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Seismicity partitioning is an important step in geological structure interpretation and seismic hazard assessment. In this paper,
seismic event location (𝑋, 𝑌, 𝑍) and Euclidean distance were selected as the𝐾-Means cluster, the Gaussian mixture model (GMM),
and the self-organizing maps (SOM) input features and cluster determination measurement, respectively, and 1516 seismic events(𝑀 > −1.5) obtained from the Yongshaba mine (China) were chosen for the cluster analysis. In addition, a Silhouette and
Krzanowski-Lai- (KL-) combined S-KL index was proposed to obtain the possible optimum cluster number and to compare the
cluster methods. Results show that the 𝐾-Means cluster obtains the best cluster “quality” with higher S-KL indexes on the whole
and meaningful clusters. Furthermore, the optimal number for detailed geological structure interpretation is confirmed as eleven
clusters, andwe found that two areas probably have faults or caves, and two faultsmay be falsely inferred bymine geologists. Seismic
hazard assessment shows that C5 and C7 (𝐾 = 11) have a high mean moment magnitude (𝑚𝑀) and C1, C2, C3, and C4 (𝐾 = 11)
have a relatively high 𝑚𝑀, where special attention is needed when mining. In addition, C7 (𝐾 = 11) is the most shear-related area
with a mean S-wave to P-wave energy ratio (𝑚Es/Ep) of 41.21. In conclusion, the𝐾-Means cluster provides an effective way for mine
seismicity partitioning, geological structure interpretation, and seismic hazard assessment.

1. Introduction

Microseismic monitoring has been widely used in mining
[1–3], where seismicity partitioning is an important step
in geological structure interpretation and seismic hazard
assessment [4]. Although this task can be implemented by an
expert visually, the expert knowledge-based cluster is non-
quantitative, subjective, and hard to interpret for a large
amount of data [5]. Intelligent cluster analysis, taking advan-
tages of spatial, temporal, and other features of seismic events,
is more highlighted due to its advances in extracting useful
knowledge and finding hidden information from numerous
seismic data [4]. Motivated by these facts, various cluster

methods have been introduced/proposed for seismicity par-
titioning, among which𝐾-Means cluster is the most popular
one.However, it is still hard to determine the𝐾-Means cluster
number, and few works have been done to compare it with
other cluster methods.

The general outline of this paper is shown in Figure 1.
Firstly, the 𝐾-Means cluster, taking advantages of seismic
event location features (𝑋, 𝑌, 𝑍), was applied to cluster 1516
seismic events (𝑀 > −1.5) obtained from the Yongshaba
mine (China). Then, to test the effectiveness of the 𝐾-
Means cluster, the Gaussian mixture model (GMM) and
the self-organizing maps (SOM) were selected as compar-
isons. In addition, the Silhouette and Krzanowski-Lai- (KL-)
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Figure 1: General outline of this paper.

combined S-KL index was proposed to obtain possible opti-
mum cluster numbers and to compare the cluster methods.
Results show that the 𝐾-Means cluster obtains a best cluster
“quality” with higher S-KL indexes on thewhole and continu-
ous seismic clustering areas. The optimal number of clusters
for detailed geological structure interpretation is confirmed
as eleven clusters, and seismic hazard assessment shows that
C5 and C7 (𝐾 = 11) have a high mean moment magnitude
(𝑚𝑀), and C1, C2, C3, and C4 (𝐾 = 11) have a relatively
high 𝑚𝑀, where special attention is needed when mining. In
addition, C7 (𝐾 = 11) is the most shear-related area with a
mean S-wave to P-wave energy ratio (𝑚Es/Ep) of 41.21, and we
found that two areas probably have faults or caves, and two
faults may be falsely inferred by mine geologists.

2. State of the Art

The commonly used seismicity partitioning methods include
the𝐾-Means cluster, the hierarchical cluster, the self-organiz-
ing maps (SOM), the fuzzy cluster, the Gaussian mix-
ture model (GMM), the density-based clustering algorithm
(DBSCAN), and some other cluster means, which have been
listed in Table 1.

Hierarchical cluster has been applied for seismicity parti-
tioning since the 1990s, and Davis and Frohlich [11], Frohlich
and Davis [12], Wardlaw et al. [13], Hudyma [14], Hudyma
and Potvin [15], Hashemi andMehdizadeh [16], andHashemi
and Karimi [17] selected the hierarchical clustering technique
using single-link analysis/Ward’s method to evaluate spatial
and temporal properties of earthquake catalogues. However,
the hierarchical cluster has a tendency to form seismic events
into linear groups [12]. SOM is another widely used seismic
cluster method, and Zamani and Hashemi [5] introduced a
self-organized tectonic zoning for Iran, and thenZamani et al.
[18] choseWilk’s Lambda criterion and a relative discrepancy
of Wilk’s Lambda to determine the optimum tectonic zoning
number; and Mojarab et al. [19] discussed the effect of SOM
input parameters. Fuzzy clusters have also been used in
seismic clusters, Ansari et al. [4] and Benitez et al. [21] used
the Gath and Giva (GG) fuzzy cluster for Iran and South
West Colombia, respectively; while Monem and Hashemy
[20] applied the fuzzy 𝑐-means (FCM) and the Gustafson-
Kessel (GK) clusters to the Ghazvin canal irrigation network.
In addition, the density-based algorithms [22–24] and the
TriGen-based method [25] have also been applied for the
seismic cluster. A comparison of using different seismic clus-
ters can be found in Leśniak and Isakow [26] and Konstan-
taras et al. [27].𝐾-Means cluster analysis can be applied to the hypocen-
tral distribution of observed earthquakes in any region [6],
which has been widely used in seismic cluster.Weatherill and

Burton [6] implemented the 𝐾-Means cluster to provide a
catalogue of earthquakes for Aegea, and results demonstrate
that from 20 to 30 clusters are the most appropriate number
in capturing the hypocentral distribution and fault type.
Rehman et al. [7] applied the 𝐾-Means cluster to estimate
seismic hazard and risk in Pakistan and found that 19
clusters were the best to include the sufficient knowledge of
subsurface geological structure and geophysical information.
Morales-Esteban et al. [8] proposed an adaptiveMahalanobis𝐾-Means algorithm to study the seismic catalogues of the
Croatia and Iberian Peninsula, and the result showed the
ability of this method to discover not only circular but also
elliptical shapes. Ramdani et al. [9] took advantages of earth-
quake centroids of the 𝐾-Means cluster to find subduction
evidence beneath the Gibraltar Arc and Andean regions.
Besheli et al. [10] used the 𝐾-Means cluster to partition Iran
into six main clusters and to study the importance of fore-
shock precursors for different zones.

It can be seen that most seismic clusters are focused on
earthquake data, and few works have been done on mine
seismic clusters. Therefore, the cluster adaptively to mine
seismic events should be discussed. Though the 𝐾-Means
cluster has been widely used now, it is still hard to determine
the 𝐾-Means cluster number and few works have been done
to compare it with other cluster methods. In addition, Table 1
shows that most optimum cluster numbers are below 20, and
the Silhouette index and the Krzanowski-Lai (KL) index are
the most frequently used indexes to evaluate cluster “quality.”
In this paper, the 𝐾-Means cluster was applied to partition
1516 seismic events (𝑀 > −1.5) obtained from the Yongshaba
mine (China) and the GMM and SOM clusters were selected
as comparisons, and the cluster results with cluster numbers
from 2 to 20 have been evaluated by the Silhouette and
Krzanowski-Lai- (KL-) combined S-KL index.

3. Methodology

3.1. 𝐾-Means Cluster. The 𝐾-Means cluster is a hard parti-
tioning algorithm proposed by Hartigan and Wong [28]. A
dataset of 𝑛 seismic events with 𝑝 dimensions consists of an𝑛 × 𝑝matrix (1), and the𝐾-Means partitions the dataset into𝐾 clusters with each element allocated to a particular cluster.

𝑋 =
[[[[[[[
[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑝𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑝... ... ... ...
𝑥𝑛1 𝑥𝑛2 ⋅ ⋅ ⋅ 𝑥𝑛𝑝

]]]]]]]
]

, (1)

where each row represents one seismic event and each
column represents one variable.
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Table 1: Summary of typical seismicity partitioning methods.

No. Cluster method Study area
Index for possible

optimum cluster number
selection

Optimum cluster
number Reference

1 K-Means cluster Aegean region Krzanowski–Lai index 20∼30 [6]
2 K-Means cluster Pakistan Krzanowski–Lai index 19 [7]

3 K-Means cluster Croatia and Iberian
Peninsula

Simplified Silhouette
Width Criterion,

Davies–Bouldin index,
Calinski–Harabasz index

and Area index

7 and 16,
respectively [8]

4 K-Means cluster Gibraltar Arc and
Andean regions Silhouette index 3∼4 [9]

5 K-Means cluster Iran Silhouette index 6 [10]

6 Hierarchical
cluster Global dataset Cutoff link length — [11–13]

7 Hierarchical
cluster A Canadian mine Cutoff link length 10 [14, 15]

8 Hierarchical
cluster Zagros region (Iran) Cutoff link length 5 [16]

9 Hierarchical
cluster United States Cutoff link length 10 [17]

10 SOM cluster Iran Cutoff similarity level 2, 3, 4, 6 and 22 [5]

11 SOM cluster Iran Wilk’s Lambda and its
discrepancy 11 [18]

12 SOM cluster Iran

Dunn, Davies-Bouldin,
Silhouette, C,

Calinski–Harabasz,
Hartigan and

Krzanowski–Lai indexes

9∼13 [19]

13 Fuzzy cluster Iran Partition density index 16 [4]

14 Fuzzy cluster Ghazvin canal
Separation index,
Xie-Beni index and
partition index

12 [20]

15 Fuzzy cluster South West Colombia Fuzzy hyper volume and
partition density 12 [21]

16 DBSCAN cluster Japan
Correlation Ecorr and
minimum number of
objects in a cluster

10 [22]

17 Seismic mass
DBSCAN cluster Hellenic Arc

Correlation Ecorr and
minimum number of
objects in a cluster

35∼40 [23]

18 Point density based
cluster

Burmese–Andaman
and West Sunda Arc Cutoff link length 13 [24]

19 TriGen based
cluster Iberian Peninsula Fitness function 34 [25]

20
MMD,

Hierarchical and
K-means clusters

Zabrze-Bielszowice
coal mine (Poland)

Minimum number of
events 6 [26]

21
FCM, DBSCAN,
QC and dynamic
spatial cluster

Hellenic Arc — 19 [27]



4 Shock and Vibration

The𝐾-Means cluster is an iterative process with 𝐾 initial
cluster centroids, and each datum is allocated to its nearest
cluster centroid.Then, themean of each group is calculated to
obtain a new cluster centroid.Theprocedure terminateswhen
no datum changes clusters or the iteration number reaches a
preset maximum. The details of the 𝐾-Means cluster are as
follows.

Step 1. Import dataset x1, x2, . . . , x𝑛, set the maximum itera-
tion number, and randomly generate 𝐾 points to be initial
cluster centroidsm1,m2, . . . ,m𝐾.
Step 2. Calculate the Euclidean distance between each datum
and each cluster centroid, and the data is allocated to its
nearest cluster centroid.

Step 3. Calculate the mean of each cluster by m𝑘 =∑‖𝐶𝑘‖𝑖=1 x𝑖/‖𝐶𝑘‖, where x𝑖 ∈ 𝐶𝑘 and ‖𝐶𝑘‖ is the data number
in cluster 𝐶𝑘, 𝑘 = 1, 2, . . . , 𝐾.

Step 4. Has any datum changed its cluster?

(1) Yes: continue and repeat Steps 2–5.
(2) No: output cluster each datum allocates to and list the

cluster centroids.

Step 5. Has it reached the maximum iteration number?

(1) No: continue, and repeat Steps 2–5.
(2) Yes: output cluster each datum allocates to and list the

cluster centroids.

3.2. Cluster Validity Indexes. Assessment of the “quality” of
a partition is an important consideration in cluster analysis.
From Section 2, it is known that the Silhouette and the KL
indexes are the most widely used, and their brief introduc-
tions are given as follows.

3.2.1. Silhouette Index. The Silhouette provides a measure
of separation quality between clusters, and the higher the
Silhouette index, the better the cluster results [29]. For an
event 𝑖 belonging to cluster𝐶𝑖, the Silhouette width is defined
as

𝑠𝑖 = 𝑏𝑖 − 𝑎𝑖
max {𝑎𝑖, 𝑏𝑖} , (2)

where 𝑎𝑖 is the average distance between event 𝑖 and other
events in cluster 𝐶𝑖 and 𝑏𝑖 is the minimum distance between
event 𝑖 and events in cluster X − 𝐶𝑖.

The average Silhouette width 𝑆𝑖 and the Silhouette index
are defined by (3) and (4), respectively,

𝑆𝑖 = 1󵄩󵄩󵄩󵄩𝐶𝑖󵄩󵄩󵄩󵄩 ⋅ ‖𝐶𝑖‖∑
𝑖=1

𝑠𝑖 (3)

Silhouette = 1𝐾
𝐾∑
𝑖=1

𝑆𝑖 = 1𝐾
𝐾∑
𝑖=1

( 1󵄩󵄩󵄩󵄩𝐶𝑖󵄩󵄩󵄩󵄩 ⋅ ‖𝐶𝑖‖∑
𝑖=1

𝑠𝑖) . (4)

3.2.2. Krzanowski-Lai Index. The KL index produces the
traces of the within-clusters matrices for two consecutive
clusters, and the higher the KL index, the better the cluster
results [30]. The KL index is defined as

KL (𝐾) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
DIFF (𝐾)

DIFF (𝐾 + 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , (5)

where DIFF(𝐾) = (𝐾 − 1)2/𝑑𝑊𝐾𝐾−1 − 𝐾2/𝑑𝑊𝐾𝐾 and 𝑑 is
the number of features in the dataset. 𝑊𝐾 is the sum of all
point-to-point distances of observations within each cluster,
summed across all clusters.

4. Application of 𝐾-Means Cluster

4.1. Data Set. We used 1516 seismic events as the cluster
dataset, which were obtained from the Yongshaba mine
(26∘38󸀠N, 106∘37󸀠E) from 01/01/2014 to 04/30/2014, with
moment magnitude larger than −1.5 (Note: the Institute of
Mine Seismology (IMS) system of the Yongshaba mine can
monitor a seismic event whosemomentmagnitude is as small
as −3; however, events too small usually have a large location
error due to unclear P arrivals and less triggered sensors. In
this paper, we chose amomentmagnitude larger than −1.5 for
seismic cluster).

The distribution of geological structures and sensors of
Yongshabamine is shown in Figure 2(a). It shows that the IMS
system contains 28 sensors, including two triaxial sensors (T1
and T2) and twenty-six uniaxial sensors (sensors from 1 to
26), and the sensors have a sampling frequency of 6000Hz.
There are seven main faults, namely, F331, F310, F316, F313,
F350, F302, and F309, in which the F350 is inferred by mine
geologists. In addition, there are 18 small faults, which are
marked from I to XVIII, and the faults V, VI, X, and XI are
inferred by mine geologists. The symbolsA andB represent
two caves.

Figure 2(b) shows the two view distributions (𝑌𝑋 and𝑌𝑍
views) of the seismic dataset. The color and size of the circle
represent seismic moment magnitude. It can be seen that the
main seismic moment magnitude is 0.0∼0.5, then 0.5∼1.0,
and −0.5∼0.0. There are some seismic moment magnitudes
smaller than −0.5 (It can be interpreted as that there are
many small moment magnitude seismic events not recorded
by the system, though the system can monitor a seismic
moment magnitude as small as −3) and few seismic moment
magnitudes are larger than 1.0.

It is easy to see that the main faults are distributed in the
north, then in the south, and fewer faults in themiddle, which
are in a good agreement with the distribution of seismic
events. Therefore, we believe that there should be a good
relationship between seismic events and geological structures
which needs further study.

4.2. Possible Cluster Number Selection. To compare the clus-
ter “quality” and select possible cluster numbers, the most
commonly used indexes Silhouette and KL are selected, and
their values of𝐾-Means, GMM, and SOM clusters are shown
in Figure 3, in which the seismic event location (𝑋, 𝑌, 𝑍) is
selected as cluster input variables.
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Figure 2: Distributions of geological structures, sensors, and seis-
mic events of theYongshabamine. (a)Thedistributions of geological
structures and sensors. The solid lines represent determined faults,
while the dashed lines represent inferred faults by mine geologists.
The symbols A and B represent two caves, and the triangles
represent the location of sensors. The numbers near the sensors are
the sensor numbers, T1 and T2 are triaxial sensors, and the sensors
from 1 to 26 are uniaxial ones. (b)Thedistributions of seismic events.
The color and the size of the circle represent the seismic moment
magnitude.

It is easy to note that the Silhouette valueswithin 4 clusters
are higher than those of cluster numbers larger than 4 and
that the 𝐾-Means cluster has a higher Silhouette index than
that of the GMM and the SOM clusters on the whole. The
three clusters all have a high KL value when 𝐾 = 2, and
there are some localmaximumKL values.Therefore, it is hard
to determine possible cluster numbers by considering both
Silhouette andKL indexes. To solve this problem, a Silhouette
and KL combined S-KL index (6) is proposed, which takes
advantage of the product of the normalized Silhouette index
and KL index, and the normalization is calculated by (7).The
relatively large S-KL values correspond to possible optimum
cluster numbers. Generally, the 𝐾-Means cluster has higher
S-KL indexes than those of the GMM and the SOM clusters,
whichmeans that the𝐾-Means obtains a best cluster “quality”
among the three clusters, and the cluster numbers 2, 3, 6, 9,

11 and 15 are selected as possible cluster numbers for further
study.

S-KL = Silhouettenormalization ⋅ KLnormalization (6)

𝑥normalization = (𝑥 − 𝑥min)(𝑥max − 𝑥min) . (7)

4.3. 𝐾-Means Cluster Results. Seismicity partitioning with
few clusters produces a simple and general classification
defining the most basic structure of the area under investi-
gation; however, it is hard to interpret a detailed geological
structure, while for a too large cluster number, there may
be some clusters that are hard to interpret [7]. Therefore, a
balanced cluster number should be selected as the optimum
cluster number to interpret the detailed geological structure.
Five typical variables, number of seismic events (𝑁), maxi-
mummoment magnitude (𝑀max), mean moment magnitude
(𝑚𝑀), mean S-wave to P-wave energy ratio (𝑚Es/Ep), and
number of events with moment magnitude >0.5 (𝑁0.5), are
selected for seismic hazard assessment and seismic source
mechanism analysis, where 𝑚Es/Ep is a measure to evaluate
the seismic source mechanism, and the higher the 𝑚Es/Ep is,
the more the geological structure is shear-related [14].

The cluster results and typical variables of 2, 3, 6, 9, 11, and
15 clusters are shown in Figure 4, and the clustering process
diagram and geological structure interpretation of 11 clusters
are shown in Figure 5 for better understanding. Figures 4
and 5 show that the 𝐾-Means has a stable cluster result
(there are some similar zones for different cluster numbers),
and the number of events in each cluster has no significant
difference, which indicates that the 𝐾-Means has a good
cluster performance.

When the cluster number is less than 6, the cluster results
are in a good agreement with regional faults (the cluster
results match with known geological structures). In the two-
class division (Figure 4(a)), the cluster divides the dataset into
north zone (C1, concentrated faults) and south zone (C2, less
faults), and C1 has many more 𝑁0.5 events and a higher 𝑚𝑀
than that of the C2; that is to say that the north zone is more
active and dangerous than the south zone. Then the dataset
was divided into north zone (C1), middle zone (C2), and
south zone (C3), looking for a relation between the clustering
and the existing geology. C2 has a nearly equal 𝑁0.5 to C3,
though there are much more seismic events in C3, so C2
should also be paid attention when mining. In addition, C2
is more shear-related than C3. For the six-partition division
(Figure 4(c)), the clusters C1, C2, and C3 with concentrated
faults have a higher 𝑚𝑀 and more 𝑁0.5 than C4, C5, and C6,
and C5 and C6 are less shear-related.

When the cluster number is larger than 9, the cluster
results mainly correspond to the detailed geological struc-
tures (most clusters for 𝐾 = 9 just have few faults except the
cluster C4). For the nine-partition division (Figure 4(d)), C2,
C3, and C4 have relatively large𝑚Es/Ep and𝑚𝑀, while C1 and
C5 have a relatively large 𝑚Es/Ep or 𝑚𝑀. C6 has a relatively
large𝑚Es/Ep, while C7 and C9 have both low𝑚Es/Ep and𝑚𝑀.
However, there still aremany faults in C4, and amore detailed
cluster should be studied.
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Figure 3: Cluster indexes for cluster “quality” comparison and possible cluster number selection of the 𝐾-Means cluster, the GMM cluster,
and the SOM cluster. (a) Silhouette index; (b) KL index; (c) S-KL index.

The 11-partition division (Figure 4(d)) separates C4 (𝐾 =9) into clusters C5, C6, and C7; a detailed geological structure
interpretation is shown in Figure 5. It can be seen that C7
has the highest 𝑚Es/Ep and𝑚𝑀, with values of 0.33 and 41.21,
respectively; thus special attention should be paid to the C7
area. Further study shows that there should be faults or caves
in areas a and b, and the cluster analysis also confirms that
there should be faults X∼XII, F350a, and F350b. However,
there are probably no faults for VI and the bottom F309,
which needs further study, while for 𝐾 = 15, the clusters
C3, C4, C5, and C6 are so connected, which makes it hard
for geological structure interpretation, and the clusters C14
and C15 contain areas too large to find detailed geological
structure information. In conclusion, the authors believe that
the 11 clusters are the best for a detailed geological structure
interpretation.

5. Cluster Comparisons

For a better comparison of the 𝐾-Means, GMM, and SOM
clusters, the same cluster number of 𝐾 = 11 is selected and a
possible optimum cluster number near 11 is also discussed in
this analysis (𝐾 = 13 for the GMM cluster and𝐾 = 12 for the
SOM cluster), and the cluster results are shown in Figure 6.

It can be observed that there are some discontinuous
zones for both GMM and SOM clusters. For the GMM

cluster: (1) 𝐾 = 11, C1 surrounds C2 and C3, and C6 is
isolated, while C8 and C9 are mixed together; (2) 𝐾 = 13,
C1 also surrounds C2 and C3, and C8 is isolated. For 𝐾 = 11
and 𝐾 = 12 of the SOM cluster, the clusters C1, C2, C3,
and C4 are mixed together, while C7 is isolated. In addition,
there are small seismic event number clusters for both GMM
and SOM clusters. For example, C6 and C11 (𝐾 = 11)
for the GMM cluster have small seismic event numbers. In
conclusion, the results of the GMM and SOM clusters cannot
be considered satisfactory, and they partition some areas with
no meaningful information.

6. Discussions

The above analysis has shown that the 𝐾-Means cluster is
effective in seismicity partitioning for geological structure
interpretation. The GMM cluster is on the basis that the𝐾 clusters follow the Gauss distributions, and its aim is to
make the probability function maximum. The GMM cluster
can be affected by the seed number, and the GMM cluster
results (𝐾 = 11) of seed = 10, 25, 50, and 100 are shown in
Figure 7(b). It is easy to observe that all the four GMMcluster
results have discontinuous zones or cross-section, such as
the C1, C2, C9, and C10 when seed number is equal to 10.
This can be interpreted as that the neighboring seismic event
locations sometimes are not in the Gauss distribution and
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Figure 4: Cluster results and typical variables of 𝐾-Means with different cluster numbers. (a) 𝐾 = 2; (b) 𝐾 = 3; (c) 𝐾 = 6; (d) 𝐾 = 9;
(e) 𝐾 = 11; (f) 𝐾 = 15. The solid lines represent determined faults, while the dashed lines represent inferred faults by mine geologists. The
symbols A and B represent two caves, and the triangles represent the location of the sensors. The statistics under (a)–(f) are the typical
variables for each cluster, where 𝑁 is the number of seismic events, 𝑀max is the maximum moment magnitude, 𝑚𝑀 is the mean moment
magnitude, 𝑚Es/Ep is the mean S-wave to P-wave energy ratio, and 𝑁0.5 is the number of events with moment magnitude >0.5.

the close seismic events may not be subjected to the same
Gauss distribution. The SOM converts high dimension input
space into a low dimension representation (typically two
dimension), which has a very good image of visualizing. The
SOM cluster can be affected by the learning rate, ordering
Epochs, and lattice width and height. The lattice width ×
height is set to 1 × 11; then we randomly selected ten

combinations of learning rate (0.1, 0.3, 0.5, 0.7, and 0.9) and
ordering Epochs (2000, 3000, 5000, and 10000) to test the
SOM cluster (𝐾 = 11). However, we obtain the same result
with Figure 6(c); this may be due to the fact that the input
variable just has a few dimensions (three dimensions), which
makes the SOM cluster find an optimum result with different
parameters. However, research has shown that the SOMmay
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Figure 5: 𝐾-Means clustering process diagram and geological structure interpretation of 11 clusters for Figure 4.
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Figure 6: Cluster results of GMM and SOM with different cluster numbers. (a) and (b): 𝐾 = 11 and 𝐾 = 13 of GMM clusters; (c) and (d):𝐾 = 11 and 𝐾 = 12 of SOM clusters. The solid lines represent determined faults, while the dashed lines represent inferred faults by mine
geologists. The symbolsA andB represent caves, and the triangles represent the location of sensors.

only be valid for zoning high seismic activity areas [25],
and, for low seismic activity zones, it may have bad cluster
results. The 𝐾-Means cluster can be affected by the initial
clustering centers, and the typical 𝐾-Means cluster results(𝐾 = 11) are shown in Figure 7(a). It is easy to see that most𝐾-Means cluster zones are the same, though there may be
somedifference using different initial clustering centers: there
may be some seismic events that are not in the same cluster,

for example, C7 and C8 between Figures 7(a1) and 7(a2); the
clusters may be divided into different clusters or combined
into one cluster, for example, C1 and C2 in Figure 7(a1)
are equal to C1 in Figure 7(a3), and C10 in Figure 7(a1) is
equal to C6 and C10 in Figure 7(a3). However, there is no
assumption of Gauss distribution for the 𝐾-Means cluster,
and it partitions closer events to one cluster. This makes the𝐾-Means cluster obtain continuous cluster zones and help us
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Figure 7: Cluster results (𝐾 = 11) of 𝐾-Means and GMM with different cluster parameters. (a) 𝐾-Means cluster with different initial
clustering centers; (b) GMM cluster with different cluster seeds. (b1) Seed = 10; (b2) Seed = 25; (b3) Seed = 50; (b4) Seed = 100.The solid lines
represent determined faults, while the dashed lines represent inferred faults by mine geologists. The symbolsA andB represent two caves,
and the triangles represent the location of sensors.

better interpret the relation between seismicity and geological
structure.

7. Conclusions

Three intelligent spatial clusters, the 𝐾-Means cluster, the
GMM, and the SOM, have been applied to partition the

seismicity of the Yongshaba mine (China). Then, the Sil-
houette and KL combined S-KL index was applied to obtain
possible optimumcluster numbers and to compare the cluster
methods. Results show that the 𝐾-Means cluster obtains the
best cluster “quality” with higher S-KL indexes on the whole
and meaningful clusters. The optimal cluster number for
detailed geological structure interpretation is confirmed to
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be eleven clusters, and we found that two areas probably
have faults or caves, and two faults may be falsely inferred
by mine geologists. Furthermore, seismic hazard assessment
shows that C5 and C7 (𝐾 = 11) have a high mean moment
magnitude (𝑚𝑀), and C1, C2, C3, and C4 (𝐾 = 11) have a
relatively high 𝑚𝑀, where special attention is needed when
mining. In addition, C7 (𝐾 = 11) is the most shear-related
area, with a mean S-wave to P-wave energy ratio (𝑚Es/Ep) of
41.21. In conclusion, the𝐾-Means cluster provides an effective
way for mine seismicity partitioning, geological structure
interpretation, and seismic hazard assessment.

Additional Points

Highlights. (i) The 𝐾-Means cluster has been applied for
seismicity partitioning, geological structure interpretation,
and seismic hazard assessment. (ii) The possible optimum
cluster number is determined by the proposed Silhouette and
Krzanowski-Lai- (KL-) combined S-KL index. (iii) The 𝐾-
Means cluster has a better seismicity partitioning “quality” for
geological structure interpretation than that of the Gaussian
mixture model (GMM) and the self-organizingmaps (SOM).
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