
11 Years of P-Lingua: A Backward Glance

Ignacio Pérez-Hurtado, David Orellana-Mart́ın, Miguel Á. Mart́ınez-del-Amor,
Luis Valencia-Cabrera, Agust́ın Riscos-Núñez, Mario J. Pérez-Jiménez

Reseach Group on Natural Computing
Universidad de Sevilla
Avda. Reina Mercedes S/N, 41012 Sevilla, Spain
{perezh,dorellana,mdelamor,lvalencia,ariscosn,marper}@us.es

Summary. In 2008, P-Lingua was born. The Research Group on Natural Computing
worked on the development of simulation tools since the beginning of Membrane Comput-
ing. However, back in 2007, researchers from the group set out to the ambitious journey
of creating a generic simulation framework for P systems. P-Lingua has evolved since
then, offering more flexibility and a wider range of supported models. Many applications
have also branched from this software project. In this paper, we briefly survey the evolu-
tion of P-Lingua to date, some of the associated applications, and prospective paths for
upcoming challenges in the research area.

Key words: P systems, Simulation Software, P-Lingua

1 Introduction

Since the dawn of Membrane Computing, software tools to perform P system sim-
ulations have been developed. In fact, simulators have accompanied the evolution
of P system models [34, 3, 30], given that they are the best way to aid in experi-
mental validation and in formal verification. In the early years of the research area,
simulators were conceived for specific models, leading to a plethora of interfaces
and platforms, each one very different to each other. In this context, developing an
uniform simulation framework was a need. This was the seed that led to P-Lingua
project [36], which was the major work presented at Ignacio Pérez-Hurtado’s doc-
toral dissertation [30]. Further theses developed at the core of the Research Group
on Natural Computing were carried out with specific contributions to P-Lingua
[23, 8, 33, 15, 24].

P-Lingua aims at flexibility and extensibility to simulate P systems. The term
itself is employed at different extents, so it is usually confused. P-Lingua can be
used to denote:

• the software project : P-Lingua is an open-source software project published
under GNU GPL license. All the developed code is freely available to the



452 I. Pérez-Hurtado et al.

community, and we hope that it helps other researchers to run their models
and to develop new simulators. It includes the parser, the generation of files,
the simulation framework.

• the simulation framework : more commonly known as pLinguaCore, it is Java
framework that aims at simulating P systems in a flexible and extensible way.
Several design pattern of object oriented programming were employed to help
developing new simulations in a clear and clean manner.

• the programming language: instead of having an specific GUI to enter the in-
formation of the models, P-Lingua enables P-system designers to write their
models into plain-text files in a very similar way (i.e. with similar syntax) than
they write them down in paper or whiteboard.

• the files with .pli extension: files including models described in P-Lingua pro-
gramming language have the .pli extension, and they are the input for the
simulation software framework.

• the command-line tool : pLinguaCore can be employed from the Terminal
(Linux) or Cmd (Windows) using a command-line tool with specific param-
eters to define the input .pli files, the output files (when used as a compiler) or
the simulation options (when used as a simulator).

• the translator/compiler to binary files: efficient, parallel simulators came af-
ter P-Lingua, looking for small runtimes. They harness the P-Lingua parsing
engine in order to process .pli files, and specific binary files are generated for
them.

In this paper, we look back and survey the evolution of P-Lingua through the
11 years of developments and efforts in the research community. In Section 2, a
gentle introduction of the P-Lingua programming language is made. In Section 3, a
glance at the evolution of P-Lingua software is provided. Graphical User Interfaces
(GUIs) based on P-Lingua are revisited in Section 4. The connection of P-Lingua
to parallel simulators is summarized in Section 5. Conclusions and plans to future
developments are displayed in Section 6.

2 P-Lingua Description Language

The simulation of P system computations over conventional silico machines has
been done from the beginning of Membrane Computing.

The general structure of a simulator should contain three main modules:

• The input: A way to define the P system to be simulated as well as the initial
configuration.

• The simulation core: The implementation of one or more simulation algo-
rithms to reproduce the behavior of the P system to be simulated.

• The output: The representation of relevant information to the final user, it
could be the representation of the final configuration, one computation, the
whole computation tree, etc. In some cases, the information should be pro-
cessed, developing statistics and providing graphics.



11 Years of P-Lingua 453

The simulation core usually depends on the software/hardware architecture to
be used, highly parallel architectures such as CUDA use simulation algorithms
very different than the ones used with approximations such as developing in Java
or C/C++. The output depends on the final goal of the simulator and the final
user background, for example, one application for simulating ecosystems should
show information about populations, environment conditions such as weather, etc.
Applications for membrane computing should show the generated computation,
multisets of objects, executed rules, etc.

Regardless of the type of application, the definition of the P system is manda-
tory and it is a common module for all the simulators. One approximation is to
hard-code the P system definition, but it could lead to errors and it is difficult to
debug. Using graphical user interfaces introduces dependencies with the technol-
ogy and operating systems, using GUIs for the P system definition also implies a
maintenance effort and they can become obsolete over the years.

Thus, the solution used in P-Lingua is to use a programming language to de-
fine P systems. The files written in P-Lingua are close to the standard scientific
notation, minimizing the effort of writing them. P-Lingua code is parametric using
variables and iterators, modular using reusable source blocks and it can be trans-
lated to other formats by using parsers. We could say that the main goal of the
P-Lingua language is to minimize the time from the blackboard to the computer.

As example, next is a P-Lingua code defining a family of recognizer P systems
to solve the SAT problem in the framework of cell-like P systems with active
membranes and elementary division rules based on the solution presented in [31].
It shows the main characteristics of the language. An exhaustive description of the
language can be found in the literature [4, 5, 22, 30] and it is out of the scope of
this review.

@model<membrane_division>

def Sat(m,n)

{

/* Initial configuration */

@mu = [[]’2]’1;

/* Initial multisets */

@ms(2) = d{1};

/* Set of rules */

[d{k}]’2 --> +[d{k}]-[d{k}] : 1 <= k <= n;

{

+[x{i,1} --> r{i,1}]’2;

-[nx{i,1} --> r{i,1}]’2;

-[x{i,1} --> #]’2;

+[nx{i,1} --> #]’2;

} : 1 <= i <= m;



454 I. Pérez-Hurtado et al.

{

+[x{i,j} --> x{i,j-1}]’2;

-[x{i,j} --> x{i,j-1}]’2;

+[nx{i,j} --> nx{i,j-1}]’2;

-[nx{i,j} --> nx{i,j-1}]’2;

} : 1<=i<=m, 2<=j<=n;

{

+[d{k}]’2 --> []d{k};

-[d{k}]’2 --> []d{k};

} : 1<=k<=n;

d{k}[]’2 --> [d{k+1}] : 1<=k<=n-1;

[r{i,k} --> r{i,k+1}]’2 : 1<=i<=m, 1<=k<=2*n-1;

[d{k} --> d{k+1}]’1 : n <= k<= 3*n-3;

[d{3*n-2} --> d{3*n-1},e]’1;

e[]’2 --> +[c{1}];

[d{3*n-1} --> d{3*n}]’1;

[d{k} --> d{k+1}]’1 : 3*n <= k <= 3*n+2*m+2;

+[r{1,2*n}]’2 --> -[]r{1,2*n};

-[r{i,2*n} --> r{i-1,2*n}]’2 : 1<= i <= m;

r{1,2*n}-[]’2 --> +[r{0,2*n}];

-[c{k} --> c{k+1}]’2 : 1<=k<=m;

+[c{m+1}]’2 --> +[]c{m+1};

[c{m+1} --> c{m+2},t]’1;

[t]’1 --> +[]t;

+[c{m+2}]’1 --> -[]Yes;

[d{3*n+2*m+3}]’1 --> +[]No;

} /* End of Sat module */

/* Main module */

def main()

{

/* Call to Sat module for m=4 and n=6 */

call Sat(4,6);

/* Expansion of the input multiset */

@ms(2) += x{1,1}, nx{1,2}, nx{2,2}, x{2,3},

nx{2,4}, x{3,5}, nx{4,6};



11 Years of P-Lingua 455

} /* End of main module */

3 P-Lingua Simulation Software

PLinguaCore [36] is a GNU GPL library written in Java for parsing P-Lingua files,
simulate computations and translate input P-Lingua files to other file formats. The
library detects errors in the file and reports them such as a regular compiler tool.
For each supported P system variant, several simulation algorithms are included.
Eventually, the library translates files, which define a P system, between formats,
for instance, from P-Lingua format to binary format.

Each version of the library is associated with an extension of the programming
language and simulation engine to cover more types of P systems:

• pLinguaCore 1.0: The initial version. It was able to define active membrane
P systems with division rules. pLinguaCore was in very early state. [4].

• pLinguaCore 2.0: Several cell-like P system models and built-in simulators
for each supported model were added [5].

• pLinguaCore 2.1: Support for tissue-like P systems with division rules were
added [22], plus fixed bugs.

• pLinguaCore 3.0: The simulation algorithm called DCBA for Population
Dynamics P systems (PDP systems) was added [19], along with a new binary
output file for PDP systems [17]. In this version, stochastic P systems are
discontinued. Some bugs were fixed.

• pLinguaCore 4.0: Support for Spiking Neural P systems was added [13].
Moreover, Tissue-Like P systems with Cell Separation Rules was also added [29].
Some bugs were also fixed.

The development of pLinguaCore continued as part of MeCoSim tool, as de-
picted in next section.

4 GUIs for P-Lingua

As highlighted from the beginning of this survey paper, from its very beginning
P-Lingua aimed to provide a general-purpose framework for the description and
simulation of P systems. This would emerge as a greatly valuable tool for P systems
experts to work with P systems by specifying them in a similar way that they
would do with paper and pen in their theoretical studies, as shown in the previous
sections.

However, in order to provide these users with more usable mechanisms to ex-
periment with models based on P systems, they would require more visual elements
to help them save time and clarify the evolution of the systems under study.

Additionally, membrane systems proved to be useful as a modelling framework
for real problems in areas ranging from biology to economy, and a second group of



456 I. Pérez-Hurtado et al.

interest appeared into the scene: people not necessarily familiar with P systems,
but using the models designed by experts to help understanding and managing the
phenomena they were interested in. These kinds of end users would need higher
level tools to handle the systems but not entering into technical details, and here
some graphical interfaces would also play an essential role.

Among these visual interfaces to handle P systems based on the P-Lingua
framework, it is worth mentioning two especially relevant ones: MeCoSim and
MeCoGUI, described within the following subsections.

4.1 MeCoSim

From the very beginning in 2009-2010 [28], MeCoSim was designed with the two-
fold intention expressed above, to help P systems designers with the modelling
and verification tasks, and also allowing end users to handle solutions based on
membrane systems [33, 30].

For the first goal, this software was always supported by the parsing, debug-
ging and simulation engine given by P-Lingua, while the latter objective required
further development to provide some mechanism where P systems designers could
easily prepare end-user applications by a relatively simple configuration. Thus,
MeCoSim was initially designed to enable the user defined customized interfaces,
with inputs, outputs, charts, etc., adapted to each model or solution given by a
family of P systems, expressed in MeCoSim language. This enables the users to
enter their data for different initial conditions, instantiating the desired P systems
within the family.

Apart from the initial goals, this software environment had from its concep-
tion two essential objectives: the flexibility required for the definition of any kind
of custom applications and variety of P systems accepted, and the extensibility
to increase its initial functionalities through the development using its plugins
architecture and the integration with external packages. Thus, the seminal ver-
sion of the software was enriched by the integration with different tools for the
property extraction and verification of P systems [12, 9] and the development of
plugins for graph-based problems, definition of propositional formulas, extensions
of the language accepted by the generation of parameters, connection with exter-
nal simulators based on Spin [10] and several other new features for designers and
end users. Extensive documentation, case studies, explicative videos, etc. about
everything related with MeCoSim can be found at [35].

P-Lingua inside MeCoSim

Given the nature of this survey paper, devoted to P-Lingua, it is worth mention-
ing that MeCoSim is fully compatible with any version of P-Lingua, and uses
pLinguaCore as its engine for parsing and simulation (additionally, it allows the
simulation through other external simulators, but its most extended use makes
use of pLinguaCore). Thus, MeCoSim will mainly expose the types of computing



11 Years of P-Lingua 457

models, with their parsers and simulators, provided by the version of pLingua we
decide to deploy with MeCoSim. Therefore, depending on which version of pLin-
guaCore (see previous sections) we use, a different set of models and simulators
will be available to use in MeCoSim.

However, the scope of MeCoSim and the collaboration with different external
use brought new needs in terms of types of models to cover in terms and features
of the P-Lingua language itself. The time constraints of P-Lingua project and
MeCoSim-based applications used by different research groups were different, and
was not possible to make both goals fit together with a sound coordination. Hence,
a new version of pLinguaCore, let us say a fork from the project, started to grow
inside MeCoSim project, and MeCoSim integrated this new version of pLinguaCore
inside its distribution, progressively diverging from pLinguaCore 4. Despite this
divergence, however, all models available in pLinguaCore 4 were also available
inside pLinguaCore version used by MeCoSim. In this sense, we could informally
consider this internal version as some unofficial pLinguaCore 4.5, including its
predecessor plus some additional features in the language and some further models
(with their parsers and simulators).

Among the main new computing models added within P-Lingua version inside
MeCoSim we can find:

• Simple kernel P systems[9].
• Probabilistic Guarded (Scripted) P systems[7, 6].
• Evolutional-communication P systems[25].
• Fuzzy Reasoning Spiking Neural P systems[14].
• Cell-like Spiking Neural P systems[32].
• P systems with minimal cooperation.
• Tissue P systems with promoters.

4.2 MeCoGUI

MeCoGUI is a minimal graphical user interface for P-Lingua which simplifies the
process of parsing input parameters and generating results files. The current ver-
sion encapsulates a version of P-Lingua which integrates Probabilistic Guarded
Scripted P (PGSP) systems, a novel Membrane Computing framework tailored
for modelling population dynamics [8, 7].

PGSP systems have been used to study the behaviour and conservation trends
of Pieris napi oleracea, (P. n. oleracea, for short). This species, commonly known
as mustard white butterfly, is native from eastern North America. The aim of the
model is to predict population growth trends and evolutionary responses of several
genotypes of this species, considering the concurrent invasions of the exotic plant
garlic mustard (Alliaria petiolata), and another exotic, Cardamine pratensis [6].

4.3 pLinguaPlugin

pLinguaPlugin was an Eclipse plug-in which provided an end-user interface for
using pLinguaCore. Hence, all services performed by pLinguaCore, such as com-



458 I. Pérez-Hurtado et al.

pilation of P system files, error detection, file translation and P system simulation
were accessed in an intuitive and user-friendly way by means of pLinguaPlugin.
It also provided ways to visually display configurations and modify specifications
of P systems on real time. This component is free software published under GNU
GPL license, and it is only compatible for pLinguaCore 2.0. After that, the support
was discontinued. The plugin is still available at the P-Lingua website [36].

4.4 P-Lingua web analyzer

A web analyzer for P-Lingua was developed in PHP and deployed at the P-Lingua
website [36]. An user can upload a .pli file, select to either simulate until a halting
configuration or a certain number of steps, and by using pLinguaCore as a backend,
simulate the model. When the simulation is finished, the output is shown on the
website as a tree, where one can select certain configurations, and inside them,
depict membranes, objects and rules executed. Moreover, both the simulation and
the output data, dumped by pLinguaCore, is shown on the window. This tool
was developed as a final project of computer engineering by J. González-Pareja in
2012.

5 Connection to Parallel Simulators on GPUs

pLinguaCore is the software framework devoted to perform P system simulations.
As mentioned above, it is developed using object-oriented paradigm and consid-
ering design patterns. The objective of it is to offer readability, flexibility and
extensibility of the framework for the research community. However, this comes
at the cost of performance. Thus, a branch of P-Lingua project was the devel-
opment of efficient, parallel simulators for P systems. This new project was later
codenamed PMCGPU (Parallel simulators for Membrane Computing on the GPU)
[37].

The platform employed to accelerate the simulation of P systems was the GPU
(Graphics Processing Units), given that, since the introduction of CUDA, it is
easily programmable and leverages a high degree of parallelism (from hundreds
to thousands of processing cores) [11]. Multicore CPUs were also used to speedup
simulations at a lower level through OpenMP. Several models have been simulated
on GPUs so far, as surveyed in [16].

In the next subsections, we will show the two CUDA-based simulators that
used input files generated by P-Lingua: PCUDA (for active membrane systems)
[2] and ABCD-GPU (for PDP systems) [17]. The specific details of this input,
binary formats can be consulted in [23].

5.1 Binary files for Active Membranes

The first GPU-based simulator was first presented in the 7th BWMC (2009) [21],
focused on recognizer P systems with active membranes and elementary division



11 Years of P-Lingua 459

(called PCUDA [2]). This was a generic simulator that required a description of the
P system to be simulated as input, reproduced only one computation (confluent
condition was assumed), and output the description of the configurations in a syn-
tax close to pLinguaCore output module. In this sense, P-Lingua was employed as
a compiler: parsing a P-Lingua file describing a P system with active membranes,
and generating a compressed binary file with the unwrapped, processed informa-
tion to be injected to PCUDA simulator. This binary file was carefully designed
to compress the amount of bits dedicated to define (in this order): the alphabet,
the membrane structure, the rules, and the initial configuration. The header of the
file included information about the precision (amount of bits) employed for each
part.

pLinguaCore was then extended (version 2.0) to support the generation of a
specific binary format devoted to only one P system variant (active membranes).
P-Lingua command line was extended distributed alongside the PCUDA simulator
[37], so that users were able to generate binary files from .pli files by typing: java
-jar pparser.jar inputFile.pli inputFile.bin. If the binary file is gener-
ated without errors, it can be used as input for the simulator, plus providing some
extra information: number of membranes expected to be generated by the model
(upper bound), number of objects (symbols) defined in the alphabet, number of
threads to be launched on the GPU for each membrane.

5.2 Binary files for PDP systems

PDP systems were also considered for parallel simulators, given the real require-
ment of efficiency by the applications (named ABCD-GPU). The first version of
ABCD-GPU was implemented in OpenMP to harness multicore CPUs [18], and
was later extended for GPUs [20]. However, these initial versions aimed at testing
the concept of executing DCBA algorithm [19] in parallel, and in order to stress the
simulators, randomly generated PDP systems were used as input. They were cre-
ated inside the simulator, so there was no need to input files. In [17], ABCD-GPU
was extended with a input module for binary files. The binary format design fol-
lows the same concept than the one used for PCUDA. A header helped to establish
the precision (bits) used for each part.

The full support of binary file generation for PDP systems came with pLin-
guaCore 3.0. The command line was again extended, and the user could parse .pli
files and generate binaries by: java -jar pLinguaCore.jar plingua

inputFile.pli -bin inputFile.bin. If the binary is generated without errors,
the file can be used to feed ABCD-GPU, plus indicating the following parame-
ters: number of simulations to run, number of time steps to simulate, number of
steps per cycle, and amount of cores to be used for the OpenMP version (when
employed).



460 I. Pérez-Hurtado et al.

6 Conclusions and Future Work

P-Lingua is a software project devoted to provide tools to simulate P systems.
Developing and maintaining this flexible project is of huge complexity. The wide
variety of membrane systems is as large as the imagination of Membrane Com-
puting researchers, and normally some models differ from others in many aspects.
Gathering all together under the same software umbrella is perhaps not realizable,
but using all the techniques and methods of software engineering might help to
other developers. P-Lingua can be seen therefore not as a all-in-one software, but
as a key stone to ease the way of developing new simulators.

Future version of P-Lingua are under development, and will be focused not
only on flexibility, but also on efficiency. P-Lingua 5 [27] is being re-engineered
from scratch using C++ object-oriented programming language, that will help to
achieve lower runtimes when dealing with large P-Lingua files. This will open new
scalable opportunities for next challenges in Membrane Computing.

P-Lingua is very alive, and we look forward to collaborations in order to extend
and evolve it.

Acknowledgments

The authors acknowledge the support from the research project TIN2017-89842-P
(MABICAP), cofinanced by “Ministerio de Economa, Industria y Competitividad”
(MINECO) of Spain, through the “Agencia Estatal de Investigacin” (AEI), and
by “Fondo Europeo de Desarrollo Regional” (FEDER) of the European Union.

References

1. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A computational modeling for real ecosystems based on P sys-
tems, Natural Computing, 10, 1 (2011), 39–53.

2. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez. Simulation of P systems with Active Membranes on
CUDA, Briefings in Bioinformatics, 11, 3 (2010), 313–322.

3. D. Dı́az-Pernil, C. Graciani, M.A. Gutiérrez-Naranjo, I. Pérez-Hurtado, M.J. Pérez-
Jiménez. Software for P systems. In Gh. Păun, G. Rozenberg, A. Salomaa, editors,
The Oxford Handbook of Membrane Computing, Oxford University Press, Chapter
17, pages 437–454, 2009.

4. D. Dı́az-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez. A P-lingua
programming environment for Membrane Computing, Lecture Notes in Computer
Science, 5391 (2009), 187-203.

5. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, A. Riscos-Núñez. An overview of P-Lingua 2.0. Lecture Notes in Computer
Science, 5957 (2010), 264-288.



11 Years of P-Lingua 461

6. M. Garćıa-Quismondo, M.J. Reed, F.S. Chew, M.A. Mart́ınez-del-Amor, M.J. Pérez-
Jiménez. Evolutionary response of a native butterfly to concurrent plant invasions:
simulation of population dynamics. Ecological modelling, 360 (2017), 410-424.

7. M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez. Probabilistic
guarded P systems: A formal definition. Proceedings of the Twelfth Brainstorming
Week on Membrane Computing, Fnix Editora, 2014, pp. 183-206.

8. M. Garćıa-Quismondo. Modelling and simulation of real-life phenomena in Mem-
brane Computing. Ph.D. Thesis, University of Seville, 2014. http://hdl.handle.

net/11441/66147

9. M. Gheorghe, F. Ipate, R. Lefticaru, M.J. Prez-Jimnez, A. Turcanu, L. Valencia,
M. Garca-Quismondo, F. Mierla. 3-COL problem modelling using simple Kernel P
systems. International Journal of Computer Mathematics, 90, 4 (2013), 816-830.

10. F. Ipate, R. Lefticaru, L. Mierla, L. Valencia, H. Hang, G. Zhang, C. Dragomir, M.J.
Prez-Jimnez, M. Gheorghe. Kernel P systems: Applications and Implementations.
Advances in Intelligent Systems and Computing, Volume 212 (2013), 1081-1089

11. D. Kirk, W. Hwu. Programming Massively Parallel Processors: A Hands On Ap-
proach, Morgan Kauffman, 2010.

12. R. Lefticaru, F. Ipate, L. Valencia, A. Turcanu, C. Tudose, M. Gheorghe, M.J. Pérez-
Jiménez, I.M. Niculescu, C. Dragomir. Towards an integrated approach for model
simulation, property extraction and verification P systems. In M.A. Mart́ınez, Gh.
Păun, I. Pérez, F.J. Romero (eds.) Proc. of the Tenth Brainstorming Week on Mem-
brane Computing, vol. I, 2012, pp. 291-318.

13. L.F. Maćıas-Ramos, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Valencia-Cabrera,
M.J. Pérez-Jiménez, A. Riscos-Núñez. A P-Lingua based simulator for Spiking Neural
P systems, Lecture Notes in Computer Science, 7184 (2012), 257-281.

14. L.F. Maćıas-Ramos, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez. Simulating
FRSN P systems with real numbers in P-Lingua on sequential and CUDA platforms.
Lecture Notes in Computer Science, 9504 (2015), 262-276.

15. L.F. Maćıas-Ramos. Developing efficient simulators for cell machines. Ph.D. Thesis,
University of Seville, 2016. http://hdl.handle.net/11441/36828

16. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P systems on GPU de-
vices: a survey. Fundamenta Informaticae, 136, 3 (2015), 269–284.

17. M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, L. Valencia-Cabrera, M.J. Pérez-
Jiménez. Parallel simulation of Population Dynamics P systems: updates and
roadmap. Natural Computing, 15, 4 (2016), 565–573.

18. M.A. Mart́ınez-del-Amor, I. Karlin, R.E. Jensen, M.J. Pérez-Jiménez, A.C. Elster.
Parallel simulation of probabilistic P systems on multicore platforms. In M. Garćıa,
L.F. Maćıas, Gh. Păun, L. Valencia (eds.), Proc. of the Tenth Brainstorming Week
on Membrane Computing (BWMC 2012), vol. II, 2012, pp. 17–26.

19. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F. Maćıas-
Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani, A. Riscos-Núñez,
M.A. Colomer, M.J. Pérez-Jiménez. DCBA: Simulating population dynamics P sys-
tems with proportional objects distribution, Lecture Notes in Computer Science,
7762 (2013), 257–276.

20. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J.
Pérez-Jiménez. Population Dynamics P systems on CUDA, Lecture Notes in Bioin-
formatics, 7605 (2012), 247–266.



462 I. Pérez-Hurtado et al.

21. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, J.M. Cecilia, G.D.
Guerrero, J.M. Garćıa. Simulation of recognizer P systems by using manycore GPUs.
Proceedings of the Seventh Brainstorming Week on Membrane Computing, Volume
II, Seville (Spain), 2009, pp. 45–58.

22. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez.
A P-Lingua based simulator for Tissue P systems, Journal of Logic and Algebraic
Programming, 79, 6 (2010), 374-382.

23. M.A. Mart́ınez-del-Amor. Accelerating Membrane Systems Simulators using High
Performance Computing with GPU, Ph.D. Thesis, University of Seville, 2013. http:
//hdl.handle.net/11441/15644

24. D. Orellana-Mart́ın. The P vs NP problem. Development of new techniques through
bio-inspired computing modules. Ph.D. Thesis, University of Seville, 2019. https:

//hdl.handle.net/11441/85318

25. L. Pan, B. Song, L. Valencia-Cabrera, M.J. Pérez-Jiménez. The computational com-
plexity of tissue P systems with evolutional symport/antiport rules. Complexity,
Volume 2018, Article ID 3745210, 21 pages

26. Gh. Păun. Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208..

27. I. Pérez-Hurtado, D. Orellana-Mart́ın, G. Zhang, M.J. Pérez-Jiménez. P-Lingua in
two steps: flexibility and efficiency. Journal of Membrane Computing, to appear.

28. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biologi-
cal phenomena by means of P systems. In K. Li, Z. Tang, R. Li, A.K. Nagar, R.
Thamburaj (eds.), IEEE Fifth International Conference on Bio-inspired Computing:
Theories and Applications (BIC-TA 2010), vol. I, 2010, pp. 637–643.

29. I. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacón, A. Riscos-Núñez, M.J. Pérez-
Jiménez. A P-Lingua based Simulator for Tissue P Systems with Cell Separation,
Romanian Journal of Information Science and Technology, 17 , 1 (2014), 89-102.

30. I. Pérez-Hurtado. Desarrollo y aplicaciones de un entorno de programación para
Computación Celular: P-Lingua. Ph.D. Thesis. University of Seville, 2010. http:

//hdl.handle.net/11441/66241

31. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2003, 2 (3),
265 – 285.

32. L. Valencia-Cabrera, T. Wu, Z. Zhang, L. Pan, M.J. Pérez-Jiménez. A simulation
software tool for cell-like spiking neural P systems. Romanian Journal of Information
Science and Technology, 20, 1 (2017), 71-84.

33. L. Valencia-Cabrera. An environment for virtual experimentation with computational
models based on P systems. Ph.D. Thesis. University of Seville, 2015. http://hdl.
handle.net/11441/45362

34. L. Valencia-Cabrera, D. Orellana-Mart́ın, M.A. Mart́ınez-del-Amor, M.J. Pérez-
Jiménez. From Super-cells to Robotic Swarms: Two Decades of Evolution in the
Simulation of P Systems. Bulletin of the International Membrane Computing Soci-
ety, Number 4, December 2017, 65-87.

35. MeCoSim website. http://www.p-lingua.org/mecosim
36. The P-Lingua website. http://www.p-lingua.org
37. The PMCGPU project website. http://sourceforge.net/p/pmcgpu


