
A path to computational efficiency through membrane
computing

David Orellana-Martín, Luis Valencia-Cabrera, Agustín Riscos-Núñez, Mario J. Pérez-Jiménez

Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012,
Sevilla, Spain

a b s t r a c t

Keywords:
Membrane computing
P system with symport/antiport
Membrane division
Computational complexity

The search for new mechanisms and tools allowing us to tackle the famous P versus NP
problem from new perspectives is an important task, due to the relevance of that problem.
The concept of efficiency of computing models is associated with the ability to solve
intractable (in a classical sense) problems in polynomial time. Assuming that P �= NP, that
concept is equivalent to the capability to solve NP-complete problems in an efficient way.
Different frontiers of the efficiency have been given in Membrane Computing in terms of
syntactical or semantic ingredients of the models. In particular, in the framework of tissue
P systems with cell division using symport/antiport rules, the length of communication
rules (passing from length 1 to length 2) provides an optimal borderline of the efficiency.
Cell-like P systems with symport/antiport rules and membrane division is a restricted
variant of such tissue P systems in both its structure (rooted tree versus undirected graph)
and in the way membranes communicate with each other and with the environment. The
limitations of efficient computations in such kind of P systems which use non-cooperative
communication rules have been previously established. In this paper, a uniform polynomial
time solution for the Hamiltonian cycle problem, a well known NP-complete problem,
by means of cell-like P systems with membrane division using minimal cooperation in
communication rules (at most two objects are involved), is provided. Hence, a new optimal
boundary between tractability and NP-hardness, is provided: passing from non-cooperative
rules to cooperative rules in cell-like P systems with symport/antiport rules and membrane
division amounts to passing from non-efficiency to efficiency.

1. Introduction

The P versus NP problem is one of the most important open problems that have been formulated in theoretical computer
science. This is the first problem of the famous list of the Millenium Prize Problems, including the seven greatest unsolved
mathematical problems. Solving this problem might produce a huge economic impact. In an informal way, we can say that
this problem analyzes whether or not finding solutions is harder than checking the correctness of possible solutions. It is
widely believed that it is harder to solve a problem than to check that a solution is valid/good; that is, it is conjectured that

E-mail addresses: dorellana@us.es (D. Orellana-Martín), lvalencia@us.es (L. Valencia-Cabrera), ariscosn@us.es (A. Riscos-Núñez), marper@us.es
(M.J. Pérez-Jiménez).

https://doi.org/10.1016/j.tcs.2018.12.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:dorellana@us.es
mailto:lvalencia@us.es
mailto:ariscosn@us.es
mailto:marper@us.es
https://doi.org/10.1016/j.tcs.2018.12.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2018.12.024&domain=pdf

P �= NP. The classical approach to solve this conjecture consists of considering a single NP-complete problem and trying
to prove whether that problem belongs to the class P or not. In computing models, new tools to tackle the P versus NP
problem can be provided in terms of syntactical or semantic ingredients in the model. In this context, it is interesting to
determine ingredients that allow us to efficiently solve computationally hard problems, and then investigate which ones
should be removed in order to reduce the power so that only problems from P can be efficiently solved. The use (or not) of
such ingredients provides a frontier between tractability and NP-hardness.

Membrane computing is a flexible and versatile branch of natural computing, which arises as an abstraction of the
compartmentalized structure of living cells, and the way biochemical substances are processed in (or moved between)
membrane-bounded regions [18]. Inspired by the structure of living cells, two main classes of membrane systems have been
investigated: a hierarchical (cell-like) arrangement of membranes, inspired from the structure of the cell [18] and a network
of membranes (placed in the nodes of a directed graph), inspired from the cell-interconnection in tissues [13] or inspired
from the way that neurons communicate with each other by means of short electrical impulses (spikes), emitted at precise
moments of time [6]. All classes of computing devices considered in the field of membrane computing are generally called
P systems, which are parallel and distributed computational models based on processing multisets of objects in cell-like or
tissue-like structures by means of rewriting rules. A P system is cooperative if it contains rules that need more than one
object to be triggered. A comprehensive information in membrane computing can be found in [20] and [22], and for the
most up-to-date source of this area, please refer to [30].

Cell-like P systems with symport/antiport rules were introduced in [16], aiming to abstract the biological phenomenon of
trans-membrane transport of pairs of chemical substances, in the same or in opposite directions. On the other hand, tissue
P systems with symport/antiport rules were introduced in [17] by abstracting networks of elementary cells such that some
of them are linked by “communication channels”.

In eukaryotic cells, there are two relevant processes: mitosis and membrane fission. The first one is a process of nuclear
division in eukaryotic cells during which one cell gives rise to two genetically identical children cells. Membrane fission oc-
curs when a membrane leads to two separated membranes; that is, whenever a vesicle is produced or a larger subcellular
compartment is divided into smaller discrete units. These processes have been a source of inspiration to incorporate new
syntactical ingredients in membrane computing in order to be able to produce exponential workspace (by means of com-
partments) in polynomial — often linear — time. Specifically, inspired by the mitosis process, membrane division rules were
defined in the framework of cell-like P systems providing computing devices called P systems with active membranes [19].
With respect to the membrane fission process, P systems with membrane separation were introduced in [14]. These concepts
were also considered in the framework of tissue-like P systems: tissue P systems with cell division [21] and tissue P systems
with cell separation [15].

In previous works [4,5,8,7,15,23,25,26], new tools to tackle the P versus NP problem are given in the framework of
Membrane Computing. Let us recall that using families of non-cooperative tissue P systems with symport rules involving only
one object and cell division, only problems in the complexity class P can be solved in polynomial time; that is P = PMCTDC(1)

[3]. Nevertheless, families of tissue P systems with cell division and symport/antiport rules involving at most two objects
(minimal cooperation) can solve NP-complete problems in polynomial time, which implies NP ∪ co − NP ⊆ PMCTDC(2) [29].
Hence, cooperation in communication rules provide a frontier of the efficiency in the framework of tissue P systems with
symport/antiport rules and cell division, assuming that P �= NP.

This paper deals with cell-like P systems with symport/antiport rules and membrane division whose processor units are
called membranes. This kind of P systems have important differences with respect to the tissue-like approach, where proces-
sor units are called cells: (a) the underlying structure is a rooted tree instead of a directed graph; (b) the rules are associated
with the membranes instead of with the whole system; (c) the communication is only produced between a parent mem-
brane and one of its child membranes instead of any two arbitrary cells; (d) only the skin membrane, the most external one,
can communicate with the environment instead of each cell; and (e) only elementary membranes can be divided instead
of each arbitrary cell. By using families of recognizer cell-like P systems with membrane division which use communication
rules with length at most 3, uniform polynomial-time solutions to NP-complete problems have been provided [12]. In this
paper, the previous result is improved showing that minimal cooperation (at most two objects involved in communication
rules) is enough in order to solve NP-complete problems in uniform polynomial-time. Besides, it is known that with non-
cooperative rules, only problems in the class P can be solved efficiently [10]. In this manner, similar complexity results
that in tissue-like P systems with symport/antiport rules and cell division have been obtained, but in a more restrictive
syntactical context.

The paper is structured as follows. In Section 2, some concepts needed for a more comprehensive reading of the paper
are presented. The framework of recognizer cell-like P systems with symport/antiport rules and membrane division is in-
troduced at Section 3. A uniform polynomial-time solution of the HAM-CYCLE problem by means of a family of P systems
with membrane division using symport/antiport rules of length at most 2, is described in Section 4. Conclusions and some
open problems are formulated in the last section.

2. Preliminaries

In order to provide a self-contained paper, some basic concepts and notations are introduced in this section.

2.1. Languages and multisets

An alphabet � is a non-empty set and its elements are called symbols. A string u over � is a mapping from a natural
number n ∈ N onto �. Number n is called length of the string u and it is denoted by |u|. The empty string (with length 0)
is denoted by λ. A language over � is a set of strings over �.

A multiset over an alphabet � is an ordered pair (�, f), where f is a mapping from � onto the set of natural numbers
N. For each x ∈ � we say that f (x) is the multiplicity of x in that multiset. The support of a multiset m = (�, f) is defined as
supp(m) = {x ∈ � | f (x) > 0}. A multiset is finite if its support is a finite set. We denote by ∅ the empty multiset. The size of
a finite multiset m = (�, f) is

∑
x∈� f (x), and it is denoted by |m|. Let m1 = (�, f1), m2 = (�, f2) be multisets over �, then

the union of m1 and m2, denoted by m1 + m2, is the multiset (�, g), where g(x) = f1(x) + f2(x) for each x ∈ �. We say that
m1 is contained in m2 and we denote it by m1 ⊆ m2, if f1(x) ≤ f2(x) for each x ∈ �. The relative complement of m2 in m1,
denoted by m1 \ m2, is the multiset (�, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise. Let us note
that a set is a particular case of a multiset when each symbol of the support has multiplicity 1.

Notation: given a sequence x1, . . . , xn of symbols of an alphabet, we denote by x1, . . . , ̂xk, . . . , xn the sequence
x1, . . . , xk−1, xk+1, . . . , xn; that is, the k-th term, xk , does not appear in that sequence.

2.2. Graphs and Hamiltonian cycles

We recall some concepts from graph theory that are used in this paper. For more details on graph theory, please refer to
[1].

A rooted tree is a connected, acyclic, undirected graph in which one of the vertices (called the root of the tree) is distin-
guished from the others. Given a node x (different from the root) in a rooted tree, if the last edge on the (unique) path from
the root to node x is {x, y} (so x �= y), then y is the parent of node x, and x is a child of node y. We denote it by y = p(x)
and x ∈ ch(y). The root is the only node in the tree with no parent. A node with no children is called a leaf.

Let G = (V , E) be a directed graph, where the set of nodes is V and the set of arcs is E ⊆ V × V . We say that a finite
sequence γ = (xi1 , xi2 , . . . , xir , xir+1) of nodes of G is a simple path of G from xi1 to xir+1 of length r ≥ 1 if (xi j , xi j+1) ∈ E for
each 1 ≤ j ≤ r, and xi j �= xi j′ for each pair 1 ≤ j < j′ ≤ r + 1. A finite sequence γ = (xi1 , xi2 , . . . , xir , xir+1) with xir+1 = xi1 is
a simple cycle of length r, if the sequence (xi1 , xi2 , . . . , xir) is a simple path and (xir , xir+1) ∈ E . A Hamiltonian cycle of G is a
simple cycle γ = (uα1 , uα2 , . . . , uαr , uα1) of G such that V = {uα1 , uα2 , . . . , uαr }.

Let (xi1 , xi2 , . . . , xir , xir+1) be a simple path of a directed graph G = (V , E) with V = {1, . . . , n}. It is also denoted by the
set {(xi1 , xi2)1, . . . , (xir , xir+1)r}. That is, the labelled arc (xik , xik+1)k can be interpreted as the k-th arc of the path γ , for each
k (1 ≤ k ≤ r). Throughout this work we denote

AG = {(i, j)k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E};
A′

G = {(i, j)′k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E};
A′′

G = {(i, j)′′k | 1 ≤ i, j,k ≤ n, (i, j) ∈ E}.
It is easy to prove the following result:

Proposition 2.1. Let G = (V , E) be a directed graph, V = {1, . . . , n} and AG = {(i, j)k | 1 ≤ i, j, k ≤ n, (i, j) ∈ E}. If B ⊆ AG , then the
following assertions are equivalent:

(1) B is a Hamiltonian cycle.
(2) |B| = n and the following holds: for each i, i′, j, j′, k, k′ ∈ {1, . . . , n},

(a) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then k �= k′;
(b) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then i �= i′;
(c) if (i, j)k ∈ B, (i′, j′)k′ ∈ B, and (i, j)k �= (i′, j′)k′ , then j �= j′;
(d) if (i, j)k ∈ B, and (i′, j′)k+1 ∈ B, then j = i′ .

As a consequence, the following are true:

Remark 1. Let B ⊆ AG be a Hamiltonian cycle of G . For each i, i′, j, j′, k, k′ ∈ {1, . . . , n}, the following holds:

• if (i, j)k ∈ B and j �= j′ , then (i, j′)k′ /∈ B;
• if (i, j)k ∈ B and i �= i′ , then (i′, j)k′ /∈ B;
• if (i, j)k ∈ B and (i, j) �= (i′, j′), then (i′, j′)k /∈ B;
• if (i, j)k ∈ B and j �= i′ , then (i′, j′)k+1 /∈ B .

Remark 2. If (xi1 , xi2 , . . . , xin , xi1) is a Hamiltonian cycle of G , then we can describe it by the set B1 = {(xi1 , xi2)1,

(xi2 , xi3)2, . . . , (xin , xi1)n} ⊆ AG . But (xi2 , xi3 , . . . , xin , xi1 , xi2) also represents the same Hamiltonian cycle and can be described

as B2 = {(xi2 , xi3)1, (xi3 , xi4)2, . . . , (xi1 , xi2)n}, and so on up to Bn . Thus, given a Hamiltonian cycle of G , there are exactly n
different subsets of AG codifying that cycle.

Remark 3. Let us suppose that the total number of Hamiltonian cycles of G is q. Then, the number of different subsets B of
AG verifying conditions (a), (b), (c), and (d) from Proposition 2.1 is exactly n · q.

2.3. Decision problems and languages

Roughly speaking, a decision problem X is one whose solution/answer is either “yes” or “no”. This can be formally
defined by an ordered pair (I X , θX), where I X is a language over a finite alphabet �X and θX is a total Boolean function
over I X . The elements of I X are called instances of the problem X . Each decision problem X has associated a language
L X over the alphabet �X as follows: L X = {u ∈ I X | θX (u) = 1}; that is, L X is the set of inputs for which the answer is
affirmative. Conversely, every language L over an alphabet � has associated a decision problem XL = (I XL , θXL) as follows:
I XL = �∗ and θXL (u) = 1 if and only if u ∈ L. Then, given a decision problem X we have XL X = X , and given a language L
over an alphabet � we have L XL = L.

The complement problem X of a decision problem X = (I X , θX) is the decision problem (I X , ¬θX); that is, L X = �∗
X \ L X :

for each instance the answer of X is “yes” if and only if the answer of X is “no”.

2.4. The Cantor pairing function

The Cantor pairing function encodes pairs of natural numbers by single natural numbers and it is defined as follows: for
each m, n ∈N

〈m,n〉 = (m + n)(m + n + 1)

2
+ m

The Cantor pairing function is a primitive recursive bijective function from N ×N onto N. Then, for each t ∈ N there exists
a unique natural number m, n ∈ N such that t = 〈m, n〉.

3. P systems with symport/antiport rules and division rules

A kind of cell-like P systems that use communication rules capturing the biological phenomenon of trans-membrane
transport of several chemical substances was introduced in [16]. Specifically, two processes were considered. The first one
allows a multiset of chemical substances to pass through a membrane in the same direction. In the second one, two
multisets of chemical substances (located in different biological membranes) only pass with the help of each other (an
exchange of objects between both membranes). This is the computing framework where this paper is developed. Next,
recognizer P systems with symport/antiport rules and membrane division are briefly introduced (see [9] for more details).

Recognizer membrane systems were introduced in [28], and they provide a natural framework to solve decision prob-
lems by means of families of membrane systems. We adapt this definition to P systems with symport/antiport rules and
membrane division in a natural way.

Definition 3.1. A recognizer P system with symport/antiport rules and membrane division of degree q ≥ 1 is a tuple

� = (�,E,�,μ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

where:

– �, E, � are finite alphabets such that � has two distinguished symbols yes and no, E � �, � � � and E ⊆ � \ �.
– μ is a rooted tree whose nodes are injectively labelled with 1, . . . , q (the root of the tree is labelled with 1).
– M1, . . . , Mq are finite multisets over � \ � such that at least one copy of yes and no is present in some of them.
– Ri , 1 ≤ i ≤ q, are finite sets of rules over � of the following forms:

∗ Communication rules:
	 Symport rules: (u, out) or (u, in), where u is a multiset over � such that |u| > 0.
	 Antiport rules: (u, out; v, in), where u, v are multisets over � such that |u| > 0 and |v| > 0.

∗ Division rules: [a]i → [b]i [c]i , where a, b, c ∈ �, i ∈ {2, . . . , q}, i �= iout , and i is the label of a leaf of the tree μ.
– iin ∈ {1, . . . , q} and iout = 0 (0 is the label of the environment).
– All computations halt.
– If C is a computation of �, then either symbol yes or symbol no (but not both) must have been released into the

environment, and only at the last step of the computation.

For each multiset m over �, the initial configuration of � with input multiset m is M1, . . . , Miin +m, . . . , Mq , that is, the
input multiset m is added to the contents of the input membrane. We denote by � +m the system � with input multiset m.

A computation of � is a finite sequence of configurations such that the first term of the sequence is the initial configuration
of the system and each non-first term of the sequence from the previous configuration by applying rules of the system in a
non-deterministic maximally parallel manner; that is, no more rules could be applied to such configuration. If no rules can
be applied to a configuration, we say that it is a halting configuration and the system finishes the computation. We say that
a computation C of � is an accepting computation (respectively, rejecting computation) if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configuration of C , and neither object yes nor no
appears in the environment associated with any non-halting configuration of C .

For each natural number k ≥ 1, CDC(k) (respectively, CDA(k) or CDS(k)) denotes the class of all recognizer P systems
with symport/antiport rules (respectively, only antiport rules or only symport rules) and membrane division such that the
length of the communication rules is at most k.

Next, the concept of efficient solvability for decision problems by means of families of recognizer membrane systems
(see [24] for more details) is adapted to the new framework in a natural way.

Definition 3.2. A decision problem X is solvable in uniform polynomial-time by a family � = {�(n) | n ∈N} of recognizer P
systems with symport/antiport rules and membrane division, if the following holds:

– the family � is polynomially uniform by Turing machines; that is, there exists a deterministic Turing machine working
in polynomial time which constructs the system �(n);

– there exists a pair (cod, s) of polynomial-time computable functions over I X such that:
	 for each instance u ∈ I X , s(u) is a natural number and cod(u) is an input multiset of the system �(s(u));
	 for each n ∈N, s−1(n) is a finite set;
	 the family � is polynomially bounded with regard to (X, cod, s);
	 the family � is sound and complete with regard to (X, cod, s)

The instance u ∈ I X will be processed by the system �(s(u)) with input multiset cod(u). Furthermore, from the sound-
ness and completeness is deduced that �(s(u)) + cod(u) is a confluent system, in the sense that all possible computations
of �(s(u)) + cod(u) must give the same answer.

If R is a class of recognizer P systems with symport/antiport rules and membrane division, then we denote by PMCR the
set of all decision problems which can be solved in uniform polynomial-time by means of recognizer P systems from R. The
class PMCR is closed under complement and polynomial-time reductions (see [27] for details).

In [10], the limitations of efficient computations in recognizer P systems with symport/antiport rules and membrane
division when communication rules are non-cooperative rules have been established. Specifically, in the cited paper it has
been shown that PMCCDC(1) = P. This result has been obtained by applying the dependency graph technique (a directed
graph is associated with each P system � verifying the following: there exists an accepting computation of � if and only if
there exists a path between two distinguished nodes in the dependency graph associated with it). From a complexity point
of view, what happens if minimal cooperation is considered in communication rules? Do these systems have the ability to
solve computationally hard problems in uniform polynomial-time?

4. On the presumed efficiency of CDC(2)

This section is devoted to justifying the presumed efficiency of recognizer P systems with membrane division which
use minimal cooperation in communication rules. In [12], an efficient solution to the SAT problem was given by using a
family of systems from CDC(3). In this section, this result is improved by giving a uniform polynomial-time solution to
the HAM-CYCLE problem (given a directed graph, to determine whether or not there exists a Hamiltonian cycle in the graph), a
well-known NP-complete problem [2], by means of a family of systems from CDC(2).

4.1. A uniform polynomial-time solution of the HAM-CYCLE problem in CDC(2)

For each m, n ∈ N, being n the number of nodes and m the number of edges of a directed graph G , we consider the
recognizer P system with symport/antiport rules and membrane division of degree 11 + 2n + n3

�(〈m,n〉) = (�,E,�,μ,Mr (1 ≤ r ≤ 11) , Ma1, j (1 ≤ j ≤ n),

Ma2, j (1 ≤ j ≤ n) , Mei, j,k (1 ≤ i, j,k ≤ n) , Rr (1 ≤ r ≤ 11),

Ra1, j (1 ≤ j ≤ n) , Ra2, j (1 ≤ j ≤ n) , Rei, j,k (1 ≤ i, j,k ≤ n),

iin, iout)

defined as follows (parameter m is involved in the definition of some rules):

– The working alphabet � is:

� ∪ E ∪ {b′
r,b′′

r ,b′′′
r , c′

r, c′′
r , c′′′

r , c′′′′
r | 1 ≤ r ≤ n3}∪

{βr | 0 ≤ r ≤ n3 + 7} ∪ {(i, j)′k , (i, j)′′k | 1 ≤ i, j,k ≤ n}∪
{(i, j)′′k,r | 1 ≤ i, j,k ≤ n ∧ 1 ≤ r ≤ n3}∪
{α0,a,a′,a′′,b,b′,b′′,b′′′, c, c′, c′′, c′′′, c′′′′,yes,no},

where the input alphabet is � = {(i, j)k | 1 ≤ i, j, k ≤ n}, and the alphabet of the environment is E = {αr | 1 ≤ r ≤ n3 + 6}
– Membrane structure μ: the set of nodes is

V = {1, . . . ,11} ∪ {a1, j,a2, j | 1 ≤ j ≤ n} ∪ {ei, j,k | 1 ≤ i, j,k ≤ n}
The root is labelled by 1 and the remaining nodes are its children.

– Initial multisets:

M1 = {α0} ∪ {βr | 1 ≤ r ≤ n3 + 7}∪
{b′

r,b′′
r ,b′′′

r , c′
r, c′′

r , c′′′
r , c′′′′

r | 1 ≤ r ≤ n3 − 1} ; M2 = {an,b, c};M3 = {b′
n3} ;

M4 = {b′′
n3} ; M5 = {b′′′

n3} ; M6 = {c′
n3} ; M7 = {c′′

n3} ; M8 = {c′′′
n3} ;

M9 = {c′′′′
n3 } ; M10 = {yes} ; M11 = {no, β0} ;

Ma1, j = {a′
n3} , Ma2, j = {a′′

n3}, for 1 ≤ j ≤ n;
Mei, j,k = {(i, j)′′

k,n3}, for 1 ≤ i, j,k ≤ n.

– Rules of the system:
Rules in R1

– Rules to control the output of the computations by counters αr : {(αr , out ; αr+1 , in) | 0 ≤ r ≤ n3 + 5} (1.1)

– Rule to produce an affirmative answer: (yes , out) (1.2)

– Rule to produce a negative answer: (noαn3+6 , out) (1.3)

Rules in R2

– Rules to produce all possible subsets of A′
G in membranes labelled by 2 at configuration Cn3+1:

{[(i, j)k]2 → [(i, j)′k]2 [#]2 | 1 ≤ i, j, k ≤ n} (2.1)

– Rules to move objects a′ , a′′ , b′ , b′′ , c′′′ , c′ , c′′ , c′′′ and c′′′′ into membranes labelled by 2 at configurations Cn3+2,
Cn3+3, Cn3+4 and Cn3+5, respectively.
(a, out ; a′, in); (a′, out ; a′′, in) (2.2)

(b , out ; b′ , in) ; (b′ , out ; b′′ , in); (b′′ , out ; b′′′ , in) (2.3)

(c, out; c′, in); (c′, out; c′′, in); (c′′, out; c′′′, in); (c′′′, out; c′′′′, in) (2.4)

(a′′ b′′′ , out); (b′′′ c′′′′ , out) (2.5)

– Rules to produce in each membrane labelled by 2 at configuration Cn3+2 a subset of A′′
G from a subset of A′

G at
configuration Cn3+1:
{((i, j)′k , out ; (i, j)′′k , in) | 1 ≤ i, j, k ≤ n} (2.6)

– Rules to generate in each membrane labelled by 2 at configuration Cn3+1 a subset of A′′
G encoding a possible Hamil-

tonian cycle.

(2.7)

⎧⎪⎪⎨
⎪⎪⎩

{((i, j)′′k (i, j′)′′k′ , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}∪
{((i, j)′′k (i′, j)′′k′ , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}∪
{((i, j)′′k (i′, j′)′′k+1 , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n, j �= i′}∪
{((i, j)′′k (i′, j′)′′k , out) | 1 ≤ i, i′, j, j′,k,k′ ≤ n}

– Rules to check if the subset represented by each membrane with label 2 at configuration Cn3+3 encodes a Hamiltonian
cycle of the input graph: {(a′′ (i, j)′′k , out) | 1 ≤ i, j, k ≤ n} (2.8)

Rules in R3

Rules to produce 2n·m copies of object b′ in the skin membrane of configuration Cn3+1:
{(b′

r , out ; b′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (3.1)

{[b′
r]3 → [b′

r−1]3 [b′
r−1]3 | 2 ≤ r ≤ n ·m} (3.2)

[b′
1]3 → [b′]3 [b′]3 (3.3)

(b′ , out) (3.4)

Rules in R4

Rules to produce 2n·m copies of object b′′ in the skin membrane at configuration Cn3+1:
{(b′′

r , out ; b′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (4.1)

{[b′′
r]4 → [b′′

r−1]4 [b′′
r−1]4 | 2 ≤ r ≤ n ·m} (4.2)

[b′′
1]4 → [b′′]4 [b′′]4 (4.3)

(b′′ , out) (4.4)

Rules in R5

Rules to produce 2n·m copies of object b′′′ in the skin membrane at configuration Cn3+1:
{(b′′′

r , out ; b′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (5.1)

{[b′′′
r]5 → [b′′′

r−1]5 [b′′′
r−1]5 | 2 ≤ r ≤ n ·m} (5.2)

[b′′′
1]5 → [b′′′]5 [b′′′]5 (5.3)

(b′′′ , out) (5.4)

Rules in R6

Rules to produce 2n·m copies of object c′ in the skin membrane at configuration Cn3+1:
{(c′

r , out ; c′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (6.1)

{[c′
r]6 → [c′

r−1]6 [c′
r−1]6 | 2 ≤ r ≤ n ·m} (6.2)

[c′
1]6 → [c′]6 [c′]6 (6.3)

(c′ , out) (6.4)

Rules in R7

Rules to produce 2n·m copies of object c′′ in the skin membrane at configuration Cn3+1:
{(c′′

r , out ; c′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (7.1)

{[c′′
r]7 → [c′′

r−1]7 [c′′
r−1]7 | 2 ≤ r ≤ n ·m} (7.2)

[c′′
1]7 → [c′′]7 [c′′]7; (7.3)

(c′′ , out) (7.4)

Rules in R8

Rules to produce 2n·m copies of object c′′′ in the skin membrane at configuration Cn3+1:
{(c′′′

r , out ; c′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (8.1)

{[c′′′
r]8 → [c′′′

r−1]8 [c′′′
r−1]8 | 2 ≤ r ≤ n · m} (8.2)

[c′′′
1]8 → [c′′′]8 [c′′′]8 (8.3)

(c′′′ , out) (8.4)

Rules in R9

Rules to produce 2n·m copies of object c′′′′ in the skin membrane at configuration Cn3+1:
{(c′′′′

r , out ; c′′′′
r−1 , in) | n ·m +1 ≤ r ≤ n3} (9.1)

{[c′′′′
r]9 → [c′′′′

r−1]9 [c′′′′
r−1]9 | 2 ≤ r ≤ n ·m} (9.2)

[c′′′′
1]9 → [c′′′′]9 [c′′′′]9 (9.3)

(c′′′′ , out) (9.4)

Rules in R10

Rules to produce an affirmative answer:
(αn3+6 c′′′′ , in) ; (c′′′′ yes , out) (10.1)

Rules in R11

Rules to control the negative answer of the computations by counters βr :
{(βr out ; βr+1 , in) | 0 ≤ r ≤ n3 + 6} (11.1)

(βn3+7 no , out) (11.2)

Rules in Ra1, j , 1 ≤ j ≤ n

Rules to produce 2n3
copies of object a′ in the skin membrane at configuration Cn3+1:

{[a′
r]a1, j → [a′

r−1]a1, j [a′
r−1]a1, j | 2 ≤ r ≤ n3} (a1,j.1)

[a′
1]a1, j → [a′]a1, j [a′]a1, j (a1,j.2)

(a′ , out) (a1,j.3)

Rules in Ra2, j , 1 ≤ j ≤ n

Rules to produce 2n3
copies of object a′′ in the skin membrane at configuration Cn3+1:

{[a′′
r]a2, j → [a′′

r−1]a2, j [a′′
r−1]a2, j | 2 ≤ r ≤ n3} (a2,j.1)

[a′′
1]a2, j → [a′′]a2, j [a′′]a2, j (a2,j.2)

(a′′ , out) (a2,j.3)

Rules in Rei, j,k , 1 ≤ i, j,k ≤ n

Rules to produce 2n3
copies of object (i, j)′′k in the skin membrane at configuration Cn3+1:

{[(i, j)′′k,r]ei, j,k → [(i, j)′′k,r−1]ei, j,k [(i, j)′′k,r−1]ei, j,k | 2 ≤ r ≤ n3} (ei,j,k.1)

[(i, j)′′k,1]ei, j,k → [(i, j)′′k]ei, j,k [(i, j)′′k]ei, j,k (ei,j,k.2)

((i, j)′′k , out) (ei,j,k.3)

(5) The input membrane is the membrane labelled by 2 and the output region is the environment of the system (labelled
by 0).

According with the previous description, for each m, n ∈ N the recognizer P system �(〈m, n〉) is in the class CDC(2). In
the next subsection, we will give an overview how each system �(〈m, n〉) will process all directed graphs with n nodes and
m arcs.

4.2. An overview of the computations

We consider the polynomial encoding (cod, s) from HAM-CYCLE to � defined as follows: cod(G) = {(i, j)k | (i, j) ∈ E, 1 ≤
k ≤ n} and s(G) = 〈m, n〉, for each instance G = ({1, . . . , n}, {(i1, j1), . . . , (im, jm)}). The expression (i, j)k in cod(G) can be
interpreted as follows: arc (i, j) is “placed” in “position k” in a potential path of G . According to this encoding, graph G will
be processed by system �(s(G)) + cod(G). In what follows, we informally describe how system �(s(G)) + cod(G) works.
The solution proposed implements the following stages:

• Generation Stage: All possible combinations of arcs from the input graph, including a code of their position in potential
paths, are generated by using cell division in an adequate way.

• Checking Stage: It is checked whether or not the different combinations of arcs generated in the previous stage encode
Hamiltonian cycles of the input graph.

• Output Stage: The system sends the right answer to the environment according to the results obtained in the previous
stage.

Generation stage
At this stage, the system generates all the possible subsets of arcs of the graph (in fact, subsets of A′

G) which contain
their potential positions in a path according to the notations introduced in Subsection 2.2. In this way, by applying rules
of type 2.1 at configuration Cn3 , there will be 2n·m membranes labelled by 2 such that each of them encodes a different
combination of arcs from the input graph. For this, rules from R2 produce two new membranes for each object (i, j)k: one
containing its primed version, and other one not containing it. It produces that each membrane labelled by 2 will contain
a different subset of A′

G , and therefore a different path if it is correct. Simultaneously, by applying rules of types 1, 2 and
3 from R3, R4, R5, R6, R7, R8 and R9, 2n·m copies of objects b′, b′′, b′′′, c′, c′′, c′′′ and c′′′′ are produced in membranes
labelled by 3, 4, 5, 6, 7, 8, 9, respectively, and 2n3

copies of objects a′, a′′ and (i, j)′′k are produced in membranes labelled by
a1, j, a2, j , and ei, j,k , respectively. The generation stage takes n3 steps.

Proposition 4.1. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then at configuration Cn3 , the following
holds:

1. There are 2n·m membranes labelled by 2 such that each of them contains a different subset of A′
G = {(i, j)′k | 1 ≤ i, j, k ≤ n, (i, j) ∈

E} as well as object b, object c and n copies of object a.
2. There are 2n·m membranes labelled by 3 (respectively, by 4, 5, 6, 7, 8, 9) such each of them only contains object b′ (respectively,

b′′, b′′′, c′, c′′, c′′′ and c′′′′).
3. For each i, j, k (1 ≤ i, j, k ≤ n) there are 2n3

membranes labelled by ei, j,k, each of them only containing object (i, j)′′k .

4. For each j (1 ≤ j ≤ n) there are 2n3
membranes labelled by a1, j , each of them only containing object a′ , and there are 2n3

membranes labelled by a2, j , each of them only containing object a′′.
5. There is a membrane labelled by 10 and a membrane labelled by 11 such that Cn3(10) = {yes}, Cn3(11) = {no , βn3 }.
6. The contents of the skin membrane, labelled by 1, is

Cn3 (1) = {αn3 , β0, . . . , β̂n3 , . . . , βn3+7,b′
1, . . .b′

n3−1
,b′′

1, . . .b′′
n3−1

,b′′′
1 , . . .b′′′

n3−1
,

c′
1, . . . c′

n3−1
, c′′

1, . . . c′′
n3−1

, c′′′
1 , . . . c′′′

n3−1
, c′′′′

1 , . . . c′′′′
n3−1

}.

Checking stage
This stage takes 5 steps. At this stage, the system checks whether or not there exists a membrane labelled by 2 at

configuration Cn3+5 which contains a subset of A′′
G that encodes a Hamiltonian cycle of G .

At step n3 + 1, the contents of membranes labelled by 3, 4, 5, 6, 7, 8, 9, a1, j (1 ≤ j ≤ n), a2, j (1 ≤ j ≤ n) and ei, j,k (1 ≤
i, j, k ≤ n) are sent to the skin membrane by applying rules 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, a1, j .2, a2, j .2, ei, j,k.3. From this
moment on, these membranes do not participate in the evolution of the configurations.

Proposition 4.2. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then, omitting the empty membranes,
at configuration in Cn3+1 we have the following:

1. There are 2n·m membranes labelled by 2 such that each of them contains a different subset of A′
G = {(i, j)′k | 1 ≤ i, j ≤ m, 1 ≤ k ≤

n, (i, j) ∈ E} as well as object b, object c and n copies of object a.
2. There is a membrane labelled by 10 and a membrane labelled by 11 such that Cn3+1(10) = {yes}, Cn3+1(11) = {no , βn3+1}.

3. The skin membrane, labelled by 1, contains 2n3
copies of each of the following objects: (i, j)′k, (i, j)′′k (1 ≤ i, j, k ≤ n), a′, a′′, b′, b′′,

b′′′, c′, c′′, c′′′, c′′′′; also, it contains the following set of objects:

{αn3 , β0, . . . , β̂n3+1, . . . , βn3+7,b′
1, . . .b′

n3−1
,b′′

1, . . .b′′
n3−1

,b′′′
1 , . . .b′′′

n3−1
,

c′
1, . . . c′

n3−1
, c′′

1, . . . c′′
n3−1

, c′′′
1 , . . . c′′′

n3−1
, c′′′′

1 , . . . c′′′′
n3−1

}.

At step n3 + 2, objects a, b, c in membrane labelled by 2 at configuration Cn3+1 are substituted by objects a′, b′, c′ from
the skin membrane by applying rules 2.2, 2.3, and 2.4. Simultaneously, by applying rules 2.6, each subset of A′

G contained
in a membrane labelled by 2 at configuration Cn3+1 produces the “corresponding” subset of A′′

G . Besides, Cn3+2(10) = {yes}
and Cn3+2(11) = {βn3+2 , no}.

At step n3 + 3, by applying rules 2.3 and 2.4, objects a′, b′, c′ in membranes labelled by 2 at configuration Cn3+2 are
substituted by objects a′′, b′′, c′′ from the skin membrane, and simultaneously by applying rules of type 2.7 each subset
contained in a membrane labelled by 2 at configuration Cn3+2 is transformed into a subset encoding all possible paths in
the input graph. In this manner, according to Proposition 2.1, we have that the input graph (with n nodes and m arcs) has
a Hamiltonian cycle if and only if at configuration Cn3+3, there exists some membrane labelled by 2 at configuration Cn3+3
such that the subset of A′′

G contained in it has size equal to n. Besides, Cn3+3(10) = {yes} and Cn3+3(11) = {βn3+3 , no}.
At step n3 + 4, by applying rules 2.3 and 2.4, objects b′′, c′′ in membranes labelled by 2 are substituted by objects b′′′, c′′′

from the skin membrane, and simultaneously by applying rules 2.8 each object contained in the subset associated to each
membrane labelled by 2 at configuration Cn3+3, is sent to the skin membrane cooperating with object a′′ . Then, the number
of copies of object a′′ appearing in a membrane labelled by 2 at configuration Cn3+4 is equal to n −γ , where γ is the size of
the path in the input graph encoded by that membrane. Then, the input graph (with n nodes and m arcs) has a Hamiltonian
cycle if and only if there exists a membrane labelled by 2 at configuration Cn3+4 such that it does not contain any object a′′ .

At step n3 + 5, by applying rules of type 2.5, objects a′′ and b′′′ in membrane labelled by 2 at configuration Cn3+5 are
sent to the skin membrane and, simultaneously, rule (c′′′ , out ; c′′′′ , in) produces an object c′′′′ in each membrane labelled
by 2 at configuration Cn3+5. Hence, we can deduce the following proposition.

Proposition 4.3. Let C = (C0, C1, . . . , Cq) be a computation of the system �(s(G)) + cod(G). Then, the input graph has a Hamiltonian
cycle if and only if there exists a membrane labelled by 2 at configuration Cn3+5 such that it contains an object b′′′. Besides, Cn3+5(10) =
{yes} and Cn3+5(11) = {βn3+5 , no}.

Output stage
Finally, the output stage takes 3 steps. Only membranes labelled by 2 at configuration Cn3+5 which contain some object

b′′′ (that is, membrane encoding a Hamiltonian cycle) can evolve and only rule (c′′′ , out ; c′′′′ , in) ∈R2 is applicable to that
membrane. In this case, an object c′′′′ will appear in each membrane labelled by 2 at that configuration. Furthermore, if
a membrane with label 2 at the mentioned configuration does not encode a Hamiltonian cycle of the input graph, then it
contains objects b′′ , so the rule (a′′ b′′′ , out) ∈ R2 will be applied. That is, the input graph has a Hamiltonian cycle if and
only if some object c′′′′ appears in the skin membrane at configuration Cn3+6. Besides, Cn3+6(10) = {yes} and Cn3+6(11) =
{βn3+6 , no}.

If the input graph has a Hamiltonian cycle, then only rules (αn3+6 c′′′′ , in) ∈ R10 and (βn3+6 , out ; βn3+7 , in) ∈ R11 are
applicable to configuration Cn3+6. Otherwise, only rule (βn3+6 out ; βn3+7 , in) is applicable to that configuration. So, the an-
swer to the problem is affirmative if and only if Cn3+7(10) = {αn3+6 c′′′′ , yes}. Besides, in any case, Cn3+7(11) = {βn3+7 , no}.
Then, if there exists a Hamiltonian path then rules (c′′′′ yes , out) ∈ R10 and (βn3+7 no , out) ∈ R11 are applicable to con-
figuration Cn3+7. Otherwise, only rule (βn3+7 no , out) ∈ R11 is applicable to that configuration. Hence, the answer to the
problem is affirmative if and only if the skin membrane at configuration Cn3+8 contains object yes (together with objects
c′′′′, βn3+7, no) but no object αn3+6. Otherwise, the skin membrane at configuration Cn3+8 contains objects βn3+7, no, αn3+6
but no object yes.

At the last step, in case of an affirmative answer, rule (yes , out) is applied to configuration Cn3+8 producing an ob-
ject yes in the environment and the computation halts. Otherwise, rule (noαn3+6 , out) is applied to that configuration
producing a negative answer.

Remark. When we provide a polynomial-time solution for an NP-hard problem by means of a family of recognizer mem-
brane system, we are trading space for time, that is, an exponential number of membranes and/or objects are used along
the computations. Let us notice that in the solution for the HAM-CYCLE problem, the maximum number of membranes
used in any configuration is (2n + n3) · 2n3 + 8 · 2n·m + 3, and the maximum number of objects used in any configuration is
(2n + n3) · 2n3 + (n + 10) · 2n·m + 8n3 + 3.

4.3. Main result

Theorem 4.4. HAM-CYCLE ∈ PMCCDC(2) .

Proof. The family of recognizer P systems designed in Section 4.1 verifies the following:

(a) Every system of the family � is in the class CDC(2).
(b) The family � is polynomially uniform by Turing machines. Indeed, for each m, n ∈ N, the rules of �(〈m, n〉) of the

family are recursively defined from m, n ∈N, and the amount of resources needed to build �(〈m, n〉) is of a polynomial
order in n.
– Size of the alphabet: n6 + 12n3 + 29 ∈ �(n6);
– Initial number of membranes: n3 + 2n + 11 ∈ �(n3);
– Initial number of objects: 9n3 + 3n + 13 ∈ �(n3);
– Number of rules: n6 + 4n5 + n4 + 13n3 + 2n + 30 ∈ �(n6);
– Maximal length of a rule: 2 ∈ �(1).

(c) The pair (cod, s) of polynomial-time computable functions defined in Subsection 4.2 has the following property: for
each instance G of HAM-CYCLE, s(G) is a natural number, cod(G) is an input multiset of the system �(s(G)), and for
each t ∈ N, s−1(t) is a finite set.

(d) The family � is polynomially bounded, sound and complete with regard to (HAM-CYCLE, cod, s) (see Subsection 4.2).

Therefore, according to Definition 3.2, the family � of P systems constructed in subsection 4.1 solves the HAM-CYCLE
problem in polynomial-time with respect to the number of nodes. �

Corollary 4.5. NP ∪ co-NP ⊆ PMCCDC(2) .

Proof. It suffices to notice that the HAM-CYCLE problem is an NP-complete problem, HAM-CYCLE∈ PMCCDC(2) , and the
complexity class PMCCDC(2) is closed under polynomial-time reduction and under complement. �

5. Conclusions and open problems

This work should be considered as a contribution to the development of new mechanisms and tools in the framework
of Membrane Computing to address the P versus NP problem.

In previous works, the computational efficiency of tissue-like P systems with symport/antiport rules and cell division has
been studied in terms of cooperation among objects to apply a rule. It is worth pointing out that, in such framework, the
use of cooperative rules (needing at least two objects to be triggered) is needed to solve NP-complete problems in uniform
polynomial-time, assuming that P �= NP [29].

Cell-like P systems with symport/antiport rules and membrane division (only for elementary membranes) are a restrictive
variant of such kind of tissue P systems. Recently, a uniform linear-time solution to the SAT problem has been provided by
means of a family of this sort of cell-like P systems allowing communication rules involving at most three objects [12]. In
this paper, this result has been improved by showing that minimal cooperation (two objects involved in the communication
rules) is enough in order to solve efficiently computationally hard problems. Specifically, a uniform polynomial-time solution
to the HAM-CYCLE problem by a family of P systems with membrane division which uses communication rules with length
at most two, has been provided. Consequently, bearing in mind that PMCCDC(1) = P, a new optimal tractability frontier has
been obtained in terms of the length of communication rules (total number of objects involved in them): in the framework
of P systems with symport/antiport rules and membrane division (for elementary membranes), passing from 1 to 2 amounts
to passing from non-efficiency to efficiency, assuming that P �= NP.

By using membrane separation rules instead of membrane division rules in the framework of cell-like P systems with
symport/antiport rules, a boundary of the efficiency is obtained passing from 2 to 3 in the length of communication rules
[11]. Then, we have highlighted an interesting difference between replication of objects (abstracted by means of division
rules) and distribution of objects (abstracted by means of separation rules) with respect to a frontier of the efficiency.

We conclude by proposing some open problems related to the role of the direction in communication rules (only symport
or only antiport rules are allowed) in this kind of cell-like P systems from a complexity view.

(a) The solution given of the HAM-CYCLE problem can be adapted in such manner that only antiport rules are consid-
ered but then their length is at most three. So, NP ∪ co-NP ⊆ PMCCDA(3) . What can be said about the computational
complexity class PMCCDA(2)?

(b) Concerning the efficiency of cell-like P systems with membrane division, what happens if the communication rules
allowed can only be of the symport type?

(c) At the initial configuration of a P system with symport/antiport rules, the symbols of the distinguished alphabet E
appear in the environment in an arbitrary number of copies. What about the efficiency of recognizer P systems from CDA
and CDS when the alphabet of the environment is an empty set?

Acknowledgements

This work was partially supported by Project TIN2017-89842-P co-financed by Ministerio de Economía, Industria y Com-
petitividad (MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo Europeo de Desarrollo Regional
(FEDER) of the European Union.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, An Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts, 1994.
[2] M.R. Garey, D.S. Johnson, Computers and Intractability A Guide to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.
[3] R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font, Characterizing tractability by tissue-like P systems, in: Membrane Computing, 10th Interna-

tional Workshop, WMC 2009, Curtea de Arges, Romania, August 24–27, 2009, in: Lecture Notes in Comput. Sci., vol. 5957, 2010, pp. 289–300, Revised
Selected and Invited Papers.

[4] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, On the efficiency of cell-like and tissue-like recognizing membrane
systems, Int. J. Intell. Syst. 24 (7) (2009) 747–765.

[5] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-Campero, On the power of dissolution in P systems with active membranes,
in: R. Freund, et al. (Eds.), Membrane Computing, 6th International Workshop, WMC 2005, Vienna, Austria, July 18–21, 2006, in: Lecture Notes in
Comput. Sci., vol. 3850, 2005, pp. 224–240, Revised Selected and Invited Papers.

[6] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fund. Inform. 71 (2–3) (2006) 279–308.
[7] L.F. Macías-Ramos, M.A. Martínez-del-Amor, M.J. Pérez-Jiménez, A. Riscos-Núñez, L. Valencia-Cabrera, The role of the direction in tissue P systems with

cell separation, J. Autom. Lang. Comb. 19 (1–4) (2014) 185–199.
[8] L.F. Macías-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, The efficiency of tissue P systems with cell separation relies on the environment,

in: E. Csuhaj-Varjú, et al. (Eds.), Membrane Computing – 13th International Conference, CMC 2012 Budapest, Hungary, August 28–31, 2012, in: Lecture
Notes in Comput. Sci., vol. 7762, 2013, pp. 243–256, Revised Selected Papers.

[9] L.F. Macías-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, L. Valencia-Cabrera, Membrane fission versus cell division: when membrane proliferation is
not enough, Theoret. Comput. Sci. 608 (2015) 57–65.

[10] L.F. Macías-Ramos, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, Limits on efficient computation in P systems with symport/antiport, in: C. Graciani,
Gh. Păun, A. Riscos-Núñez, L. Valencia-Cabrera (Eds.), Proceedings of the Fifteenth Brainstorming Week on Membrane Computing, Sevilla, Spain, Jan-
uary 31, February 3, 2017, Fénix Editora, 2017, pp. 147–160.

[11] L.F. Macías-Ramos, B. Song, L. Valencia-Cabrera, L. Pan, M.J. Pérez-Jiménez, Membrane fission: a computational complexity perspective, Complexity
21 (6) (2016) 321–334.

[12] L.F. Macías-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-Jiménez, P-Lingua based simulator for P systems with symport/antiport rules,
Fund. Inform. 139 (2) (2015) 211–227.

[13] C. Martín-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton, Tissue P systems, Theoret. Comput. Sci. 296 (2) (2003) 295–326.
[14] L. Pan, T.-O. Ishdorj, P systems with active membranes and separation rules, J. Univ. Comput. Sci. 10 (5) (2004) 630–649.
[15] L. Pan, M.J. Pérez-Jiménez, Computational complexity of tissue–like P systems, J. Complexity 26 (3) (2010) 296–315.
[16] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Gener. Comput. 20 (3) (2002) 295–305.
[17] A. Păun, Gh. Păun, G. Rozenberg, Computing by communication in networks of membranes, Internat. J. Found. Comput. Sci. 13 (6) (2002) 779–798.
[18] Gh. Păun, Computing with membranes, J. Comput. Syst. Sci. 61 (1) (2000) 108–143.
[19] Gh. Păun, P systems with active membranes: attacking NP-complete problems, J. Autom. Lang. Comb. 6 (2001) 75–90.
[20] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[21] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P system with cell division, Int. J. Comput. Commun. Control III (3) (2008) 295–303.
[22] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing, Oxford University Press, Oxford, 2010.
[23] I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, M.A. Gutiérrez, M. Rius-Font, On a partial affirmative answer for a Păun’s conjecture, Internat. J.

Found. Comput. Sci. 22 (1) (2011) 55–64.
[24] M.J. Pérez-Jiménez, An approach to computational complexity in Membrane Computing, in: G. Mauri, et al. (Eds.), Membrane Computing, 5th Interna-

tional Workshop, WMC5, in: Lecture Notes in Comput. Sci., vol. 3365, 2005, pp. 85–109, Revised Selected and Invited Papers.
[25] M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, F.J. Romero Campero, A polynomial alternative to unbounded environment for tissue P systems with

cell division, Int. J. Comput. Math. 90 (4) (2013) 760–775.
[26] M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera, The relevance of the environment on the efficiency of tissue P systems, in:

A. Alhazov, et al. (Eds.), Membrane Computing – 14th International Conference, CMC 2013 Chisinau, Republic of Moldova, August 20–23, 2013, in:
Lecture Notes in Comput. Sci., vol. 8340, 2014, pp. 308–321, Revised Selected Papers.

[27] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity classes in models of cellular computing with membranes, Nat. Comput. 2 (3)
(2003) 265–285.

[28] M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial complexity class in P systems using membrane division, J. Autom. Lang.
Comb. 11 (4) (2006) 423–434.

[29] A.E. Porreca, N. Murphy, M.J. Pérez-Jiménez, An optimal frontier of the efficiency of tissue P systems with cell division, in: M. García-Quismondo, et al.
(Eds.), Tenth Brainstorming Week on Membrane Computing, Vol. II, Seville, Spain, January 30–February 3, 2012, Report RGNC 01/2012, Fénix Editora,
2012, pp. 141–166.

[30] P systems website, http://ppage .psystems .eu.

http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636F726D656Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib474As1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656666696369656E6379s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656666696369656E6379s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib646973736F6C7574696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib646973736F6C7574696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib646973736F6C7574696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib496F6E6573637531s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib73657061726174696F6E31s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib73657061726174696F6E31s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7433s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7433s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7433s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636463s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636463s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63646331s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63736333s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63736333s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63646333s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63646333s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib6D617274696Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib73657061726174696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib4A436F6D706Cs1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib5061756E41s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib5061756E546973737565s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib63656C6C31s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib7061756E6469766973696F6Es1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib5061756E3032s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib536576s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib7061756E32303130s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636F6E6A656374757265s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636F6E6A656374757265s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636F6D706C656A69646164s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib636F6D706C656A69646164s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7432s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7432s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7431s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7431s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib656E7669726F6E6D656E7431s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib4E61436Fs1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib4E61436Fs1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib6D6172696Fs1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib6D6172696Fs1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646332s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646332s1
http://refhub.elsevier.com/S0304-3975(19)30002-7/bib74646332s1
http://ppage.psystems.eu

	A path to computational efﬁciency through membrane computing
	1 Introduction
	2 Preliminaries
	2.1 Languages and multisets
	2.2 Graphs and Hamiltonian cycles
	2.3 Decision problems and languages
	2.4 The Cantor pairing function

	3 P systems with symport/antiport rules and division rules
	4 On the presumed efﬁciency of CDC(2)
	4.1 A uniform polynomial-time solution of the HAM-CYCLE problem in CDC(2)
	4.2 An overview of the computations
	4.3 Main result

	5 Conclusions and open problems
	Acknowledgements
	References

