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A b s t r a c t  

A location is sought within some convex region of the plane for the central site 
of some public service to a finite number of demand points. The parametric max- 
covering problem consists in finding for each R > 0 the point from which the total 
weight of the demand points within distance R is maximal. The parametric mini- 
mal quantile problem asks for each percentage a the point minimising the distance 
necessary for covering demand points of total weight at least a. We investigate the 
properties of these two closely related problems and derive polynomial algorithms 
to solve them both in case of either (possibly inflated) Euclidean or polyhedral 
distances. 

K e y  W o r d s :  maximal covering, minimal quantile, single facility location, Eu- 
clidean distance, polyhedral distance, sensitivity analysis 

A M S  s u b j e c t  c lass i f i ca t ion :  90B85, 90C31. 

1 Introduct ion 

Let A = { a l , . . .  , ap} C R 2 be a set of demand points, requiring for a cer- 
tain public service, the location of which is to be determined within a closed 
convex set X.  Due to the public nature of the service, the minimisation of 
the maximum distance seems to be a plausible criterion. However, if some 
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of the demand points are far away from the rest (outliers), the classical min- 
max solution might be very unsatisfactory, since large numbers of demand 
points might suffer from low-level (far off) service only due to full concern 
for the (few) outlying ones. Very often this leads to an unacceptable low 
service level for most. 

Two ways to avoid this drawback could be : 

1. Provide a service as good as possible to a given minimal portion 
c~ El0, 1] of the potential demand for the service, in detriment of the 
rest. 

2. Fix a standard R (seen as the highest acceptable distance between 
the server and the demand),  and maximize the part of demand within 
this radius. 

We call model 1. the minimal quantile problem. In spite of its immediate 
practical interest this type of model seems to be new in the literature on 
location. Model 2. corresponds to the well-known maximal covering prob- 
lem, for which some very efficient algorithms have been proposed in the 
unconstrained case (X = R 2) and Euclidean distance, see Drezner (1981) 
and Mehrez-Stulman (1982). Both models, however, rely on the choice of 
a parameter,  either ~ or R. And although having a clear interpretation it 
may often be felt as artificial to fix such a parameter a priori, without any 
knowledge of its impact on the quality of the resulting optimal solutions. 
It follows that  it is of high practical interest to obtain a sensitivity analysis 
with respect to this parameter.  The existing solution methodology men- 
tioned above for the maxcovering problem does not readily allow to analyse 
the effects of modifying the radius R. 

In this paper we show how both these problems may be solved simulta- 
neously for all c~ and R. After stating the problems formally in section 2, 
a general algorithm is described in section 3. This algorithm calls for re- 
peated solution of certain subproblems. These subproblems are studied in 
detail in section 4. The next two sections discuss how the proposed method- 
ology yields polynomial algorithms in the Euclidean distance case and in 
the polyhedral gauges case respectively. In the concluding section some 
extended complexity results are stated, and the extension to the location 
of several facilities is discussed. 
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2 P r o b l e m  f o r m u l a t i o n s  

For i E {1, .... ,p}, let 7i be a gauge in R 2 (the asymmetric equivalent to 
norms, see Durier and Michelot (1985)), and define the function giving the 
distance of a point x to demand point ai as 

k : R 2 --+ R : x  : =  - 

Let wi > 0 be a weight associated with demand point ai, representing e.g. 
a population, frequency of demand, risk of emergency, etc. Without  loss of 
generality we assume that  P Y~i=I Wi = 1. 

Consider the functions 

C :  [ 0 , + o c [ x R 2 ~ R +  : (R,x)~--~C(R,x):= ~ wi 
ill, (x)<R 

and 

Q : ]0,1] x IR 2 -+ R+ : (~, x) ~+ Q(&, x) :-- min maxfi(x) 
IESo iEI  

with So = {I C {1 , . . .  ,p} ] Y]ietwi >_ o~}. C(R,x)  represents the cov- 
ering, i.e. the total weight of demand points within distance R of x, as 
measured by the fi. Q(o~, x) is the smallest distance from x within which 
at least total weight c~ of demand points may be found, in other words, the 
a-quantile of the distribution of demand distances from x with the weights 
as frequencies. 

Given R E [0,+oo[ and c~ E]0,1], let MCR and MQ~ be the R- 
maxcovering problem and ot-minquantile problem defined by : 

(2llCR) C*(R):= maxC(R,x)  
x E X  

(MQo) Q*(c~) := minQ((~,z) 
x E X  

We will call any x E X such that  C(R, x) = C'(R) (resp. Q(a, x) = Q*(a)) 
an R-maxcovering point (resp. an o~-minquantile point). Solving MCR 
consists in finding the point from which the total weight of the demand 
points covered (within distance R) is maximal. This corresponds to the 
problem discussed by Drezner (1981) and Mehrez-Stu|man (1982), where 
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only Euclidean distances are considered and no Iocational constraints are 
present. M Q ,  asks for the point where the distance necessary for covering 
demand points of total weight at least c~ is minimal. This problem seems 
to be new in the location literature. Our aim is to show how to fully 
construct the functions C* and Q* in an efficient way, in other words how 
to solve problems MCR and MQa for all values of R and c~. We call 
these problems the parametric maxcovering problem and the parametric 
minquantile problem. 

3 A g e n e r a l  a l g o r i t h m  

The parametric problem MQ belongs to the class of minquantile optimisa- 
tion problems introduced by the authors in a recent paper (Carrizosa and 
Plastria, 1995), where a general solution procedure was described. In the 
context of location theory, as treated here, this procedure may be further 
detailed. Following notation will be used. For any I C_ {1 , . . .  , p } , I  ~ 0 , 
let 

Z I -~ min maxf i (x) ,  
x EX  iEl  

MI = {x E X I Vi E I : f i(x) <_ zt} 

S I  = {x E X I Vi E I :  f i(x) = zI} 

and consider the optimisation problem PI, 

P 

(PI) max ~ w i t i ( x )  
x E X t  ~=1 

1 if f i(x) < z1 
where ti(x) = 0 otherwise for i--- 1 , . . .  ,p. 

If Pt is feasible, denote by xt  an optimal solution, (~t the optimal value 
and vi := (xI, zi, s t ) .  As shown by Carrizosa and Plastria (1995) for any 
there exists an optimal solution to MQ~ of the form xl  with card(l)  < 3. 
In this case c~ _< s t .  The algorithm of Carrizosa and Plastria (1995), has 
the following steps: 

A l g o r i t h m  1. 

Step 1 : G e n e r a t e  the  candidate  so lut ions  

Build the list Z~ = {v t :  I C_ { 1 , . . . ,  p}, card(l)  < 3, Pt is feasible}. 
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Step  2 : P r e p r o c e s s  list ~: 

Sort the elements in s in nondecreasing order of o~ I. 

S t e p  3 : E l i m i n a t e  d o m i n a t e d  so lu t ions  

For each C = (x ~,z ~,cd) E s in turn from the last to the first : Let 
v = ( x , z , a )  be the (now) next element in s (note tha t  by step 2 
(~t _< ~): If z' _> z delete v t from s O 

After performing the algorithm above, we have obtained an ordered list 
s  := {Vm I m = 1 , . . . , t } ,  with Vm = (Xm,Zm,am), and thanks to step 2 
we have a l  < a2 < . . .  < at = 1. Setting (~0 = 0, at+l = +oc, Q*(ao) = O, 
Q*(at+l)  = +oc,  we have 

T h e o r e m  3.1.  

I. Vm E { 1 , . . . ,  t } ,  E]C m_l, xm is an a-minquantile point, and 
= z m .  

2. Vm E { 1 , . . .  , t},  VR E [Q*(am) ,Q*(am+l)[ ,  xm is an R-maxcovering 
point and C*(R)  = am. 

Proof .  

This is a direct consequence of theorems 2 and 3 in Carrizosa and Pias- 
tria (1995), using the fact tha t  the fi are gauges and hence convex, contin- 
uous and have compact  level sets. [] 

The first part  of this theorem indicates tha t  the list s  gives a com- 
plete description of Q*, and the second part  shows how this also solves the 
parametric maxcovering problem M C .  Hence, the information gathered in 
list s  enables us to simultaneously solve both parametr ic  problems, and 
clearly shows the link between minquantile and maxcovering optimisation: 
for any radius R we obtain from s  a value a,  ~(R) ,  and an (~-minquantile 
solution which is also a R-maxcovering point. 

R e m a r k  3.1. a l  ---- maxl_<i<p wi and Q*(a l )  = 0. 

Indeed list s will contain all triples (ai,  0, wi) for 1 < i < p. In step 3 
all of these will be deleted except one corresponding to the maximal weight. 
[] 
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R e m a r k  3.2. Denoting by C(p) the complexity of step 1 in the algo- 
rithm above the resolution of the parametric problems MC and MQ has a 
complexity 

O(max{p 3 log p, C(p)}). 

Proof. 

Indeed,/2 has cardinality 0(p3), and hence step 2 can be done in 0(p 3 logp) 
time; once/~ has been sorted step 3 can be performed in 0(p 3) time. This 
gives a total complexity of 0(max{p 3 log p, C(p)}), as asserted. [] 

In particular, as soon as step 1 can be performed in polynomial time, 
i.e., C(p) is polynomial in p, then both MC and MQ can be solved in 
polynomial time. As shown in sections 5 and 6, this will be the case of 
the most popular instances of distances, namely (inflated) Euclidean and 
polyhedral distances. 

R e m a r k  3.3. Both the radius R and the coverage c~ may be considered 
as criteria, the first representing a cost, the second representing quality of 
service. In such a situation, we face the biobjective problem of minimizing 
R (the cost) and maximizing at the same time C(R, .) (the coverage) by the 
choice of the location x E X and the radius R. As suggested in Carrizosa 
and Plastria (1995) the set S of solutions {Xm I 1 <_ m < t} obtained from 
list /:' is a minimal dominating set, i.e. for any (x, R) there exists some 
m (1 < m _< t) such that R > Zm and C(R,x)  <_ C(zm,Xm) = am. It 
follows that this biobjective problem may be reduced to a discrete one, 
with 0(p 3) candidate solutions. Any multicriteria decision making method 
may thus be applied. E.g. in case a utility function r C(R, x)) applies, 
the problem is solved by inspecting only S. [] 

R e m a r k  3.4. The general algorithm remains valid when during step 1 
any number of triplets (x, R, C(R, x)) are added to l is t / : .  

Indeed by the previous remark all of these will be deleted in step 3. [] 
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4 S o l v i n g  t h e  s u b p r o b l e m  P1 

The general algorithm calls for repeated solution of problems of type PI 

P 

(PI) max Z witi(x) 
xEX1 . 

1, i f f i (x)  <_ zz , f o r i =  l , . . . , p  
where ti(x) = 0, otherwise 

The following results show that ,  whatever the gauges are, each 1~ can be 
solved by evaluating a set CI of candidate points, with cardinality 0(p). 
Furthermore, such CI is easily obtained once the minmax problem corre- 
sponding to I has been solved. 

L e m m a 4 . 1 .  Let I C { 1 , . . . , p } ,  I • 0. The set MI = {x E X I Vi E 
I : fi(x) < Zl} is a nonempty compact segment. It is a singleton when all 
gauges 7i are round. 

P r o o f .  

First observe tha t  MI is included in the set Ui~! {x E R 2 1 fi(x) = zt}, 
which has empty interior. Hence, M/ has also empty interior. As the 
functions fi are translated gauges, it follows that  MI is a nonempty compact 
convex set, thus MI is a segment. It was shown in Pelegrln, Michelot and 
Plastria (1985) that  a minmax location problem with round gauges always 
has a unique optimal solution, whence the last assertion, o 

For any segment Y, denote by ext(Y) the set of its extreme points. By 
convention we assume that  the empty set is a segment, with ext(0) = 0. 
Recall that  X I  = ( x  E X I Vi E I : f i ( x )  -~ Z l } .  

L e m m a  4.2. Let I C_ {1 , . . .  , p} , I  ~= 0. If X t  r MI, then XI  C ext(M1). 

P r o o f .  

The result is evident if 1141 is a singleton : in that  case, 

X!  C_ M! = ext(M/)  

So we can assume that  MI is not a singleton. By lemma 4.1, M1 is then a 
nondegenerate segment, the extreme points of which are some yl, Y2 E X. 
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We are going to show tha t ,  i f X i  is not contained in ex t (Ml)  = {yl, Y2}, then 
MI = XI.  Hence, suppose tha t  there exists x E X!  \ {Yl,Y2}. As Mr is a 
segment  and XI C MI, there exists a ~ El0, 1[such tha t  x = (1- ,k)yl+,ky2.  
For any i E I we have : 

ZI = S (x) = S ((1 - x ) v l  + 

< (1 - *k)fi(Ul) + Aft(y2) 
_< (1 - -  )~)Z I + ,~Z I ---- Z I 

-~- Z I 

by definition of XI 
by convexity of fi 

by definition of z! 

Thus  fi(Yl) = fi(Y2) = zI  for all i E l ,  i.e.: ex t (Mi)  _C X I. Now, for 
any y E MI \ {Yl, Y2, x} it follows tha t  x is contained in the open segment  
whose ext reme points  are y and a point  in ex t (Ml) ,  Yl say. Then there 
exists # El0, 1[ such tha t  x = (1 - #)Yl + #Y and for any i E I we have 

ZI = f i (X)  <_ ( 1  - -  P ) f i ( Y l )  + ~ f i ( Y )  <_ (1 - I t ) z i  -3 t- ~Zl  = Zl 

Thus  y E X t  for all y E Mr, i.e.: Mr C_ Xt .  As M I D  XI, we would have 
Mr = XI.  [] 

T h e o r e m  4.1 .  Let I C_ { 1 , . . .  ,p} be such that PI is feasible ( X I  • 0).  
Then the set 

C i  -- e x t ( M I )  U U e x t ( { x  e Mr  I f k ( X )  ~_ ZI})  
k~l  

contains an optimal solution to PI. 

P r o o f .  

If X1 C ex t (M/ ) ,  there  is nothing to show. So, we can assume tha t  X1 is 
not  included in ex t (Mi ) ,  or by l emma 4.2 tha t  X i  = MI.  Let x E X1 = MI, 
K = {k ~ I I A (x )  < Zl}, and YK = {Y E MI I A(Y)  <_ zI I Vk E 
K}.  Since Yts" = Mr N[']keK{y E R 2 I fk(Y) < zI} and x E YK, it 
follows tha t  YK is a nonempty  closed convex segment ,  with ext(YK) C_ CI. 
Furthermore,  ~]f=l wjt j (z)  = Y~deluK wj <_ P Y~d=l wjtj (y) for any y E YK 
and in part icular  for y E ext(YK) C_ CI. Hence, 

P p p 

max ~ wjt j (x)  < max E wjti(Y) < max E wjt j (x)  
xEXI -- YECI 3 = 1 "  - -  xEMI J=l" 
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as asserted and the result follows from X I  -- Mr. [] 

This theorem shows that finding a solution to P! reduces to inspection 
of at most 2p points on the segment Mr. This shows that as soon as each Zl 
and CI can be obtained in polynomial time, step 1 in the general algorithm 
(and hence the whole algorithm) can be performed in polynomial time. 
In the next two s~tions this is shown to be possible in presence of linear 
constraints for inflated Euclidean norms and also for polyhedral gauges. 

5 T h e  i n f l a t e d  E u c l i d e a n - n o r m  ca se  

Let X be a polyhedron (not necessarily bounded) in R 2. Assume that, for 
all i, 1 < i < p, 7i = hill.l[, where I1.11 is the Euclidean norm, and hi > 0. 
Different values of hi might indicate differences in speed due to the use 
of different transportation modes. For X = R 2, algorithms for problem 
M C R  (R fixed) have been discussed by Drezner (1982), with complexity 
0(p 2 logp), and by Chazelle and Lee (1986) for the unweighted case, with 
complexity 0(p2). Tamir (1993) pointed out to us that  this latter method 
may be extended to the weighted case without deterioration of the com- 
plexity. However, these techniques cannot be used for sensitivity analysis in 
R, and do not give any information regarding minquantile problems. The 
following properties of the norm and the polyhedral nature of X enable an 
explicit construction of the list Z: in step 1 of the algorithm: 

P r o p e r t y  1 The Euclidean norm is strictly convex. Hence, any minmax 
problem has a unique solution, i.e.: for any I,  MI is a singleton. 

P r o p e r t y  2 For any i , j ,  1 < i < j <, p, the mediatrix med(i , j )  between 
ai and aj, 

m e d ( i , j )  = {x  E R2I hi II x - a i  II = ,Xj II x - aj II} 

can be easily determined. Indeed, it is well known that, if hi = hi, 
med( i , j )  is the straight line orthogonal to the segment connecting 
ai and aj and passing through its midpoint. On the other hand, if 
hi r hi, then med( i , j )  is the circle centered at 

+ 2 2aJ )~ - )~ij a` h i - )~j 
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and with radius 
AiAj 

A? - II ai - aj II 
3 

(Appolonius circle, also called equicircle by Hearn and Vijay (1982)). 

P r o p e r t y  3 Intersections of mediatrices with bd(X) ,  the boundary of 
X,  and orthogonal projections of points onto X can be obtained in 
constant time (X being considered to be fixed). 

P r o p e r t y  4 The optimal solution Y! to the unconstrained problem 

rain max Ai II x - a i  II 
xER 2 iEI  

can be explicitly obtained for any I, 1 ~ card(I)  _~ 2. Indeed, if 
card( l )  = 1, I = {i}, say, Y! = a,; if card( I )  = 2, I = { i , j } ,  say, it is 

~i A, E med(i,  j ) .  easily seen that  Yt = A,+A~ ai + ~,+)b aj 

P r o p e r t y  5 In order to build the list L~ it therefore suffices to study sep- 
arately the different values 1, 2 and 3 for card( l )  as follows. 

Case card(I) = I, I = {i} 

If ai E X, then xl = ai; otherwise, x/is the orthogonal projec- 
tion ofai onto X, which can be determined, in constant time for 
fixed X.  

Case card(I) = 2, I = {i, j} 

If the point ~ a  + -~Z--a (the optimal solution to the un- Ai+Aj a At+Aj 2 

constrained minmax problem) is in X, then it is Xl. If this is 
not the case then Xl evidently must be a boundary point of X. 
As PI is feasible only if Mr C med(i,j) (by definition of Xt), we 
only have to take as candidate points 

the point in med( i , j )Mbd(X) ,  closest to Yz if m e d ( i , j ) i s  a 
circle (Ai r A/). 

- the point ofmed( i , j )Mbd(X)  closest to ~ when med( i , j )  2 

is a line (Ai = Aj). 

C a s e  c a r d ( I )  = 3, I = {i, j ,  k} 

Any solution to PI must be a common point of reed(i, j ) ,  reed(j, k) 
and med( i ,k) .  For the intersection of these three mediatrices 
only three cases may arise: 
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e m p t y  Then PI is infeasible. 

s i n g l e t o n  If the intersection point is in X then it is Xl. If it is 
not PI is infeasible. 

pa i r  Now both intersection points are to be checked for inclu- 
sion in X and if so included (together with their correspond- 
ing distance to ai and covered weight) to list s Note that  
in this last case remark 3.4 of section 3 will apply. 

T h e o r e m  5.1. When atl gauges are inflated Euclidean distances, the para- 
metric problems M C  and M Q  under linear constraints can be solved in 
0(p 4) time (X fixed). 

P r o o f .  

By remark 3.2 of section 3, we only have to show that  step 1 can be 
performed in 0(p 4) time. For any I, 1 < card(l)  _< 3, finding the xt  (if 
some exists, and anyway there will be at most 2) and the corresponding Zl 
can be performed in constant t ime (X fixed), while determining (~I (i.e.: 
finding vi) can be done in 0(p) time. As we have to process 0(p 3) subsets 
l ,  step 1 ('an be performed in 0(p 4) time [] 

A more efficient method of complexity O(p31ogp) will be described in 
a forthcoming paper. 

We end this section with an illustration of how the procedure described 
above works. 

i ai wi Ai 
1 ( - 1 0 , - 1 0 )  3/19 1 
2 (10, -10)  4/19 1 
3 (10, 10) 5/19 2 
4 ( -10 ,  10) 7/19 1 

Tab le  1: Data  for the example 

E x a m p l e  5.1. Let A consist of the four vertices of the square [-10,  10] • 
[-10,  10]. For i = 1 ,2 ,3 ,4 ,  let "Ji be the weight associated with ai, and Ai 
the inflation factor associated with 7i, i.e. 7i = Ai[I" ]1- These data  are 
given in Table 1. Let X --- R 2, so that  the problem is unconstrained. We 
first build the list s of step 1. 
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q4 . (~3 

~i . q2 

Figure  1: Candidate points 

By Property 1, the minmax problems have a unique solution, so there is 
no need to solve the subproblems P1. Moreover, by remark 3.4, the general 
algorithm remains valid if triplets (x, R ,C(R,x) )  are added to s so we 
construct all the triplets (x, z, (~) described in Property 5. The output is 
given in Table 2. 

I x i  

{1} 
{2} 
{3} 
{4} 

{1,2} 
{1,3} 
{1,4} 
{2,3} 
{2,4} 
{3,4} 

{1,2,3} 
{1,2,3} 
{1,2,4} 
{1,3,4} 
{1,3,4} 
{2,3,4} 
{2,3,4} 

zl C(zl, xl) 
(-10,-10) 0 3/19 
(10, -10) 0 4/19 
(10, 10) 0 5/19 

(-10, 10)* 0 7/19 
(0,-10) 10 7/19 

(3.33, 3.33)* 18.86 19/19 
(-10, 0)* 10 10/19 
(10, 3.33) 13.33 9/19 

(0,0) 14.14 14/19 
(3.33, 10)* 13.33 12/19 
(0, 25.49) 3 6 . 8 7  19/19 
(0, 7.85) 20.46 19/19 
(0, 0)* 14.14 14/19 

(25.49, 0) 3 6 . 8 7  19/19 
(7.85, 0) 20.46 19/19 

(22.15, 22.15) 34 .37 16/19 
(4.51,4.51)* 15.52 16/19 

Table  2: The triplets 

In Figure 1 the four demand points (solid dots) and the points xI are 
plotted. For these points xl,  the corresponding pairs (zt ,C(zt ,  xl)) are 
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Coverage 

�9 0 

O 

Radius  

F i g u r e  2: The pairs (Zl, C(zl, Xl)) 

plotted in Figure 2. Solid circles show the nondominated outcomes (thus 
yielding elements of the list L~'), whereas empty circles are associated with 
the triplets v which are deleted in step 3 of the algorithm. This leads to 
the list L~', the elements of which are marked with an asterisk in Table 2, 
and plotted in Figure 3 (please compare with Figure 1). 

a4 . a3 

o 
o 

o a 

.al .a2 

Figure 3: Points in list 12' 

With this information, Theorem 3.1 enables us to give, for each a and R 
an a-minquantile and an R-maxcovering point. This is illustrated in Table 
3, where, for the different ranges of values of a and R optimal points (from 
s are obtained. 
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a Q*(a) 
[0, 7/19] 0 

17/19, 10/19] 10 
]10/19, 12/19] 13.33 
]12/19, 14/19] 14.14 
]14/19, 16/19] 15.52 

]16/19, 1] 18.86 

(-10, 10) 
(-10,0) 
(3.33, 10) 

(0,0) 
(4.51,4.51) 
(3.33, 3.33) 

n C'(R) x* 
[13, 10[ 7/19 (-10, 10) 

[10, 13.33[ 10/19 (-10, 0) 
[13.33, 14.14[ 12/19 (3.33, 10) 
[14.14,15.52[ 14/19 (0,0) 
[15.52,18.86[ 16/19 (4.51,4.51) 
[18.16,+oc[ 19/19 (3.33,3.33) 

Table 3: Solution of parametric problems 

6 T h e  p o l y h e d r a l - g a u g e  c a s e  

Suppose that X is a closed polyhedron and every 7i is a polyhedral gauge, 
i.e. a gauge whose unit ball is a polyhedron. 

T h e o r e m  6.1. When all gauges are polyhedral, the parametric problems 
M C  and M Q  under linear constraints can be solved in 0(p 5) time (X fixed). 

P r o o f .  

By remark 3.2, we only have to show that step 1 in the algorithm can 
be performed in 0(p 5) time. Given I, with 1 _~ card(/) _~ 3, we first have 
to solve the problem 

min max fi (x) 
xEX iE1 

Let Ei denote the set of extreme points of the dual gauge of 7i, in other 
words the normals to the edges of 7i's unit ball. It is well known (see e.g. 
Durier and Michelot (1985), that f i(x) = 7i(x - ai) = maxe6E,(e, x - ai), 
where (.,-) denotes usual scalar product. Hence our min-max problem may 
be written as 

min t 
t _> (e ,  x - a i )  
x E X  

V e E E i ,  i E I  

which is a linear program in R 3, solvable in 0(1) time, yielding zi and MI. 
For any k E { 1 , . . . , p } \ I ,  the set ext({x E MI I 7k(x) _< zl}) can be 
obtained in 0(1) time. Hence, CI can be obtained in 0(p) time and consists 

~--~i=1 witi(x) requires of 0(p) points. For any x E C1, the evaluation of P 
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0(p) time, thus finding an optimal solution to PI requires a total time of 
0(p2). As the number of problems of the form P1 to be solved is 0(p3), we 
conclude that  step 1 can be performed in 0(p s) time, as asserted [] 

7 F u r t h e r  c o m p l e x i t y  r e m a r k s  

The complexity in sections 5 and 6 considered the feasible set X to be 
fixed. When one considers the description of X as part of the input the 
complexity of our Euclidean norm algorithm becomes 0(p2(n + p2)), where 
n denotes the number of edges of X. 

In order to state such a 'full input complexity' for the polyhedral gauges 
case, one has in addition to consider the description of the gauges as part of 
the input. If one assumes that  all gauges used have a unit ball containing 
at most 0(m) vertices, then the overall complexity of our algorithm may be 
shown to be 0(p3(n + p m  + p2 log m)). 

The methodology proposed in this paper may be extended to the loca- 
tion of several facilities. The maximal k-covering problem is to determine 
the location of k facilities, which cover together within a given radius a 
set of demand points of maximal weight. Similarly the minimal k-quantile 
problem involves locating k facilities minimising the radius needed to cover 
together a set of demand points of at least a given weight. It is easy to 
show that  optimal locations for both these problems (for any radius or any 
weight) exist within the candidate solution points constructed in step 1 of 
the general algorithm. Therefore it will suffice to inspect all sets of car- 
dinality k chosen among these candidate points, leading, for fixed k, to a 
polynomial algorithm for the parametric k-covering and k-quantile prob- 
lems in the Euclidean or polyhedral gauges case. 
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