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Control of the spin geometric phase in
semiconductor quantum rings
Fumiya Nagasawa1, Diego Frustaglia2, Henri Saarikoski3, Klaus Richter3 & Junsaku Nitta1

Since the formulation of the geometric phase by Berry, its relevance has been demonstrated

in a large variety of physical systems. However, a geometric phase of the most fundamental

spin-1/2 system, the electron spin, has not been observed directly and controlled indepen-

dently from dynamical phases. Here we report experimental evidence on the manipulation of

an electron spin through a purely geometric effect in an InGaAs-based quantum ring with

Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the

Aharonov–Casher interference pattern towards the small spin-orbit-coupling regions is

observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields

reveals that the phase shift originates exclusively from the modulation of a pure geometric-

phase component of the electron spin beyond the adiabatic limit, independently from

dynamical phases. The phase shift is well reproduced by implementing two independent

approaches, that is, perturbation theory and non-perturbative transport simulations.
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G
eometric phases arise in wave systems1 where the
parameters of the wave function are cycled around a
circuit. Such phase factors can be observed via

interference of waves traversing different paths. Berry1 has
shown that the electron spin wave function in an adiabatic
evolution acquires a geometric phase that depends only on the
geometry of the traversed path in the parameter space. As a
consequence, the geometric phase is robust against dephasing.
This is in contrast to the time-dependent dynamical phase of a
particle2–4. Experimentally, geometric-phase factors have been
observed in various systems5,6. However, the geometric phase of
an electronic spin has never been directly observed and
manipulated independently of the dynamical phase before.

Here we demonstrate the control of the geometric phase of an
electron spin in a mesoscopic semiconductor device in which an
array of rings forms interference paths. The experiment shows
geometric phases beyond the adiabatic limit7. A geometric-phase
shift of the Aharonov–Casher (AC) effect8–10 is induced with an
in-plane magnetic field and measured in an interference pattern
of the electron current. Our findings show manipulation of the
geometric phase independently of the dynamical phase without
introducing additional geometric-phase factors such as the
Aharonov–Bohm phase.

Results
Concept of present experiment. Spins in a magnetic field acquire
a dynamical phase, which physically corresponds to phase accu-
mulation because of the spin precession around the magnetic
field. In a mesoscopic ring system with an inhomogeneous
magnetic field, the spins acquire also a geometric phase that
depends on the path of the spin. As an example, consider a one-
dimensional (1D) ring in a textured magnetic field11 as shown in
Fig. 1a. The magnetic field seen by a propagating electron along
the ring subtends, from its rest frame, a solid angle in the mag-
netic-field space. The spin acquires not only a dynamical phase
but also a geometric phase, which is proportional to the solid
angle (Fig. 1b).

The Bychkov–Rashba spin-orbit (SO) coupling12 can be used
to create an effective in-plane magnetic-field texture (Fig. 1c). The
coupling is induced at an interface between semiconductor layers
having different energy gaps by an electric field perpendicular to
the layers (say along the z axis). It is a relativistic effect where an
electron travelling through an electric field feels an effective SO
magnetic field BSO, the direction of which is perpendicular both
to the electric field and a wave vector k, that is, BSOpaR(k� ez).
Here the electric field enters through the Rashba SO-coupling
constant aR that is therefore electrically tunable with a top-gate
electrode13,14, and ez denotes a unit vector in z direction. This
effective Rashba field couples to the electron spin, which acquires
dynamical and geometric phases in the transport around the
ring15–17. Interference of these spin-related phases gives rise to
conductance oscillations when aR is varied18–20. Recently, the SO-
induced geometric phase has been extracted21 from a detailed
analysis of spin-interference effects as a function of the SO-
coupling constant aR and the ring radius r.

In a 1D Rashba ring placed in the x–y plane, a travelling
electron has a non-zero wave vector k only in the in-plane
direction because of the electrostatic confinement along ez.
Consequently, the effective field BSO seen by the electron always
points in the radial direction (see Fig. 1c). However, if the
revolution frequency o0 around the ring is comparable to the
spin-precession frequency oSO, spin transport is non-adiabatic.
As a result the electron spin does not exactly precess around BSO

(see refs 22,23); spin eigenstates are no longer parallel to BSO and
the corresponding polar angle, y, satisfies tan y ¼ oSO=o0 ¼

2m�aRr=�h2 � QR, with m� being the effective mass of an
electron and : the reduced Planck’s constant, as if there was an
effective magnetic field normal to the ring’s plane besides BSO as
depicted in Fig. 1d. This is in analogy to NMR experiment where
an rf magnetic field yields a static out-of-plane field in a rotating
frame of reference. Hence, an electron spin in the Rashba ring
acquires a geometric phase, which corresponds to the solid angle
subtended by the spin eigenstates.

Now, consider a Rashba ring with an external magnetic field
applied parallel to the ring plane as shown in Fig. 1e: the total
magnetic field seen by the electron is uniformly tilted towards the
applied field direction, which changes the solid angle in the
magnetic-field space (Fig. 1f). As we will show, this allows for
controlled modulation of the pure geometric phase independently
of the dynamical phase. We emphasize that the separation of the
geometric and dynamical phases has not been achieved in
mesoscopic spin systems so far: the SO-coupling constant aR and
the ring radius r modulate both the geometric and dynamical
phases simultaneously through the degree of adiabaticity, QR.

In-plane field dependence of the AC effect. In our experiment,
an array of 40� 40 rings (Fig. 2a) and a Hall bar have been
fabricated lithographically from a shallow InGaAs quantum well
(see ref. 24 for the basic properties). The Hall bar and the ring
array are in the same current path and they have been covered
with the same top-gate electrode. The electrical resistance has
been measured with a standard ac lock-in technique at a
temperature of 1.5 K with a liquid helium cryostat where we
can apply magnetic fields both perpendicular and parallel to the
ring plane. Figure 2b shows the Altshuler–Aronov–Spivak (AAS)
effect in the ring array at a gate voltage of 1.1V as a function of
the perpendicular magnetic-field strength.

We study the control of the spin geometric phase via the AC
effect8–10, the electromagnetic dual of the Aharonov–Bohm effect.
Specifically, in our system, the AC effect is realized as the gate
modulation of spin interference. The AAS amplitude oscillates
with the gate voltage, as shown in Fig. 2c, indicating the gate
modulation of the spin phase. This oscillatory behaviour of the
magnetoresistance at zero (perpendicular) external field is
visualized in Fig. 2d. Because of disorder in the samples and
the ensemble average over the ring array, pairs of time-reversed
(TR) paths, that is, the path pairs travelling in opposite directions
around the ring, contribute predominantly to the interference
pattern in the magnetoresistance. The AC effect in the TR paths
gives rise to the resistance modulation given by25,23

dRaR 6¼ 0

dRaR¼0
/ cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
� 1

� �� �
; ð1Þ

¼ cos 2pQR sin y� 2pð1� cos yÞ½ �; ð2Þ

where dRaRa0 and dRaR¼ 0 are, respectively, the electrical
resistance with and without Rashba SO coupling in a ring.
Equation (2), plotted as the red dashed line in Fig. 2d, is in
agreement with experiment. The phase of the cosine function in
equation (2) shows that the AC phase comprises two compo-
nents, namely, a dynamical component 2pQR sin y and a
geometric one � 2p(1� cos y). The latter exactly represents the
solid angle subtended by the spin eigenstates in the Rashba ring
(Fig. 1d).

The dependence of the AC effect on the in-plane magnetic field
Bk in experiment is shown in Fig. 3a,b. In Fig. 3a, the gate voltage
is translated to the Rashba SO-coupling constant aR by using the
relation obtained from the Shubnikov–de Haas analysis13 in the
Hall bar. As Bk is applied, the amplitude of the AC effect
is suppressed because of spin-induced TR symmetry breaking26
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(see the Supplementary Note 1). Further, the AC oscillations
exhibit a quadratic shift with Bk towards positive gate voltages,
that is, weaker Rashba SO-coupling strengths. In the following,
we explain the observed shift by the sole modulation of the
geometric phase as shown in Fig. 1f.

Perturbation theory and numerical transport calculations. To
evaluate the effect of in-plane magnetic fields on the geometric
phases in the limit of small Bk, we employ perturbation theory for
a 1D Rashba ring (see the Methods section). The phase shift is
calculated to first order in Bk. We find that the AC interference
between TR pairs of paths leads to conductance oscillations

G � e2

h
1� cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
� 1þf

� �� �� �
; ð3Þ

f ¼ oB

o0kFr

� �2 4þQ2
R

4Q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

p ; ð4Þ

where oB ¼ g�mBBk=�h and o0 ¼ �h=ðm�r2Þ. Further, kF is the
Fermi wave number, g� is the Landé g-factor and mB is the Bohr

magneton. By comparing equations (1) and (3), we find that Bk
provides an additional phase 2pf quadratic in Bk. As plotted in
Fig. 3c,d, equation (3) reproduces the observed phase shift within
the energy range of small Zeeman energy (due to Bk) compared
with the kinetic and Rashba SO-coupling energies. A similar
quadratic shift in the interference peak positions has been
recently calculated also for weakly coupled rings27.

To determine the origin of the AC-phase shift, we calculate a
geometric-phase contribution fAA using eigenstates n; l; s

		 

calculated to first order in the in-plane field:

2pfAA ¼ 2i
Z2p
0

dj n; l; s
� 		 @

@j
n; l; s
		 


; ð5Þ

¼ � 2p ð1� cos yÞ�f� 2j½ �; ð6Þ
with j being the azimuthal angle in the ring plane and j being an
integer. By comparing equations (1,2,3) and (6), we confirm that
the perturbation term f has a purely geometric origin, at least to
first order in the in-plane field strength. This is because electron
spins in the TR interference paths experience a uniaxial Bk field,
which does not yield a dynamical phase difference through the
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Figure 1 | Schematic illustration of spin geometric phases in quantum rings. (a) Quantum ring of radius r placed in a crown-like magnetic field

with an angle y with respect to the z axis. (b) In the electron’s rest frame, the textured field subtends a solid angle (blue) in a round trip around the ring. In

adiabatic transport, the solid angle is proportional to the geometric phase. Spin precession around B is associated with the dynamical phase. (c) Rashba

SO coupling induces an effective in-plane magnetic field BSO perpendicular to the electron momentum P. (d) In non-adiabatic transport, the effective

magnetic field has an additional z component proportional to o0pr/2. The geometric phase is proportional to the solid angle subtended by the total effective

magnetic field. (e) The geometric phase in a Rashba ring can be controlled by adding an in-plane field Bk. (f) The in-plane field modulates the geometric

phase via changing the solid angle subtended by the total effective field.
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spin precession. Hence, our central result is that the observed
shift of the AC phase is induced by the modulation of the pure
geometric phase of an electron spin.

Note that the wave number enters into the denominator of the
geometric-phase shift term f, equation (4). In our samples the
conducting channel contains at least six transverse modes, each
having a unique wave number. To take into account the effect of
the multiple transport modes and for an adequate treatment of Bk
field strengths beyond the perturbative limit, we employ the
numerical recursive Green’s function method28 (see the
Supplementary Note 2). Results calculated at fixed carrier density
1.0� 1016m� 2 are shown in Fig. 3e,f. The geometric shift of the
AC oscillations occurs even in the presence of multiple modes
(see the Supplementary Note 3).

Discussion
Figure 4 shows the comparison of the geometric shift in
experiment (filled symbols) with the perturbation theory (solid
lines) and the non-perturbative numerical calculations (open
symbols) at peak and dip positions of the AC oscillations (P1–P4;
see Fig. 3). The carrier density in the numerical calculations is
increased with gate voltage (see the Supplementary Note 2). The
perturbation theory for a single transverse mode is in good
agreement with experiment in the regime of strong SO coupling
(P1 and P2). This indicates that the phase shift is dominated only
by a few modes or just the lowest one, presumably because of
stronger decoherence for higher transverse modes, which have
the smaller wave numbers along the ring. The discrepancy is
significant at weak SO-coupling regions (P3 and P4) that are
beyond the limit of validity of the perturbation expansion. We

note that wave numbers associated with the modes in multi-
mode numerical calculations depend on the energy level spacing
in the confining channel of the ring. Numerical calculations
assume a square-shaped potential, which may lead to the
overestimation of the phase shift at P1. Further, in the numerical
model a transition from weak antilocalization to weak localiza-
tion with changing Rashba SO coupling results in the increased
background resistance at small SO fields (see Fig. 3f). As a result,
the positions of P3 and P4 may shift. However, almost all the
results show the peaks and dips shift towards weak Rashba SO
coupling, that is, positive gate voltages. We are thus able to
reasonably simulate and explain the experimentally observed
spin-phase shift by both numerical calculations and the
perturbation theory.

For further evidence, we have measured the radius dependence
of the Bk-induced phase shift. Figure 5 shows the comparison of
the shift in samples of rings with r¼ 0.6 and 1.1 mm. We see that
both in experiment and in the perturbation theory, geometric-
phase shift increases with the ring radius. This confirms an
important prediction of our theory contained in the equations (3)
and (4). From the comparison between experiment and the
theory, the diamagnetic shift of energy is negligible in our
samples because the diamagnetic effect should not have the radius
dependence. To the best of our knowledge, this is the first
experimental demonstration of the pure geometric-phase control
of an electron spin in solid-state devices. We conclude that this
multiparameter control of the spin geometric phase may pave the
way for future spintronic applications, such as geometric-gate
operation29 of a solid-state flying qubit or control of persistent
spin currents in a mesoscopic ring11,30, which may have potential
applications for non-volatile memory devices.
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Figure 2 | Altshuler–Aronov–Spivak and AC oscillations in an InGaAs-based ring array. (a) Scanning electron microscope image of an

array of 40�40 InGaAs-based rings. The radius of each ring is 0.6mm. Scale bar, 5 mm. (b) Magnetoresistance of the ring array in perpendicular magnetic

fields B> at 1.5 K shows the AAS oscillations. The gate voltage Vg¼ 1.1 V. (c) Vg dependence of the AAS oscillations amplitude. (d) Vg dependence

of the AAS amplitude at B>¼0, corresponding to the AC effect in the TR paths. The red dashed line represents the theoretical prediction of equation (2).

To plot the dashed line, we used the relation between the Rashba SO-coupling constant aR versus Vg, which was obtained from the Shubnikov–de

Haas analysis13 in the Hall bar.
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Methods
Sample fabrication and measurements. The sample was epitaxially grown on a
(001) InP substrate by metal organic chemical vapour deposition. It consists of,
from the bottom, In0.52Al0.48As (200 nm, buffer layer)/In0.52Al0.48As (6 nm, carrier
supply layer; Si-doping concentration of 4� 1018m� 3)/In0.52Al0.48As (15 nm,
spacer layer)/In0.53Ga0.47As (2.5 nm, quantum well)/In0.70Ga0.30As (10 nm, quan-
tum well)/In0.53Ga0.47As (2.5 nm, quantum well)/InP (5 nm, stopper layer)/
In0.52Al0.48As (20 nm, barrier layer)/AlAs (1.5 nm, barrier layer)/In0.52Al0.48As
(5 nm, cap layer). An array of 40� 40 rings and a Hall bar (70 � 280mm2) have
been fabricated by means of e-beam lithography and reactive-ion etching. To form
an ohmic contact, AuGeNi was used (annealing temperature of 275 �C, 7min). As a
top-gate insulator, a 200-nm-thick Al2O3 layer was deposited by atomic layer
deposition. A Cr/Au top-gate electrode was fabricated on the insulator layer.

A four-terminal standard lock-in technique has been used to measure the
perpendicular magnetoresistance of the ring array as a function of the gate voltage
and the in-plane magnetic field. At a given gate voltage, the Rashba SO-coupling
constant and the carrier density in the ring structure can be estimated by
measuring the Shubnikov–de Haas oscillations in the Hall bar.

Perturbation theory. We introduce a perturbative approach for studying the effect
of small in-plane magnetic fields in the conductance of 1D rings subject to Rashba SO
coupling. We demonstrate that the in-plane field acts on the geometrical spin phase
alone without contributing to dynamical phases at the lowest perturbative order,
allowing the controlled manipulation of geometrical phases. The Hamiltonian reads

H ¼ H0 þDH ð7Þ
with

H0 ¼ � �ho0

2
@2=@j2 � i

�hoSO

2
sr@=@j� i

�hoSO

4
sj; ð8Þ

DH ¼ �hoB

2
sx : ð9Þ
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Here H0 is the unperturbed Hamiltonian of a 1D Rashba ring of radius r lying in the
x–y plane parametrized by the azimuthal angle j. We have defined o0¼:/mr2 and
oSO¼ 2aR/:r as the characteristic frequencies of the kinetic and SO Rashba terms,
respectively, together with the polar Pauli matrices sr¼ cosjsxþ sinjsy and
sj¼ � sinjsxþ cosjsy. The third term in equation (8) guarantees H0 to be
Hermitian22, losing relevance for large momenta. The DH in equation (9) is a per-
turbation on H0 by an in-plane magnetic field Bk along the x direction, with oB ¼
2mBk=�h the corresponding Larmor frequency. The unperturbed eigenstates |n, l, sS0

of H0 (with spin s¼m,k, travel sense l¼±1, and orbital wave numbers nZ0) are23

n; þ ; "j i0¼ expðinjÞ siny=2
cosy=2 eij

� �
; ð10Þ

n; þ ; #j i0¼ expðinjÞ cos y=2
� sin y=2 eij

� �
; ð11Þ

n; � ; "j i0¼ expð� injÞ cosy=2
� siny=2 eij

� �
; ð12Þ

n; � ; #j i0¼ expð� injÞ siny=2
cosy=2 eij

� �
; ð13Þ

where y is the inclination of the local spin-quantization axis with respect to the z axis
given by tany¼oSO/o0�QR. Notice that y does not depend on any quantum
number, being shared by all eigenstates. The corresponding eigenenergies are

E0s
ln ¼ �ho0

2
lnþ 1

2

� �2

þ 1
4
þ s lnþ 1

2

				
				
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q" #
; ð14Þ

Where m spins are defined to maximize the eigenenergies. We notice that states with
opposite travel sense |n,� ,sS0 and |n� 1,þ ,sS0 are degenerated (that is,
E0s
� n ¼ E0s

n� 1). In addition, we find that 0 n0; l0; s0h jDH n; l; sj i0 � dl0l , namely, the
perturbation DH does not mix degenerate states. This means that we can apply a
non-degenerate perturbation theory. We further notice that an additional degeneracy
(E0"

n ¼ E0#
n� 1) arises in the unperturbed system for vanishing Rashba coupling

(QR¼ 0), meaning that the perturbative approach we present here is not valid for
QR oo 1.

We calculate the perturbed eigenstates |n,l,sS and eigenenergies Es
ln to the

lowest order in oB. Taking into account that 0/n±1, l, s|DH|n, l, sS0¼ ls
(:oB/4)siny and 0/n±1, l, � s|DH|n, l, sS0¼ :oB(cosy±s)/4, we find (by
following, for example, the textbook by Sakurai31)
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with normalization constant Zs
ln , and
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We calculate the ring conductance by following the procedure introduced in
(refs 23,25). This is based on the 1D Landauer formula G ¼ ðe2=hÞ

P
s;s0 T

ss0 ,
where the conductance G is determined by the quantum probabilities of
transmission Tss

0 ¼ |tss
0
|2 (with amplitudes tss

0
) for incoming (outgoing) spins

s0 (s). We consider strongly coupled contacts at diametrically opposed locations
j¼ 0 and j¼ p. Because of the energy splitting, incoming spin carriers with Fermi
energy EF entering at j¼ 0 can propagate coherently through the ring along four
possible channels with (non-integer) wave numbers nsl depending on spin (s) and
travel sense (l). The nsl are determined by solving Es

ln ¼ EF in equation (16) and
the relative weight of each propagation channel is given by the projection of the
incoming spin state on the corresponding spin eigenstates, equation (15), at the
entrance point. We assume that, because of strong coupling to the contacts, the
carriers propagate directly from the entrance (j¼ 0) to the exit (j¼ p) point along
the shortest paths without any additional winding (see Fig. 6a). After interference,
we find G � ðe2=hÞð1þ ½cospðn#� � n"þ Þ þ cospðn"� � n#þ Þ�=2Þ by summing
over all spin indices, with

n#� � n"þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
þf; ð17Þ

n"� � n#þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
�f; ð18Þ

f ¼ oB

o0kFr

� �2 4þQ2
R

4Q2
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

p ; ð19Þ

where we assumed a large electron density corresponding to n � kFr44 1 in
equations (15) and (16), in agreement with the experimental conditions. The
conductance then reads

G � e2

h
1þ cos p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
� 1þf

� �� �� �
: ð20Þ

The result of equation (20) holds for single ballistic rings. For an ensemble of
rings subject to shape fluctuations and/or disorder, instead, the main contribution

a b
A

B

e e

Figure 6 | Leading paths contributing to coherent spin transport in mesoscopic rings. (a) Interference of paths A and B leads to the AC conductance

oscillations in ballistic systems. (b) TR paths lead to the AAS conductance oscillations in disordered multimode systems.
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Figure 5 | Radius dependence of the geometrical phase shift with an in-

plane field Bk. The vertical axis represents the phase shift of the AC

oscillations in units of radians (one period of the AC oscillations

corresponds to 2p rad). Experimental results are plotted as the open (filled)

symbols for r¼0.6mm (1.1mm) sample. The lines are the perturbation

theory, with r¼0.6mm (dashed) and r¼ 1.1 mm (solid). The notations P1-P4

represent the peak and dip positions of the AC phase (see Fig. 3).
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to the sample-averaged conductance comes from TR paths leading to the AAS
oscillations (see Fig. 6b). By following a similar procedure (taking into account that
TR paths contribute to the transmission probability T through the reflection
probability R by unitarity TþR¼ 1), we find an AAS conductance

GAAS � e2

h
1� cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

q
� 1þf

� �� �� �
; ð21Þ

which applies to the reported experiment. The f of equation (19) corresponds to a
phase shift in the AC conductance introduced by the in-plane magnetic field. It is
quadratic in the field’s strength oB and proportional to 1=k2F � 1=EF. The latter
illustrates the known fact that spin dynamics under Zeeman coupling depends on
the electrons velocity32, in contrast to Rashba coupling. We further notice that f is
an increasing function of the ring’s radius r.

To demonstrate the geometric nature of f, we first notice in equations (20) and
(21) that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

R

p
� 1 ¼ f0

D þf0
AA, where f0

D ¼ QRsiny and f0
AA ¼

�ð1� cosyÞ ¼ �O0=2p are the unperturbed contributions to the dynamical and
geometrical phases, correspondingly, with O0 the solid angle described by the
unperturbed spin eigenstates over the ring (see ref. 23). The limit of adiabatic spin
dynamics, where purely geometrical Berry phases arise1, corresponds to QR-
N(y-p/2). For a finite QR (0oyop/2), the spin dynamics is non-adiabatic
and the geometrical phase (depending explicitly on QR) is referred to as the
Aharonov–Anandan phase7. For the perturbed eigenstates, by defining
n; l; s
		 


� expð� ilnÞ n; l; sj i, the geometric-phase contribution fAA can be
extracted as

jAA ¼ i
p

Z2p
0

dj n; l; s
� 		@j n; l; s

		 

ð22Þ

¼ � ð1� cos yÞþfþ 2j ðj integerÞ ð23Þ

¼ � 1
2p

O ¼ � 1
2p

ðO0 þDOÞ: ð24Þ

There we find that the magnetic shift f is purely geometric. This means that, at the
lowest order of perturbation, the in-plane magnetic field modifies the eigenstate
spin texture without contributing to the dynamical spin phase. More explicitly,
from equation (24) we find DO¼ � 2pf showing that the in-plane field perturbs
the spin eigenstates by reducing the solid angle with respect to the unperturbed
case. This means that the perturbation hinders adiabatic spin dynamics: In the
regime QR 44 1 (with unperturbed spinors along y-p/2) spins are lifted from the
ring’s plane by the in-plane magnetic field. The full Aharonov–Anandan geometric
phase in the perturbed system reads (mod 2p) g¼ �p[(1� cosy)�j] for single
ballistic rings (Fig. 6a) and g¼ � 2p[(1� cosy)�j] for rings ensembles in AAS
configuration (Fig. 6b).
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