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Abstract

A key problem in Multiple-Criteria Decision Making is how to measure the impor-
tance of the different criteria when just a partial preference relation among actions
is given. In this note we address the problem of constructing a linear score function
(and thus how to associate weights of importance to the criteria) when a binary
relation comparing actions and partial information (relative importance) on the
criteria are given. It is shown that these tasks can be done via Support Vector Ma-
chines, an increasingly popular Data Mining technique, which reduces the search of
the weights to the resolution of (a series of) nonlinear convex optimization problems
with linear constraints. An interactive method is then presented and illustrated by
solving a multiple-objective 0-1 knapsack problem. Extensions to the case in which
data are imprecise (given by intervals) or intransitivities in strict preferences exist
are outlined.

Key Words: Linear score functions, support vector machines, multiple-criteria
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1 Introduction

Suppose we are given

• an integer N,

• a finite directed graph (A, P ), whose set of edges P is non-empty and
contains no loops,
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• a function Ψ : A −→ RN ,

• a polyhedral cone Ω in RN
+ , Ω 6= {0}, represented in the form

Ω =
{
ω ∈ RN : q⊤j ω ≥ 0, j ∈ J

}
,

for a finite set {qj : j ∈ J} ⊂ RN ,

• a norm γ in RN ,

and consider the optimization problem

max
ω∈Ω\{0}

min
(a,a′)∈P

ω⊤Ψ(a)− ω⊤Ψ(a′)

γ(ω)
. (1.1)

Problem (1.1) has a clear interpretation in Multiple-Criteria Decision
Making, as sketched below:

A represents a finite set of actions, where we have defined

• a vector-valued function Ψ : A −→ RN , in such a way that Ψj(a)
represents the score of action a according to the j-th criterion, j =
1, 2, . . . ,N. All scores are assumed to be in a scale ”the higher the
better”

• a binary irreflexive relation P ⊂ A×A. No further assumptions (e.g.
transitivity or weak connectedness) are made on P. For instance, P
might be the strict preferences obtained with Electre I, Roy (1968), or
the strict preferences detected via a sample of pairwise comparisons
among actions.

By abuse of notation, we will write in what follows indifferently aPa′

or (a, a′) ∈ P.

Our aim is to extend the binary relation P to a total preorder on A via
a linear function of the scores given by Ψ. In other words, we seek ω ∈ Ω
such that

ω⊤Ψ(a) > ω⊤Ψ(a′) ∀a, a′ ∈ A, aPa′. (1.2)

Any ω satisfying (1.2) induces a pair of binary relations (Pω, Iω) on A,

aPωa
′ iff ω⊤Ψ(a) > ω⊤Ψ(a′)

aIωa
′ iff ω⊤Ψ(a) = ω⊤Ψ(a′),

(1.3)
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of strict preference and indifference.

We have that the strict preference Pω is compatible with P, in the sense
that the set P is included in the set Pω, and thus no information contained
in P is lost if P is replaced by Pω. Moreover, Pω enjoys properties usually
considered to be desirable such as transitivity. By construction, each com-
ponent of ω measures the importance of the corresponding criterion in Pω,
and hence we can also see ωj as a measure of importance of Ψj in P.

We illustrate the model in the following Example.

Example 1.1. Consider the problem with 6 actions, (A = {a1, . . . , a6}),
N = 4 criteria, C1, . . . , C4, with rewards scored (in ordinal or cardinal
scales) in Table 1.

C1 C2 C3 C4

(max) (max) (max) (max)

a1 High 4 2 8
a2 Low 2 2 7
a3 High 3 4 3
a4 Low 2 5 2
a5 Average 8 1 1
a6 Low 4 4 4

Table 1: Decision table for Example 1.1

Consider also the irreflexive binary relation P given on A represented
in Figure 1.

The mechanism used to construct such P is simple: aiPaj iff criterion
C1 in ai is strictly better than C1 in aj , and, at the same time, the average
of the three remaining scores in ai is strictly greater than the average in
aj .

In order to accommodate these data to the model considered, the cri-
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Figure 1: The graph (A, P ) in Example 1.1

teria must be measured in a cardinal scale. To do that, we define

Ψ11(a) =

{
1, if a in C1 takes the value ”High”
0, else

Ψ12(a) =

{
1, if a in C1 takes the value “Average”
0, else

Ψ13(a) =

{
1, if a in C1 takes the value “Low”
0, else

Ψi(a) = score of a according to Ci in Table 1, i = 2, . . . , 4,

and we obtain Table 2.

Under these assumptions, we seek a vector of weights ω, to be associated
with the columns of Table 2, in such a way that ordinal values are replaced
by ratio-scaled values, and the total ranking obtained by averaging the
actions ω is compatible with P retaining all the information on the criteria:
since the criteria are of the form “the higher the better,” the weights should
be non-negative; moreover, the weight associated with Ψ11 should not be
smaller than the weight associated with Ψ12, which should not be smaller
than the weight associated with Ψ13.
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Ψ11 Ψ12 Ψ13 Ψ2 Ψ3 Ψ4

a1 1 0 0 4 2 8
a2 0 0 1 2 2 7
a3 1 0 0 3 4 3
a4 0 0 1 2 5 2
a5 0 1 0 8 1 1
a6 0 0 1 4 4 4

Table 2: Decision Table for Example 1.1. Cardinal scales

Let ΩP denote the set of solutions to (1.2),

ΩP =
{
ω ∈ Ω : ω⊤Ψ(a) > ω⊤Ψ(a′) ∀(a, a′) ∈ P

}
.

In practice, of course, ΩP can be empty. This is the case, for instance,
when the graph (A, P ) contains cycles. In such cases, no Pω compatible
with P exists. In what follows we assume that ΩP 6= ∅. How to address the
case ΩP = ∅ will be outlined in Section 4.

In case ω ∈ ΩP exists, it is highly desirable that such ω makes maximal
separation between actions, i.e., the slack ω⊤Ψ(a)−ω⊤Ψ(a′) should be not
only positive but high in all pairs a, a′ ∈ A, aPa′. To do that, we can take
as criterion the maximization of the lowest slack,

min
(a,a′)∈P

{
ω⊤Ψ(a)− ω⊤Ψ(a′)

}
. (1.4)

Maximizing over Ω (or over ΩP ) the lowest slack is, as soon as ΩP 6= ∅, an
optimization problem with unbounded solution: given ω ∈ ΩP , ϑω ∈ ΩP

for any ϑ > 0, and makes the smallest slack grow without limit by growing
ϑ.

Hence, we have to introduce a normalization condition which enables
us to identify ω and ϑω, ϑ > 0. This can be done e.g., by setting γ(ω) = 1
for a given norm, or, equivalently, as done in (1.1).

The inclusion of linear constraints on ω enables us to consider problems
with partial information on the importance to be given to the different
scalar functions Ψj, e.g., Carrizosa et al. (1995), and Carrizosa and Conde
(2002). For instance, since, by assumption, Ψj scores a criterion of type
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”the higher, the better”, the ω sought should satisfy, together with (1.2),
a sign constraint

ωj ≥ 0. (1.5)

Moreover, we may have information about the relative importance of
criteria. For instance, from two criteria Ψi,Ψj of type ”the higher, the
better”, we may impose that the weight associated with criterion i should
not exceed Kij times the weight associated with the j-th criterion. This
way we generate the homogeneous linear constraint

ωi ≤ Kijωj, (1.6)

e.g., Carrizosa and Conde (2002), and Carrizosa et al. (1995).

More complex homogeneous linear constraints may appear, for instance,
in decision problems under risk, with N scenarios, each ωj representing the
probability of the j-th scenario. Under such assumptions, since the weights
represent probabilities, their sum must equal 1. This is modelled by taking
as γ in (1.1) the ℓ1 norm. Moreover, if we have interval information about
the probability of the i-th scenario, in the form

Li ≤ ωi ≤ Ui,

we can transform this condition into

Li

1− Li
≤ ωi

1− ωi
≤ Ui

1− Ui
,

or into the pair of homogeneous linear constraints

Li

1−Li

∑
j 6=i ωj ≤ ωi

Ui

1−Ui

∑
j 6=i ωj ≥ ωi.

(1.7)

On the other hand, if two actions, a, a′ are known to be indifferent, one
would have

(Ψ(a)−Ψ(a′))⊤ω ≥ 0
(Ψ(a′)−Ψ(a))⊤ω ≥ 0

(1.8)

As seen above, sign constraints and, among others, those of type (1.6),
(1.7) and (1.8), can be modelled by imposing that ω belongs to a polyhedral
cone Ω.
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Example 1.2. With the data of Example 1.1, since the criteria in Table
1 are all of type ”the higher the better”, all weights must be non-negative.
Since we have passed C1 to a cardinal scale, see Table 2, we must impose
also that ω11 ≥ ω12 ≥ ω13.

This information on the weights yields the polyhedral cone

Ω =
{
ω = (ω1, ω2, . . . , ω6) ∈ R6

+ :
(1,−1, 0, 0, 0, 0)⊤ω ≥ 0
(0, 1,−1, 0, 0, 0)⊤ω ≥ 0}

(1.9)

Solving numerically (1.1) taking as γ the Euclidean norm, the following
weights (measures of importance of the criteria) are obtained after normal-
ization to sum 1:

ω = (ω11, ω12, ω13, ω2, ω3, ω4) = (0.333, 0.000, 0.000, 0.333, 0.000, 0.333).
(1.10)

Hence, only the highest value of C1, together with C2 and C4 are rele-
vant, all being equally important.

With this information, the function a 7−→ ω⊤Ψ(a) is given in Table 3,
yielding the total strict order

a1Pωa2Pωa5Pωa6Pωa3Pωa4.

ai ω⊤Ψ(a)

a1 4.334
a2 3.001
a3 2.333
a4 1.333
a5 3.000
a6 2.667

Table 3: Values of ω⊤Ψ(·) in Example 1.2

Suppose we also know that C4 should not be weighted much stronger
(say, 5 times) than C3, modelled with the constraint

ω4 ≤ 5ω3. (1.11)



406 E. Carrizosa

 a
1

 a
2

 a
3

 a
4

 a
5

 a
6

(High,4,2,8) (Low,2,2,7)

(High,3,4,3)

(Low,2,5,2)(Average,8,1,1)

(Low,4,4,4)

Figure 2: The graph (A, Pω) in Example 1.1

This constraint must then be added to those given in (1.9).

Solving numerically (1.1) taking as γ the Euclidean norm, the following
weights (measures of importance of the criteria) are obtained after normal-
ization to sum 1:

ω = (ω11, ω12, ω13, ω2, ω3, ω4) = (0.342, 0.000, 0.000, 0.340, 0.053, 0.265),

yielding the total strict order

a1Pωa5Pωa2Pωa6Pωa3Pωa4.

Hence, the addition of the constraint (1.11) has produced slight changes in
the optimal weight vector ω, but has led to a change in the ranking of the
alternatives (please compare the position of a3 and a5 in both rankings.

The graph of Pω is depicted in Figure 2. Preferences already present in
P are plotted with a thick arrow, whereas those which did not exist in P
and are added by Pω are dotted.

In order to gain insight into Problem (1.1), and to extend the method-
ology to the case in which ΩP is empty, we connect this with (a variant of)
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Support Vector Machines. Other approaches to ordinal regression based on
Support Vector Machines can be found e.g., in Freund et al. (2001), and
Herbrich et al. (2000).

The remainder of the paper is organized as follows. In Section 2 we
make a quick introduction to Support Vector Machines, and rephrase our
problem within this framework. An interactive methodology is outlined in
Section 3, where an illustrative example is also given. Possible extensions
of this work are given in Section 4.

Throughout this paper, conv(X) denotes the convex hull of a set X, and
cone(X) denotes the conic hull of X, i.e., cone(X) is the set of points which
can be expressed as a linear combination with non-negative coefficients of
elements of X, Cramer and Singer (2001).

2 Support Vector Machines

Before particularizing to our problem, (see Section 2.2), we first briefly
outline the main ideas underlying the Discriminant Analysis method known
as Support Vector Machines, SVM. The reader is referred to e.g., Burges
(1998), Cortes and Vapnik (1995), Cristianini and Shawe-Taylor (2000),
Hastie et al. (2001), Suykens et al. (2002), Vapnik (1998), Vapnik (2000),
and the references therein for further details.

2.1 General results

Let Ω be a polyhedral cone in RN . Let I be a finite non-empty set of
individuals, partitioned as I = I+ ∪ I−, with I+, I− 6= ∅. Each i ∈ I has
an associated vector xi ∈ RN . One seeks an affine function separating I+
and I−, by strictly separating the sets {xi : i ∈ I+} and {xi : i ∈ I−} :
(ω, β) ∈ Ω×R is sought such that

ω⊤xi + β > 0 ∀i ∈ I+
ω⊤xi + β < 0 ∀i ∈ I−.

(2.1)

If such (ω, β) exists, since, by assumption, I+, I− 6= ∅, one has that ω 6= 0,
and thus it defines a hyperplane H(ω, β) = {x ∈ RN : ω⊤x+β = 0}, which
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bounds the closed halfspaces

H−(ω, β) = {x ∈ RN : ω⊤x+ β ≤ 0}
H+(ω, β) = {x ∈ RN : ω⊤x+ β ≥ 0}.

Define, for each i ∈ I, the label yi as

yi =

{
1, if i ∈ I+
−1, if i ∈ I−.

Condition (2.1) can then be rewritten as

yi

(
ω⊤xi + β

)
> 0 ∀i ∈ I. (2.2)

The vector (ω, β) chosen will be used to classify, following (2.1), future
entries x ∈ RN : if ω⊤x+ β > 0, x will be allocated to group I+, whereas,
if ω⊤x+ β < 0, then x will be allocated to I−.

A key concept is (Ω-)separability.

Definition 2.1. Given a polyhedral cone Ω, the pair ({xi : i ∈ I+}, {xi :
i ∈ I−}) is said to be Ω-separable if there exists (ω, β) ∈ Ω × R satisfying
(2.2). Such (ω, β) will be said to Ω-separate ({xi : i ∈ I+}, {xi : i ∈ I−}).

For Ω = RN , separability tests, and, in the separable case, procedures
for generating a separating hyperplane by means of Linear Programming
date back to the 60s, e.g., Mangasarian (1965). The extension of these
procedures to arbitrary polyhedral cones Ω is straightforward. One has in
particular

Proposition 2.1. Let Ω be a polyhedral cone in RN of the form

Ω = {ω ∈ RN : q⊤j ω ≥ 0∀j ∈ J}
for a finite set J. The following statements are equivalent:

1. ({xi : i ∈ I+}, {xi : i ∈ I−}) is Ω-separable.

2. For any norm ‖·‖ in RN , the linearly-constrained convex minimization
problem

min ‖ω‖
s.t. yi

(
ω⊤xi + β

)
≥ 1 ∀i ∈ I

ω ∈ Ω
(2.3)

is feasible.
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3. The sets conv({xi : i ∈ I+}) + cone({qj : j ∈ J}) and conv
(
{xi :

i ∈ I−}
)

are disjoint.

Proof. Since Ω is a cone and I is finite, any (ω, β) satisfying (2.2) can be
re-scaled so that the left hand sides in (2.2) are not only strictly positive,
but also greater than or equal to 1. In other words, the pair ({xi : i ∈
I+}, {xi : i ∈ I−}) is Ω-separable iff there exist ω ∈ Ω, β ∈ R such that

yi

(
ω⊤xi + β

)
≥ 1 ∀i ∈ I,

which is equivalent to the feasibility of (2.3). Hence, separability of the pair
({xi : i ∈ I+}, {xi : i ∈ I−}) is equivalent to the feasibility of the linear
problem

min 0
s.t. yi

(
ω⊤xi + β

)
≥ 1 ∀i ∈ I

ω⊤qj ≥ 0 ∀j ∈ J,
(2.4)

whose optimal value is, when feasible, zero. The dual of (2.4) is

max
∑

i∈I λi

s.t.
∑

i∈I λiyixi +
∑

j∈J µjqj = 0∑
i∈I λiyi = 0

λ, µ ≥ 0.

(2.5)

Problem (2.5) is always feasible (take λ = 0 ∈ RI and µ = 0 ∈ RJ). Hence,
the pair ({xi : i ∈ I+}, {xi : i ∈ I−}) is Ω-separable iff (2.5) has 0 as
optimal value, which happens iff the polyhedral cone conv({xi : i ∈ I+})+
cone({qj : j ∈ J}) and the polytope conv({xi : i ∈ I−}) are disjoint sets.
Indeed, if there exists u ∈ (conv({xi : i ∈ I+}) + cone({qj : j ∈ J})) ∩
conv({xi : i ∈ I−}), then there exist (λi)i∈I+ ∈ RI+

+ , (λi)i∈I− ∈ RI−
+ , and

µ ∈ RJ such that

u =
∑

i∈I+

λixi +
∑

j∈J

µjqj

=
∑

i∈I−

λixi

∑

i∈I+

λi =
∑

i∈I−

λi = 1,
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i.e.,

∑

i∈I

λiyixi +
∑

j∈J

µjqj = 0

∑

i∈I

λiyi = 0

∑

i∈I

λi = 1,

thus the optimal value of (2.5) cannot be zero.

Conversely, if the optimal value of (2.5) is not zero, then, taking λ ∈ RI
+,

µ ∈ RJ
+, feasible for (2.5), with

∑
i∈I λi > 0, define λ̂, µ̂ as

λ̂ =
2∑

i∈I λi
λ

µ̂ =
2∑

i∈I λi
µ.

Then, one has

∑

i∈I+

λ̂i = 2

∑
i∈I+

λi∑
i∈I λi

= 1

∑

i∈I−

λ̂i = 1.

Moreover, ∑

i∈I+

λixi +
∑

j∈J

µjqj =
∑

i∈I−

λixi,

thus
u =

∑

i∈I+

λ̂ixi +
∑

j∈J

µ̂jqj =
∑

i∈I−

λ̂ixi,

implying u ∈ (conv({xi : i ∈ I+}) + cone({qj : j ∈ J})) ∩ conv({xi : i ∈
I−}).

Following (2.1), for (ω, β) ∈ (Ω \ {0}) × R given, the half-space mis-
classifying those i ∈ I+ (respectively i ∈ I−) is H(ω, β)− = {x ∈ RN :
ω⊤x+ β ≤ 0} (respectively H(ω, β)+ = {x ∈ RN : ω⊤x+ β ≥ 0}).
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Let ‖ · ‖ be a norm in RN . Denote by fi(ω, β) the distance (according
to the metric induced by ‖ · ‖) from xi to its half-space of misclassification
(either H(ω, β)− or H(ω, β)+).

For (ω, β) ∈ RN×R, ω 6= 0, the margin is defined as the minimum of the
distances of the points to their corresponding half-space of misclassification.
Hence, the problem of finding the Ω-separating hyperplane maximizing the
margin can be written as the following optimization problem with non-
closed feasible region,

max (mini∈I fi(ω, β))
s.t. ω ∈ Ω \ {0}

yi

(
ω⊤xi + β

)
> 0 ∀i ∈ I

(2.6)

Problem (2.6) has been extensively studied in the particular case Ω =
RN and the Euclidean norm as ‖·‖, e.g., Burges (1998), Cortes and Vapnik
(1995), Cristianini and Shawe-Taylor (2000), Smola and Schölkopf (2002),
Vapnik (1998), under the name of Support Vector Machines. The consider-
ation of an arbitrary norm, as done here, is relatively recent, Mangasarian
(2000), although no constraints were included there.

From the formula of the distance from a point to a hyperplane for an
arbitrary norm ‖ · ‖, Carrizosa and Fliege (2002), Plastria and Carrizosa
(2001), one has for any (ω, β) ∈ RN ×R, ω 6= 0, that

fi(ω, β) = max{yi(ω
⊤xi + β)

‖ω‖◦ , 0}, (2.7)

where ‖ · ‖◦ denotes the norm dual to ‖ · ‖,
‖ω‖◦ = max

‖u‖=1
u⊤ω.

When the pair ({xi : i ∈ I+}, {xi : i ∈ I−}) is Ω-separable, the con-
straints in the form

yi(ω
⊤xi + β) > 0 ∀i ∈ I (2.8)

are redundant: any (ω, β) ∈ (RN \ {0}) × R not satisfying (2.8) will have
0 as objective value, which will never be the optimum in the Ω-separable
case. We can thus drop under Ω-separability assumptions the constraints
(2.8), yielding the equivalent optimization problem

maxω∈Ω\{0} mini∈I
yi(ω⊤xi+β)

‖ω‖◦
(2.9)
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Moreover, since the objective function in (2.9) is homogeneous, and, by
assumption, Ω is a cone, we obtain the equivalent formulation

min ‖ω‖◦
s.t. yi(ω

⊤xi + β) ≥ 1∀i ∈ I
ω ∈ Ω.

(2.10)

Observe that the case ω = 0 is naturally excluded by this formulation.

This will be our canonical formulation for the SVM.

Example 2.1. As an illustration, consider the set of points (triangles or
discs) in Figure 3. If distances are measured by the Euclidean norm, the
optimal hyperplane is depicted in Figure 4. However, if distances are mea-
sured by the ℓ∞, and thus ‖ · ‖◦ = ℓ1, the optimal solution is depicted in
Figure 5.

Figure 3: The data points of Example 2.1

In general, (2.10) is an optimization problem with convex objective and
linear constraints, solvable by general-purpose methods such as those de-
scribed in Hiriart-Urruty and Lemaréchal (1996), and Carrizosa and Fliege
(2002).
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Figure 4: Large margin solution (‖ · ‖ : ℓ2)

Figure 5: Large margin solution (‖ · ‖ : ℓ∞)
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Particular choices, however, lead to more structured problems for which
more efficient algorithms can be used. For instance, if ‖ · ‖ is the Euclidean
distance, (2.10) leads to a linearly-constrained convex quadratic problem,
whereas if ‖ · ‖ is a polyhedral norm (i.e., a norm whose unit ball is a
polyhedron), then (2.10) can easily be transformed into an equivalent linear
program.

2.2 Linear scores and SVM

Once we have described our Multiple-Criteria decision problem, and after
deriving the canonical formulation (2.10) for the SVM, we show how to
interpret our problem, as described in Section 1, as a particular instance
of (2.10). To do this, in what follows we construct a classification problem
with the elements given in Section 1.

Given the directed graph (A, P ), define the index sets I+, I− as

I+ = {(a, a′) ∈ A×A : aPa′}
I− = {(a′, a) ∈ A×A : aPa′} . (2.11)

Each pair (a, a′) ∈ I+ ∪ I− has associated a vector xaa′ ∈ RN ,

xaa′ = Ψ(a)−Ψ(a′). (2.12)

ΩP -separation and Ω-separation are related as follows:

Proposition 2.2. One has

ΩP =
{
ω ∈ Ω : (ω, 0) Ω-separates {xaa′ : aPa′}, {xa′a : aPa′}

}

=
{
ω ∈ Ω : (ω, β) Ω-separates {xaa′ : aPa′}, {xa′a : aPa′}

for some β ∈ R
}

Proof. Given ω ∈ ΩP , one has by definition of ΩP that

ω⊤(Ψ(a)−Ψ(a′)) > 0 ∀a, a′, aPa′,
which amounts to saying that (ω, 0) Ω-separates the sets {xaa′ : aPa′}, {xa′a :
aPa′}. To finish the proof, let (ω, β) Ω-separate {xaa′ : aPa′}, {xa′a :
aPa′}, and let us conclude that ω ∈ ΩP . By definition, one has that

ω⊤ (Ψ(a)−Ψ(a′)) + β > 0 ∀a, a′, aPa′
ω⊤ (Ψ(a′)−Ψ(a)) + β < 0 ∀a, a′, aPa′,
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thus
ω⊤
(
Ψ(a)−Ψ(a′)

)
> |β| ≥ 0 ∀a, a′, aPa′.

Hence, ω ∈ ΩP .

Proposition 2.3. For I+, I−, x = (xaa′)aPa′ , as defined in (2.11)-(2.12),
if (ω, β) is an optimal solution to (2.10), then β = 0.

Proof. The constraints in (2.10) are written as

ω⊤ (Ψ(a)−Ψ(a′)) + β ≥ 1 ∀a, a′ ∈ A, aPa′
ω⊤ (Ψ(a′)−Ψ(a)) + β ≤ −1 ∀a, a′ ∈ A, aPa′

ω ∈ Ω,

or, in condensed form,

ω⊤ (Ψ(a)−Ψ(a′)) ≥ 1 + |β| ∀a, a′ ∈ A, aPa′
ω ∈ Ω.

(2.13)

Given (ω0, β0), feasible for (2.10), with β0 6= 0, one has that the solu-
tion ( 1

1+|β0|
ω0, 0) is also feasible, with objective value 1

1+|β0|
‖ω0‖◦ < ‖ω0‖◦.

Hence, (ω0, β0) cannot be optimal.

Hence, we can impose in (2.10) that β = 0, and then (2.13) yields a
finite set of linear constraints. This way we rewrite (2.10) as

min ‖ω‖◦
s.t. ω⊤ (Ψ(a)−Ψ(a′)) ≥ 1∀a, a′ ∈ A, aPa′

ω ∈ Ω,
(2.14)

which is equivalent to (1.1), taking as norm γ = ‖ · ‖◦.

In other words, finding the linear score function in Ω maximizing the
minimum slack (normalization done via γ) is reduced to the problem of
finding the hyperplane of largest margin, distances being measured through
‖ · ‖ = γ◦.

For more structured problems, further results can be obtained. This is
the case, for instance, when the norm has some monotonicity properties.
We recall that ‖ · ‖◦ is said to be monotonic in RN

+ if

(0 ≤ ω ≤ ω)⇒ ‖ω‖◦ ≤ ‖ω‖◦,
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whereas ‖ · ‖◦ is said to be strictly monotonic in RN
+ if

(0 ≤ ω ≤ ω, ω 6= ω)⇒ ‖ω‖◦ < ‖ω‖◦.

For monotonic norms we have the following

Proposition 2.4. Let u ∈ RN
+ , u 6= 0, such that

u⊤
(
Ψ(a)−Ψ(a′)

)
≤ 0 ∀a, a′ ∈ A, aPa′

q⊤j u ≤ 0 ∀j ∈ J.

1. If ‖ · ‖◦ is monotonic in RN
+ , then there exists ω∗, optimal for (2.14),

such that min{ω∗
i : ui > 0} = 0.

2. If ‖ · ‖◦ is strictly monotonic in RN
+ , then any ω∗ optimal for (2.14)

satisfies min{ω∗
i : ui > 0} = 0.

Proof. Let ‖·‖ be monotonic in RN
+ , and let ω∗ be optimal for (2.14). Define

∆ as

∆ = min

{
ω∗

i

ui
: ui > 0

}
.

If ∆ = 0, the result follows, so suppose ∆ > 0. By construction of ∆
and the assumptions,

ω∗
i −∆ui ≥ 0 ∀i = 1, 2, . . . ,N

q⊤j (ω∗ −∆u) ≥ 0 ∀j ∈ J.

Hence, ω∗ −∆u ∈ Ω. Moreover, for any a, a′ ∈ A, aPa′, one has that

(ω∗ −∆u)⊤
(
Ψ(a)−Ψ(a′)

)
≥ ω∗⊤

(
Ψ(a)−Ψ(a′)

)
≥ 1,

thus ω∗ −∆u is feasible for (2.14).

Hence,

0 ≤ ω∗ −∆u ≤ ω∗

ω∗ −∆u 6= ω∗

If ‖ · ‖◦ is monotonic in RN
+ , we have that

‖ω∗ −∆u‖◦ ≤ ‖ω∗‖◦,
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and thus ω := ω∗ − ∆u is also optimal and satisfies, by construction,
min{ωi : ui > 0} = 0.

If ‖ · ‖◦ is strictly monotonic in RN
+ , we have that

‖ω∗ −∆u‖◦ < ‖ω∗‖◦,

which is a contradiction, and thus, in this case, ω∗, as any optimal solution,
must satisfy min{ω∗

i : ui > 0} = 0.

As an application of this result, consider a decision problem in which
criterion Ck is measured in an ordinal scale, with nk different ranked levels,
L1, . . . , Lnk

, L1 being the best and Lnk
the worst.

Following the strategy of introducing dummy variables, as described in
Example 1.1, we define

Ψk1(a) =

{
1, if a takes the value L1 in criterion Ck

0, else

...
...

Ψknk
(a) =

{
1, if a takes the value Lnk

in criterion Ck

0, else

No further constraints are imposed on the weights associated with Ck, thus
the only constraints involving the weights ωk,1 . . . , ωk,nk

should be, as in
Example 1.2,

ωk,1 ≥ ωk,2 . . . ≥ ωk,nk

If ‖·‖◦ is monotonic in RN
+ , then there exists an optimal ω with ωknk

= 0.
Moreover, if ‖ · ‖◦ is strictly monotonic in RN

+ , then we can assert that any
optimal ω satisfies ωknk

= 0. This is a direct consequence of Proposition
2.4. Indeed, take as u the vector with 0 in all its components excepting
those corresponding to the columns of the form Ψkj, which are set to 1.
Such a vector u fulfills the assumptions of Proposition 2.4, and thus the
result follows.

3 An interactive method

SVM are known to enjoy excellent generalization properties both in theory
and in practice, i.e., the rule constructed via (2.10) tends to be useful to
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classify future instances in the classification problem, see Cristianini and
Shawe-Taylor (2000), Vapnik (1998), and Vapnik (2000).

In the context of Multiple-Criteria Decision Making, this property can
be extremely useful for designing a method of progressive articulation of
preferences, in which, unlike other classical interactive methods such as
STEM, Benayoun et al. (1971), or the Tchebycheff method of Steuer and
Choo (1983), the system at each step asks the decision-maker to find some-
how an action better than the one proposed by the system, or to increase
the amount of partial information incorporated in the polyhedral cone Ω.

The procedure might work as follows

Step 0: Initialize:

• Choose a norm ‖ · ‖ in RN .

• Take Ω1, polyhedral cone in RN
+ , modelling the relative

importance of criteria.

• Construct P1 by pairwise comparison among some elements

of A, P1.

• Set k = 1 and go to Step 1.

Step k : Find ωk, optimal solution to

min ‖ω‖◦
s.t. ω⊤ (Ψ(a)−Ψ(a′)) ≥ 1∀a, a′ ∈ A, aPka

′

ω ∈ Ωk,
(3.1)

and find ak ∈ A, optimal to

max Ψ(a)⊤ωk

s.t. a ∈ A

If (ak, ωk) is considered to be satisfactory then

STOP with ak as optimal solution and ωk as vector of weights.

Else, enlarge Pk (e.g., by showing some a preferred to ak,
and setting Pk+1 = Pk ∪ {(a, ak)}) or reduce Ωk (by adding a

homogeneous constraint , and thus setting Ωk+1 = Ωk ∩ {ω :
q⊤ω ≤ 0}). GoTo Step k + 1.

A toy example is given below.
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Example 3.1. Consider the 4-objective knapsack problem

max
(
r⊤1 x, . . . , r

⊤
4 x
)

s.t. d⊤x ≤ 30
xi ∈ {0, 1}, i = 1, 2, . . . , 10,

(3.2)

with coefficients rj and d given in Table 4. Since this is a synthetic problem,
we can assume that the weight vector ω∗ of the decision-maker is at hand,
and will check the output of the algorithm against such ω∗. In fact, the
unknown ω∗ will be given by

ω∗ = (0.1, 0.3, 0.2, 0.4), (3.3)

although no information on the weights (apart from non-negativity) will be
provided to the system. Hence, Ω = RN

+ .

It is clear that the high cardinality of the feasible set A advices against
the use of any methodology which starts with a complete enumeration of
A . Instead, the system samples some feasible solutions and defines strict
preferences among them, leading to a strict preference P, from which a
weight vector ω and an action a are obtained.

r1 7 6 1 9 8 2 7 7 10 4
r2 2 1 −2 3 4 −8 2 6 9 −6
r3 10 2 4 9 1 5 3 6 3 9
r4 −1 4 −15 4 1 1 −6 7 −7 −1

d 7 1 6 4 7 3 6 6 10 4

Table 4: Data for Example 3.1.

We solve the single-objective knapsack problems

max r⊤i x
s.t. d⊤x ≤ 30

xj ∈ {0, 1} ∀j,

and denote by yi the corresponding optimal solutions, as given in Table 5.

The decision-maker is asked to sort the actions in {y1, y2, y3, y4}, thus
defining (A, P1). The decision-maker (in fact, we, following (3.3)) gives the
following sorting

y2P1y4P1y1P1y3
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yi r⊤i yi

y1 0 1 0 1 0 1 1 1 1 0 41
y2 0 1 0 1 1 0 0 1 1 0 23
y3 1 0 1 1 0 1 0 1 0 1 43
y4 0 1 0 1 1 1 0 1 0 0 17

Table 5: Optimal solutions xi for single-objective knapsack problems.

As customary in SVM, we have chosen as ‖ · ‖ the Euclidean norm.
Solving the convex quadratic problem with linear constraints (3.1) for Ω1 =
RN

+ and P1, one obtains

ω1 = (0, 0.1209, 0, 0.1319)

x1 = (0, 1, 0, 1, 1, 0, 0, 1, 1, 0) = y2

Such solution is not considered to be satisfactory, and P1 is enriched, yield-
ing P2. In particular, the decision maker provides some feasible action, y5,

y5 = (1, 1, 0, 1, 0, 0, 0, 1, 1, 0),

and P2 is defined as
P2 = P1 ∪ {(y5, x

1)}.
Problem (3.1) is solved for P2, yielding ω2, x2,

ω2 = (0, 0.1994, 0.2101, 0.2462)

x2 = (1, 1, 0, 1, 1, 0, 0, 1, 0, 1).

The importance weights ω2 obtained are not considered to be accept-
able: ω2 incorporates the fact that the least important criterion is the first
one, and the most important is the last one, but fails to fit the rank of the
second and third criteria, which are reversed with respect to ω∗.

If we were concerned not only with finding the most preferred action,
but also a full ranking on A, we could go on, e.g., by imposing the weight
constraint ω2 ≥ ω3. Adding this constraint to the problem, and solving
again, we obtain

ω3 = (0, 0.2162, 0.2162, 0.2568)

x3 = x2 = (1, 1, 0, 1, 1, 0, 0, 1, 0, 1).
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Adding now the cut ω4 ≥ 1.5ω3 leads to

ω4 = (0.0286, 0.2571, 0.2571, 0.3857)

x4 = x3 = x2 = (1, 1, 0, 1, 1, 0, 0, 1, 0, 1).

At this moment, it seems the process is stabilized in the solution x2 and
we stop, yielding x2 as optimal action, and ω4 as vector of importance of
weights. In fact, x2 can be shown to be optimal for the knapsack problem
aggregating the four criteria with weights ω∗.

Hence, we have quickly obtained a most preferred action.

4 Concluding remarks and extensions

In this note we have addressed the problem of extending an irreflexive bi-
nary relation (modelling strict preferences in a Multiple-Objective Decision-
Making problem) to a total preorder induced by a linear function of the
criteria Ψ1, . . . ,ΨN . Posed as a non-parametric classification problem, we
have shown that (hard-margin) SVM can be used to come up with a pro-
cedure of progressive elicitation of preferences.

The strategy proposed in this note can also be used for problems with
uncertainty or vagueness in the data. Indeed, suppose the criteria are not
scored in a precise way, and, instead, each score function Ψj does not take
values in R but in the set of compact intervals of R,

Ψj(a) =
[
Ψj(a),Ψj(a)

]
⊂ R, j = 1, 2, . . . ,N. (4.1)

We could still use (3.1) taking into account that now, each constraint
of type

ω⊤
(
Ψ(a)−Ψ(a′)

)
≥ 1

has an interval as left-hand-side. Since the ω is non-negative (recall that, by
assumption, Ω ⊂ RN

+ ), we can avoid interval-type constraints and re-write
(3.1) as

min ‖ω‖◦
s.t.

∑N
j=1 ωj

(
Ψj(a)−Ψj(a′)

)
≥ 1∀a, a′ ∈ A, aPka

′

ω ∈ Ωk.

(4.2)
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SVM are used not only to linearly separate separable sets, but also to
construct linear rules which misclassify ”few points” in the non-separable
case, i.e., for the case in which Problem (2.10), or (4.2) if, as in (4.1), inter-
vals are given for Ψj . is unfeasible. Several strategies have been proposed
to do so. In particular, in the so-called soft-margin approach, Cortes and
Vapnik (1995), (2.10) is replaced by a problem in the form

min ‖ω‖22 + C
∑

i∈I η
p
i

s.a. yi

(
ω⊤xi + β

)
≥ 1− ηi ∀i ∈ I

η ≥ 0
ω ∈ Ω,

(4.3)

where p ≥ 1 (typically p = 1) and C is a strictly positive tuning parameter.
See, e.g., Cristianini and Shawe-Taylor (2000), Suykens and Vandewalle
(1999), Suykens et al. (2002), and Zhu et al. (2003), for related proposals,
all seen as Goal-Programming strategies for solving unfeasible optimization
problems, Carrizosa and Fliege (2002).

In our Multiple-Criteria Decision-Making problem, it may be the case
that ΩP is empty, since, e.g., P contains cycles of strict preference. Our
aim of seeking Pω enriching P is then replaced by the less ambitious aim
of seeking Pω somehow similar to P. The interactive procedure described
in Section 3 can be used by replacing the SVM problem (3.1) by

min ‖ω‖22 + C
∑

aPka′ η
p
aa′

s.t. ω⊤ (Ψ(a)−Ψ(a′)) ≥ 1− ηaa′ ∀a, a′ ∈ A, aPka
′

ηaa′ ≥ 0∀a, a′ ∈ A, aPka
′

ω ∈ Ωk.

(4.4)

With this, one obtains a vector ω which hopefully satisfies most of the
constraints defining ΩP . It should be observed, however, that the solution
obtained this way is not necessarily a vector minimizing the number of
constraints in ΩP , and can only be seen as a heuristic approach.

Whereas the aim of this note was to show that SVM can be used in
Multiple-Criteria Decision Making, it is also possible to see the problem
the other way round. Indeed, the problem does not ask for the use of the
standard SVM; on the contrary, certain issues are relevant here, but mostly
ignored in the SVM literature. Among others,
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1. the choice of the norm ‖ · ‖. Since we are using γ as a normalization,
there is no natural choice for it. This asks for a deep study of SVM
for arbitrary norms, extending the results of Mangasarian (2000).

2. the partial information on the criteria has been modelled via homo-
geneous linear constraints. Whereas SVM problems with constraints
have already been addressed in the literature, e.g., Fung et al. (2001),
this seems to be more the exception than the rule. Further results,
both at analytical and algorithmic levels, are needed.

These issues deserve further study and will be the subject of future research.
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