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Abstract 

In this paper we address a planar p-facility location problem where, together with a metric induced by a gauge, there 
exists a series of rapid transit lines, which can be used as altemative transportation system to reduce the total transportation 
tost. The location problem is reduced to solving a finite number of (multi)-Weber problems, from which localization results 
are obtained. In particular, it is shown that, if the gauge in use is polyhedral, then the problem is reduced to fïnding a 
p-median. 
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1. Introduction 

Most of the papers in the literature devoted to 
facility location consider the metric space to be the 
plane [8] - or the n-dimensional space - or a graph 
[lol. In this paper we present a mixed model, con- 
sisting of a p-facility minsum location problem on 
the plane, which is equipped with the metric ob- 
tained as the superposition of a planar metric (in- 
duced by a gauge) and a finite set of rapid transit 
lines. This enables US to model real-world situations 
in which, together with a homogeneous transporta- 
tion system (e.g., a dense network of standard roads) 
there exists a series of rapid lines (e.g., highways), in 
which transit times are shorter. 

An illustrative example, suggested by a referee, 

* Corresponding author. 

may be that of a pedestrian walking in a city with a 
subway network, to be used in order to reduce travel 
times. 

To minimize the transportation costs, we assume, 
as in [2,111 among others, that such costs are increas- 
ing concave functions of the distances involved, 
allowing even discontinuous functions such as fixed 
charge functions of the form 

where a,b E R+. 
The paper is structured as follows. In Section 2 

we address the calculus of shortest (minimum-tost) 
paths in the metric of the problem. In Section 3 we 
introduce the location problem, some localization 
properties of which are presented in Section 4, end- 
ing with an illustrative example. 
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2. Alternative transportation systems. Minimum- 
tost paths 

2.1. The basic model 

As mentioned in the Introduction, we consider 
that the space where the facilities are to be located is 
the plane R2, equipped with a metric derived from 
the mixture of the metric induced by a gauge 11.1) 
and the metric d( . , . ) of a complete directed metric 
graph (N,E), whose node set N is a finite subset of 
R2. Several proposals of mixtures of metrics can be 
found in [1,12] and references in [15]. 

We recall that the gauge 11. II associated with the 
compact convex set B with 0 at its interior is the 
function defined as 

Ilxll= inf 
i 

vl. > 0: +.x E B , 
1 

which is a norm iff B is symmetrie with respect to 
the origin. 

Transportation costs are assumed to be given by 
nondecreasing concave functions of the distance 
travelled through the plane or through the rapid lines. 
In particular, let g : [0, + 03) + R and d : [O, + m> + 
IR be nondecrasing concave nonconstant 
such that 

s(lly-dl) &?(d(w)) VX,Y EN, 

g(0) = g^(O) = 0, 

and define the direct transportation tost 
point x to the point y as 

functions 

(1) 

(2) 

from the 

CC “‘) = 

g ( ll Y - dl) 3 if either x or y e N, 

g^( d( x,y)), if x,ye N. 

(3) 
Condition (1) reflects the role of the graph in the 

space: its links give a set of rapid lines, such as 
highways, a railroad network, etc., along which travel 
is quicker (cheaper). This condition holds in practice 
as soon as the edges of the graph are truly rapid 
lines. Anyway, if, for some links, (1) does not hold, 
one can construct an equivalent graph verifying (11, 
see Section 2.2. 

From the expression (3) for the tost of direct (i.e., 
without transhipment) transportation, the function G 

that gives to any (x, y) E H2 X [w2 the minimum 
transportation tost from x to y is given by 

G( x,y> = inf 
f,, ,I,, r : hite 

C(q) +C(t,,t,) +... 

+ C(fr_lJr) + C(t,,y). (4) 
The purpose of this section is to show that (4) can 

be simplified, by showing that the number of tran- 
shipment points in the optimal path from any x to 
any y is at most 2. 

Lemma 2.1. Let h: [0, + m> + [w be a concave 
jùnction such that h(O) = 0. One has 

h(x+y) <h(x) +h(y) Vx,y>O. 

Proof. The case x = y = 0 is trivial. For x + y > 0, 
one has: 

h(x) =h *(x+Y) + 20) 

x 
>-h(x+y)+- - 

x+y 
x+yh(0)l 

h(y) =h *(x+Y) + 20) 

> Y-h(x+y) + - 
x+Y 

Ah(O). 
x+Y 

Adding both expressions, and setting h(O) = 0, one 
obtains 

h(x) +h(y) zh(x+Y), 

as asserted. Cl 

Lemma 2.2. Let M be a space equipped with the 
metric m. Let h : [0, + m) + lR+ be a concaoe nonde- 
creasing and nonconstant function h 0 m is also a 
metric on M. 

Proof. First of all, it is easy to show that 

h(t) >O Vt>O. 

Hence, for any X, y E M, x # y, since m(x, y> > 0, 
h(m(x,y)) > 0. Moreover, h(m(x,x)) = h(O) = 0 for 
al1 x E M. 
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Now, we show the triangle inequality; by Lemma 
2.1 and the triangle inequality for m, 

h(m(x,y)) +h(m(y,z)) 

2 h( m( x,y) + m( y,z)) 2 h( m( x,z)). 

Hence, h 0 m is a metric on M. ??

Remark 2.1. As a consequente of Lemma 2.2, we 
see that the function d 0 11 .II is a metric on N and the 
function g 0 11 $11 is a metric on R* as soon as 11 . II is 
symmetrie, i.e., a norm. 

Proposition 2.1. For any x E lR*, y E N, and 
t,,t,,...,” t E R*, there exists some a E N such that 

C(x,t,) +C(t,,t,) + ... +C(t,,y) 

2 C(x,a) + C(a,y). (5) 

As a consequente, the minimum transportation tost 
from x E R2 to y E N is given by the minimum-tost 
path joining them and passing through at most one 
node of the graph, i.e., 

G( x,y) = pi;{ C( x,a) + C( a, y)}. 

Proof. We show that (5) holds for the different 
values of n. The result obviously holds for n = 0: 
take a = y. For n = 1, there is some t, E R* used as 
transhipment point. If t, E N, the result holds (take 
a = t,); else, since g is concave and nondecreasing 
and II.II is a gauge, we have that 

C(XJ,) +C(t,,y) =g(llt, -xll)+g(lly-411) 

2g(llt, -dl + IIY - t,II) 

2 g( II y - AI) 

2C(x,y), 

thus (5) holds taking a = y. 
Let US now assume the result proved for any 

XER*, YEN, t ,,..., t,ElR*, k=O,l,..., n, and 
let US show that it also holds for k = n + 1. 

Given t 1,. . . >tn>tn+, E lb!*, since the result is as- 
sumed to be true for k I n, there exists z’ E N such 
that 

C(t,,t,) + . . . +C(t,+,,y)2C(t,,z’)+C(z’>Y). 

On the other hand, we have shown (case n = 1) 
that there exists z* E N such that 

C(x,t,) +C(t,,z’)2c(x,z*) +c(z*,z’), 

thus 

C(x,t,) +C(r,,r,) + ... +C(tn+,>Y) 

>C(x,t,) +C(t,,z’)+C(z’,y) 

2 C( x.z’) + C( z2,z’) + C( z’,y) 

= C( x,z*) + i?(d( z*,z’)) +@(z’a)) 

>C(x,z*) +@(z*>y)) 

= C( x,z’) + C( z2,y), 
from which the result follows taking a = z* E N. 
0 

Corollary 2.1. For any x,y E R2, there exist a,b E N 
such that 

G(X,Y) 

= min C( x,y), ,miEnN{ C( x,a> + C(a,b) 
1 

+C(b,y)l} (6) 

= min g(lJy -x11), min g(lb-4) 
( U,hEN 

+g^(d(a,b)) +g(lly-bil)). (7) 

Proof. We need to show that, given r I 1, 
t,,t,, . . . > r t E IR*, the tost C(x,t,) + C(t,,t,) 
+ . . . + C(t,, y) can be bounded below by an expres- 
sion of the form C(x,a) + C(a,b) + C(b,y) for some 
a, b E N. Indeed, let t,, , = y, and define the set I, 

I={k:l <klr+l,t,EN}. 

If 1 is empty, we would have 

C(x,t,) +C(t,,t,) + . . . +C(t,,y) 

=g(llt,-xll)+g(llt*-t,ll)+...+g(llY-trll) 

2g(llt, -xll+Ilt*-r,II+ .‘. +Ily -t,ll) 

2g(lly -AI) 

2 q X,Y), 

and (6) follows. 
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On the other hand, if I # 0, denoting by k the 
highest value in 1, it follows from Proposition 2.1 
that there exists some a E N such that 

C(x,t,) + . . . +C(t,_,,t,) 2 C(xJ2) + C(a,t,). 

If k = r + 1 (i.e., t, = y), we are done; else, we have 
that 

{tk+lJk+2 ,...>tr+i} nN=0, 

thus 

G(M+i) + ... +G(rA+i) 

=g(lltk+, -tJ) + ... +g(lb,+, -fJl) 
2 g(llt,+, - fkll) 
= c( tk vtr+ I >. 

Hence, 

C(x,t,) + . . . +C(t,J,+*) 

2 G(x,a) + G(&tk) + G(rk,t,+,), 

with a,t, E N, and (6) follows. Cl 

2.2. Extension 

The results of the previous subsection heavily rely 
on two facts: the graph (N, E) is complete and 
g 0 I] .II and i 0 d are related by expression (1). 

In this subsection we show how to handle the 
situation in which either the graph is not complete or 
(1) does not hold. 

We construct a metric d* on (N,N X N) by 
performing the following steps: 

Step 1. For each x,y E N, we define I(x, y) as 

+m 

‘(x’y) = g(d;x,y)), i 

if( x,y) E E, 

if( x,y) E E. 

Step 2. For each x,y E N, set 

I(x,y):=min{[(x,y),g(lly-xll)}. 
Step 3. Perform a shortest-path algorithm for the 

digraph (N, N X N) with I(x, y) as length of (x, y). 

3. The multi-Weber problem 

3.1. The model 

In this section we address a multi-Weber problem, 
(i.e., a p-facility minsum location which assigns 

each demand point to its closest facility [ 15,16]), 
under the metric considered in Section 2.1, which 
adds to the gauge a finite set of rapid transit lines, to 
be used when this represents a decrease in the total 
transportation tost. 

Finding the set of p points which minimize the 
total transportation tost amounts to solving the opti- 
mization problem 

where D = {u,, . . . ,u,) C Iw2 is the set of demand 
points, each wi > 0 represents the demand of u,, 
G(x, y) - given by (4) - represents the transporta- 
tion tost of one unit of commodity from x to y, and 
the variables x,,x2,. . . , xp represent the coordinates 
of the p facilities to be located. 

By Proposition 2.1, the minimum-tost path from 
x to each u, wil1 visit at most two intermediate 
points of N. Hence, if we label as n,,n2,. . . ,n, the 
nodes of N, we can define the 0-1 variables si, and 
tijk, as follows: 
* sij = 1 iff u, is served by facility xj, following 

the direct path from xj to ui, at a unit tost 
g(ll”i - xjll)e 

* rijk, = 1 iff ui is served by xj following the path 
xj + nk -+ n, + ui, at a unit tost gtlln, - xjII) + 
g^(d(nk,n,>) + g(ll”i - n,ll>. 
With these defínitions, it is straightforward to 

check the following. 

Proposition 3.1. Problem (8) is equivalent to 

c E tijk,(C( Xj,nk) 

k=l/=l 

+C(nk&) + C(n,?ui)) 

+sijc( Xj,Ui) 
1 

S.t. isij+ g Ctijk,=l, Vi=1,2 ,_.. n, 
j= 1 k-11-1 

sijE {O,l} Vi= 1,2 ,..., n, Vj= 1,2 ,_.., p, 

tijk,E{O,l) Vi= 1,2 ,..., n,Vj= 1,2 ,..., p, 

Vk,l= 1,2,. . _ ,m, 

xiER Vj= 1,2 ,...,p. (9) 
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When one fïxes the binary variables sii and tijk, 
in (9), one obtains (7) a (multi)-Weber problem in 
which the role of demand points is played by the 
actual demand points a,, . . . ,a, and by the nodes 
n,, . . . ,nm as well. This implies the following. 

Corollary 3.1. The resolution of Problem (8) can be 
reduced to solving a jïnite number of multi-Weber 
problems, whose set of demand points is a subset of 
(DUN). 

4. Localization results 

Problem (8) is a nonconvex optimization problem, 
whose resolution is diffïcult due to the possible 
presence of local nonglobal optima. However, as 
shown in Corollary 3.1, this problem is intimately 
related to the well-known Weber (case p = 1) and 
multi-Weber problems, some properties of which are 
translated in this section into properties for (8). In 
particular, it is derived that, for some especial cases, 
the resolution of (8) can be reduced to the inspection 
of a fïnite set of points, thus converting the global 
optimization problem into a combinatorial one. 

In order to give the localization results, some 
definitions are given. We refer the reader to [3,7,9] 
for further details. 

Definition 4.1. Let ll.11 be the gauge in R2 with unit 
bal1 B. Given {uc,}<, E A C B”, (the polar to B), let 
NB,,(u,) be the normal tone of B” at u,, i.e., 

N,~~(~,)={xE~~/(x,p-u,)10 VpeB”}. 

The set 

is called elementary convex set associated with 

(%,)u E A’ 

Definition 4.2. The point x * E R* is said to be an 
intersection point for A if x * is an extreme point of 
some elementary convex set C((u,>,, A). 

This concept is particularly useful when 11. II is a 

polyhedral norm (or gauge, in the asymmetrie case), 
i.e., a norm (gauge) whose unit bal1 is a polytope in 
Iw* [3,7,15,17], since in such a case the set of 
intersection points is a fìnite and easily constructed 

set. For instance, if (1.11 is the 1, norm, then, the set 
of intersection points for A is the set of nodes of the 
grid through the points of A with lines parallel to the 
coordinate axes. See also Section 5. 

Proposition 4.1. There exist x,’ , . . , XP, intersection 
points for NU D, which solve Problem (8). 

Proof. In [7] it is shown that the set of intersection 
points contains an optimal solution to each (multi>- 
Weber problem. The result then follows from Corol- 
lary 3.1. 0 

In particular, if /(.II is a polyhedral gauge then 
Problem (8) is reduced to evaluating its objective 
function at the of intersection points, which is a 
finite set: 

Corollary 4.1. Let ll.]/ be a polyhedrul gauge, and 
let V={v ,, . . . ,v,~} be the set of intersection points 
for (DUN). Th en, Problem (8) is equivalent to 

min E w, min G( xj,a,) (10) 
1=l i 

s.t. x ,,..., XpE v. 

Remark 4.1. Problem (10) is a wel1 studied problem 
in the literature of Locational Analysis, known as the 
p-median problem, for which a variety of very effi- 
cient exact algorithms (for smal1 p> or heuristics has 
been proposed. See [lO] for an excellent review. 

In the non-polyhedral case, one may adapt the 
local-search procedures that have been designed for 
the (multi)-Weber problem, or, if the global optimum 
is sought, one may use techniques of Global Opti- 
mization [6], such as the Branch-and-Bound method 
known as BSSS [5,14]. 

However, it should be noted that Global Opti- 
mization techniques are very space- and time-con- 
suming, thus only applicable in practice to smal1 p 
(say p = 1). For higher values of p, one is forced to 
use heuristic methods. 

The following result may be of help. 

Proposition 4.2. rf 11 . 11 is a norm, then, an optimal 
solution to Problem (8) lies at conv(D U N), the 
convex hul1 of D U N. 
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Table 1 
Demand points, coordinates 

al 
a2 

03 
04 

a5 

a6 

a7 

(0,7) 
(5.5) 
(2, 10) 
(10,20) 

(20,l) 
(0, 0) 
(13, 0 

Proof. It is shown e.g. in [4] that the convex hul1 
contains an optimal solution to each (multi-) Weber 
problem. The result then follows from Corollary 3.1. 
0 

Hence, as soon as the gauge l/.II is symmetrie 
(i.e., ll.11 is a norm), and one is willing to solve the 
Problem (8) by the BSSS one can take conv(D U N) 
as starting set. For the asymmetrie case, set-bounds 
for the multi-Weber problem, such as those given in 
[ 131, can be easily adapted. 

5. An example 

Just for illustrative purposes, we present and solve 
a smal1 example. 

We assume that the set of demand points consists 
of 7 points, D = (a, ,a,, . . . ,a,}, al1 with the same 
demand w, and coordinates given in Table 1. 

The metric ll.11 over R* is assumed to be the 1, 
norm, 

We also have imbedded in lR* the complete undi- 
rected graph (N,E), with 

N= {n,,n,,n,) 

= {(0,0),(10,10),(13,1>), 

equipped with the metric d, 

d( x, y) = $1 Y - -dl, 
implying that travel speed along the edges of the 
graph is four times the speed through the plane, a 
situation that may appear in urban contexts, where, 
together with an extremely dense system of links 
(streets), one has a few high-capacity avenues or ring 
roads, along which travel times are lower. 

Finally, we also assume that the transportations 
costs are increasing functions of the travel times, 
given by 

Hence, the transportation tost C(x, y> from x to 
y is given by 

(3 + 2llY -AI, 
ifeitherx@Nor yEN,x#y, 

C( x,y) = < 3 + 311 Y - AI* 
if x,y~N,x#y, 

0, 
if x=y. 

The aim is to find the location for two facilities 
minimizing the total transportation tost from the 
demand points to their closest facility. 

By Proposition 4.1, there exist x; ,x; which 
solve Problem (8) and belong to the set of intersec- 
tion points generated by A U N. 

Since the metric in use is the f, norm, the inter- 
section points are the nodes of the grid depicted in 
Fig. 1. 

Hence, an optimal solution to Problem (8) can be 
obtained by evaluating the objective function (using 
Corollary 6) at the (i”) possible pairs. 

- 
a3 

-4 

- 

- 

- 

- 

dl- 

> 

Fig. 1. Intersection points. 
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Table 2 
Allocations and routes 

Demand point Facility Route 

al 
a2 

(13 

al 

a5 
ah = n, 

(1, = n, 

* 
XI * 
x1 

* 
X1 

I 
x2 I 
X2 * 
x2 

t 
x2 

Such evaluation gives 

x; = (2,7), x; = (13,l) 

as optimal, which are represented in Fig. 1 as circled 
points. 

The allocation of demand points to facilities, as 
wel1 as the routes used are given in Table 2. 
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