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When continuously monitoring processes over time, data is collected along a whole period, from which
only certain time instants and certain time intervals may play a crucial role in the data analysis. We
develop a method that addresses the problem of selecting a finite and small set of short intervals (or
instants) able to capture the information needed to predict a response variable from multivariate func-
tional data using Support Vector Regression (SVR).
In addition to improving interpretability, storage requirements, and monitoring cost, feature selection

can potentially reduce overfitting by mitigating data autocorrelation. We propose a continuous optimiza-
tion algorithm to fit the SVR parameters and select intervals and instants. Our approach takes advantage
of the functional nature of the data by formulating a new bilevel optimization problem that integrates
selection of intervals and instants, tuning of some key SVR parameters and fitting the SVR. We illustrate
the usefulness of our proposal in some benchmark data sets.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Functional data analysis (FDA) (Ferraty and Vieu, 2006; Ramsay
and Silverman, 2002, 2005), is an extension of the classic multi-
variate analysis which is particularly oriented to handle observa-
tions of functional nature, where each observation represents the
dependency of a varying quantity on another quantity whose val-
ues vary over a given interval. When each observation consists of
more than one function, we call it multivariate functional data
analysis. The applications of FDA span a wide range of fields such
as chemical processes, Blanquero et al. (2016a,b), meteorology,
Martín-Barragán et al. (2014), speech recognition, Rossi and Villa
(2006) and spectrometry, Ferraty et al. (2010), Hernández et al.
(2007) and Martín-Barragán et al. (2014), among others.

In this paper, we focus on functional regression, Ferraty et al.
(2010), Hernández et al. (2007), James et al. (2009), Kneip et al.
(2016) and Müller and Stadtmüller (2005), one of the most chal-
lenging problems in FDA. Even though the majority of the litera-
ture on functional regression is focused on the univariate
counterpart, in this paper we are interested in the prediction of a
scalar response, based on the information provided by multivariate
functional data.

Predictor-response relationships are harder to be found and
interpret as the dimension of the data becomes larger, or even infi-
nite, as in FDA. Selecting, without damaging the predictive ability,
a few short subintervals from the full monitoring interval would
definitely lead to a much better understanding of the data, enhanc-
ing quicker predictions and easing decision making. Note that time
instants can be considered as a degenerate case of intervals whose
length is zero. Hence, unless explicitly stated, we will use in this
text the term interval as a general term encompassing both time
intervals and time instants. The replacement of the whole interval
with a few short subintervals or even degenerate can be seen as a
variable selection procedure within an infinite-dimensional
framework.

In the literature of feature selection in finite dimensional data,
we can find a wide variety of works. See Chandrashekar and
Sahin (2014), Guyon and Elisseeff (2003) and Molina et al. (2002)
for a survey. Particularly, in the regression area, we can highlight
(Andersen and Bro, 2010; Karagiannopoulos et al., 2007; Li et al.,
2009; Mehmood et al., 2012; Van Dijck and Van Hulle, 2006;
Yang and Ong, 2011; Zhang, 2009). Variable selection has also been
studied in other domains such as clustering (Dash et al., 2002;
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Dash and Liu, 2000; Dash et al., 1997; Law et al., 2004, 2003; Li
et al., 2008) and supervised classification (Aytug, 2015; Benítez-
Peña et al., 2019; Bertolazzi et al., 2016; Carrizosa et al., 2011;
Dash and Liu, 1997; Maldonado and Weber, 2009; Maldonado
et al., 2011).

Feature selection methods are grouped into one of the following
categories (Torrecilla Noguerales, 2015):

� In filter methods feature selection is done as a preprocessing step
regardless of the model or method that will be used to predict.
See, for instance, Lazar et al. (2012), for a review of these
approaches. Most of these methods rank the variables according
to a relevance measure and discard the least relevant features.
Advanced versions of filter methods include the use of sparse
PCA, Johnstone and Lu (2009), and SIR (Slice Inverse Regres-
sion), Picheny et al. (2019). Both PCA and SIR produce transfor-
mations of the feature space that are typically used for
dimensionality reduction, but these transformations usually
involve the whole set of original features. Their sparse versions
aim to achieve the same reduction but using fewer features to
allow for interpretability. The final transformed features can
then be plugged into any regression model to obtain the final
predictor.

� Wrapper methods Kohavi and John (1997) interact with the pre-
dictive model or method, but use them as a black box to assign
scores to the features. From a computational point of view, they
are less efficient than filter methods, although, as a counterpart,
may provide better accuracy.

� Embedded methods take the interaction a step forward, and inte-
grate the estimation of the prediction model and the feature
selection steps. Hence, model construction and feature selection
are done jointly, usually through the resolution of a single opti-
mization problem. See Maldonado and Weber (2010) for an
example of an embedded method with SVR as a regression
algorithm.

� Hybrid methods combine filter and wrapper approaches, usually
in two-steps algorithms (Hsu et al., 2011; Hua et al., 2009).

Several traditional multivariate statistical approaches to
address regression problems have been extended to FDA. Since
the early days of FDA, least squares methods have been applied
to linear regression with functional predictors, Ramsay and
Dalzell (1991) and Ramsay and Silverman (2005). Alternative tech-
niques, such as Support Vector Regression (SVR) (Smola and
Schölkopf, 2004), have also been extended to cope with functional
data in a nonlinear manner (Hernández et al., 2007, 2009). Some
dimensionality reduction techniques for linear regression in FDA
have been introduced, such as principal component regression or
partial least squares, Aguilera et al. (1997), Delaigle and Hall
(2012), Preda and Saporta (2005,) and Reiss and Ogden (2007).
These are projection-based methods that reduce dimensionality
where the retained features are a combination of (potentially) all
the original variables in the model. In this sense, they select neither
time instants nor short intervals. An increasing number of refer-
ences have recently tackled dimensionality reduction via variable
selection. Most of them have considered the selection of time
instants. For example, the algorithm proposed in James et al.
(2009) focused on the interpretability by selecting time instants.
Since such selection is based on the ‘1-norm regularization, it is
difficult to control the number of selected instants. In Kneip et al.
(2016) a method is proposed to detect the most important points
of impact among a predefined set of time instants, in which the
functional data are measured, i.e., it is assumed that the impact
points belong only to the set of timestamps where the functions
are monitored, which is not always the case. Moreover, Kneip
et al. (2016) is a generalization of the model proposed in
McKeague and Sen (2010) where the identifiability and estimation
of just one time instant is sought. The work of Aneiros and Vieu
(2014) directly applies standard multivariate procedures to dis-
cretized functional data. Thus, the functional nature of the data is
disregarded and not exploited.

Functional nonparametric regression models have also been
proposed, Ferraty et al. (2010), Ferraty and Vieu (2004, 2006) and
Rossi and Conan-Guez (2005), and the optimal selection of the time
instants has been studied too. We can highlight, for instance, the
works of Aneiros and Vieu (2016) and Ferraty et al. (2010), where
the most influential design points are sought among a given (large)
set, usually hard to obtain, or the methodologies of Berrendero
et al. (2019) and Ferraty et al. (2010) based on a greedy approach,
in which the time instants are sequentially located.

Nevertheless, in many real-life applications, the important
information may not be (only) represented by isolated time
instants, but also by some influential time intervals. Hence, when
the predictive ability of the models that use only isolated time
instants is not acceptable, the selection of a few short intervals
may provide an alternative that is still easy to interpret. Note that
there is an important conceptual difference between time instants
selection and time interval selection in functional data. In the for-
mer, the infinite dimensional space representing the functional
data is reduced to a finite dimensional space. Hence, multivariate
techniques can be then applied. In contrast, when selecting time
intervals, the reduced space will still be infinite-dimensional. In
such a case, the estimation of the final model will need FDA tech-
niques. This difficulty does not hurt interpretability if only a few
intervals are selected and their lengths are small. Very few meth-
ods have been proposed in the literature to deal with the selection
of time intervals in functional data regression. The authors of Tutz
and Gertheiss (2010), Grollemund et al. (2019) and Park et al.
(2016) focus on the linear regression case. The article Tutz and
Gertheiss (2010) proposes a linear model for selecting a group of
variables with a predefined length. This strategy yields intervals
of the same size, which makes the model less flexible. The strategy
proposed in Grollemund et al. (2019) pursues time intervals which
may overlap, under the assumption of a linear regression model
and normal distribution probability. In addition, the work in Park
et al. (2016) also assumes a linear regression model and proposes
an aggregative framework; it starts from a given initial partition
of the domain and the intervals are then joined two at a time
according to their prediction ability. Apart from the difficulties to
obtain a good initial partition, the number of possible combina-
tions of two intervals may explode if a large number of initial inter-
vals are available. There are other two proposals that, without
aiming directly with the selection of intervals, can be adapted for
that purpose. The more general problem of selecting functional
features (functions) from a given set is addressed in Fraiman
et al. (2016) for linear regression with scalar or functional
response, functional supervised and unsupervised classification,
and functional PCA. If the set of functions is chosen as the local
averages, the method will select intervals. However, that method
is very inflexible as the intervals need to be predefined, and the
function considered will be constant at such an interval. Another
method that can select intervals, for an adequate choice of the reg-
ularization, is proposed in James et al. (2009). However, neither the
number of intervals nor their length is directly penalized. Hence
they are difficult to control. Moreover, this methodology only con-
siders the linear regression model. Finally, the nonlinear nonpara-
metric case is addressed in Picheny et al. (2019), where a sparse
version of SIR for functional data is proposed. As mentioned before
for SIR, the proposal in Picheny et al. (2019) is a filtering approach
that selects the intervals without using the information about the
nonlinear model. Indeed, their proposal seeks select intervals with
the aim of replicating the results of SIR. As far as we are aware of,
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this is the only proposal that has considered a nonlinear regression
model. In particular, the feature selection problem in SVR with
functional data has not yet been studied in the literature. For the
classification problem, an SVM-based method to select time
instants has been proposed in Blanquero et al. (2019b).

In this article, we consider the problem of the optimal selection
of time intervals (including time instants as a degenerate case) for
functional Support Vector Regression. We extend the work done
recently for selecting time instants, but not intervals, for the clas-
sification, instead of regression, problem (Blanquero et al., 2019b).
The use of Support Vector Regression allows us to capture nonlin-
earities. This is the first embedded feature selection method for
this problem that is able to capture nonlinearities. The only other
nonlinear alternative is a filtering method (Picheny et al., 2019).
Furthermore, following the scheme of Blanquero et al. (2019b),
our proposal handles in the very same way univariate and multi-
variate functions. Indeed, this is the first time the feature selection
problem is considered in the context of multivariate functional
regression. We formulate an optimization problem able to find at
once the most important intervals of the multivariate functional
data in terms of prediction. This issue is tackled via a penalization
in the objective function which regulates the length of the inter-
vals. Taking advantage of the functional behavior of the data, the
selected time intervals are represented in the optimization model
as continuous decision variables. Therefore, the so-obtained opti-
mization problem may be solved by means of continuous opti-
mization techniques. If instead, the data had been treated as
multivariate finite-dimensional data, combinatorial optimization
problems, which are very hard to solve due to the exponential
number of candidate solutions, would have been obtained.

It is important to remark that the methodology of Blanquero
et al. (2019b) is restricted to the search of time instants. In con-
trast, in this paper, we generalize such a model to seek time inter-
vals and time instants (intervals of length zero).

The remainder of this paper is structured as follows. Section 2 is
devoted to some previous definitions related to the use of the
derivatives in the SVR problem. In Section 3 we detail the problem
formulation and the solution approach, as well as the way to
choose the best number of time intervals (including instants as a
degenerate case). Section 4 describes the numerical experiments
and Section 5 presents the results obtained with our approach.
We finish in Section 6 with some conclusions.

2. Preliminaries

Here, we introduce the main definitions and concepts concern-
ing our proposal. Section 2.1 details the notation of the multivari-
ate functional data, including how to infer the higher-order
information by means of the derivatives. Section 2.2 outlines the
Support Vector Regression problem, and presents the kernel func-
tion here utilized.

2.1. Notation and derivatives management

Let s be a sample of individuals Xi; Yið Þf gi2s, where Xi 2 X ¼ F p

is formed by p functional components, Xi tð Þ ¼ Xi1 tð Þ; . . . ;Xip tð Þ� �
with Xiv : 0; T½ � ! R belonging to the class F of d-times continu-
ously differentiable functions on the time interval 0; T½ �, and
Yi 2 R. The main goal is to find a rule able to predict the response
Y 2 R from the information of the multivariate functional data
X 2 X .

Our proposal is applicable to pure multivariate functional data,
as well as to univariate functional data, X tð Þ 2 F . The simplest way
would be just to consider p ¼ 1. However, a more sophisticated
approach can be achieved if the derivatives are applied to trans-
form the univariate in multivariate data. Particularly, a univariate
datum X tð Þ is transformed in:

X tð Þ;X 0 tð Þ; . . . ;XdÞ tð Þ
� �

ð1Þ

with XdÞ tð Þ denoting the derivative of degree d of X tð Þ. In this way,
the higher-order information provided by the derivatives can also
be included in the pure multivariate functional data, X tð Þ 2 F p, as
follows:

X1 tð Þ; . . . ;Xp tð Þ;X0
1 tð Þ; . . . ;X0

p tð Þ; . . . ;XdÞ
1 tð Þ; . . . ;XdÞ

p tð Þ
� �

ð2Þ

The usage of the derivatives may be decisive to obtain accurate
predictions, as is shown in Section 4.

In real-life applications, the original functional data Xi are only
known in some time instants. Hence, smoothing techniques, e.g. De
Boor (1978) and Friedman et al. (2001), should be applied as a pre-
processing step so that an approximation to the original function Xi

can be obtained from the observed time instants.
Moreover, if higher-order information is taken into account, one

can first compute the finite increments, and then smooth the
sequence of increments. As an example, the first derivative of
X tð Þ at a time instant th is approximated as follows:

X0 thð Þ ¼ X thð Þ � X th�1ð Þ
th � th�1

ð3Þ

The computation of the derivatives of order d > 1 will follow
the same procedure, i.e., first, the raw data of the d-th derivative
is computed using the raw data of the d� 1ð Þ-h derivative, to be
then smoothed with an appropriate interpolation technique.

Hence, we choose to apply the smoothing step after taking the
numerical derivatives. An alternative option is to first smooth the
function and then calculate the derivatives. Indeed both choices
are possible. However, since, as indicated in Section 4, we are using
a cubic spline as an interpolation technique, if smoothing is done
first and the derivatives are estimated later, then the evaluation
of derivatives of degree greater than three will always be zero.
Nevertheless, note that in our numerical experience (Section 4),
we have fixed the maximum degree of the derivatives to be used
to d ¼ 2 since the first two derivatives are the most commonly
used; therefore, any of the two choices could be applied. An appro-
priate value of d could be based on domain knowledge or on a
model selection step to be embedded in our methodology. This
issue is beyond the scope of this paper and may require further
investigation.

2.2. Support Vector Regression and kernel definition

The basic idea of the nonlinear tool SVR is to find a function

Ŷ : X ! R, in such a way that, for X 2 X i; Ŷ Xið Þ differs at most from
e from the actually obtained response Yi 2 R. Since this constraint
does not usually hold, it is relaxed by introducing slack variables,
yielding an optimization problem that minimizes the e-
insensitive loss function and adding a linear penalization of the
deviations from e. Problem (4) is the dual formulation of the result-
ing optimization problem:

max
m;m�

� 1
2

P
i;j2s

mi � m�i
� �

mj � m�j
� �

CK Xi;Xj
� ��

�eP
i2s

mi þ m�i
� �þP

i2s
Yi mi � m�i
� �

s:t:
P
i2s

mi � m�i
� � ¼ 0

mi; m�i 2 0;1½ �; i 2 s

8>>>>>>>><
>>>>>>>>:

ð4Þ

and the function Ŷ can be expressed as:
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Ŷ Xð Þ ¼
X
i2s

mi � m�i
� �

CK Xi;Xð Þ þ b; X 2 X ð5Þ

In Eq. (5), the term b denotes a threshold value which can be
easily computed by exploiting the Karush–Kuhn–Tucker (KKT)
conditions of Problem (4). See Smola and Schölkopf (2004) for
more details. Furthermore, C is a scalar regularization parameter
that penalizes the instances whose deviations are larger than e.
Both e and C are parameters which are usually tuned by using a
grid search on a sufficiently large interval. See Ferraty et al.
(2010) and Hernández et al. (2007) for a deeper analysis. Finally,
K denotes the so-called kernel function. A wide variety of kernels,
mostly in finite dimensional spaces, are proposed in the literature.
We can mention for instance the linear kernel, Carrizosa and
Romero Morales (2013), Cristianini and Shawe-Taylor (2000) and
Hofmann et al. (2008), the polynomial kernel, Muñoz and
González (2010) and Rossi and Villa (2006), or the Gaussian
(RBF) kernel, Carrizosa et al. (2014), Cristianini and Shawe-Taylor
(2000) and Keerthi and Lin (2003).

Given a set of H time intervals,
t ¼ t1; t2ð Þ; t3; t4ð Þ; . . . ; t2H�3; t2H�2ð Þ; t2H�1; t2Hð Þð Þ in 0; T½ �, where the
h-th interval has the form t2h�1; t2hð Þ, for h ¼ 1; . . . ;H, we can
define, for the p-variate functional data X ¼ X1; . . . ;Xp

� � 2 X , a
functional kernel K : X � X ! R. Particularly, for the Gaussian ker-
nel with bandwidth x ¼ x1; . . . ;xp

� �
and Xi;Xj 2 X , we propose:

K Xi;Xj;x;t
� �¼ exp �

Xp
v¼1

xv
XH
h¼1

1
t2h� t2h�1

Z t2h

t2h�1

Xiv tð Þ�Xjv tð Þ� �2dt
 !

:

ð6Þ

In this paper, we will just focus on the Gaussian kernel due to its
well-known effectiveness, though the application to other kernels
is straightforward.

It is important to remark that if the length of the interval
t2h�1; t2hð Þ tends to zero, that is to say, the interval tends to a single
time instant, namely t2h�1, then, thanks to the integral form of the
mean value theorem, Comenetz (2002), the expression of the ker-
nel in (6) tends to

K Xi;Xj;x; t
� � ¼ exp �

Xp
v¼1

xv
XH
h¼1

Xiv t2h�1ð Þ � Xjv t2h�1ð Þ� �2 !
; Xi;Xj 2 X ;

ð7Þ

which exactly coincides with the kernel expression used in
Blanquero et al. (2019b) for the time instants selection problem.
3. The penalized interval selection problem

After having defined a kernel suitable for intervals and instants
and we can proceed with the problem formulation. This section is
organized as follows. Section 3.1 explains and organizes the differ-
ent parameters, coefficients and decision variables involved in the
optimization. Afterward, in Section 3.2 the problem of time inter-
val selection in SVR with functional data is formulated. A resolu-
tion strategy is proposed in Section 3.3 which will be improved
in Section 3.4 by making use of the hierarchical structure of the
decision variables in the optimization problem. Finally, Section 3.5
describes how to obtain the best number of time intervals, Hopt , in
terms of prediction.

3.1. Types of parameters

The aim of this paper is to find a subset of time intervals
t1; t2ð Þ; . . . ; t2H�1; t2Hð Þ in such a way that the relationship between
the functional predictor X and the scalar response Y, obtained via
the SVR problem, is as good as possible, in some sense to be speci-
fied. Moreover, for the sake of interpretability, we aim to find not
very large intervals. Therefore, we penalize large intervals. Such
penalization is weighted according to a non-negative parameter k.

Three very different types of parameters (decision
variables) can be found in the time interval selection
problem. First, the H time intervals represented by
t ¼ t1; t2ð Þ; t3; t4ð Þ; . . . ; t2H�3; t2H�2ð Þ; t2H�1; t2Hð Þð Þ satisfying that
0 6 t1 6 t2 6 � � � 6 t2H�1 6 t2H 6 T , and second, the regularization
parameter k and the parameters e; C; x involved in the SVR prob-
lem Eq. (4), and in the Gaussian kernel (6). Finally, the third type of
decision variables are the coefficients m and m� in the expression of
the response (5), which are the solution of the optimal problem (4).

The traditional SVR approach, in absence of variable selection,
has parameters e;C, and (for the RBF kernel) one scalar parameter,
r. Coefficients m and m� are found by solving (4) for every combina-
tion of e;C, and r in a grid. This is doable in the traditional SVR
since there are only three parameters to tune. When the number
of parameters is large, the computational burden increases expo-
nentially, making it impossible to obtain a solution with such a grid
search. Variable-dependent scaling parameter r, playing the role of
our x parameters, has been considered in the literature, Carrizosa
et al. (2014) and Phienthrakul and Kijsirikul (2005). In the context
of FDA, a functional scaling or bandwidth has also been considered,
Blanquero et al. (2019a). The increase in the number of parameters
makes grid search impractical and unreliable, hence calling for
bespoke optimization-based approaches to tuning, Carrizosa et al.
(2014), Chapelle et al. (2002) and Friedrichs and Igel (2005).

Note that determining the best parameters via optimization
approaches is not a trivial task either: optimization problems are,
in general, difficult to solve. The objective function is not explicitly
described and is time-consuming to evaluate it. Moreover, the
problem lacks gradient-based properties that could potentially
guide the optimization process. All these difficulties call for a
bespoke approach that captures the structure of the problem as
much as possible.

In order to make the tuning problem tractable, we follow the
strategy of Blanquero et al., 2019a, 2019b; Jiménez-Cordero and
Maldonado, 2020 where a hybrid approach is proposed: grid
search + optimization, with an objective function written in ana-
lytic form, using a more tractable surrogate of the accuracy. This
approach yields a trade-off between the computational burden of
the parameter tuning and its performance.

3.2. Problem formulation

Finding the parameters of the SVR can be seen as a bilevel prob-
lem. The internal problem is the optimization of m; m� in (4), which
is a quadratic concave maximization problem with linear con-
straints. The external problem seeks e;C and r minimizing the
mean squared error on a validation set. Due to the intractability
of this external problem, it is approached by a grid search. When
translating this approach for the time interval and instant selection
case, even the grid-search becomes intractable and a bespoke
approach is necessary. Moreover, since we are interested in select-
ing short intervals, a term penalizing the interval lengths will be
added to the sum of the squared residuals on the objective function
of the external problem:

X
i2s2

Yi � Ŷ Xi tð Þ;C;x; m; m�ð Þ
� �2

þ k
XH
h¼1

t2h � t2h�1ð Þ2: ð8Þ

The expression Ŷ Xi tð Þ;C;x; m; m�ð Þ represents the predicted
value. The dependence on the time instants of t is emphasized in
the predicted value through the functional datum Xi tð Þ. Note that
e is missing from that expression because the residuals depend
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on it only through the SVR coefficients m; m�, i.e., via the optimal
solution of the inner Problem (4). Observe that our problem has
a much higher number of decision variables than the traditional
approach. Fortunately, we can take advantage of the functional
nature of the datum Xi and the continuous dependence of C;x
and t on (8). The second term in (8) is a regularization term that
penalizes the length of the interval. The value of k measures the
trade-off between the sum of the squared residuals and the length
of the intervals. Large values of k yield the evaluation of the sum of
the squared residuals at tiny intervals, which may become time
instants in the degenerate case, i.e., k ¼ þ1. The other extreme
case, k ¼ 0 just seeks for the minimum sum of the squared residual
values according to the information given by the intervals of any
length.

Optimizing k in expression (8) makes no sense, since it is a reg-
ularization parameter that trades off the residuals versus the
length of the chosen intervals. In the same way, it makes no sense
to optimize e in Problem (4). This calls for a three level approach,
where e and k are sought by a grid search, and the remaining
parameters and coefficients are optimized in a bilevel problem
where the outer problem optimizes C;x and t on (8) and the inner
problem optimizes m; m� in Problem (4).

Before finally presenting the formulation of this bilevel prob-
lem, we will introduce another innovation. In the traditional
approach, in order to obtain more stable results and avoid overfit-
ting, the complete set of individuals is usually divided in the liter-
ature into three subsets, namely, training, validation, and testing,
with k-fold cross-validation as the model selection criterion. These
samples are used to train the model, get the best parameters and
estimate the final accuracy, respectively. In this paper, we take this
idea further, and we divide the sample s into four independent
samples, namely s1; s2; s3 and s4. These samples are obtained as fol-
lows. We first divide the sample into k folds. Then, k� 1 folds are
randomly selected and divided into three parts of equal size, yield-
ing samples s1; s2 and s3. Finally, the remaining fold forms sample
s4. Samples s1 and s2 play the role of training samples, whilst s3
and s4 are the validation and testing samples, respectively. Partic-
ularly, the independent sample s1 is used to obtain the optimal val-
ues of m and m� by solving Problem (4) for fixed C; x; t and e.
Sample s2 is employed to compute the sum of the squared residu-
als between the response Yi and the predicted response value

Ŷ Xi tð Þ;C;x; m; m�ð Þ, and the regularization termweighted by k. Sam-
ple s3 is utilized to tune the parameters k; eð Þ, by evaluating the
sum of the squared residuals in the grid, and keeping the parame-
ter yielding the smallest value. Finally, sample s4 is used to esti-
mate the sum of the squared residuals and test the final results.
Even though the success of the SVR model is highly dependent
on the training data set size, we observed in initial experiments
that, if the same training set is used for the SVR and the least
squares optimization, i.e., s1 ¼ s2, then overfitting appears. This is
the reason why the complete set of individuals is divided into four
subsets.

Hence, for a given pair k; eð Þ, the bilevel optimization problem is
stated as follows:

min
C;x;t;m;m�

X
i2s2

Yi � Ŷ Xi tð Þ;C;x; m; m�ð Þ
� �2

þ k
XH
h¼1

t2h � t2h�1ð Þ2

s:t: m; m� solves 4ð Þ in s1;

C P 0;
xv P 0; 8v
0 6 t1 6 � � � 6 t2H 6 T

8>>>>>>>>><
>>>>>>>>>:

ð9Þ
Note that additional constraints over the time intervals can be
easily added to the previous problem. For instance, one can impose
that two consecutive time intervals are separated by at least a fixed
distance.

3.3. An alternating algorithm

Problem (9) can be handled with off-the-shelf bilevel optimiza-
tion techniques, such as Colson et al. (2007). Such tools are compu-
tationally very expensive, and thus we propose, instead, an
alternating approach, as also done in Blanquero et al., 2019a,
2019b; Jiménez-Cordero and Maldonado, 2020.

In the first step of our alternating procedure, Problem (4) is
solved in sample s1 for given C;x and t, obtaining the optimal
SVR variables m and m�. Problem Eq. (4) is a quadratic concave max-
imization problem with linear constraints. Hence, classic local
search routines may be applied to find the global optimum.

In the second step, for m and m� fixed, we obtain the optimal val-
ues of C;x and t solving Problem Eq. (10) in sample s2:

min
C;x;t

X
i2s2

Yi � Ŷ Xi tð Þ;C;xð Þ
� �2

þ k
XH
h¼1

t2h � t2h�1ð Þ2

s:t: C P 0;
xv P 0; 8v
0 6 t1 6 � � � 6 t2H 6 T

8>>>>>><
>>>>>>:

ð10Þ

Thanks to the functional nature of the data, Problem (10) is a
continuous optimization problem which is solved by combining
standard local searches with a multistart strategy to avoid getting
stuck at poor local optima.

The alternating approach is run, for a fixed pair k; eð Þ, until some
stopping criteria is met, yielding suitable values of C;x; t; m and m�.
The value of k; eð Þ is obtained with a grid search, i.e., computing, for
each k; eð Þ in a grid, the sum of the squared residuals on the sample
s3, and keeping those associated to the smallest value. Finally, to
test the efficiency of our approach, we calculate the sum of the
squared residuals in a fourth independent sample s4.

The pseudocode of our proposal can be seen in Algorithm 1, and
an improvement in the solving strategy is proposed in Section 3.4.

Note that the proposed alternating method forces us to split the
data set into four samples s1; . . . ; s4 but this is a simple and effec-
tive strategy (according to our numerical results) to handle the
challenging bilevel optimization problem formulated for tuning
the SVR parameters. Nevertheless, this strategy may be computa-
tionally expensive or unstable, especially in the cases of small-
size data sets where the subsamples will be even smaller. There-
fore, even though theoretically, our approach can also be applied
when no feature selection is performed, we believe that the alter-
nating procedure is not advisable to train an SVR problem when no
feature selection is carried out, but just as a strategy to deal with
the multiple tuning parameters problem as done in this manu-
script. A deeper analysis of other existing tuning methods on this
topic deserves further study. For further information on the exist-
ing strategies, the reader is referred to Kaneko and Funatsu (2015),
Smets et al. (2007) and Sreekumar and Verma (2016).

Algorithm1 Heuristic for variable selection

Input: H.
� Randomly split the sample s into s1, s2, s3 and s4.
� Compute the derivatives of the functional data.
� Smooth the data with some interpolation technique.
for k; eð Þ in the grid do
Alternating Procedure

(continued on next page)
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repeat
1. For C;x; t fixed, calculate the parameters m, m� of the

SVR problem (4) using the sample s1.
2. Fixed m and m� fixed, calculate C;x; t by solving Problem

(10) over sample s2.
until stopping criteria
� Evaluate the sum of the squared residual values using the
sample s3

for k; eð Þ fixed in the grid.
end for
� The optimal value of k; eð Þ are those with minimum sum of

the squared residual value in s3, and the optimal values of m,
m�, C, x and t are the parameters associated to the optimal
k; eð Þ.

Output: Optimal parameters k; e;C;x; t; m; m�, and the sum of
the squared residual estimated on s4.
3.4. A nested heuristic

Algorithm 1 may get stuck in poor local minima. In order to
avoid an unmanageable number of local searches when the num-
ber of time intervals increases, we enhance the heuristic proposed
in Section 3.3. More specifically, based on the works (Blanquero
et al., 2019a; Carrizosa et al., 2014), we propose to define as in
Blanquero et al. (2019b) a series of nested models of increasing
complexity, in which the optimal solution of a simple model is
employed as initial solution in a more complex case. In other
words, when seeking the hþ 1 time intervals in thþ1, one uses as
initial solution a perturbation of th, i.e., the optimal solution
obtained when only h time intervals are sought. Particularly, the
initial solution of the parameters C and x in the level hþ 1 are
set as the optimal solution of such parameters in the level h, xh

opt

and Ch
opt , respectively. Moreover, the choice of the initial solution

of the hþ 1 time intervals in thþ1 is made by selecting random val-
ues s1; s2ð Þ 2 0; T½ � � 0; T½ �, and including it in the appropriate posi-
tion of the optimal solution of the level h, thopt . In other words,

thþ1
opt ¼ r s1; s2; thopt

� �
, where r is a function that sorts in increasing

order the time instants in thopt together with s1 and s2.
The pseudocode of the nested heuristic is outlined in Algorithm

2.

Algorithm2 Nested heuristic for variable selection

Input: H, nested kernels K Xi;Xj;x
1; t1

� � � . . . � K Xi;Xj;x
H ; tH

� �
.

� Randomly split the sample s into s1, s2, s3 and s4.
� Compute the derivatives of the functional data.
� Smooth the data with some interpolation technique.
for k; eð Þ in the grid
Initialization:
� h :¼ 1.

� Randomly select an initial solution C
	
1 2 0;þ1½ Þ,

~x1 2 0;þ1½ Þp and ~t1 :¼ t1; t2ð Þ 2 0; T½ � � t1; T½ �.
� Set C;x; tð Þ :¼ C

	
1;x

	 1;~t1
� �

.

whileh 6 H
1. Run the Alternating Procedure of Algorithm 1 for

K Xi;Xj;xh; th
� �

, starting from C;x; tð Þ and yielding

Ch
opt ;x

h
opt ; t

h
opt

� �
as solution, using samples s1 and s2.
2. Randomly generate s1; s2ð Þ 2 0; T½ � � 0; T½ �.
3. Set Chþ1 :¼ Ch

opt , x
hþ1 :¼ xh

opt , t
hþ1 :¼ r s1; s2; thopt

� �
,

C;x; tð Þ :¼ Chþ1;xhþ1; thþ1
� �

and h :¼ hþ 1.

4. Evaluate the sum of the squared residuals over the
sample s3 with k; eð Þ fixed.
end while

end for
� For each h, the optimal value of k; eð Þ is the one with the

minimum sum of the squared residual in s3. The optimal
values of m, m�, C, x and t are the parameters associated to
the optimal k; eð Þ.

Output: Optimal parameters Ch
opt , x

h
opt; t

h
opt; 8h, the associated

coefficients k; e; m; m�, and the sum of the squared residual
estimated on s4.
Observe that our proposed heuristic differs from a greedy
approach (Berrendero et al., 2019; Ferraty et al., 2010), since our
proposal utilizes the optimal solution of level h as a starting solu-
tion of the level hþ 1, allowing a very different solution for level
hþ 1 than the one obtained in the previous level, h. Consequently,
our approach gives more flexibility to the model.

Moreover, when the exact number of selected time intervals, H,
is to be determined, our algorithm has the advantage of allowing
us to build a trajectory of the sum of the squared residuals in terms
of the number of time intervals. It may be very useful when a list of
models with different complexity is needed.

3.5. Estimating the optimal number of variables, Hopt

In our methodology, we have proposed to build a trajectory of
the sum of the squared residuals according to the prefixed number
of time intervals h, going from h ¼ 1 to h ¼ H. It is clear that the
solution so-obtained is highly dependent on the value of h. In fact,
smaller values of h produce more interpretable models, since a
small number of time intervals is to be kept into account. However,
the regression is more accurate (in the training sample) if a large
number of time intervals is sought. It is then necessary to follow
a criterion that allows us to get a trade-off between accuracy and
interpretability.

In the literature, one can find custom strategies for tuning the
parameter defining the number of time intervals. This is the case
of Berrendero et al. (2019), in which change point detection meth-
ods based on k-means algorithms are applied, or Ferraty et al.
(2010), where the number of design points is automatically found
with their proposed forward–backward strategy. However, most
works tune this parameter with standard model selection
approaches, such as the Bayesian Information Criterion (BIC),
Schwarz (1978), used in Kneip et al. (2016) or Grollemund et al.
(2019).

By contrast, in this paper, we propose to select the parameter
Hopt using cross-validation. More precisely, the sum of the squared
residuals are measured on the sample s3 for all possible values of h
ranging from 1 to H, and we keep the parameter with the smallest
value.

We acknowledge the fact that the proposed procedure can be
used to also determine d; e, and k, and consequently, the associated
computational cost will be enlarged. When computational time is
an issue, the authors recommend a straightforward parallelization
of the algorithm.
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4. Experimental setup

This section describes the experimental setup on the proposed
models. Section 4.1 presents the experiments performed and Sec-
tion 4.2 details the data sets used to test our methodology.
4.1. Description of the experiments

Algorithm 2 is run to show the usefulness of our approach, i.e.,
to test whether the predictions obtained when H time intervals are
carefully chosen are comparable to, or even better than, the sum of
the squared residuals achieved when the full time interval is
considered.

As a preprocessing step, the data and the subsequent deriva-
tives have been smoothed using the procedure explained in Sec-
tion 2.1. For the sake of simplicity, the well-known cubic spline
interpolation technique, De Boor (1978) has been used to smooth
the data. Other interpolation techniques, such as B-splines, De
Boor (1978) can be also applied without damaging the results.

Three different experiments are performed in this paper. First,
Algorithm 2 is run with k ¼ 0 in the objective function of Problem
(9), i.e., we seek the most informative time intervals without pay-
ing attention to their length. Second, Algorithm (9) is executed
with k ¼ þ1, which is equivalent to looking for intervals of zero
length, that is to say, time instants. Last but not least, we run Algo-

rithm (9) for k in the grid 10�2; . . . ;102
n o

in logarithmic scale.

To get stable out-of-sample results, k-fold cross-validation is
used in the three experiments described above. In the literature,
k is often chosen as 10. However, when the data set is very small,
k ¼ 10 is not large enough to get stable results, and leave-one-out
cross-validation is preferred, i.e., k coincides with the number of
observations. Our selection of the number of folds has been made
dependant on the size of the data sets. More precisely, if a database
is big, then k ¼ 10 is chosen. By contrast, in the small data sets,
leave-one-out is performed. Here, we consider that a database is
big if it has more than 100 observations. More details about the
cardinality of the databases can be seen in Table 1. Algorithm 2
is run k times, one per fold. Each time, the data set is split into four
parts, s1 � s4, as described in Section 3.2. As the output of our
methodology, we provide the average sum of the squared residuals
estimated on the test sample s4 over all the folds in the cases where

k ¼ 0; k ¼ þ1, and k 2 10�2; . . . ;102
n o

.

The number of runs in the multistart strategy applied in solving
Problem 10 is five. The Alternating Procedure stops either when
ten iterations are executed or when the difference between the
sum of the squared residual values of two consecutive iterations
is less than 10�5. The maximum number of time intervals to be
Table 1
Data description summary.

#records #time instants #components

FHV 1500 100 1
MK005 300 101 3
MK01 300 101 3
PSVone 100 200 1
PSVthree 100 300 1
canadian 35 365 1
cookie 72 700 1
DTI 334 93 1
gasoline 60 401 1
marzipan_moisture 32 600 1
marzipan_sugar 32 600 1
sugar 268 571 1
sunflower 111 309 1
tecator 215 100 1
sought is H ¼ 10, and the parameter e moves in the set

10�8; . . . ;10�1
n o

in logarithmic scale.

All the experiments are carried out on a cluster with 2 Tb of
RAM memory at 6.2 TFlops, running CentOS Linux 7.3, and it is
coded in R, Core Team (2017).

4.2. Description of the data sets

We have tested our proposal on 12 univariate and two multi-
variate databases, widely used in the literature on functional
regression. Five of these data sets are simulated according to mod-
els available in the literature: three univariate functional data
model (namely FHV, Ferraty et al. (2010); and MK005 and MK01,
Matsui and Konishi (2011)) and two multivariate functional data
models (named PSVone and PSVthree, Picheny et al. (2019)). Nine
data sets contain data from real applications: canadian, Goldsmith
and Scheipl (2014), James et al. (2009) and Tutz and Gertheiss
(2010), cookie, Goldsmith and Scheipl (2014), DTI, Goldsmith and
Scheipl (2014), gasoline, Park et al. (2016), marzipan_moisture,
Tutz and Gertheiss (2010), marzipan_sugar, Tutz and Gertheiss
(2010), sugar, Aneiros and Vieu (2014), sunflower, Picheny et al.
(2019) and tecator, Ferraty et al. (2010), Goldsmith and Scheipl
(2014) and Picheny et al. (2019). The data sets marzipan_moisture
and marzipan_sugar share the same independent (functional) vari-
ables and only differ on the response variable. The same happens
with the simulated data sets pair MK005 and MK01, and also with
the pair PSVone and PSVthree.

To give an idea of the variety of functions we are dealing with, a
sample from ten individuals of each database is given in Fig. 1.
Table 1 provides a summarized description of the data sets, includ-
ing the number of records, the number of time instants where data
are discretized, and the number of covariates. Details about each
data set are presented in the following subsections.

4.2.1. FHV data set
According to the example of Section 3.2 of Ferraty et al. (2010)

we have generated 1500 curves discretized in 100 equispaced
points in the interval 0;2p½ � following this structure:

Xi tð Þ ¼
X3
‘¼1

Ui‘ cos 3þ ‘ð Þtf g þ
X3
‘¼1

Vi‘ sin 4þ ‘ð Þtf g þWi t � pð Þ2;

i ¼ 1; . . . ;1500

where Ui‘;Vi‘;Wi; ‘ ¼ 1;2;8i are uniformly distributed in 0;1½ �,
whereas Ui3 and Vi3 follow a normal distribution N 0;0:25ð Þ. For
i ¼ 1; . . . ;1500, the values of the response variable are obtained
from the model Yi ¼ r Xið Þ þ ci, based on the time instants
t 2 48p

99 ; 58p99 ; 128p99

� 	
with

r Xið Þ ¼ Xi
48p
99

� �
þ 2Xi

58p
99

� �
Xi

128p
99

� �
ð11Þ

and ci independent and identically distributed as N 0;r2
c

� �
, with

r2
c ¼ 5%var r Xið Þf g.

4.2.2. MK005 and MK01 data sets
In this section we have worked with 300 observations of two

data sets, namely MK005 and MK01 generated according to
Matsui and Konishi (2011). The three predictor variables are built
as follows for t 2 �1;1½ �:
Xv tð Þ ¼ Uv tð Þ þ cv ; v ¼ 1;2;3; ð12Þ

where cv 	 N 0; 0:025 � rvð Þ2
� �

and rv ¼ max
t

Uv tð Þð Þ �min
t

Uv tð Þð Þ.
Furthermore,



Fig. 1. Sample of ten observations of the databases.
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U1 tð Þ¼ cos 2p t�a1ð Þð Þþa2t; a1 	N �5;32
� �

; a2 	N 7;1ð Þ
U2 tð Þ¼ b1 sin 2tð Þþb2; b1 	U 3;7ð Þ; b2 	N 0;1ð Þ
U3 tð Þ¼ c1t3þc2t2þc3tþc4; c1 	N �3;1:22

� �
; c2 	N 2;0:52

� �
;

c3 	N �2;1ð Þ; c4 	N 2;1:52
� �

ð13Þ
The response variable Y is built according to the following rule:

Y ¼ g Uð Þ þ n ð14Þ
with

g Uð Þ¼P3
v¼1

R 1
�1Uv tð Þbv tð Þdt; n	N 0; c � sð Þ2

� �
; s¼max g Uð Þð Þ�min g Uð Þð Þ

b1 tð Þ¼ sin 2ptð Þ; b2 tð Þ¼ sin ptð Þ; b3 tð Þ¼0
ð15Þ

The value of c in the probability distribution of the parameter n
in Eq. (15) depends on the multivariate data set, MK005 or MK01,
we are dealing with. More precisely, c ¼ 0:05 in the database
MK005 and c ¼ 0:1 in the case of MK01.

4.2.3. PSVone and PSVthree data sets
We have generated these two databases according to the exam-

ple in Section 6.1 of Picheny et al. (2019) and using the scripts
available at https://github.com/tuxette/appliSISIR/tree/master/
RLib. More specifically, 100 curves at 200 and 300 evaluation
points in databases PSVone and PSVthree, respectively in the inter-
val 0;1½ � have been created. For the sake of simplicity, we have uni-
fied the definition domain of the three functional variables
involved in this example. The expression of the independent vari-
able is given by:

X tð Þ ¼ U tð Þ þ c ð16Þ
where U tð Þ is a Gaussian process indexed on 0;1½ � with mean
l tð Þ ¼ �5þ 4t � 4t2, and the Matern 3/2 covariance function. The
parameter c is a centered Gaussian variable independent on U.

The response variable Y has the form:

Y ¼
XL
‘¼1

log j X;b‘h ij ð17Þ

with

b‘ tð Þ ¼ sin
t 2þ ‘ð Þp

2
� ‘� 1ð Þp

3

� �
II‘ tð Þ ð18Þ

and II‘ tð Þ is the indicator function which takes the value 1 at I‘ and 0
otherwise.

Particularly, the values of L and I‘ depend on the data set we are
dealing with. In the data set PSVone, L ¼ 1 and I1 ¼ 0:2;0:4½ �. By
contrast, in PSVthree, L ¼ 3 and I1 ¼ 0;0:1½ �; I2 ¼ 0:5; 0:65½ � and
I3 ¼ 0:65;0:78½ �.

4.2.4. Real applications data sets
This section presents the details of the real data sets that have

been used in the numerical experience:

canadian The canadian data set, Goldsmith and Scheipl (2014)
and James et al. (2009), is formed by the daily temperature
along one year measured on 35 Canadian weather stations.
The goal is to predict the logarithm of the total annual rainfall.
cookie The cookie database comes from Goldsmith and Scheipl
(2014) and measures the 72 spectra of cookie dough samples
every two nanometers (nm) from 1100 to 2498 nm with the
aim of predicting the percentage of sucrose content.
DTI The DTI data set, Goldsmith and Scheipl (2014), consists of
334 observations that measure the white matter in the corpus
callosum to predict the cognitive performance in order to study
multiple sclerosis lesions.
gasoline This data set is denoted by gasoline and comes from
Park et al. (2016). It can be obtained from the R library refund.
It is formed by 60 spectra of gasoline measured at 401 equis-
paced points by diffuse reflectance ranging from 900 nm to
1700 nm in order to predict the octane number.
marzipan The data sets marzipan_moisture and marzipan_sugar
have been used in Tutz and Gertheiss (2010) and can be down-
loaded from www.models.kvl.dk/Marzipan. They are formed by
32 marzipan spectra measured every two nm from 850 to
2050 nm. The goal is to respectively predict in the databases
marzipan_moisture and marzipan_sugar, the moisture and sugar
contents in marzipan.
sugar The goal of data set sugar, from Aneiros and Vieu (2014),
is to predict the percentage of ash content from the fluores-
cence spectra, measured on 266 samples of sugar.
sunflower The sunflower database comes from Picheny et al.
(2019) and can be obtained in https://github.com/tuxette/
appliSISIR/tree/master/data. It consists of a set of 111 climate
evaportranspiration daily recordings at 309 points. The objec-
tive is to predict the annual grain yield.
tecator The data set tecator deals with the near-infrared absor-
bance spectra of 215 samples of finely chopped pork. The
response variable represents the fat content. More details can
be found in Ferraty et al. (2010), Goldsmith and Scheipl
(2014) and Picheny et al. (2019).

5. Results

In this section we present a numerical evaluation of our
approach. For the simulated data sets, Figs. 2, 4, and 9 show respec-
tively, the trajectory of the mean sum of the squared residuals
obtained when k ¼ 0; k ¼ þ1, and when the best

k 2 10�2; . . .102
n o

is chosen in Problem (9) and h time intervals

are sought, ranging from h ¼ 1 to h ¼ H, with H ¼ 10. Therefore,
in the first case, we are seeking intervals of any length, in the sec-
ond case, we select the most informative time instants, and, in the
third case, we are penalizing large intervals. Algorithm 2 is run for
three different values of the derivatives d ¼ 0;1;2, which include,
respectively, the situations where just the information of the raw
functional data, or their monotonicity (d ¼ 1, blue), or both their
monotonicity and convexity (d ¼ 2, green) are considered. In the
above-mentioned figures, we depict in dotted-red, triangled-blue
and crossed-green solid lines the results when d ¼ 0;1;2 deriva-
tives are considered, respectively. For data based on real-life appli-
cations, the same information is shown in Figs. 3, 5, and 10. The
exact values of all the averages of the sum of the squared residuals,
as well as their standard deviations (in parentheses), are given in
Tables 2–4 for comparison purposes. Last column of Tables 2–4
includes the average value of the best value H opt obtained when
h ¼ 10 time intervals (of any length) are sought using the strategy
proposed in Section 3.5. As an illustration, Fig. 6 provides the box-
plots over all the folds of the best H opt value obtained when run-
ning Problem (9) for the database cookie, k ¼ þ1, and for the
different values of h going from 1 to 10.

In the following subsections, we describe the results in more
detail. In particular, Section 5.1 compares our results with those
that appear in the literature. Section 5.2 analyzes the results
obtained using our approach for selecting time instants or intervals
and compares them to the prediction values obtained when the
information over the full time domain is considered. Finally, Sec-
tion 5.3 describes the behavior of our approach with respect to
the penalization parameter k.

https://github.com/tuxette/appliSISIR/tree/master/RLib
https://github.com/tuxette/appliSISIR/tree/master/RLib
http://www.models.kvl.dk/Marzipan
https://github.com/tuxette/appliSISIR/tree/master/data
https://github.com/tuxette/appliSISIR/tree/master/data


Fig. 2. Mean sum of squared errors for k ¼ 0, i.e., selecting any length intervals. Results on simulated data.
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5.1. Comparison with literature results

To compare our methodology, we use the maximum (worst)
and minimum (best) values of the mean sum of squared errors
found in the literature for other interval or instant selection
methodologies. We indicate the reference mean sum of squared
errors, and their standard deviations just in the cases where they
are available: the maximum (worst) mean sum of squared errors
in solid black line and the minimum (best) mean sum of squared
errors in dashed pink line. In the case where time intervals of
any length are sought (k ¼ 0), mean reference values for canadian,
marzipan_moisture and marzipan_sugar from Tutz and Gertheiss
(2010) and tecator from Picheny et al. (2019) are available. On
the other hand, in the case with k ¼ þ1, that is to say, when just
time instants are sought, the mean reference values of the data sets
FHV and tecator from Ferraty et al. (2010), and sugar from Aneiros
and Vieu (2014), as well as the standard deviation of the data set
FHV, can be used for the sake of comparison. The case where k
moves in a grid is not considered here, since it has not been han-
dled in the literature, and therefore, the comparison would be
unfair.

Note that since the median of the sum of the squared residuals
values is given as reference in Ferraty et al. (2010) for the FHV data-
base when time instants are sought, in this example, we give as
output the median values instead of the mean, as the y-axis label
of Fig. 4(a) indicates. Table 3 also shows the median values for this
database.
It is worth noting that the size of the training and testing sets
used in this paper are different from thoses used in the references.
However, there is no clear evidence of bias benefiting any method
over the others, and therefore the discrepancies that may be in the
data set split are meaningless.

Let us now observe that in the case of k ¼ 0, for a large enough
value of the maximum number of intervals (h > 3) and any value of
d, our methodology is consistently getting better results than the
best available in the literature for that data set. Indeed we have
two cases in which our methodology is over 30 times better than
the best result available in the literature and another where it is
three times better. In the case of k ¼ þ1, i.e., for instants selection,
we found results in the literature for three data sets. In the simu-
lated data set FHV, when d ¼ 1 we are able to consistently outper-
form the best result in the literature for a high enough value of h
(namely h > 4). In the other two cases, which correspond to data
from real applications, we consistently improve the best result in
the literature for any value of d or h. The improvements range from
reducing the mean sum of squared errors to a half of the best result
in the literature (for sugar data set) to a ten-fold reduction for teca-
tor data set.

Even taking into account the differences in sample size, the con-
sistency and the order of magnitude of the improvement with
respect to the existing literature make us believe that our proposal
is able to capture some nonlinearity of the phenomena while exist-
ing methods either are only able to deal with the linear case or fail-
ing to capture such nonlinearity.



Fig. 3. Mean sum of squared errors for k ¼ 0, i.e., selecting any length intervals. Results on data from real applications.
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Regarding the interpretability of the results, we can highlight
for example the data set canadian. More precisely, James et al.
(2009) asserts that the temperatures in the spring and fall months
do have a noticeable effect when predicting the annual rainfall.
More specifically, Fig. 4 of James et al. (2009) shows that such an
effect is produced around the months of April and November.
Fig. 7 shows the density histogram of the time instant values when
h ¼ 3 time points are sought using our methodology, i.e., with
k ¼ þ1. We clearly observe that there exists an evident maximum
in the month of November independently of the value of the
parameter d 2 0;1;2f g. In addition, there is a set of months around
April, namely March, April, and May, which are selected with high
frequency. Similar results are obtained when h– 3, and therefore,
due to the page limit, no more histogram figures are plotted.



Fig. 4. Mean sum of squared errors for k ¼ þ1, i.e., selecting time instants (intervals of zero length). Results on simulated data.
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5.2. Comparison with using the full (time) domain

In order to quantify the contribution of the interval selection
with respect to using the whole domain, we have run Algorithm
2 with the same settings as in Section 4.1, i.e., number of iterations,
stopping criterion, and values of the parameter e, to then get the
variables m; m�;C and x of Problem (9) together with the average
mean sum of squared errors across folds in exactly the same test-
ing sample s 4. The results of Algorithm 2 when no variable selec-
tion is performed, i.e., the full (time) domain is taken into account,
are plotted on dotted red, blue or green line depending on the
degree of the derivatives d ¼ 0;1 or 2, respectively.

When comparing full domain use versus interval selection with
no length restrictions (i.e., k ¼ 0), Fig. 2 shows that results on three
out of five simulated data sets are better than their full domain
counterparts when a lower number of intervals is sought and
d ¼ 2.

For the real applications data sets, Fig. 3 shows six out of nine
data sets where the interval selection results are consistently bet-
ter than the results in the full domain. This is true for small values
of h and d. Indeed, the effect of the overfitting clearly appears for
large values of h. It is worth noting that, in theory, the estimate
of the derivatives given by Eq. (3) is accurate only if the monitoring
is dense (i.e., the difference between th and th�1 is sufficiently
small) and the trajectories X are not too noisy. In the data sets
where the sample trajectories are very rugged, the numerical esti-
mates of the derivative may be unreliable, which may affect the
stability of the results. This is the case of the canadian data set,
for example. Nevertheless, observe that, even with such an irregu-
lar behavior in the results path, the quality of the regression results
still improves the full domain residuals when compared with the
interval selection results for d ¼ 1. In any case, if the prediction
results were believed to be affected, then other techniques which
remove noise, such as De Brabanter et al. (2013) and the references
therein should be considered.

In general, these results are very encouraging and show the
potential of interval selection in a nonlinear setting, combined if
needed with the use of the derivatives of the functional data.

For the case of instant selection (k ¼ þ1), the results are more
mixed. In simulated data, Fig. 4 shows three cases (MK005, MK01
and PSVone) where instant selection provides better results than
using the full domain, for a large enough value of H, for any choice
of d. This behavior repeats in data set FHV for d ¼ 1;2, but not for
d ¼ 0.
5.3. Sensitivity analysis with respect to k.

In this section, we will study how sensitive is the regularization
parameter k to the mean sum of the squared errors and to the
length of intervals. To do this, we have run Algorithm 2 for

k 2 10�2; . . . ;102
n o

. Fig. 9 shows than in three out five of the sim-

ulated data sets, better predictions in terms of the residuals are
obtained when our approach is applied with d ¼ 1;2 instead of



Fig. 5. Mean sum of squared errors for k ¼ þ1, i.e., selecting time instants (intervals of zero length). Results on data from real applications.
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using the information provided by the whole time interval (full
domain). In particular, in the data set FHV, our method using the
information until the second derivative (d ¼ 2) is able to improve
the results of the full domain counterpart for every value of h. Sim-
ilar performances are obtained with the proposed approach with
d ¼ 1 in the data sets MK005 and MK01.

In the case of the real-life applications, Fig. 10 shows that our
proposal is able to get better predictions for at least one value of
h in all the data sets (except DTI) when comparing with the full
domain counterpart. For example, in the data set marzipan_mois-
ture, the curve obtained with our approach for all the values of h
and d ¼ 0 is below the curve obtained with the information
given by the whole time interval, indicating that the methodol-
ogy presented in this paper yields better predictions. In contrast,
we can state that, in data set gasoline, slightly better predictions
are forecasted with our approach using d ¼ 0 and h ¼ 1, than



Table 2
Mean and standard deviation (in parentheses) of the sum of the squared errors on all data sets using k ¼ 0. The last column indicates the average value H opt that would be
selected according to the strategy proposed in Section 3.5.

FHV d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.09
(0.02)

0.08
(0.02)

0.08
(0.02)

0.08
(0.01)

0.1
(0.02)

0.14
(0.04)

0.15
(0.04)

0.16
(0.04)

0.18
(0.04)

0.19
(0.04)

0.21
(0.05)

2.1

1 0.1
(0.03)

0.23
(0.26)

0.12
(0.08)

0.11
(0.03)

0.13
(0.03)

0.15
(0.04)

0.17
(0.06)

0.17
(0.06)

0.18
(0.06)

0.18
(0.06)

0.18
(0.06)

2.4

2 0.23
(0.07)

0.12
(0.04)

0.13
(0.03)

0.12
(0.04)

0.14
(0.06)

0.15
(0.06)

0.16
(0.06)

0.17
(0.07)

0.19
(0.08)

0.21
(0.1)

0.25
(0.12)

1.6

MK005 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.55
(0.21)

0.71
(0.36)

0.66
(0.35)

0.61
(0.3)

0.68
(0.34)

0.72
(0.35)

0.72
(0.38)

0.73
(0.41)

0.74
(0.44)

0.74
(0.46)

0.74
(0.48)

3.5

1 0.84
(0.48)

0.59
(0.18)

0.61
(0.26)

0.59
(0.29)

0.63
(0.31)

0.64
(0.32)

0.64
(0.31)

0.65
(0.32)

0.67
(0.33)

0.69
(0.34)

0.7
(0.36)

2

2 0.82
(0.49)

0.58
(0.29)

0.57
(0.33)

0.65
(0.39)

0.63
(0.36)

0.63
(0.36)

0.63
(0.36)

0.63
(0.37)

0.63
(0.37)

0.63
(0.37)

0.64
(0.37)

1.5

MK01 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 1.34
(0.73)

1.48
(0.61)

1.48
(0.7)

1.51
(0.69)

1.48
(0.75)

1.57
(0.74)

1.58
(0.83)

1.67
(0.81)

1.68
(0.89)

1.71
(0.91)

1.73
(0.92)

2.7

1 1.92
(1.19)

1.58
(0.99)

1.78
(1.54)

1.92
(1.74)

1.98
(1.77)

2.03
(1.76)

1.95
(1.68)

1.77
(1.13)

1.78
(1.14)

1.79
(1.14)

1.77
(1.15)

2.1

2 1.8 (1.1) 1.55
(1.18)

1.52
(0.82)

1.83
(1.18)

1.91
(0.96)

1.94
(1.03)

1.97
(1.14)

2.11
(1.49)

2.12
(1.47)

2.12
(1.46)

2.11
(1.45)

1.1

PSVone d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.01
(0.01)

0.02
(0.02)

0.01
(0.02)

0.02
(0.03)

0.03
(0.07)

0.05
(0.11)

0.03
(0.04)

0.04
(0.07)

0.03
(0.03)

0.05
(0.05)

0.05
(0.05)

2.8

1 0.01
(0.01)

0.02
(0.02)

0.04
(0.04)

0.03
(0.05)

0.02
(0.02)

0.04
(0.04)

0.05
(0.06)

0.04
(0.04)

0.05
(0.06)

0.08
(0.1)

0.11
(0.19)

2.4

2 0.01
(0.01)

0.02
(0.02)

0.03
(0.04)

0.03
(0.02)

0.04
(0.05)

0.06
(0.07)

0.12
(0.17)

0.09
(0.11)

0.08
(0.11)

0.1
(0.11)

0.09
(0.11)

2

PSVthree d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.02
(0.02)

0.15
(0.29)

0.04
(0.02)

0.05
(0.05)

0.08
(0.12)

0.08
(0.1)

0.09
(0.13)

0.12
(0.2)

0.17
(0.26)

0.18
(0.27)

0.2
(0.29)

3.4

1 0.05
(0.05)

0.17
(0.3)

0.15
(0.24)

0.16
(0.25)

0.19
(0.23)

0.2
(0.25)

0.25
(0.33)

0.32
(0.61)

0.25
(0.39)

0.33
(0.64)

0.26
(0.42)

2.2

2 0.03
(0.04)

0.04
(0.04)

0.11
(0.18)

0.15
(0.23)

0.15
(0.22)

0.19
(0.27)

0.3
(0.42)

0.23
(0.34)

0.3
(0.48)

0.31
(0.48)

0.33
(0.48)

1.3

canadian res
min

res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0.31 0.47 0 0.25
(0.58)

0.38
(0.82)

0.22
(0.4)

0.3
(0.46)

0.21
(0.42)

0.22
(0.5)

0.27
(0.67)

0.22
(0.4)

0.19
(0.41)

0.24
(0.48)

0.23
(0.52)

4.4

1 0.26
(0.55)

0.28
(0.55)

0.18
(0.28)

0.19
(0.36)

0.2
(0.38)

0.24
(0.47)

0.26
(0.53)

0.19
(0.36)

0.22
(0.44)

0.21
(0.37)

0.21
(0.32)

4.2

2 0.18
(0.39)

0.19
(0.28)

0.32
(0.73)

0.33
(0.83)

0.23
(0.46)

0.2
(0.38)

0.25
(0.49)

0.21
(0.43)

0.2
(0.38)

0.21
(0.39)

0.19
(0.37)

3.6

cookie d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.16
(0.38)

0.12
(0.37)

0.13
(0.4)

0.16
(0.48)

0.19
(0.42)

0.19
(0.38)

0.23
(0.46)

0.23
(0.36)

0.26
(0.43)

0.28
(0.45)

0.25
(0.33)

2.1

1 0.09
(0.29)

0.07
(0.26)

0.09
(0.36)

0.1
(0.46)

0.08
(0.17)

0.09
(0.28)

0.11
(0.27)

0.1
(0.26)

0.11
(0.27)

0.12
(0.29)

0.12
(0.29)

2.6

2 0.08
(0.28)

0.09
(0.4)

0.07
(0.23)

0.1
(0.26)

0.09
(0.24)

0.11
(0.3)

0.1
(0.24)

0.1
(0.33)

0.12
(0.32)

0.13
(0.29)

0.14
(0.26)

2.5
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DTI d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 5.88
(2.90)

6.35
(3.38)

6.42
(3.46)

5.98
(2.87)

6.06
(3.01)

6.33
(3.79)

5.96
(2.38)

6.02
(2.45)

6.15
(3.37)

5.96
(3.15)

6.4
(4.04)

2.4

1 5.57
(3.03)

6.36
(3.75)

5.91
(2.62)

6.5
(3.57)

6.05
(3.26)

6.12
(3.52)

6.32
(3.82)

6.43
(3.74)

6.46
(3.69)

6.47
(3.69)

6.59
(4.08)

4.9

2 6.06
(2.84)

6.3
(3.68)

6.25
(3.89)

6.61
(4.01)

6.63
(3.46)

6.21
(3.62)

6.44
(3.34)

6.39
(3.62)

6.17
(3.67)

6.32
(3.68)

6.28
(3.72)

3.2

gasoline d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.06
(0.08)

0.06
(0.1)

0.11
(0.22)

0.08
(0.1)

0.1
(0.17)

0.09
(0.13)

0.13
(0.18)

0.14
(0.2)

0.1
(0.17)

0.14
(0.19)

0.16
(0.2)

2.4

1 0.08
(0.18)

0.07
(0.12)

0.09
(0.14)

0.11
(0.25)

0.1
(0.21)

0.14
(0.38)

0.17
(0.37)

0.18
(0.33)

0.16
(0.25)

0.17
(0.27)

0.36
(1.45)

2.5

2 0.12
(0.2)

0.08
(0.15)

0.09
(0.17)

0.1
(0.15)

0.18
(0.49)

0.13
(0.31)

0.14
(0.21)

0.13
(0.41)

0.14
(0.21)

0.19
(0.39)

0.14
(0.23)

2.5

marzipan_moist. res
min

res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

4.8 11.8 0 0.19
(0.35)

0.11
(0.19)

0.14
(0.26)

0.21
(0.29)

0.23
(0.52)

0.24
(0.59)

0.26
(0.56)

0.23
(0.39)

0.34
(0.64)

0.3
(0.63)

0.28
(0.6)

2.7

1 0.1
(0.25)

0.07
(0.13)

0.06
(0.12)

0.05
(0.11)

0.06
(0.13)

0.08
(0.16)

0.08
(0.17)

0.07
(0.15)

0.09
(0.11)

0.11
(0.16)

0.1
(0.15)

2.6

2 0.08
(0.18)

0.06
(0.09)

0.08
(0.17)

0.07
(0.12)

0.1
(0.2)

0.14
(0.3)

0.1
(0.25)

0.07
(0.16)

0.09
(0.16)

0.1
(0.16)

0.09
(0.15)

3.2

marzipan_sugar res
min

res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0.34 0.58 0 0.25
(0.49)

0.25
(0.47)

0.38
(0.81)

0.24
(0.31)

0.33
(0.48)

0.33
(0.59)

0.3
(0.56)

0.39
(0.75)

0.42
(0.78)

0.34
(0.59)

0.29
(0.53)

2.5

1 0.15
(0.23)

0.09
(0.19)

0.1
(0.16)

0.12
(0.16)

0.13
(0.21)

0.14
(0.22)

0.14
(0.22)

0.11
(0.17)

0.12
(0.19)

0.13
(0.19)

0.12
(0.2)

2.4

2 0.13
(0.21)

0.11
(0.19)

0.12
(0.19)

0.1
(0.16)

0.1
(0.15)

0.13
(0.23)

0.13
(0.2)

0.17
(0.22)

0.14
(0.19)

0.14
(0.18)

0.14
(0.18)

3

sugar d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 1.6
(1.16)

1.8
(1.37)

1.83
(1.38)

1.84
(1.58)

1.84
(1.52)

1.82
(1.51)

1.83
(1.45)

1.86
(1.46)

1.84
(1.45)

1.85
(1.49)

1.87
(1.41)

2.3

1 1.6
(1.42)

2.08
(1.64)

1.81
(1.56)

1.82
(1.47)

1.88
(1.6)

1.84
(1.63)

1.88
(1.65)

1.85
(1.58)

1.83
(1.49)

1.82
(1.48)

1.84
(1.53)

3.5

2 1.68
(1.46)

1.76
(1.37)

1.88
(1.55)

1.92
(1.39)

1.9
(1.4)

1.9
(1.4)

1.9
(1.4)

1.88
(1.41)

1.86
(1.42)

1.86
(1.42)

1.88
(1.44)

4.8

sunflower d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 3.78
(3.62)

4.69
(4.31)

3.9
(3.4)

4.12
(4.32)

4.19
(4.33)

4.09
(3.91)

4.01
(3.59)

3.99
(3.51)

3.99
(3.51)

3.92
(3.49)

3.98
(3.5)

4.7

1 3.81
(3.58)

4.29
(3.61)

3.86
(3.59)

4.11
(3.84)

4.32
(3.76)

4.24
(3.77)

4.08
(3.62)

4.07
(3.63)

4.01
(3.66)

3.95
(3.67)

3.98
(3.62)

4.1

2 3.90
(3.57)

3.83
(3.47)

3.86
(3.65)

3.8
(3.63)

3.92
(3.67)

4.03
(3.63)

3.91
(3.73)

3.93
(3.7)

3.96
(3.63)

4.11
(3.62)

3.94
(3.57)

3

tecator res
min

res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

2.41 11.11 0 0.23
(0.14)

0.25
(0.14)

0.23
(0.17)

0.24
(0.2)

0.29
(0.32)

0.41
(0.49)

0.4
(0.42)

0.45
(0.46)

0.45
(0.42)

0.49
(0.43)

0.5
(0.42)

2.8

1 0.21
(0.13)

0.47
(0.63)

0.24
(0.13)

0.37
(0.36)

0.38
(0.38)

0.42
(0.41)

0.47
(0.44)

0.49
(0.45)

0.5
(0.41)

0.52
(0.42)

0.53
(0.41)

2.6

2 0.24
(0.17)

0.23
(0.13)

0.36
(0.27)

0.39
(0.29)

0.43
(0.33)

0.47
(0.36)

0.55
(0.37)

0.58
(0.39)

0.6
(0.4)

0.61
(0.38)

0.61
(0.37)

2
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Table 3
Mean and standard deviation (in parentheses) of the sum of the squared errors on all datasets using k ¼ þ1. The last column indicates the average value H opt that would be
selected according to the strategy proposed in Section 3.5.

FHV res min res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0.16
(0.05)

0.82
(0.18)

0 0.09
(0.02)

5.26
(1.48)

5.4
(1.19)

4.75
(1.29)

3.13
(0.71)

1.96
(0.7)

1.31
(0.53)

0.37
(0.17)

0.24
(0.14)

0.21
(0.15)

0.19
(0.07)

9.6

1 0.1
(0.03)

6.58
(1.41)

3.84
(1.64)

1.84
(0.99)

0.18
(0.18)

0.1
(0.05)

0.09
(0.05)

0.09
(0.03)

0.09
(0.03)

0.09
(0.02)

0.09
(0.02)

7.8

2 0.23
(0.07)

7.56
(1.61)

1.48
(0.27)

0.5
(0.17)

0.3
(0.11)

0.28
(0.14)

0.2
(0.05)

0.19
(0.05)

0.21
(0.05)

0.2
(0.06)

0.2
(0.06)

7.1

MK005 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.55
(0.21)

0.83
(0.32)

0.5
(0.23)

0.44
(0.18)

0.44
(0.2)

0.42
(0.19)

0.42
(0.16)

0.44
(0.18)

0.44
(0.2)

0.43
(0.18)

0.43
(0.17)

6.1

1 0.84
(0.48)

0.83
(0.41)

0.46
(0.2)

0.43
(0.19)

0.45
(0.19)

0.44
(0.18)

0.44
(0.2)

0.42
(0.18)

0.43
(0.17)

0.42
(0.16)

0.42
(0.17)

6.9

2 0.82
(0.49)

0.95
(0.44)

0.66
(0.39)

0.54
(0.3)

0.53
(0.33)

0.52
(0.28)

0.49
(0.23)

0.52
(0.24)

0.52
(0.23)

0.51
(0.24)

0.51
(0.22)

5.9

MK01 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 1.34
(0.73)

1.63
(0.85)

1.26
(0.73)

1.29
(0.87)

1.17
(0.66)

1.2
(0.71)

1.21
(0.74)

1.19
(0.66)

1.27
(0.85)

1.18
(0.63)

1.28
(0.74)

6.2

1 1.92
(1.19)

1.53
(1.01)

1.21
(0.72)

1.27
(0.86)

1.27
(0.72)

1.26
(0.75)

1.26
(0.69)

1.35
(0.88)

1.29
(0.74)

1.29
(0.84)

1.3
(0.81)

3.1

2 1.8
(1.1)

1.72
(0.96)

1.33
(0.76)

1.26
(0.76)

1.31
(0.74)

1.28
(0.81)

1.34
(0.81)

1.33
(0.76)

1.33
(0.78)

1.35
(0.83)

1.34
(0.82)

5.6

PSVone d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.01
(0.01)

0.27
(0.17)

0.07
(0.05)

0.05
(0.04)

0.05
(0.07)

0.02
(0.02)

0.01
(0.02)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

8.2

1 0.01
(0.01)

0.29
(0.19)

0.12
(0.08)

0.05
(0.04)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

8.1

2 0.01
(0.01)

0.25
(0.15)

0.14
(0.1)

0.06
(0.05)

0.03
(0.03)

0.02
(0.02)

0.01
(0.03)

0.01
(0.01)

0.01
(0.01)

0.02
(0.02)

0.01
(0.02)

7.7

PSVthree d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.02
(0.02)

1.61
(1.43)

0.92
(0.87)

0.29
(0.31)

0.15
(0.15)

0.09
(0.03)

0.06
(0.03)

0.07
(0.05)

0.07
(0.04)

0.06
(0.05)

0.05
(0.03)

9.4

1 0.05
(0.05)

1.37
(0.86)

0.95
(0.83)

0.41
(0.36)

0.13
(0.08)

0.11
(0.09)

0.09
(0.07)

0.1
(0.09)

0.08
(0.09)

0.05
(0.04)

0.05
(0.04)

8.8

2 0.03
(0.04)

1.71
(1.3)

0.82
(0.66)

0.69
(0.78)

0.27
(0.4)

0.13
(0.15)

0.07
(0.05)

0.06
(0.04)

0.06
(0.05)

0.05
(0.04)

0.05
(0.06)

9

canadian d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.25
(0.58)

0.29
(0.41)

0.31
(0.67)

0.19
(0.33)

0.21
(0.57)

0.23
(0.43)

0.35
(0.69)

0.22
(0.46)

0.17
(0.44)

0.22
(0.55)

0.15
(0.29)

6.1

1 0.26
(0.55)

0.31
(0.52)

0.33
(0.81)

0.18
(0.35)

0.23
(0.49)

0.3
(0.57)

0.26
(0.34)

0.23
(0.43)

0.27
(0.88)

0.27
(0.46)

0.37
(0.95)

4.7

2 0.18
(0.39)

0.24
(0.45)

0.26
(0.5)

0.31
(0.71)

0.43
(1.06)

0.28
(0.57)

0.25
(0.67)

0.3
(0.7)

0.32
(0.87)

0.26
(0.5)

0.28
(0.58)

4.3

cookie d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.16
(0.38)

0.38
(0.42)

0.24
(0.33)

0.22
(0.31)

0.16
(0.34)

0.14
(0.33)

0.12
(0.22)

0.17
(0.37)

0.15
(0.29)

0.14
(0.27)

0.17
(0.38)

7

1 0.09
(0.29)

0.2
(0.43)

0.13
(0.38)

0.12
(0.26)

0.09
(0.33)

0.11
(0.52)

0.08
(0.26)

0.07
(0.22)

0.07
(0.21)

0.04
(0.08)

0.08
(0.35)

6.8

2 0.08
(0.28)

0.12
(0.22)

0.12
(0.36)

0.09
(0.24)

0.09
(0.26)

0.07
(0.2)

0.07
(0.29)

0.08
(0.25)

0.08
(0.21)

0.07
(0.17)

0.07
(0.25)

6.5
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DTI d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 5.88
(2.9)

6.9
(4.03)

6.65
(3.68)

6.52
(3.51)

6.2
(3.34)

6.55
(4.03)

6.54
(3.95)

6.56
(3.8)

6.51
(3.36)

6.51
(3.32)

6.19
(3.47)

7.1

1 5.57
(3.03)

6.3
(2.91)

6.65
(3.82)

6.63
(3.51)

6.68
(3.6)

6.53
(3.75)

6.92
(4.11)

6.51
(3.92)

6.37
(3.75)

6.08
(3.87)

6.41
(3.68)

6

2 6.06
(2.84)

6.47
(3.7)

6.54
(4.13)

6.08
(2.87)

6.57
(2.9)

6.31
(3.36)

6.36
(3.37)

6.42
(3.58)

6.21
(3.69)

6.11
(3.61)

6.03
(3.47)

5.9

gasoline d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.06
(0.08)

0.6
(1.3)

0.28
(0.57)

0.1
(0.13)

0.1
(0.25)

0.09
(0.14)

0.06
(0.09)

0.08
(0.19)

0.09
(0.2)

0.09
(0.26)

0.11
(0.3)

8

1 0.08
(0.18)

0.47
(1.76)

0.22
(0.52)

0.21
(0.67)

0.11
(0.23)

0.09
(0.12)

0.09
(0.12)

0.09
(0.15)

0.06
(0.12)

0.07
(0.11)

0.08
(0.12)

7.3

2 0.12
(0.2)

0.24
(0.42)

0.12
(0.16)

0.1
(0.14)

0.1
(0.16)

0.08
(0.17)

0.07
(0.16)

0.07
(0.14)

0.1
(0.2)

0.09
(0.15)

0.08
(0.15)

6.7

marzipan_moist. d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.19
(0.35)

0.17
(0.29)

0.13
(0.2)

0.18
(0.4)

0.15
(0.27)

0.16
(0.26)

0.18
(0.29)

0.19
(0.3)

0.16
(0.28)

0.15
(0.29)

0.16
(0.31)

5.7

1 0.1
(0.25)

0.1
(0.17)

0.09
(0.16)

0.07
(0.12)

0.06
(0.1)

0.06
(0.09)

0.09
(0.15)

0.07
(0.1)

0.05
(0.09)

0.05
(0.07)

0.04
(0.04)

6.3

2 0.08
(0.18)

0.14
(0.25)

0.05
(0.09)

0.1
(0.22)

0.05
(0.08)

0.06
(0.09)

0.06
(0.07)

0.05
(0.08)

0.04
(0.07)

0.04
(0.03)

0.05
(0.1)

5.4

marzipan_sugar d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.25
(0.49)

0.33
(0.43)

0.24
(0.37)

0.25
(0.38)

0.25
(0.39)

0.23
(0.34)

0.2
(0.29)

0.25
(0.32)

0.24
(0.33)

0.26
(0.37)

0.28
(0.36)

5.7

1 0.15
(0.23)

0.17
(0.23)

0.09
(0.14)

0.11
(0.19)

0.11
(0.27)

0.09
(0.15)

0.1
(0.18)

0.06
(0.12)

0.09
(0.21)

0.08
(0.13)

0.08
(0.13)

6.1

2 0.13
(0.21)

0.17
(0.32)

0.09
(0.13)

0.07
(0.1)

0.1
(0.14)

0.1
(0.17)

0.09
(0.17)

0.1
(0.18)

0.11
(0.25)

0.08
(0.16)

0.11
(0.2)

6.1

sugar res min res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

2.32 2.68 0 1.6
(1.16)

2.56
(1.69)

2.18
(1.26)

1.87
(1.45)

1.9
(1.46)

1.56
(0.97)

1.73
(1.41)

1.65
(1.1)

1.71
(1.29)

1.75
(1.29)

1.64
(1.15)

6.9

1 1.6
(1.42)

2.36
(1.73)

2.02
(1.5)

2.04
(1.59)

1.95
(1.6)

1.61
(1.15)

1.62
(1.05)

1.9
(1.48)

1.66
(1.21)

1.86
(1.54)

1.74
(1.35)

7.2

2 1.68
(1.46)

2.15
(1.63)

1.88
(1.6)

1.68
(1.23)

1.75
(1.33)

1.9
(1.59)

1.86
(1.56)

1.76
(1.41)

1.84
(1.48)

1.76
(1.41)

1.58
(1.15)

6.8

sunflower d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 3.78
(3.62)

3.8
(3.36)

4.05
(3.49)

3.86
(3.44)

3.74
(3.16)

4.00
(3.77)

4.05
(3.74)

4.07
(3.61)

4.29
(4.26)

3.98
(3.59)

3.95
(3.65)

4.6

1 3.81
(3.58)

3.78
(3.34)

3.63
(3.09)

4.03
(3.47)

4.17
(3.8)

4.13
(3.46)

3.83
(3.49)

4.02
(3.75)

4.23
(3.82)

4.34
(3.73)

4.18
(3.66)

5.5

2 3.90
(3.57)

4.02
(4.05)

3.98
(3.49)

4.02
(3.72)

3.81
(3.83)

4.39
(4.72)

4.39
(3.75)

4.18
(3.54)

4.26
(3.66)

4.26
(3.49)

4.19
(3.87)

4.2

tecator res min res
max

d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0.7 8.8 0 0.23
(0.14)

2.07
(1)

1.43
(1.01)

0.95
(0.57)

0.77
(0.7)

0.66
(0.42)

0.52
(0.34)

0.46
(0.26)

0.53
(0.47)

0.51
(0.54)

0.64
(0.83)

8.1

1 0.21
(0.13)

3.11
(2.45)

1.85
(1.12)

0.67
(0.36)

0.54
(0.26)

0.72
(0.47)

0.66
(0.51)

0.51
(0.31)

0.51
(0.24)

0.76
(0.54)

0.44
(0.43)

8.9

2 0.24
(0.17)

2.13
(1.46)

0.98
(0.62)

0.89
(0.83)

0.77
(0.71)

0.49
(0.29)

0.4
(0.24)

0.45
(0.26)

0.62
(0.59)

0.62
(0.55)

0.49
(0.43)

8.1
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Table 4
Mean and standard deviation (in parentheses) of the sum of the squared errors on all datasets using a grid in the parameter k. The last column indicates the average value H opt
that would be selected according to the strategy proposed in Section 3.5.

FHV d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.09
(0.02)

0.07
(0.01)

0.07
(0.02)

0.08
(0.01)

0.1
(0.02)

0.12
(0.02)

0.13
(0.03)

0.16
(0.04)

0.18
(0.05)

0.19
(0.05)

0.21
(0.05)

2.2

1 0.1 (0.03) 0.14
(0.04)

0.09
(0.02)

0.09
(0.01)

0.1
(0.02)

0.12
(0.03)

0.13
(0.04)

0.14
(0.04)

0.14
(0.04)

0.15
(0.04)

0.15
(0.04)

2.4

2 0.23
(0.07)

0.1
(0.02)

0.11
(0.03)

0.11
(0.03)

0.12
(0.03)

0.13
(0.03)

0.14
(0.03)

0.15
(0.04)

0.17
(0.04)

0.18
(0.07)

0.19
(0.06)

1.7

MK005 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.55
(0.21)

0.66
(0.32)

0.64
(0.3)

0.63
(0.31)

0.63
(0.3)

0.67
(0.33)

0.69
(0.38)

0.72
(0.42)

0.71
(0.44)

0.74
(0.47)

0.76
(0.5)

3.1

1 0.84
(0.48)

0.67
(0.39)

0.6 (0.3) 0.61
(0.3)

0.64
(0.33)

0.67
(0.38)

0.7
(0.39)

0.76
(0.4)

0.75
(0.41)

0.75
(0.43)

0.76
(0.43)

3.2

2 0.82
(0.49)

0.52
(0.24)

0.56
(0.28)

0.6
(0.28)

0.57
(0.27)

0.56
(0.27)

0.55
(0.27)

0.55
(0.27)

0.55
(0.28)

0.57
(0.28)

0.57
(0.29)

2

MK01 d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 1.34
(0.73)

1.58
(0.97)

1.49
(0.98)

1.48
(0.98)

1.63
(1.06)

1.61
(1.08)

1.6
(1.09)

1.6
(1.16)

1.65
(1.2)

1.6
(1.09)

1.66
(1.17)

3.3

1 1.92
(1.19)

1.68
(1.35)

1.59
(0.99)

1.56
(0.93)

1.56
(1.16)

1.6
(1.27)

1.68
(1.32)

1.75
(1.37)

1.78
(1.41)

1.85
(1.43)

1.84
(1.49)

1.8

2 1.8 (1.1) 1.55
(0.9)

1.43
(1.04)

1.41
(0.88)

1.64 (1) 1.77
(1.01)

1.82
(1.08)

1.8
(1.11)

1.87
(1.15)

1.89
(1.18)

1.91
(1.21)

2.1

PSVone d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.01
(0.01)

0.01
(0.01)

0.03
(0.03)

0.02
(0.02)

0.02
(0.02)

0.02
(0.02)

0.02
(0.02)

0.01
(0.01)

0.02
(0.03)

0.01
(0.01)

0.01
(0.01)

2.8

1 0.01
(0.01)

0.03
(0.04)

0.02
(0.02)

0.02
(0.02)

0.02
(0.02)

0.02
(0.02)

0.03
(0.03)

0.02
(0.01)

0.02
(0.02)

0.03
(0.02)

0.04
(0.03)

3.4

2 0.01
(0.01)

0.04
(0.06)

0.03
(0.02)

0.02
(0.02)

0.03
(0.02)

0.03
(0.02)

0.03
(0.03)

0.04
(0.03)

0.05
(0.04)

0.05
(0.04)

0.06
(0.04)

2.6

PSVthree d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.02
(0.02)

0.07
(0.05)

0.05
(0.04)

0.09
(0.14)

0.08
(0.1)

0.08
(0.11)

0.11
(0.21)

0.05
(0.07)

0.04
(0.03)

0.05
(0.04)

0.06
(0.05)

3.3

1 0.05
(0.05)

0.17
(0.2)

0.21
(0.33)

0.15
(0.26)

0.31
(0.73)

0.32
(0.73)

0.3
(0.71)

0.31
(0.71)

0.32
(0.68)

0.32
(0.64)

0.33
(0.6)

3.6

2 0.03
(0.04)

0.06
(0.06)

0.11
(0.13)

0.07
(0.06)

0.05
(0.03)

0.09
(0.1)

0.14
(0.17)

0.19
(0.18)

0.22
(0.19)

0.22
(0.21)

0.19
(0.24)

2.9

canadian d full
domain

h

1 2 3 4 5 6 7 8 9 10 H opt

0 0.25
(0.58)

0.38
(1.24)

0.29
(0.56)

0.21
(0.36)

0.22
(0.44)

0.25
(0.46)

0.23
(0.44)

0.21
(0.42)

0.21
(0.34)

0.25
(0.44)

0.18
(0.28)

4.2

1 0.26
(0.55)

0.29
(0.51)

0.29
(0.76)

0.28
(0.67)

0.26
(0.58)

0.25
(0.47)

0.15
(0.28)

0.21
(0.4)

0.23
(0.41)

0.21
(0.44)

0.24
(0.45)

3.2

2 0.18
(0.39)

0.33
(0.78)

0.17
(0.24)

0.19
(0.29)

0.23
(0.53)

0.27
(0.55)

0.19
(0.34)

0.27
(0.49)

0.2
(0.37)

0.24
(0.37)

0.2
(0.38)

3.5

cookie d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.16
(0.38)

0.13
(0.42)

0.1 (0.3) 0.15
(0.45)

0.16
(0.35)

0.16
(0.32)

0.17
(0.38)

0.2
(0.31)

0.23
(0.36)

0.21
(0.37)

0.23
(0.35)

2.1

1 0.09
(0.29)

0.07
(0.26)

0.07
(0.25)

0.07
(0.22)

0.07
(0.24)

0.1
(0.29)

0.09
(0.26)

0.1
(0.25)

0.12
(0.27)

0.1
(0.28)

0.11
(0.28)

2.6

2 0.08
(0.28)

0.09
(0.38)

0.09
(0.25)

0.06
(0.17)

0.09
(0.29)

0.07
(0.15)

0.09
(0.31)

0.1
(0.32)

0.1
(0.32)

0.11
(0.33)

0.1
(0.27)

2.5
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DTI d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 5.88 (2.9) 6.05
(3.47)

6.15
(3.73)

6.17
(4.05)

6.17
(3.89)

6.37
(4.04)

6.41
(3.67)

6.4
(3.81)

6.48
(3.75)

6.32
(3.8)

6.4
(3.78)

5.5

1 5.57
(3.03)

6.43
(4.00)

6.24
(4.04)

6.04
(3.39)

5.8
(3.65)

5.88
(3.13)

6.14
(3.7)

5.94
(3.12)

6.35
(3.96)

5.97
(3.1)

6.08
(2.96)

3.7

2 6.06
(2.84)

6.68
(4.00)

6.27
(3.72)

6.36
(3.86)

6.22
(3.81)

6.36
(4.3)

6.42
(4.15)

6.34
(4.23)

6.54
(4.24)

6.43
(4.19)

6.53
(4.03)

3.9

gasoline d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.06
(0.08)

0.06
(0.1)

0.08
(0.13)

0.08
(0.12)

0.08
(0.11)

0.09
(0.13)

0.09
(0.12)

0.08
(0.12)

0.09
(0.11)

0.11
(0.18)

0.13
(0.17)

2.5

1 0.08
(0.18)

0.07
(0.1)

0.05
(0.08)

0.07
(0.1)

0.08
(0.1)

0.08
(0.15)

0.08
(0.12)

0.08
(0.15)

0.09
(0.11)

0.08
(0.17)

0.09
(0.14)

2.4

2 0.12 (0.2) 0.09
(0.17)

0.09
(0.13)

0.07
(0.12)

0.08
(0.15)

0.06
(0.15)

0.07
(0.14)

0.06
(0.18)

0.08
(0.19)

0.1
(0.17)

0.09
(0.15)

2.2

marzipan_moist. d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.19
(0.35)

0.13
(0.23)

0.14
(0.24)

0.16
(0.3)

0.16
(0.24)

0.15
(0.28)

0.14
(0.26)

0.16
(0.29)

0.15
(0.27)

0.15
(0.26)

0.16
(0.27)

2.3

1 0.1 (0.25) 0.06
(0.13)

0.06
(0.13)

0.09
(0.19)

0.1
(0.24)

0.11
(0.26)

0.09
(0.26)

0.08
(0.15)

0.1
(0.13)

0.12
(0.14)

0.11
(0.12)

2.9

2 0.08
(0.18)

0.08
(0.13)

0.04
(0.06)

0.04
(0.05)

0.08
(0.15)

0.09
(0.14)

0.09
(0.15)

0.05
(0.07)

0.1
(0.15)

0.09
(0.14)

0.09
(0.15)

2.9

marzipan_sugar d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.25
(0.49)

0.24
(0.56)

0.15
(0.31)

0.15
(0.23)

0.26
(0.39)

0.22
(0.37)

0.31
(0.44)

0.33
(0.54)

0.31
(0.55)

0.35
(0.53)

0.3
(0.43)

3.1

1 0.15
(0.23)

0.1
(0.16)

0.12
(0.17)

0.11
(0.17)

0.14
(0.23)

0.12
(0.17)

0.16
(0.24)

0.16
(0.23)

0.14
(0.22)

0.15
(0.22)

0.13
(0.2)

2.5

2 0.13
(0.21)

0.11
(0.16)

0.11
(0.19)

0.18
(0.29)

0.12
(0.22)

0.11
(0.17)

0.15
(0.26)

0.14
(0.17)

0.17
(0.18)

0.13
(0.22)

0.13
(0.16)

2.2

sugar d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 1.6 (1.16) 1.69
(1.23)

1.61
(1.25)

1.63
(1.36)

1.51
(1.19)

1.55
(1.13)

1.53
(1.12)

1.61
(1.24)

1.66
(1.33)

1.58
(1.18)

1.61
(1.19)

4.1

1 1.6 (1.42) 1.84
(1.54)

1.58
(1.19)

1.78
(1.43)

1.66
(1.2)

1.69
(1.33)

1.82
(1.39)

1.67
(1.24)

1.6
(1.17)

1.63
(1.17)

1.65
(1.17)

2.5

2 1.68
(1.46)

1.81
(1.42)

1.79
(1.27)

1.99
(1.75)

1.9
(1.49)

1.9
(1.63)

1.81
(1.47)

1.72
(1.32)

1.72
(1.29)

1.79
(1.27)

1.84
(1.3)

4.1

sunflower d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 3.78
(3.62)

4.34
(4.02)

4.13
(4.27)

4.25
(3.94)

4.26
(3.9)

4.39
(4.57)

4.33
(4.75)

4.26
(4.75)

4.23
(4.71)

4.19
(4.67)

4.35
(4.61)

4.4

1 3.81
(3.58)

4.13
(4.08)

4.7
(4.22)

3.96
(3.6)

4.13
(3.43)

4.05
(4.11)

3.79
(3.09)

3.73
(3.1)

3.7
(3.12)

3.8
(3.27)

3.95
(3.54)

3.4

2 3.90
(3.57)

4.57
(3.64)

3.95
(3.48)

4.12
(3.64)

4.09
(3.99)

3.87
(3.33)

4.09
(3.42)

3.95
(3.52)

4.3 (3.8) 4.24
(3.72)

4.05
(3.57)

4.2

tecator d full
domain

h

1 2 3 4 5 6 7 8 9 10 Av.
H opt

0 0.23
(0.14)

0.31
(0.26)

0.2
(0.14)

0.21
(0.12)

0.25
(0.14)

0.27
(0.2)

0.34
(0.33)

0.35
(0.34)

0.35
(0.35)

0.39
(0.36)

0.39
(0.36)

2.6

1 0.21
(0.13)

0.3
(0.15)

0.31
(0.33)

0.3
(0.35)

0.31
(0.33)

0.33
(0.25)

0.4
(0.45)

0.51
(0.46)

0.49
(0.42)

0.48
(0.42)

0.48
(0.42)

3.1

2 0.24
(0.17)

0.25
(0.17)

0.28
(0.29)

0.22
(0.08)

0.31
(0.23)

0.45
(0.51)

0.36
(0.2)

0.58
(0.51)

0.52
(0.42)

0.5
(0.39)

0.49
(0.33)

3.4
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Fig. 6. Boxplots of the H opt value obtained in data set cookie running Problem (9)
from h ¼ 1 to h ¼ 10 and k ¼ þ1.
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those obtained when the full domain method is applied. Regard-
ing the results given by our approach for d ¼ 1, we can observe
that in some data sets, in order to get better forecasting results
Fig. 7. Histogram of the time instants values in canadian d
than thoses given by the information provided by the full
domain, we have to pay attention to lower values of h, e.g., coo-
kie, gasoline, marzipan_moisture, and marzipan_sugar. Neverthe-
less, in the data set sunfower, we have to restrict to h P 6 in
our approach if better results are desired. Finally, the proposed
method for d ¼ 2 is better than the full domain counterpart in
data sets cookie and tecator with h ¼ 3, for instance. In the data
set gasoline, the curve provided by our approach give better
results than the one given by the whole time domain for any
value of h.

Hence, in general, we can state that including a penalization of
the interval length in the optimization problem, is a good way of
improving the forecasting.

In addition, Fig. 8(a) and (b) show the average over all the folds
of the mean sum of the squared errors estimated on sample s3 and
s4, respectively when Algorithm 2 is run for e ¼ 10�3, the informa-
tion until the first derivative is used, i.e., d ¼ 1, and the number of
intervals sought is h ¼ 1 in the database marzipan_sugar. We
observe that the plot is approximately U-shaped, which means that
the best values of the parameter are thoses in the middle of the k
grid. That is, penalizing the length of the intervals, with a penaliz-
ing trade-off parameter k, has the potential of improving the
results shown in Section 5, providing better predictions than both
selecting only time instants (intervals of length zero) and selecting
intervals of unpenalized length. Moreover, we see in Fig. 8(c) the
average length of the intervals over all the folds using the same set-
tings as before, i.e., e ¼ 10�3; d ¼ 1 and h ¼ 1. As expected, it can be
seen that the larger the value of k, then the shorter the interval
length.
ata set when h ¼ 3 time instants are sought (k ¼ þ1).



Fig. 9. Mean sum of squared errors for k in a grid. Results on simulated data.

Fig. 8. Mean squared residual error on sample s 3, and s 4 and mean length intervals in terms of the k when our methodology is run in the data set marzipan_sugar for
e ¼ 10�3; d ¼ 1 and h ¼ 1.
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6. Conclusions and extensions

In this paper, we have proposed an approach based on con-
tinuous optimization to select time intervals in regression
problems with (multivariate) functional data. Particularly, we
formulate an optimization problem whose objective function
has a regularization term that penalizes large intervals by
means of a parameter that should be properly chosen. Hence,
our methodology gives flexibility to the state-of-the-art models,
since using exactly the same model, we can obtain the most
relevant time instants, i.e., zero-length intervals when the
regularization parameter tends to infinity, and also intervals
of any length when the regularization parameter is equal to
zero.

Furthermore, our proposal allows, in the very same manner,
to add high-order information provided by the derivatives of
the (multivariate) functional data. Such information is crucial,
as has been shown in the numerical experience.



Fig. 10. Mean sum of squared errors for k in a grid. Results on real-life applications.
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Indeed, our experiments show that our methodology outper-
forms existing results in the literature for a large enough h. When
compared with using the whole domain, there is a clear benefit
from interval selection in terms of predictive ability. In all, but
one case analyzed, there is a wide range of values of h for which
interval selection outperforms the use of the full domain and
results in the literature. This suggests that the choice of H opt is
not, in general, a crucial point. In the only data set in which the
selection of H opt seems crucial, this only happens for d ¼ 0;1, sug-
gesting that the use of higher order derivatives may overcome the
issues with the selection of H opt. Finally, we have shown that a
regularization term based on interval length can yield even better
results.

Nevertheless, our approach presents some flaws which deserve
further research, such as a lack of stability of the hyperparameter k,
and the large deviations of results for some data sets. Hence, some
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extensions of the present work are possible, such as a robust ver-
sion of our proposal, which produces more stable results indepen-
dent of the choice of the hyperparameters. Such extensions are far
from trivial and require research that is beyond the scope of this
manuscript. Hence, some extensions of the present work are possi-
ble, such as a more robust version of our proposal, which produce
stable results independent for the choice of the hyperparameters.
Finally, here we have just considered pure (multivariate) func-
tional data. Our proposal can be easily extended to the hybrid mul-
tivariate case with a simple modification of the kernel function,
(Jiménez-Cordero and Maldonado, 2020).

A more challenging topic seems to be the extension of our
approach to spatio-temporal data, in which one seeks the most rel-
evant time intervals and locations, or to other Data Science prob-
lems, such as clustering.
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