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Abstract We present the first membrane computing solution to the 
Subset-Sum problem using a family of deterministic P systems with active 
membranes. We do not use priority among rules, membrane dissolution nor 
cooperation; it suffices to control the electrical charges of the membranes and 
to introduce some counters. The number of steps of any computation is of the 
linear order (but it is necessary a polynomial-time of precomputed resources). 
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w Introduction 
In Reference, 9) an unconventional distributed parallel model of computa- 

tion is introduced, starting from the observation that the processes which take 
place in the complex structure of a living cell can be considered as computations. 
The devices of this model are called P systems. A detailed introduction to the 
area of P systems can be found at Reference, m and a survey and an updated bib- 
liography can be found at the web address http://psystems, disco, uniraib, it. 

Up to now, P systems dealing with numerical problems have been rarely 
considered in the literature. The present paper is a first approach in this direc- 
tion. Our claim is that, once we have seen the construction and verification of 
some families of P systems solving a few numerical NP-complete problems, we 
will be perhaps able to extract a common scheme that could be the basis for 
attacking new numerical problems. 

We present here a membrane computing solution to the Subset-Sum prob- 
lem, and we analyze it from the point of view of the complexity classes. A corn- 
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plexity class for a model of computat ion is a collection of problems that  can be 
solved (or languages that  can be decided) by some devices of this model with 
similar computat ional  resources. 

In this paper  we present a polynomial complexity class in cellular computing 
with membranes  inspired by some ideas of Gh. P~un (Reference, 11) Section 7.1) 
discussed with some members of the Research Group on Natural  Computing 
from the University of Seville. This class allows us to detect some intrinsic 
difficulties of the resolution of a problem in the model above mentioned. 

The paper  is organized as follows. In the next section we define recognizer 
P systems and also P systems with active membranes,  which will be the models 
considered to s tudy the complexity classes. Section 3 defines the polynomial 
complexity class PMC~: ,  associated with a collection ~" of P systems. In Sec- 
tions 4 and 5 a cellular solution to the Subset-Sum problem is presented. Section 
6 is devoted to s tudy the computat ional  complexity of this solution. The main 
results and conclusions are given in Sections 7 and 8, respectively. 

We work in this paper  with membrane  systems using symbol-objects .  

w Pre l iminar ie s  
Recall tha t  a decision problem, X,  is a pair (Ix, Ox) such that  Ix is a 

language over a finite alphabet  (whose elements are called instances) and 0x is 
a total boolean function over Ix. 

2.1 Recognizer P Systems 

Definition 2.1 
A P system with input is a tuple (H, E, in),  where: 

�9 II is a P system, with working alphabet  F, with p membranes  labelled by 
1 , . . . ,  p, and initial multisets A41,- - - ,  A4p associated with them. 

�9 E is an (input) alphabet  strictly contained in F; the initial multisets are 
over F - E. 

�9 in is the label of a distinguished (input) membrane.  

Definition 2.2 
Let (H, E, in) be a P system with input. Let F be the working alphabet  of H, 
# the membrane  structure, and A41, . . .  ,A4p the initial multisets of 1-i. Let m 
be a multiset over E. The initial configuration of (II, E, in) with input m is 
(~, M I , . . . ,  M i ~  um, . . .  M~).  

Remark 2.1 
We will denote by In  the set of all inputs of the P system 1-I. Tha t  is, In  is a 
collection of multisets over E. 

The computat ions of a P system with input a multiset m over E are 
defined in a natural  way. The only novelty is that  the initial configuration must 
be the initial configuration of the system associated with the input multiset m. 
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In the case of P systems with input and with external output,  the compu- 
tation is defined in a similar way, with a slight difference: in the configurations we 
will not work directly with the membrane structure p but  with another structure 
associated with it, including, in some sense, the environment. 

Definition 2.3 
Let # : (V(p ) ,E (# ) )  be a membrane structure. The membrane structure with 
environment associated with # is the rooted tree Ext(#) such that: (a) the root 
of the tree is a new node that  we will denote env; (b) the set of nodes is V(#) U 
{env}; and (c) the set of edges is E ( # ) U  {{env, skin}}. The node env is called 
the environment of the structure #. 

Note that  we have added a new node representing the environment which 
is only connected with the skin, while the original membrane structure remains 
unchanged. In this way, every configuration of the system contains information 
about the contents of the environment. 

Definition 2.4 
A recognizer P system is a P system with input (II, E , in ) ,  and with external 
output  such that: 

1. The working alphabet contains two distinguished elements: Yes, No. 
2. All computations halt. 
3. If C is a computation of H, then either the object Yes or the object No (but 

not both) have to be sent out to the environment, and only in the last step 
of the computation. 

Definition 2.5 
We say that  C is an accepting computation (respectively, rejecting computation) 
if the object Yes (respectively, No) appears in the environment associated with 
the corresponding halting configuration of g. 

2.2 P Systems with Active Membranes 
In the basic P systems (chapter 3 from Referencen~), the membrane struc- 

ture is supposed to be fixed. A natural variant is to let the number of membranes 
decrease (by membrane dissolution) or increase (by membrane division). This 
idea was explored by Gh. P~un10) and it gave rise to a new model: P systems 
with active membranes. 

As it has been proved that  transition P systems without membrane di- 
vision are an universal model of computation, we can not increase their com- 
putational power. However, allowing membrane division produces a significant 
speed-up of computations (in Reference TM it is shown that  if P ~ N P ,  then a 
deterministic P system without membrane division is not able to solve any N P -  
complete problem in polynomial time). This speed-up can be specially relevant 
if we are dealing with a real world problem (see Reference 3) for an algorithm 
breaking DES). 



342 M . J .  P~rez J im6nez  and  A. Riscos Nff iez  

Next, we are going to introduce the definition of P systems with active 
membranes.  We consider only 2-division for elementary membranes,  and we do 
not use cooperation nor priority among rules. 

Definition 2.6 
A P system with active membranes is a tuple H = (F, H, ]-t, A l l , - . .  ,Alp, R), 
where: 

1. p _> 1, is the initial degree of the system; 
2. F is the a lphabet  of symbol-objects; 
3. H is a finite set of labels for membranes;  
4. p is a membrane  structure, of p membranes,  labelled (not necessarily in a 

one-to-one manner)  by elements of H;  
5. A J a , . . .  ,Alp  are strings over F, describing the initial multisets of objects 

placed in the p regions of p; 
6. R is a finite set of evolution rules, of the following forms: 

( a ) [a  --~ w]~ for h �9 H,c~ �9 { + , - , 0 } ,  a �9 F, w �9 C*, object evolution rules: 
This is an object evolution rule, associated with a membrane labelled 
by h and depending on the polari ty of that  membrane,  but  not directly 
involving the membrane. 

(b)a [  ]~1 ~ ibiS2 for h �9 H,  aa,a2 �9 { + , - , 0 } ,  a,b �9 F, communication 
rules (send in rules): An object  from the region immediately outside a 
membrane  labelled by h is introduced in this membrane,  possibly trans- 
formed into another object, and simultaneously, the polari ty of the mem- 
brane can be changed. 

(c ) [a]~  1 ~ b [ ]~2 for h E H ,  a l , a 2  �9 { + , - , 0 } ,  a,b �9 F, communication 
rules (send out rules): An object  is sent out from membrane  labelled by 
h to the region immediately outside, possibly t ransformed into another 
object,  and simultaneously, the polari ty of the membrane  can be changed. 

(d) [a  ]~ --~ b for h E H,  a �9 { + , - ,  0}, a, b �9 F, disolving rules: A membrane 
labelled by h is dissolved in reaction with an object. The skin is never 
dissolved. 

(e) [a]~ ~ --~ [b]~ 2 [c]~ a for h �9 H, a l , a2 ,  c~3 �9 { + , - , 0 } ,  a,b,c  �9 F, division 
rules for elementary membranes: An elementary membrane  can be divided 
into two membranes with the same label, possibly transforming some 
objects and their polarities. 

These rules are applied according to the following principles: 

�9 All the rules are applied in parallel and in a maximal  manner.  In one step, 
one object  of a membrane can be used by only one rule (chosen in a non 
deterministic way), but any object  which can evolve by one rule of any form, 
should evolve. 

�9 If  a membrane  is dissolved, its content (multiset and internal membranes) 
is left free in the surrounding region. 

�9 If at the same t ime a membrane h is divided by a rule of type (e) and there 
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are objects in this membrane which evolve by means of rules of type (a), 
then we suppose that first the evolution rules of type (a) are used, and then 
the division is produced. Of course, this process takes only one step. 

�9 The rules associated with membranes labelled by h are used for all copies of 
this membrane. At one step, a membrane labelled by h can be the subject 
of only one rule of types (b)-(e). 

Let us denote by .AM the class of recognizer P systems with active membranes 
using 2-division for elementary membranes. 

We would like to note that  we are not using dissolution rules in the present 
t 

paper. 

w T h e  C o m p l e x i t y  C l a s s  P M C y  
The first results about "solvability" of NP-comple t e  problems in poly- 

nomial time (even linear) by cellular computing systems with membranes were 
obtained using variants of P systems that  lack an input membrane. Thus, the 
constructive proofs of such results need to design one system for each instance 
of the problem (see for instance Reference 1~ or Reference12)). 

If we wanted to perform such a solution of some decision problem in a 
laboratory, we will find a drawback on this approach: a system constructed to 
solve a concrete instance is useless when trying to solve another instance. This 
handicap can be easily overtaken if we consider a P system with input. Then, 
the same system could solve different instances of the problem, provided that 
the corresponding input multisets are introduced in the input membrane. 

Therefore, when attacking a problem in the Cellular Computing frame- 
work, we will design P systems that  are able to decide all the instances of "equiv- 
alent size", in certain sense. 

Definition 3.1 
Let L be a language, ~ a class of P systems with input, and YI = (H(t))teN a 
family of P systems from ~ .  A polynomial encoding of L in YI is a pair (g, h) 
of polynomial-time computable functions, g : L --~ [-JteN IIl(t), and h : L --~ N 
such that  for every u C L we have g(u) E In(h(~)). 

Lemma :3.1 
Let L1 C_ F~ and L2 C_ F~ be languages. Let ~" be a class of P systems with 
input, and YI = (1-i(t))t~N a family of P systems from ft.  If r : F~ --* F~ is a 
polynomial-time reduction from L1 to L2, and (g, h) is a polynomial encoding 
of L2 in l-I, then (g o r, h o r) is a polynomial encoding of L1 in YI. 

Before going on, we need the following definition, based on the corre- 
sponding one given in Reference. 5~ 

Definition 3.2 
Let .T be a class of recognizer P systems. We say that  a decision problem 
X = ( I x ,  Oz) is solvable in polynomial time by a family of recognizer P systems 
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r l  : (YI(t))tEN f r o m  J~', and we write X E P M C j : ,  if 

�9 The family 11 is 5 v consistent; that  is, Vt E N (II(t) E 5r). 
�9 The family I I  is polynomially uniform by Turing machines; that  is, there exists 

a deterministic Turing machine constructing H(t) from t in polynomial time. 
�9 There exists a polynomial encoding (g, h) from I x  to I I  verifying: 

- YI is polynomially bounded with regard to (X ,g ,  h); that  is, there exists 
a polynomial function p, such that  for each u E I x ,  every computation 
of Yi(h(u)) with input g(u) is halting and, moreover, it performs at most 
p([ul) steps. 

- 11 is sound with regard to (X ,g ,  h); that  is, for each u E I x ,  if there exists 
an accepting computation of Yi(h(u)) with input g(u), then Ox(u) = 1. 

- YI is complete with regard to (X ,g ,  h); that is, for each u E I x ,  i fOx(u)  = 
1, then every computation of II(h(u)) with input g(u) is an accepting one. 

Remark 3.1 
In the above definition we have imposed a confluence condition, in the following 
sense: for each instance u E I x ,  either every computation of II(h(u)) with input 
g(u) is an accepting computation, or every computation of H(h(u)) with input 
g(u) is a rejecting computation. 

Remark 3.2 
Note that,  as a consequence of Definition 3.2, the complexity class PMC~:  is 
closed under complement. 

Proposition 3.1 
Let $- be a class of recognizer P systems. Let X and Y be decision problems such 
that  X is reducible to Y in polynomial time. If Y E P M C y ,  then X E PMC~: .  

That  is, the complexity class P M C ~  is stable under polynomial-time reduction. 

w A Linear  Solution to the Subse t -Sum Problem 
The Subset-Sum problem is the following one: Given afinite setA, a weight 

function, w : A --~ N, and a constant k E N, determine whether or not there exists a 
subset B C_ A such that w(B)  : k. 

We will use a tuple (n, (Wl , . . . ,  Wn), k) to represent an instance of the 
problem, where n stands for the size of A = { a l , . . . ,  an}, wi = w(ai), and k is 
the constant given as input for the problem. 

We propose here a solution to this problem based on a brute force algo- 
rithm implemented in the framework of P systems with active membranes. The 
idea of the design is better understood if we divide the solution to the problem 
into several stages: 

�9 Generation stage: for every subset of A, a membrane is generated via mem- 
brane division. 

�9 Weight calculation stage: in each membrane the weight of the associated 
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subset is calculated. This stage will take place in parallel with the previous 
one. 

�9 Checking stage: in each membrane it is checked whether or not the weight 
of its associated subset is exactly k. This stage cannot s tar t  in a membrane 
before the previous ones are over in that membrane. 

�9 Output stage: when the previous stage has been completed in all membranes, 
the system sends out the answer to the environment. 

Now we construct a family YI of P systems in A.s (the class of recognizer P sys- 
tems with active membranes using 2-division) solving the Subset-Sum problem 
in linear time. 

First we consider the function h defined over the set of instances of 
the Subset-Sum problem, ISubS, by h(u) = ((n + k)(n + k + 1)/2) + n, with 
u=(n, ( w l , . . . ,  wn), k) �9 IsubS. The function (m, n ) : ( ( m + n ) ( m + n +  1)/2) + m  
is polynomial, primitive recursive and bijective from N 2 onto N (the inverse is 
also polynomial). Hence, h is polynomial-time computable. 

For each (n, k) �9 N 2 we consider the P system (II((n, k)), E(n, k), i(n, k)), 
where the input alphabet is E(n ,k)  = {Xl , . . . , xn} ,  the input membrane is 
i(n, k) : e and YI((n, k)) : (F(n, k), {e, s}, #, Ads, Ale, R) is defined as follows: 

�9 Working alphabet: F(n, k) : { E 0 , . . . ,  En, g o , . . . ,  Z~n+2k+2, Q, Q0,. �9 
Q2k+ l, xo . . . .  , xn, bo, b, Bo, B, Yes,  No, # ,  d+, d_ ). 

�9 Membrane structure: # : [8 [e ]r Is- 

�9 Initial multisets: Ads : Z0; Ade = EoB k. 
�9 The set R of evolution rules consists of the following rules: 

- + 

(a) [~Ei] ~ -~ [~Q]~ [r for i : 0 , . . . ,  n, 
0 + [eEi+l]e[eEi+l]e, for i : 0 , . . .  ,n  - 1. 

The goal of these rules is to generate one membrane for each subset of A. 
When an object Ei (i < n) is present in a neutrally charged membrane, 
we pick the element ai for its associated subset and divide the membrane. 
In the new membrane where Q appears, no further elements will be added 
to the subset, but the other new membrane must generate membranes for 
other possible subsets which are obtained by adding elements of index i + 1 
or greater. 

(b) [eX0 B0]~ [ex0 e]~+; [eX~ x + ---+ ---4 - - - +  i--1]e , for i : 1 , . . . ,  n. 

In the beginning, objects xj (with 1 _< j _< n) encode the weights of the 
corresponding elements of A: for each aj we have wj copies of xj.  At the 
same time as we add elements to the subset associated with the membrane, 
these three rules calculate the weight of this subset. 

(c) [eQ ~ Qo]~-; [eB0 --~ b0]~-; [eB --* b]~-. 

The apparition of objects Q0, b0, and b will mark the beginning of the 
checking stage. The multiplicity of object b0 encodes the weight of the 
associated subset, and the constant k is represented by the number of objects 
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b. 

(d) [eb0]~- 0 b 0 [e [el:#. 
We compare the number of occurrences of objects b and b0 sending them out 
of the membrane  alternatively, and changing the polari ty of the membrane 
each time. 

(e) [eQ2j ~ Q2j+l]e,  for j = 0 , . . . ,  k; 

[~Q2j+I ~ Q2j+2] ~ for j = 0 . . . .  , k - 1. 

Objects Qi act as a counter for the checking stage, controlling the number 
of "checking loops" that  take place. 

(f) [eQ2k+l]e ~ [e]~ [eQ2k+l]e ~ ~ [e]e#;~ 
[eQ2j+l][ ---* [r for j = 0 , . . . ,  k - 1. 

Finally, these rules use the information given by the counter to deal with the 
different checking results: the same number of objects bo and b, or excess 
of objects bo, or lack of them. 

(g) [sZ~ --* Zi+]]s ~ for i = 0 , . . . ,  2n + 2k + 1; [sZ2n+2k+2 --* d+d-]~ 

There is another  counter in the skin membrane,  that  waits until all mem- 
branes end their checking stage and then releases objects d+ and d_ in the 
skin. 

(h)[sd+]~ + �9 [~]~d+, [sd_---~No]+; [~Yes]+---*[8]~ [~No]+---~[s]~ 

The answering process is now activated: first the object d+ acts as a query, 
changing the polari ty of the skin membrane,  and then any possible object 
Yes  that  may be present in the membrane  has to be sent out (notice that  
there is no conflict because in this moment  there are no objects No present 
in the skin, since the rule d_ ---* No  needs a positive charge to be applied). 

It  is easy to prove tha t  the above constructed P systems are deterministic. More- 
over, we will prove in Section 6 that  the family YI = (l-I(t))tcN solves the Subset- 
Sum problem in linear time. 

w Comments about the Way the System Works 
Let us s tar t  by discussing the subset generation method. We will introduce 

the concept of the subset associated with a membrane labelled by e in a recursive 
manner.  

�9 The subset associated with the initial inner membrane is the empty  set. 
�9 If  in any moment  of the computat ion an object Ei appears  in a neutrally 

charged membrane  labelled by e, then we add the element ai to the corres- 
ponding associated subset of tha t  membrane (when the generation stage 
ends, the associated subset will not be modified anymore).  

We will also refer to the membrane as associated with its corresponding subset. 
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Fig. 1 Membrane Generation for n = 3 

The objects tha t  deal with the subset generation are objects Ei. Our 
goal is to generate a membrane for each subset, and we will do it in a sort of 
lexicographic order. Tha t  is, if an element aj has already been added, then no 
elements a f  with jP < j will be added in the future to the associated subset. 

- E + When applying a rule of the type [~Ei] ~ ~ [~Q]e [~ i]e, the two new 
membranes inherit their father 's  associated subset. The membrane  where object 
Q appears  leaves the generation stage, and it will not divide anymore (such 
membranes appear  in Fig. 1 marked with a circle). On the other hand, the 
positively charged membrane where object Ei appears  will continue dividing, 

0 + via the rule [~Ei] + ---+ [~Ei+l]e[eEi+l]~,  to generate membranes  with different 
associated subsets, obtained as a result of adding objects of index i + 1 or greater 
to the current subset. Note that  if i = n, then the membrane  gets blocked, 
because there are no more objects to add (we have marked that  with a diamond). 

Definition 5.1 
We call relevant membranes  associated with a configuration the membranes which 
contain the object Q0 and have a negative charge. 

The purpose of the membrane division that  we carry on at the beginning 
of the process is to get a single relevant membrane for each subset of A. In total, 
this means 2 n different relevant membranes.  

The weight stage takes place in parallel with the first one. Let us explain 
how this is done. 

To calculate the weight of a subset we must sum the weights of all its ele- 
ments. The system is designed in such a way to perform the sum of the elements'  
weights at the same t ime as the elements are added to the subset associated with 
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the membrane.  This goes on until gett ing into a relevant membrane,  and then 
the number of occurrences of object b0 will encode exactly the weight of the 
associated subset. 

In the next section we will prove that  in a positively charged membrane 
[e] + where the object E~ occurs, the multiplicity of object xl  is equal to the 
weight of element ai+l E A. Thus, when in the next step we apply rules [eXl --~ 
x0] +, [exo c] + and [~Ei] + 0 + ---* [~Ei+~]~[eEi+l]e, we will get in each child 
membrane exactly w(a~+l) occurrences of x0. 

In the case of the neutrally charged child we add the element ai+l to the 
associated subset and in the next step we will add w(ai+l) copies of B0 to the 
membrane multiset. The situation is different for the positively charged child, 
where the element ai+l will not be added to that  membrane associated subset, 
nor to any of its descendants '  subsets, so we "erase" the information w(a~+l) 
storing instead the number w(ai+2) as the number  of occurrences of object x0. 

Next comes the checking stage. This stage begins in a membrane when 
it becomes relevant. This happens one step after the moment  when object 
Q appears  and the membrane gets negatively charged for the first time. In 
that  step the objects B and B0 become b and b0, respectively, and the object 
Q produces Q0 (as a result of applying the rules from (c)), so the membrane 
becomes relevant. We check whether there are exactly k objects b0 comparing 
the number of objects b and b0: they will be counted one by one alternatively, 
changing the membrane  charge each t ime from negative to neutral and vice versa. 

If  the answer is affirmative, then after 2k steps of the checking stage we 
will not have any objects b or b0 and the charge will be negative. The counter 
Qj counts these 2k steps, and there are rules that  take care of the cases when 
the answer is negative. 

Finally, objects Zj come into play for the response stage, counting 2n + 
2k + 2 steps from the beginning of the computat ion.  Once these steps are made, 
we are sure that  all membranes have finished their checking stage and so we just  
check if any of them said Yes and then we send the final answer outside. 

w Formal Verification 
We want to prove that  the family I I  of P systems presented in this paper  

solves the Subset-Sum problem, according to the definition given in Section 3. 
In this section we will show that  all computat ions of the systems from the 

family I I  halt, either the object Yes or the object  No (but not both) is sent out 
to the environment in the last step of each computat ion,  and the systems give 
the same output  corresponding to the same input multiset. 

Now we will check the second condition of Definition 3.2, i.e., whether the 
family of P systems we have defined is polynomially uniform by Turing machines. 
First of all, observe that  the evolution rules of Yi(h(u)) are defined in a recursive 
manner from the instance u, in particular from n and k. Let us list the necessary 
resources to build II(h(u))  from u E Isubs,  with u -- (n, (wl . . . .  ,w~), k): 

�9 size of the alphabet:  4n + 4k + 17 E O((n, k)), 
�9 number of membranes:  2 E O(1), 
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�9 IM I + IM I -- k + 2 �9 e (k ) ,  
�9 sum of rules' lengths: 35n + 27k + 110 E O((n, k)). 

So a Taring Machine can build II(h(u)) in polynomial t ime with respect to h(u). 
Next we consider a function g : IS~DS ---* UteN In(t), defined by g(u)=x~ 1 ... x~". 

Then, g is a polynomial-t ime computable  function. Moreover, the pair 
(g, h) is a polynomial  encoding of IsubS in YI since for each u C IS~bS we have 
g(u) e Iu(h(~)). 

We must  still prove tha t  every II(h(u))  is polynomially bounded, sound, 
and complete with regard to (SubS, g, h). 

Let u E IS~bS be a~ instance of the Subset-Sum problem. We will analyze 
what happens in the computat ion of its associated P system to find the instant 
when it halts, or at least an upper bound. 

First of all we will s tudy the membrane  division process. Note that  a 
necessary and sufficient condition for a membrane to divide is that  it is neutrally 
charged and an element Ej with j C {0, 1 , . . . ,  n} is inside it, or tha t  the charge 
is positive and an element Ej with j E (0, 1 , . . . ,  n - 1} is present. In the first 
case we get a membrane  with negative charge, where the object  Ej is replaced 
by Q, and another  membrane with positive charge, where the object  Ej remains 
unchanged (this membrane  will divide again if j < n). In the second case we get 
one of the child membranes  with neutral charge and the other one with positive 
charge. In both membranes  the object Ej  that  caused the division disappears, 
and it is replaced by an object Ej+I. As the index set is finite, we cannot keep 
on increasing indexes indefinitely, so the subset generation stage (membrane 
division) is a finite process. Indeed, it can be easily proved tha t  after 2n + 1 
steps no further membrane  division will take place in the computat ion.  

Let us examine now the weight calculation stage. This stage takes place 
during the process of adding elements to the associated subset of a membrane.  
If we follow a reasoning similar to the previous one, considering now the objects 
xi and how they disappear or get their indices reduced in one unit because of 
the rules from (b), then we deduce that  the second stage is also a finite process. 

When a relevant membrane appears,  the first two stages stop in that  mem- 
brane and the checking stage begins. Let D = { a i l , . . . ,  ai~} C_ A be the subset 
associated with tha t  membrane,  and let w~ = w(D). The multiset associated 

~k~wD w~+l w~ Then, s tar t ing from that  with the membrane  will be w0u u 0 x 1 . . . x n _ i  �9 

situation, rules [~b0]~- 0 b 0 -~ [e]e# and [e ]e -~ [e]e-# will be applied alternatively 
until we run out of some of the objects. Clearly, this is a finite cycle, because ev- 
ery t ime the cycle is completed a pair of objects from the membrane  is removed, 
and we never create new ones. 

At the same time, counter Qi evolves, and it gives information about  the 
step when the previous cycle stops. Depending on the counter index, we will 
know if there was an excess of objects b, or of objects b0, or if there was exactly 
the same amount  of them. Again, as we have a finite number  of indexes for Qi 
and it is always evolving, the number of steps of this stage is finite. Indeed, the 
maximal number of steps for this stage is 2k+  2, in the case when w(A) >_ k: first 
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we apply k times the loop "first [eb0]e -* [~]~ together with [eQ2j --4 Q2j+l]e 

and then [r ~ --4 [e]~-4P together with [eQ2j+l -* Q2j+21~ " (2k steps); and after 
that  2 more steps are made, one for the rule [eQ2k ---* Q2k+x]e- (maybe together 
with [eb0]~- --~ 0 [e]r and another one for the rule [~Q2k+l]~- --* [e]~ (or 
maybe [ eQ2k+l ]e  0 0 

This leads us to the output  stage. In this stage a new counter, Zj, comes 
into play to guarantee that  the answer is delivered only after all the inner pro- 
cesses are over. Tha t  is, the counter waits until the last membrane finishes its 
checking stage. 

The relevant membrane associated with the total subset is the one that  
appears  the last, because its generation stage is the longest. This membrane is 

the result of 2n + 2 steps: first we apply the loop ,,rLeZ~i_lj e ~  ]0 ~ [ e Q ] e  [eEi-1]e+;  

[ o E i - 1 ] :  0 + , ,  --~ [eEi]~[eEi]~ for i = 1 , . . . , n  (2n steps), and then 2 extra  steps 
E 0 [~ n]~ --~ [eQ]e-[~En] + and [~Q --~ Q0]~-. 

In the worst case, the checking stage in the membrane associated with 
the total  subset will take 2k + 2 steps, so the counter Zj must wait during 
2n + 2k + 4 steps. First it evolves from Z0 up to Z2n+2k+2 (2n + 2k + 2 steps), 

d 0 + steps)�9 then [sZ2n+2k+2 d_d+] ~ and Is +Is are --~ -~ [s]~ d+ applied (2 more 
Thus the answer is sent out in the step 2n + 2k + 5 if it is Yes ,  or in the next 
step if the answer is No.  So, there exists a polynomial (in fact, linear) bound 
for the number of steps with respect to n and k. 

We have still to show that  the system is sound and complete with regard 
to (SubS,  g, h), tha t  is, that  the system outputs  Y e s  if and only if the answer to 
the Subset-Sum problem for the given instance is affirmative. 

First let us focus on the generation stage. Let D = { a i l , . . . , a ~ , }  be a 
subset of A (with il < i2 < �9 .. < it, and r _< n); then, there must be an unique 
relevant membrane  tha t  encodes it. Indeed, here is the membrane  sequence that  
leads to this membrane:  

[eE0] ~ + + + ~ + 

- - -  E o ==# [ e E i 2 _ l ] e  + =4~ [eEi2] 0 ~ ,  =4, [e i~]e ~ [ eQ]e  =k [ e~O]e -  

We know tha t  by definition the associated subset of a membrane  encodes 
somehow its history, and so the sequence tha t  we sketched above leads actually 
to a relevant membrane  whose associated subset is D. We will now see that  the 
number of occurrences of b0 in that  membrane  is exactly w(D) .  

Lemma 6.1 
In a positively charged membrane labelled by e where the object Ei occurs, with 
0 < i < n - 1, the multiplicity of object xj  is exactly the weight of element 
ai+j E A for every j such that  1 < j < n -  i. 

Proof 
By induction on i. 

For the base case, i = 0, we know that  the multiset of the membrane e in 
�9 - - ~ k  w l  w .  0 - -  + 

- "  [ Q]e [eEo]o the initial configuration is/~'o~ x I x n . Then the rule [eEO]e 
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is applied (it is in fact the only one tha t  can be applied to these objects) and 

hence we get a positively charged child whose multiset is E o B k x ~ l . . .  xnW,~ . Then, 
for every j such tha t  1 < j < n - i the multiplicity of object xj is exactly the 
weight of element aj E A, as we wanted to prove. 

For the inductive step, let us suppose the result is true for i < n -  1. 
Consider then a positively charged membrane  labelled by e where the object 
Ei+l occurs. We will distinguish two cases: 

First, let us suppose tha t  the membrane  is obtained as the result of ap- 
plying the rule [eEi]+ o + --~ [eEi+l]e[eEi+l]e �9 From the inductive hypothesis we 
know that  the multiplicity of object xj  in the father membrane is exactly the 
weight of element ai+j E A for every j such that  1 _< j <_ n - i. Let us note 

that  also rules [eXi --~ xi-1] + for i = 1 , . . . ,  n and [eXo ~ e] + have been applied, 
so the multiplicity of object xj in our membrane is equal to the multiplicity of 
object x j+l  in the father membrane,  for 1 _< j _< n. Thus, from the inductive 
hypothesis we deduce that  the multiplicity of object xj is exactly the weight of 
element ai+j+l E A. This completes the proof. 

The second case is getting our membrane  via the use of the rule [eEj] ~ 

[eQ]e [eEj]+e, for j = i + 1. Following a similar reasoning for the neutrally 

charged father membrane  (since [r ~ is obtained as a result of applying the 
rule [r o + [eEi+l],[eE~+l]e ), we conclude that  the multiplicity of object 
xj  in tha t  membrane  is exactly the weight of element ai+3+l C A, for j = 
1 , . . . ,  n - i - 1. Finally, the multiplicity of those objects xj does not change in 
the last step, because the only rule we could apply at  the same t ime with the 
division rule is [exo ~ B0] ~ but it does not affect objects xj with j > 1. �9 

Proposition 6.1 
In a relevant membrane  the multiplicity of the object b0 is exactly the weight of 
the subset associated with that  membrane.  

Proof 
Consider an arbi t rary  relevant membrane.  Let us suppose that  the associated 

subset is D = { a i l , . . . , a i ~ } ,  with il < i2 < . . .  < it, and r < n. Then, as we 
said before, there is no other relevant membrane along the computat ion tha t  
encodes the same subset. 

All the membranes  in the sequence that  leads to the membrane have a 
positive charge except one neutrally charged membrane,  with an object  Eit inside 
it, for each element iz E D. 

Let us apply the previous lemma for i = iz - 1 (with 1 < 1 < r) and j = 1 
to all the positively charged membranes where the objects Ei~-i  appear.  We 
get that  in each one of them the multiplicity of the object xl is exactly wit, the 
weight of element air E A. In the next step, rules from (b) are applied, so we 
deduce that ,  for 1 < 1 < r, in the neutrally charged membrane  where Ei, occurs, 
the multiplicity of the object x0 is wit. Thus, in the following step wit copies of 
object B0 will be added to the associated multiset. 

This holds for it with 1 < l < r, that  is, for all the elements of D. We 
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conclude then that  in the negatively charged membrane where Q appears the 
multiplicity of object Bo is the sum of the weights of the elements of D, that  
is, the weight of the subset D. Finally, as rules from (c) are applied in the last 
step of the sequence, the multiplicity of object b0 in the relevant membrane is 
exactly w ( D ) ,  as we wanted to prove. �9 

Let us focus now on the checking stage. Consider, for example, a relevant 
membrane with an associated subset D = { a i ~ , . . . ,  ai~}, and let w ( D )  = W D  be 
the weight of this subset. Then the multiset associated with the membrane is 
Q ~ W D ~  Wirq-1 Wn 

0u0 ~ X 1 . . . X n _ i  . 

Hence, there are WD and k occurrences of objects b0 and b, respectively. 
The object Q0 is also present in the membrane and there may also be some 
objects x j ,  j > 0, but  they do not evolve in the remaining stages because their 
evolution rules require a positive charge, and the membrane will never again get 
this polarization. 

We distinguish three different possibilities. 

1. Suppose w D < k. Since the membrane is negatively charged, in the first 
step we can only apply the rules [ebo]~- ~ [e]~ and [eQo --~ Q1]e-- Then, 
as the charge is neutral now, rules [eb]~ -~ [~]~-~ and [eQ1 ~ Q2] ~ will be 
applied next. This completes the first loop of the "checking cycle". 
We keep on looping until we run out of bo (remember we are in case WD < k), 

bk--WDxW~+l w~ with a negative charge. i.e., we get to a situation ~2WD 1 " " " X n - - i ~  

Then the rule [~Q2wD -~ Q2wD+I]/ will be applied, but no object b0 will 
make the charge change to neutral this time, so we must apply the "reject" 
rule [eQ2wD+l]e -~ [e]~-#. 
No more rules will be applied in the membrane, because the remaining 
objects are  b and x j ,  and there are no evolution rules for them with a 
negative charge condition. 

2. Suppose now that  WD = k. Then, after k iterations of the checking cycle 
we have no more objects b or b0 left, and the counter is Q2k. In the next 
step we will apply only one rule, [eQ2k ---+ Q 2 k + l ] e ,  and this leads to the 
affirmative answer: [eQ2k+l]: ~ [~]:Yes .  

No more rules will be applied in the membrane, because the remaining 
objects are x j ,  and the membrane has a negative charge. 

3. Finally, if wD > k, then there are more objects bo than b. So in this 
case the checking cycle will also go through k loops, but the situation after 

this will be Q 2 k b ~ - k x l  ~+~ �9 �9 . x ~ _ i  Then the rule [eQ2k -o Q2k+l][ 

is applied together with [ebo]/ 0 --* [e]e~ and after that  the "reject" rule 
0 --* [e]e# ends the stage, because the remaining objects are b0 

and xj with j > 0, and there are no evolution rules for them working in a 
neutrally charged membrane. 

Finally, let us see that  the output  stage is sound. It is important  to notice 
that  no answer will be sent out while the skin membrane remains of a neutral 
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charge. The object d+ is subsequently necessary to get any output ,  and the 
object d+ evolves from the counter Zj. We know that  the purpose of counter Zj 
is to wait until all inner processes are over. We also know tha t  the last relevant 
membrane generated in the computat ion is the one associated with the total  
subset, D = A, and it appears  in the step 2n + 2. 

I ts  checking stage will take 2k + 2 steps in the worst case (if WD >_ k 
holds), so we wait 2n + 2k + 2 steps before releasing object  d+ via the rule 

[sZ2n+2k+2 ~ d+d_] ~ 
When d+ is sent out, we are sure that  all inner processes are over. It  

is time then to look for l~ossible objects Yes  present in the membrane.  To do 
so, object d+ gives the positive charge to the skin membrane  when it leaves the 
system. 

Then, the rule [~d_ -~ No] + will be applied, and if there are any objects 
Yes  present (i.e., if the checking stage was successful in some of the membranes 

labelled by e), then the rule [~Yes] + ~ [s]~ will be applied and no further 
rule will be possible. In case tha t  no objects Yes  were present in tha t  moment,  
this would mean tha t  the problem for the instance we are considering has a nega- 
tive solution. Indeed, if ao object Yes  is sent out as output,  then the charge will 
still be positive in the next step, allowing the rule [sNo] + ~ [s]~ to be applied. 

We have proved that  for every subset of A a single relevant membrane 
associated with it appears  in the computation.  We have also seen tha t  in every 
relevant membrane  the weight of the subset is correctly encoded and compared 
with k. We have also checked that  the object Yes  is sent out if and only if the 
checking stage was successful in at least one inner membrane.  Hence, we have 
proved the soundness and completeness of the family YI of P systems that  we 
have defined. Also, it can be deduced tha t  the family YI is .AM-consistent. 

w Main  Results  
From the discussion in the previous section, and according to Defini- 

tion 3.2, we deduce the following result: 

Theorem 7.1 
SubS E P M C A M .  

Although the next result is a corollary of Theorem 7.1, we formulate it as 
another theorem, in order to stress its relevance. 

Theorem 7.2 
N P  c_ P M C ~ t M .  

Proof 
I t  suffices to make the following observations: the Subset-Sum problem is N P -  
complete, Subs  E P M C A M  and the class PMCA~a is stable under polynomial- 
t ime reduction. �9 
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w Conclusion 
In this paper  we have presented a family of recognizer P systems solving 

the Subset-Sum problem in linear time. This has been done in the framework of 
complexity classes in cellular computing with membranes.  

The design presented here can be adapted for other numerical N P - c o m p l e t e  
problems. For instance, this approach has been used to formalize a solution to 
the Knapsack problem. 8) More generally, we believe that  from such solutions we 
can extract  some common features for at tacking other numerical problems in 
the future. 

The solution presented here differs from other solutions to N P - c o m p l e t e  
problems given by C. Zandron, 12) Gh. P~un, lo) et al. in the following sense: 
a family of P systems with active membranes  and with input is constructed, 
associated with the problem that  is being solved, in such a way tha t  all the 
instances of such problem that  have the same length (according to a prefixed 
polynomial-t ime computable criterium) are processed by the same P system (to 
which an appropr ia te  input, that  depends on the concrete instance, is supplied). 
On the contrary, in the solutions presented by C. Zandron, 12) Gh. P~un, 1~ et 
al. a single P system is associated with each one of the instances of the problem. 

More precisely, suppose we solve an instance of a given problem. If we 
wanted to solve another  instance of the same length, we would have to modify 
somehow the P system that  was used for the previous instance. In the approach 
presented here, the changes needed are minimal, as they only affect to the input 
multiset, but in other solutions in the literature, the changes would affect more 
deeply to the P system, as the set of rules may be modified as well as the 
multisets associated with the membranes.  

We are also interested in the generation of the family of P systems that  
solves the problem. I t  would be a great improvement to be able to generate the 
family using cellular tools (that is, another  membrane system) and thus a linear 
bound for the generation of the family will be also possible. 

Another issue related to the present paper  is the computer  simulation of 
P systems. An implementation in silico (in Prolog) for P systems with active 
membranes has been developed by the Research Group in Natural  Computing 
from the University of Seville. 1'2) This simulation can help to debug some errors 
in the formal design and verification of P systems, and a feedback process also 
exists, as running simulations of already verified P systems can cause some bugs 
in the implementat ion to arise. 

We conclude by proposing some open questions. In Reference ~) it is proven 
that  co - N P  __ P M C A ~ a ,  so we can deduce that  N P  U co - N P  C P M C • M .  

1. Does N P  U co  - N P  = P M C A ~  hold? 
2. Find a class b ~ of recognizer membrane  systems such that  N P  tA co - N P  = 

PMCj= ,  or P S P A C E  = PMC~: .  
3. Let ~'* be a collection of recognizer P systems with active membranes but 

without polarizations. Is it verified that  N P  C_ PMC~: .  ? 
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