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Abstract: This manuscript deals with the situation in which the different agents or buses in a power
network have access to local renewable resources and must manage its use in a distributed fashion.
The buses distributedly decide the amount of power to be generated using their local renewable
power plants, and that to be demanded from the grid. The decisions are made according to the
optimization of a cost function that considers both economic and technical factors. The problem is
approached resorting to a game-theoretical framework that requires a negotiation process among
the neighboring buses. An iterative algorithm is proposed in order to solve this problem, providing
existence and convergence conditions under which the buses reach a suitable equilibrium. The
algorithm performance is tested in simulations over a modification of the IEEE 14-bus system, in
which the lines are modeled as resistances and distributed generation is considered. Simulations on a
network of 44 buses are also included to show the scalability of the method.

Keywords: game theory; DC grids; renewable energy

1. Introduction

The electric power system is defined as a network of electrical components deployed to
supply, transfer, store, and use electric power. Traditional power systems have a top-down
operated architecture in which their components can be broadly classified as generators that
supply the electric power; the transmission system that carries the power to the load centers;
and the distribution system that feeds the loads. This paradigm is now being altered by
the creation of real-time electricity markets and the integration of the so-called prosumers,
that is, agents at the electricity grid that can both consume and produce power. This new
situation, on the one hand, creates new opportunities for a better network regulation and
penetration of renewable energy and, on the other hand, introduces new needs for real-time
communication and control algorithms.

Although there is a controversial debate about the current effects of the electricity
liberalization on electricity prices, it is clear that the real implementation of competitive
markets should lead to efficiency gains in the economy, thus reducing electricity prices.
More importantly, this paradigm allows the system to integrate distributed renewable
generation plants, reducing wholesale prices [1] and fulfilling the environmental objectives.
As an example, in Europe, the goal is to double the production of energy from renewable
sources in only 10 years, which, given the distributed and variable nature of renewable
energy plants, represents a tremendous challenge for the grid and introduces the need of
new distributed algorithms to preserve network stability [2].

This manuscript considers a liberalized market in which each bus or agent is capable
of making real-time decisions according to economical and technical factors. The problem
is formulated for DC grids, which, in comparison to conventional AC networks, provide
certain advantages, as, for example, the absence of reactive power or an efficient integration
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with small distributed generation units, whose power is obtained in DC, and with common
appliances, which operate using a DC voltage [3]. In addition, DC networks do not have
synchronization requirements, which drastically reduce the complexity in the control of
the system [4].

On the other hand, DC networks have some associated disadvantages over the tradi-
tional AC transmission system. Perhaps the main one is that, due to commutation problems,
electrical power cannot be produced with a high DC voltage, and the voltage cannot be
increased by using a power transformer. In addition, circuit breakers for DC systems are
more expensive than those for AC systems. Anyway, the proposed approach can be
extended to AC networks under the hypothesis of near-zero angles in the different voltage
buses (see, for instance, [5]).

Obviously, the decisions taken by the different buses, if acting purely as selfish agents
minimizing their costs, can dramatically affect the voltage regulation of the grid, making
the power flow unfeasible or extremely inefficient. This way, coordination and negotiation
algorithms become crucial for the real implementation of these paradigms. In this context of
competition, many authors have resorted to Game Theory, which is a branch of mathematics
that study the interaction and decision of rational players or agents whose goals can be in
opposition (non-cooperative games), see reference [6]. This mathematical modeling has
been used to cope with this kind of problems in electric systems ([7]). In [8], a problem
in which a set of generators must choose the price of selling of the energy generated is
introduced. A bid adjustment algorithm is presented for the resulting Bertrand competition
game, which is a rather well-known non-cooperative game in which, at each iteration,
the sellers (generators) change their bids and the system operator decides how much
production to allocate to each of them. In [9,10], the authors propose a non-cooperative
game-theoretic framework to study the strategic behavior of distributed microgrids that
generate renewable energies. The former is based on a sequence of linearized games;
meanwhile, the latter extends the previous work to a distributed and resilient fashion.
Another similar approach can be found in [10], where the game is stated over an AC
microgrid using an approximation to DC considering that the angle of the different voltage
buses are near zero [5]. Furthermore, in [11] a non-cooperative game-theoretic framework
for optimally controlling energy storage systems (ESSs) in power distribution networks
is proposed. In that context, the work not only takes into consideration economic factors
but also grid stability aspects, including the power flow constraints. Game Theory has
also been applied to the demand-side management problem in which the users intend to
reduce their monetary expenses by producing or storing rather than just purchasing their
energy needs from the grid [12,13]. Finally, in [14], several distributed schemes to solve
the optimal power flow problem in power systems are presented. However, none of them
model and solve the problem in a realistic non-cooperative fashion, modeling the selfish
nature of involved actors.

This manuscript studies a situation in which (all of some of) the grid buses or agents
are capable of making decisions according to local interests (cost functions). These decisions
are encapsulated through the voltage levels at each bus, which can be controlled using the
converter interfaces of the distributed generators. In these cost functions, both economical
and stability factors are considered. Each bus is able to manage a limited renewable
generation unit, whose generated power affects the bus costs/revenues, to its voltage level,
and to the losses in the lines. In order to reach a suitable equilibrium, the article proposes a
new algorithm based on a negotiation process that can be formulated as a non-cooperative
game. The algorithm has the following features:

• The decisions can be taken in a distributed and negotiated manner.
• The algorithm ensures both the consideration of local (economic) objectives and the

fulfillment of physical and operational limitations of the grid.
• The privacy of the different buses is preserved, and therefore there is no sensible

information, as locally produced and demanded power, operation costs or local power
generation limits is shared.
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• An analysis of the negotiation algorithm is developed when the decisions of the buses
are subjected to constraints that evolve during the negotiation. This constitutes a
mayor theoretical extension compared to other preliminary results obtained by the
authors in [15,16].

• Local conditions to ensure the convergence to a suitable equilibrium are provided.

The above-mentioned dynamical evolution of the constraints appears as a result of
the explicit consideration of limitations in the power lines, which depends on the decisions
made by the agents or buses. To the best of the authors’ knowledge, this is the first
time that this problem is tackled explicitly including these limitations, which involves a
relevant difficulty to the convergence analysis, and it has been typically neglected (see,
for instance, [10]) or approximated by a fixed value. For instance, Ref. [11] considers a
fixed bound in the active power transference; however, this bound physically evolves
with the voltage level at the line extremes. Related to this, another main contribution of
the article is the development of conditions to ensure the existence and convergence of
the negotiation algorithm that can be locally checked. Differently from other negotiation
algorithms such as [9], here each bus can distributedly modify the weights in its local cost
function without exchanging critical information with the rest of the network. Finally, the
proposed algorithm preserves buses privacy and does not share any critical information
during the negotiation and, differently from [10], each bus only requires knowledge about
the parameters of adjacent power lines.

This manuscript is organized as follows: Section 2 presents the problem setup and
the grid model. In Section 3, the problem is formally stated together with the assumption
needed. Section 4 introduces a game-theoretical-based algorithm in order to solve the
problem. The conditions under which the problem can be solved are presented in Section 5.
Finally, some simulation examples are drawn in Section 6 and conclusions are exposed
in Section 7.

Notation 1. A graph is an ordered pair G = (V , E) comprising a set V = {0, 1, . . . , n} of
vertices or buses, and a set E ⊂ V × V of edges or power lines. An undirected graph is a graph
in which edges have no orientation, so that, if (i, j) ∈ E , then (j, i) ∈ E . The neighborhood of i,
Ni , {j : (i, j), (j, i) ∈ E} is defined as the set of vertices with edges connected to vertex i. [A]ij
denotes the element in the i-th row and j-th of the matrix A. Finally, [x]i denotes the i-th element of
the vector x.

2. Problem Set up and Grid Modeling

Consider a direct-current power network comprising a set of buses V = {0, 1, 2, . . . , n}
connected according to a given undirected graph G = (V , E), where E represents the set
of power lines between the buses. Consider also that each bus is endowed with a smart
device able to measure and process the electric variables of the bus, and to communicate
with neighboring buses through the power lines (see, for instance, [17]). Moreover, each
bus i ∈ V must feed a local load that demands a power, Pl,i, and may have access and
control a local renewable energy plant to generate power Pg,i.

Let Ij−i denote the current incoming from bus j to bus i (Ij−i = −Ii−j), Il,i the current
demanded by the load of bus i, and Ig,i the current injected by bus i through its local
renewable plant. Finally, let Ui be the voltage level at bus i. The power line from bus i to j
is modeled as a resistor Ri−j (please note that Ri−j = Rj−i). The resistance of the parallel of

all resistors connected to bus i is denoted by R||i .
Applying the Kirchhoff’s current law at bus i, it yields that (see Figure 1):

Il,i = ∑
j∈Ni

Ij−i + Ig,i. (1)
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Analogously, applying the Ohm’s law to all the lines incoming to bus i, and substitut-
ing the current value in the above equation, it yields that:

Il,i = ∑
j∈Ni

Uj −Ui

Ri−j
+ Ig,i.

Finally, taking into account that the power demanded by the local load is Pl,i = Ui Il,i
and that the generated power can be expressed as Pg,i = Ui Ig,i, the above equation can be
rewritten as follows:

Pg,i = U2
i

1

R||i
−Ui ∑

j∈Ni

Uj

Ri−j
+ Pl,i. (2)

It is worth pointing out that the generated power Pg,i is quadratic on the bus voltage,
Ui, and depends linearly on Uj, for j ∈ Ni. Thus, Pg,i = Pg,i(Ui, U−i), where U−i stands for
a vector composed by all the buses’ voltages except that of bus i.

We consider the following constraints due to physical and operational limitations:

Figure 1. Current balance at bus i.

Constraint 1. The buses voltages are upper and lower bounded by Um
i and UM

i , in such a way
that:

Um
i ≤ Ui ≤ UM

i , ∀i ∈ V . (3)

Constraint 2. The current carried by the power line connecting any pair of buses i and j is upper
bounded by Ii−j:

|Ii−j| ≤ Ii−j, ∀i ∈ V , ∀j ∈ Ni. (4)

Constraint 3. The amount of power generated with renewable resources at each bus is upper
bounded by Pg,i:

0 ≤ Pg,i ≤ Pg,i, ∀i ∈ V . (5)

Finally, we introduce two assumptions related to the capabilities of the buses required
to implement the distributed voltage regulation proposed in this article.

Assumption 1. Each bus i ∈ V can control the power generated by its renewable energy plant
within the bounds defined in (5).

Assumption 2. Each bus i ∈ V knows of the parameters of the adjacent power lines, Ii−j and
Ri−j, for all j ∈ Ni, and the power demanded by its local load, Pl,i.

The parameters of power transmission lines, such as resistance and reactance, are
often known by the electrical system operator. Thus, since we are considering a smart
real-time power electric market seems logical to assume that this knowledge is available by
each of the generators. Note that this assumption is weaker than the one in [10], where the
whole set of parameters were known by all the agents of the microgrid.

3. Problem Formulation

This section introduces the problem under consideration. As it will be formally stated,
the goal of every bus i in the grid will be to optimally decide the power generated with
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renewable resources, Pg,i, by communicating and negotiating with neighboring nodes to
minimize its local costs and fulfill the physical and operational constraints of the grid.
Furthermore, to preserve privacy of its operation, each bus i does not share information
about locally produced and demanded power, operation costs or local power generation
limits. Instead, taking into account the direct relation between Ui and Pg,i in (2) (for fixed
U−i), they only communicate proposals for the buses voltages, and reformulate the problem
as choosing Ui.

In order to model the local costs, we propose a cost function that takes into considera-
tion multiple factors:

• The expenses (revenue) for consuming (injecting) energy from (to) the grid, given by:

CEN
i (Pg,i) = σ1,i(Pl,i − Pg,i) (6)

where σ1,i ≥ 0 model the marginal cost (revenue).
• The contribution of the bus to the voltage stability of the grid, penalizing the difference

between the bus voltage level Ui and its reference value:

CST
i (Ui) = σ2,i(U

re f
i −Ui)

2, (7)

where σ2,i ≥ 0 is a fixed weight and Ure f
i is the reference voltage of the grid.

• The minimization of the electric losses in the adjacent lines of each bus, which are
penalized by:

CLO
i (Ui, U−i) = σ3,i ∑

j∈Ni

(Uj −Ui)
2

Ri−j
, (8)

where σ3,i ≥ 0 is a fixed weight.
• The cost of operation and maintenance (O&M) of the renewable resource that is given

by [18]:
CO&M

i (Pg,i) = σ4,i + σ5,iPg,i, (9)

where σ4,i ≥ 0 is a fixed cost and σ5,i is the marginal cost of O&M (σ1,i > σ5,i ≥ 0).
There are in the literature other ways of modeling the O&M cost (for a broader study
on this topic, the author is referred to [19]).

Taking into account the above-described factors, the following cost function can be defined:

Ji(Ui, U−i) = CEN
i (Pg,i) + CST

i (Ui) + CLO
i (Ui, U−i) + CO&M

i (Pg,i), (10)

where Pg,i(Ui, U−i) is given in (2).
Current Ii−j flowing from bus i to j directly depends on voltages Ui and Uj through

Ohm’s law. In addition, the power generated by agent i, Pg,i, depends on the local voltage
Ui and the voltages of the neighboring buses U−i through Equation (2). Hence, Ii−j(Ui, Uj)
and Pg,i(Ui, U−i) and therefore all Constraints 1, 2, and 3, can be written in terms of the
local and neighboring voltages Ui, U−i.

Let us define US
i ,U I

i ,UP
i as the sets:

US
i , {Ui : Um

i ≤ Ui ≤ UM
i }, ∀i ∈ V , (11)

U I
i , {Ui : −Ii−j ≤ Ii−j ≤ Ii−j, ∀j ∈ Ni}, ∀i ∈ V , (12)

UP
i , {Ui : 0 ≤ Pg,i ≤ Pg,i}, ∀i ∈ V . (13)

In order to meet all the constraints, the voltage of bus i must belong to the feasible
set Ui , {Ui : Ui ∈ US

i ∩ U
I
i ∩ UP

i }. The complete feasible voltage set is defined as
U , {[U1 U2 . . . Un]> : U1 ∈ U1, U2 ∈ U2, . . . , Un ∈ Un}.

We are now in the position to formally state the distributed voltage regulation problem.
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Problem 1. The objective of each bus i ∈ V involved in the power network is to optimally choose
the voltage Ui such that:

Ui = arg min
Ui

Ji(Ui, U−i)

s.t. Ui ∈ US
i ∩ U

I
i ∩ UP

i

A last assumption concerning the feasibility of the problem is introduced.

Assumption 3. There exists a set of voltages U = [U1 U2 . . . Un]> such that U ∈ U .

Please note that this assumption is directly fulfilled if the power flow has at least one
feasible solution, which is obviously required.

4. Distributed Voltage Regulation

Observe that Problem 1 cannot be locally solved, since the buses ignore and cannot
select the voltages of their neighbors, which are required to compute the terms (6), (8)
and (9) of the cost function and to check the current and power constraints (4) and (5). In
order to overcome this difficulty and find a solution for the optimization problem described
above, an iterative algorithm based on non-cooperative Game Theory is proposed.

4.1. Description of the Problem as a Non-Cooperative Game

Let us consider each bus of the grid as a player in a non-cooperative game framework
and assume, continuing with the arguments presented in the previous section that the
buses or players have individual or local objectives and, hence, they do not fully cooperate.
Therefore, consider a non-cooperative game-theoretical scenario defined over:

• The set of players or buses V .
• The payoff or cost function Ji associated with every player i ∈ V .
• The set of feasible decisions Ui for every player i ∈ V .

Considering competitive buses, it is assumed that a Nash equilibrium is a desirable
set of decisions.

Definition 1. A Nash equilibrium of the game is a situation in which no player (bus) changes its
decision (bus voltage) as long as the rest of the buses keeps the same decision as well. Mathematically,
a Nash equilibrium is defined by a set of decisions U∗ , [U∗1 U∗2 . . . U∗n ]> ∈ U such that

U∗1 = arg min
U1

J1(U∗1 , U∗−1), . . . , U∗n = arg min
Un

Jn(U∗n , U∗−n).

Please note that Assumption 3 does not directly imply that the game admits a Nash
equilibrium. Although the feasible set is non-empty, it is possible that none of the feasible
solutions is adequate for all the players at the same time. Therefore, we have to deal with
the existence of a Nash equilibrium for the proposed game. However, prior to that, it is
convenient to introduce the next results.

Proposition 1. The cost function (10) can be rewritten as:

Ji(Ui, U−i) = αiU2
i −Ui

(
2σ2,iU

re f
i + γi ∑

j∈Ni

Uj

Ri−j

)

+ σ3,i ∑
j∈Ni

U2
j

Ri−j
+ σ4,i + σ5,iPl,i + σ2,iU

re f
i

2
(14)

where
αi = σ2,i +

−σ1,i + σ3,i + σ5,i

R||i
, γi = −σ1,i + 2σ3,i + σ5,i.
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Proposition 2. The set U I
i can be written as U I

i ,
⋂

j∈Ni
U I

i−j, where U I
i−j is composed by every

Ui such that
Uj − Ri−j Ii−j ≤ Ui ≤ Uj + Ri−j Ii−j. (15)

Proposition 3. The set UP
i is composed by every Ui such that

Ki ≤ Ui ≤ Ki, (16)

with:

Ki =
R||i
2

 ∑
j∈Ni

Uj

Ri−j
−

√√√√( ∑
j∈Ni

Uj

Ri−j

)2

−
4(Pl,i − Pg,i)

R||i


Ki =

R||i
2

 ∑
j∈Ni

Uj

Ri−j
+

√√√√( ∑
j∈Ni

Uj

Ri−j

)2

−
4(Pl,i − Pg,i)

R||i


The proof of Propositions 1, 2, and 3 can be obtained by substituting the Voltage

Kirchhoff law and (2) into (10), (12) and (13) and after some mathematical manipulations.
Concerning the existence of a Nash equilibrium, firstly observe that the game is not an

standard one, but a Generalized Nash Equilibrium Problem [20], since each player’s feasible
set U s

i ∩Ui depends on the rival players’ strategies U−i. The existence of a Nash equilibrum
for generalized games is not easy to establish. Recently, some existence Theorems have
been reported in [21]. In particular, the next result is based on [21] (Theorem 3.1). The proof
can be easily deduced from that reference.

Lemma 1. Consider that Assumption 3 holds. If the weights of the cost function are chosen in such
a way that αi > 0, ∀i, then there exists a generalized Nash equilibrium for the game.

For the developments to come, it is convenient to analyze a simplified version of
this game, the so-called unconstrained game, in which the decisions of the players are
not subject to constraints. In other words, a game in which Ui ∈ R, ∀i. In this case, a
necessary and sufficient condition can be given for the existence and uniqueness of a
Nash equilibrium.

Let us introduce the following notation:

B , diag{γi/2αi},

A , [σ2,1Ure f
1 /α1 σ2,2Ure f

2 /α2 . . . σ2,nUre f
n /αn]

>,

C ,


0 1/R1−2 . . . 1/R1−n

1/R2−1 0 . . . 1/R2−n
...

...
. . .

...
1/Rn−1 1/Rn−2 . . . 0

,

where Ri−j = ∞ if buses i and j are not connected.

Lemma 2. The unconstrained game admits a unique Nash equilibrium U∗u , given by U∗u =
(I − BC)−1 A, if and only if matrix I − BC is non-singular.

Lemma 2 is a particularization of a result previously obtained by the authors in [15],
and its proof can be found in that reference. Please observe that the condition established
in Lemma 2 must be evaluated using global information. Therefore, it is interesting to
provide a way to distributedly ensure the existence and uniqueness of a Nash equilibrium
for the unconstrained game. The next property states a condition for the weights that will
help in this purpose and that will be used as well in subsequent results.
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Property 1. The weights σ1,i, σ2,i, σ3,i, and σ5,i of the local cost function defined in (14) are chosen
such that

2αiR
||
i > γi, ∀i ∈ V , (17)

where R||i was defined in Section 2 as the resistance of the parallel of all resistors connected to bus i.

Property 1 is local, that is, every agent can enforce its fulfillment by suitably choosing
its local weights. If Property 1 is fulfilled, matrix I − BC is a strictly diagonally dominant
matrix and, then, it is a non-singular matrix through the Levy–Desplanques Theorem.

Note that, on the one hand, the existence of a Nash equilibrium does not imply that
the player’s decision converges to it, and, on the other hand, the computation of this equi-
librium requires global information, so the Nash equilibrium cannot be locally computed.
The next section presents an iterative algorithm that makes the players’ decisions converge
to the Nash equilibrium.

4.2. Iterative Algorithm

This algorithm assumes that each player shares only their decisions on the voltage
associated with its local buses, and do not reveal any other local information, such as
the power generated and demanded Pg,i, Pl,i, their power generation limit Pg,i, or their
weighting factors σ1,i, σ2,i, σ3,i, σ4,i, σ5,i.

Let us denote k as the iteration step, so that Ui(k) is the local voltage decided by player
i at time k, and U−i(k) is the voltage decided by the rest of the players. We consider that
the players exchange their decisions at the end of every iteration, in such a way that at
instant k player i knows Uj(k− 1) for all j ∈ Ni.

Then, let us reformulate cost function (14) with the voltage variables Ui(k) and
U−i(k− 1) (all the Uj(k− 1) ∈ Ni) in terms of k as Ji(Ui(k), U−i(k− 1)).

In a similar way, the feasible set for the decision taken at instant k is now Ui(k) ,
US

i ∩ U
I
i (k) ∩ UP

i (k), which can be rewritten using available information as:

Ui(k) , {Ui(k) : Ui(k) ≤ Ui(k) ≤ Ui(k)}, (18)

where

Ui(k) , max{Um
i , Ki(k), Uj(k− 1)− Ri−j Ii−j : ∀j ∈ Ni},

Ui(k) , min{UM
i , Ki(k), Uj(k− 1) + Ri−j Ii−j : ∀j ∈ Ni},

and Ki(k), Ki(k) have an equivalent expression that Ki, Ki but considering the voltage
Uj(k− 1).

Consider now the following optimization problem, which is a reformulation of Prob-
lem 1 to be iteratively solved by each player.

Problem 2. The objective of each bus i ∈ V involved in the power network at iteration step k is to
find the voltage Ui(k) such that:

Ui(k) = arg min
Ui(k)

(k) Ji(Ui(k), U−i(k− 1))

s.t. Ui(k) ∈ US
i ∩ U

I
i (k) ∩ UP

i (k)

The complete algorithm implemented by each player is described in Algorithm 1.
After an initialization phase, each player iteratively solves Problem 2 and communicates its
decision to neighboring players until a final agreement is reached. At that point, the Nash
equilibrium of the game will be finally attained, and the power generated can be obtained
from the voltage at the equilibrium, U∗i .

The following section analyzes the convergence of this iterative algorithm to the Nash
equilibrium of the game.
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Algorithm 1: Iterative algorithm.

1: Initialization:
2: Set σ1,i, σ2,i, σ3,i, σ4,i, σ5,i s.t. αi > 0 and (17)
3: Specify power loads Pl,i

4: Set Ure f
i , Ii−j, Pg,i

5: Set tolerance ε

6: Set Ui(0) = Ure f
i and exchange Ui(0) with neighbors

7: Set k = 1
8: Iterative update:
9: While ||Ui(k)−Ui(k− 1)|| > ε.

11: Find Ui(k) according to Problem 2
10: Exchange Ui(k) with neighbors
12: End while
13: Find Pg,i from U∗i using (2).

5. Convergence Analysis

This section presents conditions for the convergence of the above-described algo-
rithm to the Nash equilibrium of the game. As an introduction for the analysis, the next
subsection studies the situation in which the decisions of every player are not subject to
any constraints. In other words, for the unconstrained scenario, Problem 2 will be solved
without considering the feasible sets Ui(k) in such a way that Ui(k) may take any possible
real number. Then, the constrained scenario will be considered.

Let us define e(k) as the difference between the actual decision vector, U(k), and the
equilibrium of the unconstrained game, U∗u , defined in Lemma 2, that is, e(k) , U(k)− U∗u .
Moreover, the next definition will be used.

Definition 2. [22] Consider a linear discrete-time system e(k + 1) = Me(k), with M a constant
square matrix. The next sentences are equivalent:

• Matrix M is Schur.
• The eigenvalues of matrix M belong to the unit circle.
• The discrete-time system e(k + 1) = Me(k) is asymptotically stable.
• The discrete-time system admits a quadratic Lyapunov function (QLF) V(k) = e(k)>Pe(k),

beginning with P as a positive definite matrix that satisfies the Stein inequality; this is
M>PM− P < 0.

Furthermore, the next sentences are also equivalent:

• Matrix M is diagonally Schur stable.
• The discrete-time system admits a diagonal quadratic Lyapunov function (DQLF) V(k) =

e(k)>Pe(k), beginning with P as a diagonal positive definite matrix that satisfies the Stein
inequality; this is M>PM− P < 0.

5.1. Unconstrained Scenario

In this case, a necessary and sufficient condition can be established for the convergence.

Theorem 1. Assume the existence of a unique Nash equilibrium of the unconstrained game, given
by U∗u in Lemma 2. Then, the decisions U(k) = [U1(k) U2(k) . . . Un(k)]>, obtained with the
execution of the algorithm described in Algorithm 1, converge to U∗u if and only if matrix BC is
Schur. Otherwise, the decisions U(k) diverge from the Nash equilibrium.
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Proof. Under the unconstrained scenario, the solution for Problem 2 is the voltage Ui(k)
such that ∂Ji/∂Ui(k) = 0, since cost function Ji(Ui(k), U−i(k− 1)) is convex in Ui(k). Then,

Ui(k) =
σ2,iU

re f
i

αi
+

γi
2αi

∑
j∈Ni

Uj(k− 1)
Ri−j

, ∀i ∈ V . (19)

The complete vector of decisions can be jointly written for all the players i ∈ V as
U(k) = A + BCU(k− 1). By using this expression and the definition of e(k), the following
linear relation is obtained:

e(k + 1) = A + BCU(k)−U∗u = BCe(k) + A + BCU∗u −U∗u = BCe(k).

Hence, the convergence of the algorithm is ensured if and only if matrix BC is Schur.

The convergence condition required on matrix BC can only be evaluated with global
information. In other words, some kind of agreement between the agents is needed to
prevent the divergence of the negotiation algorithm. In this scenario, Property 1 can be very
helpful in defining this agreement. If each agent individually sets the weights according to
Property 1, matrix BC will have all its eigenvalues contained in the unit circle. The proof is
direct by using the Gershgorin circle Theorem, which allows for bounding the spectrum
of a square matrix. Then, if this is the case, Theorem 1 ensures the convergence of the
negotiation to a unique Nash equilibrium. It is worth remembering that the fulfillment of
Property 1 can be locally ensured without global information.

5.2. Constrained Scenario

Consider now the algorithm with the original formulation of Problem 2, in which
Ui(k) must belong to the constrained feasible sets Ui(k).

This section presents two convergence analyses for two different cases: when the
unconstrained Nash equilibrium given in Lemma 2 belongs to the feasible set for every
iteration step and the opposite situation.

Theorem 2. Assume the existence of a unique Nash equilibrium for the unconstrained game,
given by U∗u in Lemma 2. Assume also that U∗u ∈ U (k), ∀k. Then, the decisions U(k) =
[U1(k) U2(k) . . . Un(k)]> obtained with the execution of the algorithm described in Algorithm 1
converge to U∗u if matrix BC is diagonally Schur stable.

Proof. Recall the definition of e(k) , U(k)− U∗u , whose evolution for the unconstrained
game is linear and would be given by e(k + 1) = BCe(k). However, the evolution of e(k)
is different when the constraints come into play, and it cannot be expressed in a compact
form, but component by component, as follows:

[e(k + 1)]i =


Ui(k)− [U∗u ]i, if [BCe(k)]i ≥ Ui(k)− [U∗u ]i
Ui(k)− [U∗u ]i, if [BCe(k)]i ≤ Ui(k)− [U∗u ]i
[BCe(k)]i, otherwise

(20)

According to Definition 2, if matrix BC is diagonally Schur stable, the linear evolution
of the error for the unconstrained game, e(k + 1) = BCe(k), admits a diagonal quadratic
Lyapunov function (DQLF) V(e(k)) = e(k)>Pe(k), that is, a quadratic Lyapunov function
whose Lyapunov matrix P is diagonal. Hence, from Definition 2, there exists a positive
definite diagonal matrix P such that:

C>B>PBC− P < 0↔ e(k)>C>B>PBCe(k)− e(k)>Pe(k) < 0.
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Then, according to the diagonal structure of P, there exists a scalar ε > 0 such that:

∆V(e(k)) = ∑
i∈V

(
[P]ii[BCe(k)]2i − [P]ii[e(k)]2i

)
≤ −ε||e(k)||2.

Next, it is proved that the same function, V(e(k)) = e(k)>Pe(k), is also a DQLF for
the evolution of e(k) in the constrained game. First, observe that the increment of the
Lyapunov function can be written as

∆V(e(k)) = ∑
i∈V

(
[P]ii[e(k + 1)]2i − [P]ii[e(k)]2i

)
= ∑

i∈V
[P]ii

(
[BCe(k)]2i − [e(k)]2i

)
+ ∑

i∈V
[P]iiδi(k)

((
Ui(k)− [U∗u ]i

)2 − [BCe(k)]2i
)

+ ∑
i∈V

[P]iiδi(k)
(
(Ui(k)− [U∗u ]i)

2 − [BCe(k)]2i
)

where δi(k), δi(k) ∈ {1, 0} according to (20).
Next, consider that, as the inequalities

(
Ui(k)− [U∗u ]i

)
> 0 and (Ui(k)− [U∗u ]i) < 0

are satisfied, it holds that the second and third addends in the previous equation are both
less than zero, and thus:

∆V(e(k)) ≤ ∑
i∈V

(
[P]ii[BCe(k)]2i − [P]ii[e(k)]2i

)
≤ −ε||e(k)||2,

ε being a positive scalar. Hence, V(e(k)) is a valid Lyapunov function for the constrained
case, ensuring the stabilization of e(k), that is, e(k)→ 0, as k→ ∞. Therefore, the decisions
of the players eventually reach the Nash equilibrium. In other words, U(k)→ U∗u .

The condition in Theorem 2 requires BC to be diagonally Schur stable, which is a
stronger condition than the one in Theorem 1, where matrix BC is simply required to be
Schur. However, it will be shown that, if all the agents set the weights meeting Property 1,
matrix BC is ensured to be diagonally Schur stable.

First of all, notice that, if Property 1 is fulfilled, matrix I − |BC| is a diagonally quasi-
dominant matrix. The reader is referred to [23] for a formal definition of diagonally
quasi-dominance. Now, according to Proposition 2.7.9 in [24], if matrix I − |BC| is a
diagonally quasi-dominant matrix, then matrix BC is diagonally Schur stable.

Therefore, Property 1 is the key to ensuring the convergence of the algorithm to the
Nash equilibrium for the constrained game as well.

Next, the problem when the equilibrium of the unconstrained game remains outside
of the feasible region will be addressed.

Theorem 3. Assume the existence of a Nash equilibrium for the constrained game, given by
U∗c . Assume that the feasible set for Problem 2 is static and non-empty for every iteration, that
is, U (k) = U st 6= ∅. Furthermore, assume the existence of a unique Nash equilibrium for
the unconstrained game, given by U∗u in Lemma 2, such that U∗u /∈ U st. Then, the decisions
U(k) = [U1(k) U2(k) . . . Un(k)]>, obtained with the execution of the algorithm described in
Algorithm 1, will converge to U∗c if matrix BC is diagonally Schur stable.

Proof. The proof of Theorem 3 is based on the Banach fixed-point theorem, which is a
powerful tool to ensure the existence and uniqueness of fixed points of a map that are
applied in an iterative way. Then, a map T : Rn → Rn is called a contraction map if there
exists q ∈ [0, 1) such that d(T(x), T(y)) ≤ qd(d, y), ∀x, y ∈ Rn, d(·, ·) being any distance in
the metric space. The Banach fixed-point theorem ensures in those cases the existence and
uniqueness of a fixed point x∗, that is, T(x∗) = x∗.

In order to use this result, it will be shown that the evolution of e(k) = U(k)−U∗u
for the constrained game given in (20) is a contractive mapping over the feasible set of
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decisions. This implies that the evolution of the iterations admits a unique fixed point e∗

in the feasible set that is e(k) → e∗, and the decision vector converges to a unique Nash
equilibrium, given by U∗c = e∗ + U∗u .

If matrix BC is diagonally Schur stable, the evolution of e(k) without constraints, i.e.,
e(k + 1) = BCe(k), admits a DQLF in the form V(e(k)) = e(k)>Pe(k), P being diagonally
positive definite.

Take two arbitrary feasible decisions at any negotiation step k, namely, Ua(k) ∈
U st, Ub(k) ∈ U st. Using the aforementioned error between the actual decision vector and
the Nash equilibrium, it is possible to define ea(k) = Ua(k)− U∗u and eb(k) = Ub(k)− U∗u .

Then, the distance between both errors induced by matrix P can be obtained as:

dP(ea(k), eb(k)) =
√
(ea(k)− eb(k))>P(ea(k)− eb(k))

=
√

∑
i
[P]ii([ea(k)]i − [eb(k)]i)2.

Next, it will be demonstrated that dP(ea(k + 1), eb(k + 1)) ≤ dP(ea(k), eb(k)), or equiv-
alently d2

P(e
a(k + 1), eb(k + 1)) − d2

P(e
a(k), eb(k)) ≤ 0, where ea(k + 1), eb(k + 1) can be

computed component by component using (20). After some mathematical manipulations,
similar to those in Theorem 2, one can derive that:

d2
P(e

a(k + 1), eb(k + 1))− d2
P(e

a(k), eb(k))

< ∑
i

(
[P]ii[BC(ea(k)− eb(k))]2i − [P]ii[ea(k)− eb(k)]2i

)
< −ε||ea(k)− eb(k)||2 < 0,

ε being a positive scalar.
Now, consider that eb(k) = ea(k− 1); this is the difference of two consecutive deci-

sions with respect to the Nash equilibrium of the unconstrained system. Then, the above
inequality proves that the mapping e(k + 1) = f (e(k)), with f (·) in (20), is contractive, this
implying the convergence of e(k) to a fixed point e∗. Once the fixed point is reached, the
agents won’t change their decisions, so the Nash equilibrium of the constrained game Uc is
found. By using the definition of e(k), it is clear that the value of the Nash equilibrium for
the constrained game is related with the value of the Nash equilibrium of the unconstrained
game through Uc = e∗ + Uu. This ends the proof.

The convergence to the Nash equilibrium of the constrained game requires that, at
each iteration k, the feasible set of Problem 2 is non-empty and static. On the other hand,
Assumption 3 just ensures the existence of a static non-empty feasible set for Problem
1. Remember that Assumption 3 directly satisfes if the power flow has, at least, one
feasible solution.

However, it is not clear that Assumption 3 is, in general, enough to meet the re-
quirements of Theorem 3. If Constraints 2 and 3 are removed, that is, if only the voltage
constraint is considered, then the feasible set for the voltages will be static and non-empty,
so Assumption 3 will be enough to ensure the convergence to the Nash equilibrium. Thus,
in order to provide a convergence proof for the constrained game, an assumption on the
definition of the feasible set U (k) might be required.

It must be mentioned that, notwithstanding, the simulations show that the Nash
equilibrium is reached with constraints that change with time. Therefore, it is possible that
Assumption 3 is enough to ensure the feasibility of the problem and no further assumptions
are required. Anyway, the feasibility analysis and, if necessary, the additional assumptions
required are left for future research.
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6. Simulation Results

This section presents some simulations to show the performance of the proposed
distributed voltage regulation algorithm. Some illustrative examples on a modification
of the IEEE 14-bus system will be shown in this section. This network has been selected
due to its wide use to study voltage regulation problems (see, for instance, [25]). After that,
additional simulations are conducted on a larger network in order to show the scalability
of the proposed method.

6.1. Simulations on a Modification of the IEEE 14-Bus System

The simulations carried out within this section are performed on a modification of
the IEEE 14-bus system, considering three generators at the buses 3, 7, and 12. In order
to adapt the corresponding network to a DC framework, the lines are characterized by
their resistances. A schematic of the network and the values of the lines resistances are
illustrated in Figure 2 and Table 1, respectively. Moreover, the values of the installed loads
are included in Table 2 (there are no loads for nodes that do not appear in the table).

1

5

6

12 13 14

11 10

9

8

7

4

32

Figure 2. Schematic of the IEEE-14 bus system.

Table 1. IEEE 14-bus network lines resistance (p.u.).

R1,2 = 0.01938 R1,5 = 0.05403 R2,3 = 0.04699 R2,4 = 0.05811
R2,5 = 0.05695 R3,4 = 0.06701 R4,5 = 0.01335 R4,7 = 0.01335
R4,9 = 0.01335 R5,6 = 0.01335 R6,11 = 0.09498 R6,12 = 0.12291
R6,13 = 0.06615 R7,8 = 0.06615 R7,9 = 0.06615 R9,10 = 0.03181
R9,14 = 0.12711 R10,11 = 0.08205 R12,13 = 0.22092 R13,14 = 0.17093

Table 2. IEEE 14-bus power loads (p.u.).

Pl,1 = 0.28571 Pl,2 = 0.42857 Pl,4 = 0.35714 Pl,6 = 0.37500
Pl,8 = 0.39286 Pl,11 = 0.32143 Pl,12 = 0.30357 Pl,14 = 0.25000

A possible solution for the power flow of the grid is given by a generation of Pg,3 =
280 MW, Pg,7 = 320 MW and Pg,12 = 178 MW. In this scenario, the voltage levels at each
bus of the grid are shown in Table 3 (expressed in per unit). In the next examples, these
voltages levels are considered as the references Ure f

i .

Example 1. Let us consider a scenario in which buses 3, 7, and 12 have additional renewable power
installed. For instance, let’s assume that P̄g,3 = 300 MW, P̄g,7 = 350 MW and P̄g,12 = 250 MW
are the power limits of the corresponding generators. Moreover, let us consider Constraint 1 with
Um

i = 0.95 and UM
i = 1.05. This example does not introduce any current constraint. Hence,

observe that Ure f
i belongs to the feasible set U , allowing at least one feasible solution for the problem

and therefore satisfying Assumption 3. Finally, the cost functions (14) of buses 3, 7, and 12 are
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characterized by the weighting costs σ1,i = 1, σ2,i = 500, σ3,i = 1, σ4,i = 0.01 and σ5,i = 0.02 for
i = 3, 7, 12.

Table 3. Initial voltage levels in per unit.

U1 = 0.97927, U6 = 0.97892, U11 = 0.96504,
U2 = 0.98366, U7 = 0.99363, U12 = 1.00437,
U3 = 1.01247, U8 = 0.96675, U13 = 0.98098,
U4 = 0.98736, U9 = 0.98631, U14 = 0.96515,
U5 = 0.98280, U10 = 0.98037.

The iterative algorithm described in Algorithm 1 is executed in buses 3, 7, and 12, whereas the
rest of the buses choose the voltage satisfying the power flow at each iteration.

The results are shown in Figure 3. Observe that, after some iterations, the buses agree with
a voltage level that is different to the reference voltage, considering their local cost functions and
constraints. The exact voltage levels at the equilibrium are shown in Table 4.

Table 4. Voltage level at the equilibrium for Example 1.

U∗1 = 1.00760, U∗6 = 1.00447, U∗11 = 0.99168,
U∗2 = 1.01222, U∗7 = 1.02462, U∗12 = 1.01682,
U∗3 = 1.04212, U∗8 = 0.99860, U∗13 = 1.00350,
U∗4 = 1.01588, U∗9 = 1.01326, U∗14 = 0.99070,
U∗5 = 1.01011, U∗10 = 1.00723.

Additionally, Figure 3 presents the upper and lower voltage limits at each iteration in dashed
lines (the lower limits are never met in this example). It can be observed that agents 3 and 7 saturate
in their decisions due to Constraint 3, while agent 12 reaches the Nash equilibrium far from its
local bounds.
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1.05

U
3
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u
)

0.95
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1.05

U
7
(p
u
)

0 25 50 75 100 125 150 175 200
Negotiation step

0.95
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1.05

U
12

(p
u
)

Figure 3. Buses 3, 7, and 12 negotiation and the associated constraints (dashed lines).

Example 2. Consider the situation of the previous example but with modified weighting costs:
σ1,i = 1.5, σ2,i = 250, σ3,i = 1, σ4,i = 0.01 and σ5,i = 0.02 for i = 3, 7, 12. In this case, more
profit is given to the buses for their generated power and less costs are associated with voltage levels
different from the references.

Black lines in Figure 4 show the decisions at each iteration of the negotiation process and the
corresponding limits (dashed lines). Note that, as a consequence of the new cost functions, the
voltages at the equilibrium are higher than those obtained in the previous example. In fact, U3
is constrained by Constraint 1 reaching the upper bound UM

3 = 1.05. The exact voltage levels at
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the equilibrium are shown in Table 5. In addition, red lines in Figure 4 depict the evolution of the
negotiation when Constraint 1 is not taken into consideration. As it can be seen, both buses 3 and 7
reach a higher value than UM

3 = UM
7 = 1.05 in the equilibrium prioritizing the power injection

rather than the voltage deviations.

Table 5. Voltage level at the equilibrium for Example 2.

U∗1 = 1.01991, U∗6 = 1.01964, U∗11 = 1.00613,
U∗2 = 1.02398, U∗7 = 1.03729, U∗12 = 1.04316,
U∗3 = 1.05000, U∗8 = 1.01161, U∗13 = 1.02064,
U∗4 = 1.02862, U∗9 = 1.02631, U∗14 = 1.00577,
U∗5 = 1.02370, U∗10 = 1.02068.
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u
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1.00

1.05

U
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(p
u
)

0 50 100 150 200 250 300
Negotiation step

1.00

1.05

U
12

(p
u
)

Figure 4. Buses 3, 7, and 12 negotiation and the associated constraints (dashed lines) for: (i) original
problem of Example 2 (black ink); (ii) problem stated in Example 2 when Constraint 1 is not taken
into account (red ink).

Example 3. Finally, let us introduce a current constraint in one of the lines. In particular, a current
limit is established at the power line connecting buses 4 and 7, which with the weighting costs
fixed in Example 2 and without current constraints carried |I4−7| = 0.65 p.u. Now, consider that
Ī4−7 = 0.6 p.u. due to physical limitations. By running again the distributed voltage regulation
algorithm, different voltage levels are reached at the Nash equilibrium of the game (see Table 6).

Table 6. Voltage level at the equilibrium for Example 3.

U∗1 = 1.01877, U∗6 = 1.01838, U∗11 = 1.00463,
U∗2 = 1.02294, U∗7 = 1.03496, U∗12 = 1.04315,
U∗3 = 1.05000, U∗8 = 1.00921, U∗13 = 1.01954,
U∗4 = 1.02696, U∗9 = 1.02458, U∗14 = 1.00428,
U∗5 = 1.02231, U∗10 = 1.01901.

In particular, note that bus 7 decreases its voltage level, reducing the difference with U∗4 and,
consequently, the current flowing through the line connecting both.

6.2. Algorithm Performance on a Large-Scale Network

In this section, a larger network is considered in order to show the scalability of the
proposed algorithm. In particular, the network is the one depicted in Figure 5. The nominal
voltage of the grid is 20 kV and a base power of 20 MW is considered in all the results.
Again, the power lines will be modeled only considering the real part of the impedance.
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A list with the installed loads can be found in Table 7. For further details regarding the
technical characteristic of the network, the reader is referred to [26].

Table 7. Rated power of loads in p.u.

Pl,2 = 0.0125, Pl,3 = 0.0063, Pl,4 = 0.012, Pl,5 = 0.0075, Pl,8 = 0.005,
Pl,9 = 0.01, Pl,11 = 0.0125, Pl,13 = 0.0225, Pl,16 = 0.0063, Pl,17 = 0.0075,
Pl,18 = 0.0063, Pl,19 = 0.01, Pl,21 = 0.0125, Pl,22 = 0.012, Pl,26 = 0.0075,
Pl,27 = 0.012, Pl,28 = 0.01, Pl,29 = 0.02, Pl,30 = 0.0075, Pl,31 = 0.025,
Pl,32 = 0.0175, Pl,33 = 0.0175, Pl,34 = 0.0125, Pl,35 = 0.02, Pl,36 = 0.0125,
Pl,37 = 0.005, Pl,38 = 0.012, Pl,39 = 0.03, Pl,40 = 0.012, Pl,41 = 0.0075,
Pl,42 = 0.01, Pl,43 = 0.0125, Pl,44 = 0.01.

In this case, let us consider a scenario in which there are ten buses with addi-
tional 2 MW of renewable power installed. These buses are the ones defined by set
B = {0, 4, 6, 12, 14, 19, 20, 30, 35, 37}. The voltage references are fixed as Ure f

i = 1 for
every i ∈ B. Now, let us consider two different examples that are analogous to those
presented in Examples 1 and 2 in previous section.

Figure 5. Schematic of a large scale system conformed by 44 buses [26].

Example 4. Consider the sequel weighting parameters that characterize the cost functions (14): σ1,i =
1, σ2,i = 500, σ3,i = 1, σ4,i = 0.01 and σ5,i = 0.02 for every i ∈ B. Note that these weights are the
same as those chosen for Example 1. Figure 6 shows in black lines the decisions on the voltage at
each negotiation step until reaching the equilibrium.

Example 5. In this example, let us consider the following weighting parameters: σ1,i = 1.5,
σ2,i = 250, σ3,i = 1, σ4,i = 0.01 and σ5,i = 0.02 for every i ∈ B. Recall that these weights are the
same that those chosen for Example 2. Figure 6 shows in red lines the decisions on the voltage at
each negotiation together with the corresponding constraints (dashed lines). It can be seen that, in
this case, the voltage deviations with respect to the reference values are less penalized than in the
previous example, reaching higher voltages.

It is worth pointing out that, as a consequence of the variations in the weighting parameters,
the voltages at the equilibrium in Example 5 are higher than those obtained in Example 4. This
fact not only has an impact on the voltages of buses in B, but it also raises the voltages of all the
network buses.

Furthermore, Figure 6 shows the capabilities of the algorithm when it deals with a large
network. Although more iterations are required to reach the Nash equilibrium, in comparison with
the network of 14 buses, it can be seen that the number is still low (less than 250). This result
illustrates that the proposed distributed regulation method is a good candidate to be implemented in
larger networks. The formal study of the impact of the number of buses, and the number of buses
capable of making decisions, in the convergence time is left for future work.



Electronics 2021, 10, 768 17 of 18

0.95

1.00

1.05

U
0
(p
u
)

0.95

1.00

1.05

U
1
9
(p
u
)

0.95

1.00

1.05

U
4
(p
u
)

0.95

1.00

1.05

U
2
0
(p
u
)

0.95

1.00

1.05

U
6
(p
u
)

0.95

1.00

1.05

U
3
0
(p
u
)

0.95

1.00

1.05

U
1
2
(p
u
)

0.95

1.00

1.05

U
3
5
(p
u
)

0 50 100 150 200 250
Negotiation step

0.95

1.00

1.05

U
1
4
(p
u
)

0 50 100 150 200 250
Negotiation step

0.95

1.00

1.05

U
3
7
(p
u
)

Figure 6. Evolution of the decisions on the voltage at each negotiation step for examples 4 (black)
and 5 (red) and the corresponding constraints (in dashed lines).

7. Conclusions

This manuscript has presented a game-theoretical framework for the voltage regula-
tion problem over DC grids. Each bus of the grid negotiates to minimize a local cost without
revealing private information as the costs or the power generated by renewable power
sources. An iterative negotiation algorithm has been proposed, analyzing its convergence
to the Nash equilibrium of the game when the decisions are constrained according to the
physical and operational limitations of the grid. It has been shown that a certain property
(Property 1) is key to ensuring convergence to a Nash equilibrium, and also that this
property can be distributedly ensured by suitably setting the weights of the cost functions.

Finally, some simulation examples have been included in order to illustrate the effec-
tiveness of the method. The simulations show that the algorithm is robust even for the
situation in which the theoretical results fail to prove its convergence. Then, looking for
relaxed conditions for the convergence is one of the most promising lines of future research.
In addition, the application of the algorithm to AC grids will be tackled in the future.
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