATION OF OLSR FOR OUR VANET SCENARIO. RESULTS

OF THE STATISTICAL TESTS OF FRIEDMAN AND

KRUSKAL–WALLIS (KW) ARE ALSO PROVIDED

Fig. 3. Metaheuristic and RAND best fitness value evolution when solving
the OLSR configuration problem.

V. RESULTS

This section presents the experimental results from four
different points of view. First, we show metaheuristic and
RAND performances when solving the OLSR optimization
problem. Second, we compare the obtained OLSR parame-
ter configurations against several configurations found in the
literature. Third, the obtained solutions are also evaluated on
multiple different scenarios to check whether optimized OLSR
parameters can be used in general or not. Fourth, we analyze the
influence of the different OLSR parameters in the global QoS
provided by the network.

A. Performance Analysis

Table IV shows the mean and standard deviation of the
communication cost values obtained (out of 30 independent
executions) running all the evaluated metaheuristics and the
RAND for the VANET scenario instance. The best, median, and
worst values are also provided.

We can clearly observe in this table that SA outperformed
all the other algorithms in terms of mean (−0.450297), me-
dian (−0.457451), and worst (−0.406932) communication cost
values. According to these measures, SA obtained the best
results, followed by DE, PSO, and GA, respectively. Finally,
as expected, the RAND obtains worse results than all the
metaheuristic algorithms.

In terms of the best OLSR configuration returned by the
algorithms (third column), PSO computed the solution with
the lowest communication cost (see Fig. 3). The best OLSR
parameter settings obtained by DE, SA, and GA are the second,
third, and forth, respectively. The RAND best OLSR configura-
tion is the least competitive one.

TABLE V
MEAN EXECUTION TIME PER INDEPENDENT RUN OF EACH ALGORITHM

TABLE VI
RANKINGS IN TERMS OF BEST RETURNED SOLUTION, TIME TO FIND

THE OPTIMUM Tbest, AND MEAN EXECUTION TIME Trun

With the aim of providing these comparisons with statistical
confidence, we have applied the Friedman and Kruskal–Wallis
tests [34] to the distributions of the results. We have used these
nonparametric tests since the resulting distributions violated the
conditions of equality of variances several times. The confi-
dence level was set to 95% (p − value = 0.05), which allows
us to ensure that all these distributions are statistically different
if they result in p − value < 0.05.

In effect, confirming the previous observations, the results
of Friedman (see sixth column of Table IV) test ranked SA
as the algorithm with the best global performance followed by
DE, PSO, and GA, respectively. The random search (RAND)
showed the worst rank among the compared techniques. More-
over, the multicompare test of Kruskal–Wallis applied to the
median values of the distributions resulted in p − values �
0.05 (last column of Table IV). Therefore, we can claim that all
the compared algorithms obtained statistically different results.

According to the behavior of the optimization algorithms, we
now study the evolution of the best solution (communication
cost value) during the whole evolutionary process. Fig. 3 plots
the graph of the best communication cost (fitness value) tracked
throughout the best execution for each algorithm. We can
observe that DE, PSO, and SA converge in the same range
of solutions. However, their evolution is different. The major
improvement of the DE solution occurs during the first steps of
the execution, unlike what happens with PSO that improves its
solution during the last steps. SA, the best ranked algorithm ac-
cording to the Friedman test, performs several gradual solution
improvements during the whole execution.

Finally, concerning the mean run time that each algorithm
spent in the experiments, Table V shows the mean time in
which the best solution was found Tbest (second column) and
the global mean run time Trun (third column).

GA shows the shortest time (2.04E + 04 s) to find its best
solutions, and it seems that this algorithm quickly falls in local
optima, hence obtaining weak results (see Table IV). Globally,
PSO needed the second shortest time (3.05E + 04 s) to com-
pute its optima followed by DE, RAND, and SA, respectively.

In terms of mean run time Trun, random search takes shorter
times (4.36E + 04 s) than the other algorithms since it has
less internal operations. However, this algorithm converges to



TABLE VII
OLSR PARAMETER VALUES IN CONFIGURATIONS OF THE STATE OF THE ART (GOMEZ ET AL.),

THE STANDARD RFC 3626, AND THE BEST SOLUTIONS IN OPTIMIZATION ALGORITHMS

TABLE VIII
QoS COMPARISONS OF CONSIDERED OLSR CONFIGURATIONS

the weakest solutions. PSO is the metaheuristic that spent the
shortest mean running time (5.38E + 04 s) followed by DE,
SA, and GA, respectively.

According to Table V, the analyzed algorithms use between
4.36E + 04 and 1.18E + 05 seconds (12.11 and 32.66 h, re-
spectively) to finish each execution. This effort in the proto-
col design is completely justified by the subsequent benefits
obtained in the global quality of service once the VANET is
physically deployed (see Section V-B).

Table VI summarizes three rankings of the compared algo-
rithms in terms of the mean fitness quality Meanfitness when
solving the OLSR optimization problem, the mean time in
which the best solution was found Tbest, and the mean run time
Trun. In light of these results, we can claim that SA performs
the best in terms of quality of solutions, although spending a
higher time than other algorithms like PSO and DE to converge
to such accurate solutions. In contrast, PSO offers the best
tradeoff between the solution quality and the time required to
find it. This is in fact a typical behavior of PSO [35], where the
early convergence to successful solutions it performs makes this
algorithm useful for time consuming problems as the choice
for the present paper. This way, we can offer accurate OLSR
configurations to experts in reasonable design times.

Thus, the best algorithm if there is not any time restriction
is SA, since it is the one ranked with the best global perfor-
mance. However, PSO offers the best tradeoff between the time
requirements and the quality of the returned solution.

B. Optimized Versus Human Expert Configurations

In this section, we focus our analysis to the solution domain
point of view. Then, we compare the resulted OLSR configu-
rations in terms of selected QoS indicators (PDR, NRL, and
E2ED). To start with, we can see in Table VII the OLSR para-
meter settings considered for comparison in this analysis. In this
table, columns 2–4 contain three human expert configurations
(#1, #2, and #3), as proposed by Gómez et al. [12]; columns
5 and 6 contain the OLSR configurations of the standard RFC
3626 and the one obtained by the random search, respectively;

and columns 7–10 show the best OLSR configurations obtained
by each of the four metaheuristic algorithms studied in this
paper: PSO, DE, GA, and SA.

The results of simulating our VANET scenario instance of
Málaga city with these OLSR configurations are presented in
Table VIII. Our observations are the following.

1) Examining the PDR indicator, we can effectively check
that the four metaheuristic algorithms obtained a 100%
contrast with the RAND that achieved 94.12% and the
remaining configurations that obtained PDRs between
71.43% and 93.34%. This is an important issue in highly
dynamic VANETs since a low PDR directly implies a
higher packet loss, which makes the OLSR protocol
generate additional administrative packets with an impact
in the network congestion.

2) Concerning the NRL, similar results can be observed.
That is, almost all the optimized OLSR configurations
showed better routing loads than the other proposals.
Only GA (the worst-ranked metaheuristic) obtained an
NRL (13.12%) worse than the two obtained by the
standard configuration and RAND (9.52% and 6.93%,
respectively), although it was better than the three human
expert configurations (#1 with 89.54%, #2 with 32.48%,
and #3 with 14.13%). In general, DE generated the lowest
routing load (2.71%) followed by PSO (2.90%). These
results contrast with all the other configurations since DE
and PSO outperformed the rest by one order of magnitude
(two in the case of #1). Reducing the routing load is
important since this is a way to reduce the possibility
of network failures related to the congestion problem in
VANETs [6].

3) Finally, in terms of the E2ED, we can notice that SA
obtained the best result (4.73 ms), followed by human
expert configurations (Gómez et al.), standard RFC 3626,
and RAND. In this case, the remaining metaheuristic
algorithms (PSO, DE, and GA) showed a moderate per-
formance. Evidently, the low routing load experimented
in these configurations limited the routing management



Fig. 4. Three different scaling areas of the selected network topology.

operations, hence making the average E2ED worse than
the other configurations with high routing load. However,
it is remarkable that all the optimized OLSR parameter
settings analyzed here send the packets with a delay
shorter than 20 ms, which is the highest allowed latency
for cooperative vehicular applications [2], the most criti-
cal ones.

C. Optimized Configurations on Multiple Scenarios

Once we have shown the benefits of using our approach
on the optimized scenario, in this section, we evaluate the
obtained OLSR configurations on multiple different scenarios.
This way, we aim to validate optimized parameters on different
conditions of traffic density, network use, and area dimension.
For this task, we have carried out an extensive set of validation
experiments including the simulation of 54 different urban
VANET scenarios. Then, we evaluate the results in terms of
four routing QoS metrics: PDR, NRL, E2ED, and routing
path length (RPL).

For the scenario definitions, three different geographical area
sizes have been selected from the downtown of Málaga by using
SUMO to study the scalability of our approach (see Fig. 4).
Additionally, we have extended our analysis by studying how
do various road traffic situations affect the routing performance.
Thus, we have generated three different road traffic densi-
ties (number of vehicles moving through the roads) for each
geographical area: L (low), M (medium), and H (high). In
these scenarios, L represents traffic situations with the lowest
number of vehicles so that the vehicles have greater freedom of
mobility. On the contrary, H has the largest number of vehicles,
and it suffers from some situations of road traffic congestions,
mainly at the crossroads. Finally, M is an intermediate traffic
situation between L and H . The vehicles move through the
roads during 180 s.

In each scenario, a number of unicast data transfers are
carried out by pairs of VANET nodes that use one-hop and
multihop communications. The vehicles communicate with
each other by exchanging the data generated by a CBR gen-
erator during 30 s. The number of vehicles that generates
the information (CBR sources) to be sent to the other nodes

depends on the VANET scenario (see Table IX). In turn, we
have defined different VANET instances by using six different
network data loads (traffic data rates) to analyze the capacity
of our routing approaches with different workloads. Those are
grouped in low rates (33, 66, and 100 kb/s) and high rates (333,
666, and 1000 kb/s). The vehicles network devices employ
one of the evaluated OLSR parameterizations to compute the
routing paths among the VANET nodes. The VANET nodes
are set with UDP as the transport layer protocol. The physical
and data link layers are tuned by following the specifications
of the IEEE 802.11p standard by using Mac802_11Ext and
WirelessPhyExt ns − 2 modules. As in [36], we have in-
cluded in the simulations the fading Nakagami radio propaga-
tion model representing the WAVE radio propagation in urban
scenarios [37]. Table IX summarizes the main features of the
network used in our VANET simulations. All these VANET
instances are publicly available online for the sake of future
experiments (http://neo.lcc.uma.es/vanet).

Table X presents for each OLSR configuration found using
metaheuristics and RANDs the median values for each studied
metric, computed in the simulations performed over the 54
different VANET scenarios. The results are compared with the
values obtained in the simulations performed with the standard
OLSR configuration suggested by RFC 3626. The best median
values obtained for each metric are marked in bold. From these
results, a series of observations are made as follows.

1) Concerning the PDR metric, we check that the number
of packets delivered is generally reduced with the size
of the geographical area. The GA and SA configurations
obtained the best PDR in the U1 scenario (99.95%), PSO
in the U2 scenario (86%), and RFC in the U3 scenario
(86.71%). Globally, in terms of median results, the high-
est PDR is obtained by the RFC configuration (89.56%).
However, the differences between the performances of all
the configurations in terms of this metric are just between
1% and 5%.

2) In terms of routing workload (NRL), we can observe
from Table X that the configurations obtained by SA and
DE show better values, so they can even decrease the
NRL along with the scenario size. In particular, scenario
U2 seems to be a source of high routing loads since,
practically, for all solutions (except those of SA and
DE), this indicator is increased. In general, optimized
OLSR configurations improve the NRL since for the three
scenarios, the standard configuration of RFC shows the
worst value (overall NRL = 23.15%), and it is twice that
obtained by DE, which is the best one (11.98%).

3) If we examine the E2ED, we observe that the required
time to deliver the packets is higher with the scenario
area dimension. The OLSR configuration optimized by
GA required the shortest E2ED in U1 and U2 scenarios
with 2.10 and 3.81 ms, respectively. In scenario U3, DE
obtained the best E2ED (19.19 ms). Globally, the shortest
median E2ED is obtained by SA with 4.04 ms.

4) In terms of the computed routing paths (RPL), GA ob-
tained the shortest paths in the U1 scenario, and the RFC
configuration used the shortest paths in scenarios U2 and



TABLE IX
DETAILS OF THE VANET SCENARIOS AND NETWORK SPECIFICATION

TABLE X
MEDIAN RESULTS OF THE VALIDATION EXPERIMENTS

U3. In general, the median path lengths obtained by the
standard parameters of OLSR required the lower number
of hops. In this case, the higher frequency of routing
information exchange maintains the routing tables up to
date, although generating a higher routing load.

In summary, we can confirm that automatically tuned OLSR
configurations by metaheuristics offer the best tradeoff between
the four QoS metrics in the scope of the multiple scenario con-
ditions analyzed here. The solutions obtained by metaheuristic
algorithms show high rates of packet delivery (> 84%) and
low values of routing load (< 16.5%), end to end delays
(< 10.3 ms), and routing paths lengths (< 2 hops). The standard
RFC solution also reached accurate median values of PDF
(88.9%) but with the drawback of a high routing load (> 23%),
which is a critical concern in this kind of network.

D. Global QoS Analysis

In this section, we analyze the impact of some interesting
OLSR parameters in the global performance of a given configu-
ration. Table VII presents the configurations taken into account
in this paper.

Generally, according to our tests, reducing the
HELLO_INTERVAL and TC_INTERVAL parameters may
help to improve the OLSR reactivity to route changes and
link failures; for this reason, the shorter the HELLO and TC
intervals, the lower the E2ED (see Gómez et al. [12], as well
as RFC and RAND OLSR parameter settings in Tables VII
and VIII). Nevertheless, this causes an increase in protocol
load (NRL) being very likely to cause network congestion and
packet loss (lower PDR), that is, reducing the number of nodes
that can be accurately communicating in the network. In fact,
as TC messages are broadcast to the whole network, the NRL
is reduced critically by increasing TC_INTERVAL parameter
(see DE and PSO OLSR parameter settings in Table X).

Something similar happens with the NEIGHB_
HOLD_TIME and the TOP_HOLD_TIME timers because in
the optimized OLSR they are larger than the other ones. The
need for protocol management information update seems to be
lower than that proposed by Gómez and in OLSR 3626 RFC
configurations, since the communications carried out by using
the PSO, DE, GA, and SA OLSR settings correctly exchanged
more than 84% of the data packets within a time of smaller
than 20 ms (highest allowed latency).

VI. CONCLUSION

In this paper, we have addressed the optimal parameter
tuning of the OLSR routing protocol to be used in VANETs by
using an automatic optimization tool. For this task, we have de-
fined an optimization strategy based on coupling optimization
algorithms (PSO, DE, GA, and SA) and the ns − 2 network
simulator. In addition, we have compared the optimized OLSR
configurations with the standard one in RFC 3626 as well as
with human expert configurations found in the current state of
the art. In turn, we have validated the optimized configurations
found by comparing them with each other and with the standard
tuning in RFC 3626 and studying their performance in terms of
QoS over 54 VANET scenarios. These urban VANET instances
are based on real data of the downtown of Málaga. In the light
of the experimental results, we can conclude the following.

1) In terms of the performance of the optimization tech-
niques used in this paper, SA outperforms the other stud-
ied metaheuristic algorithms when solving the defined
OLSR optimization problem because it is the best ranked
after the Friedman test. However, PSO presents the best
tradeoff between the performance and the execution time



requirements. In turn, a parallel version of PSO running
in multiple processors can also further reduce the com-
putational time derived from large VANET simulations.
This way, we can offer accurate OLSR configurations to
experts in reasonable design times.

2) When using the automatically tuned configurations over
the VANET scenario employed during the optimization
task, all the packets are delivered correctly (PDR =
100%), increasing the PDR regarding the standard con-
figuration by 8.34% and between 6.66% and 28.57%
regarding the other expert-defined configurations. In turn,
the use of the optimized configurations dramatically re-
duces the routing load generated by OLSR.

3) Globally, the validation experiments show that the op-
timized configurations reduced the network workload,
generating about the half of the routing load than the
RFC 3626 configuration. By reducing the routing load,
the routing tables are updated less frequently, calculating
routing paths 27% longer than the standard version. Nev-
ertheless, the mitigation of the OLSR-related congestion
problems by optimized configurations generally allowed
to shorten the packet delivery times. In turn, these features
were obtained while keeping the degradation of amount
of delivered data lower than 5%.

4) According to these results, the automatically tuned
OLSRs by using metaheuristics are more scalable than
the standard version because they are less likely to be
affected by medium access and congestion problems.
Specifically, the PSO obtained configuration obtained the
best tradeoff between the QoS and the routing workload.

The optimization methodology presented in this paper (cou-
pling metaheuristics and a simulator) offers the possibility
of automatically and efficiently customizing any protocol for
any VANET scenario. We can now provide the experts in
this area with an optimization tool for the configuration
of communication protocols in the scope of VANETs. Cur-
rently, several research projects, i.e., European (CARLINK
http://carlink.lcc.uma.es) National (RoadMe http://roadme.
lcc.uma.es), and Regional (DIRICOM http://diricom.lcc.
uma.es), are taking the most of our approach.

As a matter of future work, we are currently extending our
experiments with new still larger urban and highway VANET
instances. In this line, we are tackling the problem with parallel
versions of metaheuristic algorithms to solve time-consuming
issues derived from large simulations. We are also defining
new optimized configuration schemes for other communication
protocols such as WAVE, UDP, etc., which should efficiently
support actual VANET design. Concerning the improvement
of the QoS of the network, we are considering the use of
infrastructure nodes, the Global Positioning System, security
protocols, and sensing information. Finally, we are planning
new real tests (using vehicles traveling through different kinds
of roads) to validate our simulations.
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