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ABSTRACT: A fundamental problem in the analysis of chemical reactions networks
consists of identifying concentration values along time or in steady state which are
coherent with the experimental concentration data available. When concentration
measurements are incomplete, either because information is missing about the
concentration of a species at a particular time instant, or even there is no information
at all on the concentration of a species, then the problem becomes ill-defined, and then
different concentration curves are compatible with existing data. In this paper we
address the problem of finding the extreme (highest and lowest) concentrations under
incomplete data measurements; as a byproduct of our approach, the model parameters
associated with such extreme concentrations are obtained. These extreme concentrations
provide valuable information on the impact that incomplete measurements have on the
theoretical reconstruction of concentrations from experimental data. To obtain such
concentrations range, mathematical optimization problems are formulated, solvable by a
variety of global optimization approaches, such as, for example, the stochastic global optimization method suggested.

1. INTRODUCTION
In a chemical reaction network, a set ofN species, E1, ..., EN, react
in L chemical reactions. The vector y of concentrations of the
different species E1, ..., EN evolves along time according to some
kinetic law,

θ̇ = ∈
=

⎧⎨⎩
t t t t t Ty F y u

y y
( ) ( , ( ), ( ), ), [0, ]
(0) 0 (1)

where ∈ y N
0 is the vector of initial concentrations, t is the

independent variable that denotes the time, u is the vector of
inputs, and F gives the expression of the right-hand side of the
ordinary differential equation representing the kinetic law.
Finally, θ is the vector of unknown parameters which takes
values in some set Θ. In what follows, the dot over the function,
as in ẏ(t), denotes the derivative of the function with respect to
time, and the bold letters, as θ or y, are used to represent vectors.
While eq 1 is used to study the transient state of the reactions
network, the concentrations at the steady state are obtained by
solving the system of nonlinear equations

θ =F y u( , , ) 0 (2)

Inferring the value of θ from experimental data is a
challenge,3,6,7,22 since a difficult mathematical optimization
problem is to be solved to find the value of θ yielding the best
fit,.11,13,14,20,23,24 Such a problem may be ill-posed,14 since there

may exist different vectors θ which fit well the experimental data
and at the same time they satisfy the constraints given by eq 1 in
the transient state or by eq 2 in the steady state. Consequently,
some methods, such as ensemble modeling,26 find the distribu-
tion of parameters rather than particular values, and therefore the
behavior of a population of parameters which is consistent with
the information on the system is described. Regularization,13,14

is a popular approach to infer one possible solution θ. However,
regularization is not fully satisfactory; indeed, penalty coefficients
are associated with the different parameters to be inferred, which
may be in different scales (e.g., very different orders of magnitude
of reaction rates). This makes it hard to properly tune the
regularization coefficients, and thus, the solution θ obtained by
solving the regularized problem may be far from the actual one.
Incremental methods, such as the one in ref 21 are also used

to infer a solution θ. The methodology in ref 21 reduces the
parameter space, making then lower the computational cost
associated with the parameter inference problem. However, this
approach can only be applied for reaction networks satisfying
certain assumptions; for example, the number of reactions is
bigger than the number of species and particular types of kinetic
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law where F(t, y(t), u(t), θ) = A(θ)δ(t, y(t), u(t), θ), with A(θ)
being the stoichiometric matrix, and δ the reaction rate flux.
For this reason, it would be very helpful to explore whether the
system is structurally identifiable, that is, if we could know a priori
if the parameters would be univoquely identified. The drawback
of the identifiability method is the complexity of the model
(number of parameters, high degree of nonlinearity). See ref 10
for a critical comparison of existing techniques and ref 9 for a
software tool. Observe that when studying structural identifi-
ability, we consider only the system dynamics, the observations,
and the stimuli of the model. Structural identifiability regards the
possibility of giving unique values to unknownmodel parameters
from the available measurements, assuming perfect experimental
data (i.e., noise-free and continuous in time).27 Nevertheless,
according to ref 25, in order to determine r parameters of an
identifiable system, one requires 2r + 1 properly chosenmeasure-
ments. Such number of measurements may be high and
impossible to have in some cases. See ref 10 for a more detailed
structural identifiability definition and ref 17 for methods to test
structural identifiability. In ref 27 the authors have done a
comparison of the existing methods and also have presented
a new method based on the generating series approach. On
the other hand, practical identifiability is related with the
computation of numerical parameter estimates and is based on
experimental data and noise. See ref 10 and its references for a
deeper analysis.
Hence, the incomplete measurements of the experimental data

may make meaningless the search of θ, since there may exist
multiple values of θ that explain the experimental data, and
therefore there are different solutions y(t) which are coherent
with the experimental values. In what follows, we mean by
incomplete measurement two different things: on the one hand,
an incomplete measurement implies the lack of information
about the concentration of a species in some time instant. On the
other hand, it indicates that the concentration of a species is
unknown for all the time instants (except the initial one). Two
dramatic consequences should be highlighted when incomplete
measurements appear. First, some approaches such as the extent-
based method,1,2,15 are not directly applicable owing to the lack
of experimental values for all the species. Second, even if the
approach can handle incomplete measurements, the so-obtained
output may be inaccurate.2

Several approaches have been proposed in the literature to
deal with incomplete measurements. One of the most popular
techniques is inputation,12 which may yield wrong results if the
inputted values are not close enough to the actual (incomplete)
measurements. Alternatively, the approach proposed in
refs 4 and 5 reconstructs sometimes the missing concentrations
values from the stoichiometry information, but it is not always
able to perform such reconstruction. As an illustration, let us
focus on the steady state of the reactions network in eq 3 where
six species, E1, ..., E6 and a catalyst, Cat, interact in a continuous
stirred tank reactor.2

+ ⎯→⎯

+ ⎯→⎯
⎯→⎯

+ ⎯→⎯

E E E

E E E
E E

E E E

1 2
Cat

3

2 2
Cat

4

2 5

3 2
Cat

6 (3)

The six-dimensional vector of concentrations, y, is the solution of
the following system of equations:

θ

θ

θ

θ
θ
θ

θ

θ θ θ θ

θ θ

θ
θ
θ

= − − =

= − − − −

+ − =
= − − =

= − =
= − =
= − =
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F y u y

F y y y u y

y u

y u

y u

y u

y u

y u

( , , ) 0

( , , ) 2

0

( , , ) 0

( , , ) 0

( , , ) 0

( , , ) 0

1 1 1 2 Cat out 1

2 1 1 2 Cat 2 2
2

Cat 3 2 4 3 2 Cat

2 in out 2

3 1 1 2 Cat 4 3 2 Cat out 3

4 2 2
2

Cat out 4

5 3 2 out 5

6 4 3 2 Cat out 6

(4)

In eq 4, the parameter vector θ = (θ1, θ2, θ3, θ4) plays the role of
the vector of rate constants. The magnitudes of θ1, θ2, and θ4 are
L2 mol−2 min−1, and the magnitude of θ3 is min

−1; yi, for i = 1, ..., 6
are the components of the vector y and designate the steady
states of the concentrations measured in mol/L of the species
Ei, while yCat denotes the concentration of the catalyst Cat and
has the value yCat = 0.5 mol/L. Furthermore, uin = 0.3 L/min
and uout = 0.3 L/min are the inlet and outlet mass flow rates,
respectively. Finally, W2 is the second component of the inlet
composition vector W = (0, 6, 0, 0, 0, 0) mol/L.
Let us assume we are given the experimental data in Table 1, in

which only experimental measurements for species E2, E4, and E6

are provided, while data on E1, E3, and E5 are missing. The
concentration of E6 is expressed as <10

−8 since the actual value is
very close to zero, and therefore the particular value of the
concentration will be strongly dependent on the accuracy of the
measuring machine. This acceptance does not imply that the
species with low concentrations are treated as missing, but that it
is impossible to know a priori the exact value, since it depends on
the machine used.
If the approach of refs 4 and 5 is used, it is seen that none of the

incomplete measurements of the species can be reconstructed. In
fact, both parameter values θ in eq 5 and eq 6 give concentrations
values coherent with the observed ones, as given in Table 2.

θ = (0.053, 0.1280, 0.0280, 0.0001) (5)

θ = (0.4182, 0.1280, 0.0280, 1.5428) (6)

In this paper, instead of inferring one possible value for θ,
whichmay be right or wrong, we seek the extreme concentrations
(highest and lowest values) of the incomplete measurements
which are in agreement with the experimental data. As a
byproduct, the parameters associated θ are also obtained. To do
this, global optimization problems are to be solved. Two types
of methods are available to cope with such problems, namely,
deterministic and stochastic global optimization techniques.
Deterministic methods, as interval analysis based branch and

Table 1. Experimental Concentrations in the Steady State of
the Example with Model (eq 4)

E1 E2 E3 E4 E5 E6

expt concn 2.6815 1.5341 <10−8

Table 2. Theoretical Concentrations of the Example with
Model eq 4 and with θ in eq 5 or eq 6

E1 E2 E3 E4 E5 E6

y for θ in eq 5
or eq 6

<10−8 2.6815 <10−8 1.5341 0.2502 <10−8
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bound,23,24 do find the global optimum in finite time, at the
expense of high computational burden and strong implementa-
tion effort. Therefore, their usefulness is mainly limited to offline
applications and small reactions networks. In contrast, stochastic
methods, such as variable neighborhood search (VNS),19 are
much easier to implement and faster to execute.
The main contribution of this paper is the analysis of

incomplete measurements by means of the search of the
extreme concentrations. For simplicity, throughout the paper
we have chosen to solve the optimization problems found with a
stochastic optimization tool, namely VNS.
The remainder of this paper is structured as follows. In

section 2 we present our approach in the simplest case in which
the problem is studied in the steady state. Then, a nontrivial
extension, including the analysis for problems in transient state,
is described in section 3. Some final conclusions and possible
research lines are outlined in section 4.

2. PROBLEM STATEMENT. THE STEADY STATE

In this section the steady state of a chemical reaction network is
considered, and the extreme concentrations (i.e., those yielding
highest or lowest concentration values) are sought when measure-
ments are incomplete. When multiple steady states exist, the goal is
the same, since we will find the maximum and minimum values of
the unknown concentrations for all the possible steady states, and
their associated parameters.
2.1. Mathematical Model. Let us split the index set

{1, ..., N} into and which correspond respectively to the
set of species Ei for which the steady-state concentrations
are observed and are missing. Accordingly, the N-dimensional
vector ̂y of steady-state concentrations is split into two blocks,

̂ = | ̂ ̂y y y( )obs mis

where ̂y obs represents the experimental values of the observed

species, ∈E i,i , while ̂y mis denotes the values of the missing
species, ∈E i,i .
For each species Ei, ∈i , the concentration value yi is

uncertain. Let us bound the degree of uncertainty by imposing
such unknown yi to belong to a certain set ⊂ ∞[0, )i If no
information is provided, one can set = ∞[0, )i
With this notation at hand, we are in position to formally state

our goal: we seek, for each species ∈E i,i the lowest and
highest values yi and yi which are compatible with the steady-state

eqs 2; such extreme concentrations will be associated with some
θ ∈ Θ, denoted respectively as θi and θi referred as extreme
parameters since they yield the extreme concentrations.
The extreme concentrations y y,i i and extreme parameters

θi and θi are obtained respectively as optimal value and optimal

solution of the following optimization problems, for all ∈i :

θ
θ

θ

ε

=
=

| − | ≤ ∈

∈ ∈
∈ Θ

̂

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

y

y y j

y l

F y u 0

arg min

s.t. ( , , )

,

,

i i

j j

l l

obs

(7)

θ
θ

θ

ε

=
=

| − | ≤ ∈

∈ ∈
∈ Θ

̂

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

y

y y j

y l

F y u 0

arg max

s.t. ( , , )

,

,

i i

j j

l l

obs

(8)

Observe that we are allowing the model to yield, for ∈j values

yj differing from the observed ̂yj
obs in at most some ε≥ 0, allowing

one to accommodate some uncertainty in the measurement of
such observed species Ej.
The optimization problems eq 7 and eq 8 have a simple objective

function, but the constraints are highly nonlinear, yielding a difficult
nonconvex optimization problem. Hence, standard local-search
optimization techniques may fail to properly identify the optimal
solutions. We discuss in section 2.2 how the global optima can be
obtained by using the well-known metaheuristics, namely variable
neighborhood search, in short VNS.8,18,19

2.2. Inferring Extreme Concentrations by Stochastic
Global Optimization. Since the approach is the same for
Problems 7 and 8, we focus in what follows on Problem 7 for the
sake of simplicity. The idea of VNS is simple: the algorithm starts by
seeking a local optima from an initial point; once a local optimum
has been obtained, the solution is (slightly) perturbed and then a
new local search is performed from the perturbed solution, with the
hope of attaining a better local optimum. If the so-obtained solution
does not improve the incumbent, then a new search is performed,
starting now from a point obtained by introducing a stronger
perturbation in the best solution obtained so far. Two elements are
critical in the process. First, how the process is initialized, that is,
how the first local-search is started. Second, how solutions are
perturbed. To construct a starting solution, the extent-based
method is suggested.1 Perturbations of a feasible solution θ are
obtained by randomly generating a point in a neighborhood

∏θ θ γ θ γ= − +R R( ) [ , ]R
i

i i

for some integer R, where γ is a scaling parameter.
Afterward, in a general iteration of the VNS process, we

randomly select a point θ0 from the neighborhood θ( )R
opt , θopt

being the best solution so far obtained. Next, Problem 7 is solved
by means of a local search method, using θ0 as initial solution,
yielding the vector θ*. If θ* yields an objective value better than
θopt, then θopt is updated. Otherwise, the neighborhood around θopt

used to perturb solutions is enlarged, that is, we will perturb θopt by
generating some random θ θ∈ + ( )R 1

opt . This process is repeated
until a stopping criteria is fulfilled (time limit or iterations limit).
A pseudocode of the optimization process is shown in Algorithm 1.
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2.3. Examples. In this section, four examples are provided to
illustrate our approach. The examples of sections 2.3.1, 2.3.2, and
2.3.3 correspond to the data from ref 2, while in section 2.3.4 a
realistic and industrial example coming from the petrochemicals
company REPSOL is studied. In all the examples we have
analyzed the results of our methodology by using, first, con-
centrations without noise and, second, concentrations corrupted
with additive zero-meanGaussian noise with a standard deviation
of 1%. This model of noise has been taken from ref 2. Our VNS
algorithm has been coded in Fortran and compiled using
Intel©Fortran Compiler XE 12.0. Executions were carried out on
an Intel Core i7 computer with 16.00 Gb of RAM memory at
2.6 GHz, runningWindows 8. In the implementation of the VNS,
the number Rmax of different radii was set equal to 10 and the
value of γ is 5 for sections 2.3.1, 2.3.2, and 2.3.3, while Rmax = 20
and γ = 500 for section 2.3.4. A sequential equality constrained
quadratic programming method is used as a local-search routine
by means of the functions NNLPF and the nonlinear systems of
equations are solved using a modified Powell hybrid algorithm
through the function NEQNF. Both functions are available at the
IMSL Fortran Numerical Library.
Furthermore, the tolerance ε in Problems 7 and 8 is set to 10−7

in sections 2.3.1, 2.3.2, and 2.3.3, while it is ε = 10−2 in section
2.3.4 because the problems turned out to be much harder, as a
solution with tolerance 10−7 was not found. In sections 2.3.1,
2.3.2, and 2.3.3, the set Θ is the cartesian product of intervals of
the form [10−10, +∞). Nevertheless, in section 2.3.4, the decision
variables θ = (a, Ea), as defined in eq 11, is allowed to take values,
a∈ [10−10, 1015] and Ea∈ [10−10, 1010]. Note that the admissible
values of the parameters a and Ea should be understood
componentwise. Finally, the sets where the theoretical con-
centrations of the incomplete species take values, ∈l,l , are
chosen to be [10−7, +∞) in all the examples. As a preprocessing
step, we have determined which are the species that can be
identified by using the methodology in refs 4 and 5We recall that
in the steady state, this method is able to identify which species
can be reconstructed, but it cannot reconstruct them, since at
least one value per species is needed, and this information is
not available in the steady state. We remark that we are not
comparing our approach with the one in refs 4 and 5. Indeed, the
method in refs 4 and 5 provides a powerful tool to reconstruct
some incomplete measurements, but it may fail to reconstruct all
of them, as mentioned above. In such cases, our method is able to
find a solution coherent with the available information. Hence,
we are not competing but complementing refs 4 and 5.
The experimental concentrations of all the species of sections

2.3.1, 2.3.2, and 2.3.3 have been generated using the parameters
stated in ref 2 and given in eq 5, that is, θ in eq 9, named the true θ
in what follows. These concentrations without noise are shown in
Table 2.

θ = (0.0530, 0.1280, 0.0280, 0.0001) (9)

On the other hand, the concentrations with noise are shown in
Table 3.
The example of section 2.3.4 comes from the petrochemicals

company REPSOL. It consists of the steady state of the reaction

network in eq 10 where 12 species, E1, ..., E12 and a catalyst, Cat,
react in a continuous stirred tank reactor:

+ ⎯→⎯ +

⎯→⎯ +

⎯→⎯ +

⎯→⎯ +

⎯→⎯ +

+ ⎯→⎯

E E E E

E E E

E E E

E E E

E E E

E E E

0.5

1 2
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3 4

2
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3 5

2
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6 7

2
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8 9

2
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10 11

4 7
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12 (10)

The 12-dimensional vector of concentrations of the steady state,
y, obeys the following system of nonlinear equations:
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(11)

where the parameter vector has two different subvectors,
θ = (a, Ea), a = (a1, ..., a6) and Ea = (Ea1, ..., Ea6) denote,
respectively, the prefactor and the activation energy of the

Table 3. Experimental Concentrations with Noise of
Sections 2.3.1, 2.3.2, and 2.3.3

E1 E2 E3 E4 E5 E6

expt concn <10−8 2.6974 <10−8 1.5431 0.2460 <10−8
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Arrhenius law.16 The magnitude of a is L/mol·s and the
magnitude of Ea is J/mol. The steady states of the concentrations
yi, i = 1, ..., 12 are measured in mol/L, while yCat = 0.001 mol/L is
the concentration of the catalyst Cat. The temperature Temp =
383 K, and R = 8.314 J/mol·K denotes the universal gas constant.
Moreover, the volume of the tank vessel is V = 10 L and uin =
0.01 L/s and uout = 0.01 L/s denote the inlet and outlet mass flow
rates, respectively. Finally, the inlet composition vector takes the
valuesW = (W1, ...,W12) = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) mol/L.
The experimental data have been generated using the

values of a and Ea shown in eq 12, named in what follows the
true a and Ea.

= × ×

× × ×

=

a

E

(5 10 , 2 10 , 10 ,

5 10 , 4 10 , 2 10 ),

a (62733, 71097, 66914, 85734, 133829, 63987)

10 10 10

9 9 9

(12)

The concentrations obtained by solving the nonlinear system of
eqs 11 with the parameters in eq 12 can be seen in Table 4 and
the noisy data are shown in Table 5.
2.3.1. Example 1. In this example, the information on species

E2 and E4 has been removed from Table 2; that is, = {2, 4}
yielding Table 6.

According to Brendel’s method,4,5 none of the species in
can be reconstructed in this case. On the other hand, a study of
structural identifiability was done. If all species are observed, the
model is identifiable. The study case of structural identifiability
for the parameters of the model and the unknown (no observed)
concentrations E2 and E4 reveals that the state E4 is not struc-
turally identifiable, meaning that it may have an infinite number
of solutions or none. This is a simple illustration of how a
structurally identifiable model may convert from identifiable to

nonidentifiable when not enough information is given. Extreme
concentrations are sought, that is, Problems 7 and 8 are solved by
using Algorithm 1, for E2 and E4, yielding the results in Table 7 in
which the associated parameters θ2, θ2, θ4, θ4 have the values in
eqs 13 and 14.

θ
θ

=
= −

(1650.7775, 36666.3068.6794, 10.9536, 727.8457)

(299.2406, 10 , 0.0130, 453.2508)
2

2
10

(13)

θ
θ

=

=

−

−

(89.9359, 10 , 0.0130, 85.7068)

(10 , 33341.9526, 10.4456, 3.6259)
4

4

10

10
(14)

We observe that there exists a wide range of the concentrations of
the incomplete species E2 and E4 compatible with the available
measurements.
In order to analyze the behavior of our approach when it deals

with noisy data, we have also removed species E2 and E4 from
Table 3, yielding Table 8

In this case, the conclusions obtained by applying Brendel’s
method,4,5 are the same as before; i.e., none of the species can
be reconstructed in this case. Therefore, Problems 7 and 8 are
solved, giving the extreme concentrations of Table 9, with θ2, θ2,

θ4, θ4 in Table 9 taking the values in eq 15 and 16.

θ
θ

=
= −

(3.0132, 3232.6794, 3.2570, 1.0995)

(0.7575, 10 , 0.0130, 0.8776)
2

2
10

(15)

θ
θ

=
=

−(0.8313, 10 , 0.0130, 1.0463)

(0.7205, 28894.7238, 9.7246, 20567.2083)
4

4

10

(16)

Table 4. Experimental Concentrations of Example in section 2.3.4

E1 E2 E3 E4 E5 E6

expt concn 0.1791 0.0329 0.9587 0.8172 0.0689 0.0081
E7 E8 E9 E10 E11 E12

expt concn 0.0045 0.0001 0.0001 0.2333 × 10−8 0.2333 × 10−8 0.0035

Table 5. Experimental Concentrations with Noise of Example in section 2.3.4

E1 E2 E3 E4 E5 E6

expt concn 0.1755 0.0331 0.9495 0.8221 0.0678 0.0080
E7 E8 E9 E10 E11 E12

expt concn 0.0044 0.0001 0.0001 0.2350 × 10−8 0.2325 × 10−8 0.0035

Table 6. Experimental Concentrations of Species E1, E3, E5, E6

E1 E2 E3 E4 E5 E6

expt concn <10−8 <10−8 0.2502 <10−8

Table 7. Extreme Concentrations When = {2, 4}

E1 E2 E3 E4 E5 E6

y for the true θ <10−8 2.6815 <10−8 1.5341 0.2502 <10−8

y for θ2 <10−8 0.0068 <10−8 2.8710 0.2502 <10−8

y for θ2 <10−8 5.7497 <10−8 0.5509 × 10−8 0.2502 <10−8

y for θ4 <10−8 5.7497 <10−8 0.5509 × 10−8 0.2502 <10−8

y for θ4 <10−8 0.0071 <10−8 2.8713 0.2502 <10−8

Table 8. Noisy Experimental Concentrations When
= {2, 4}

E1 E2 E3 E4 E5 E6

y for the true θ with noise <10−8 <10−8 0.2460 <10−8
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2.3.2. Example 2. In this example, the concentrations of the
species E1, E3 and E5 have been removed from Table 2, that is to
say, = {1, 3, 5}. The observed and incomplete data in this
case are shown in Table 10.

Brendel’s technique,4,5 states for this example that none of the
incomplete measurements can be reconstructed, but they are all
structurally identifiable, meaning that with good experimental
data a unique solution should be obtained for the unknown
concentrations. However, it can occur that not so good experi-
mental data are available. Although our aim is not to reconstruct
the species (it will be impossible, due to the incomplete
measurements available) but to find the extreme concentrations
of the unknown experimental values, in this case we see how by
searching for the extreme concentrations, we determine that the
minimum and the maximum concentrations take the same value,
which implies the reconstruction of such species. Nevertheless,
because the best experimental data have not been chosen, the
reconstructed values are associated with four different sets of
parameters.
The extreme concentrations obtained by solving the optimiza-

tion Problems 7 and 8 when = {1, 3, 5} and their associated
parameters eq 17 and the concentrations obtained by solving
the nonlinear system eq 4 with θ in eq 9, that is, the true θ, are
shown in Table 11. We can see that all the species have been

reconstructed to their correct values, while Brendel’s method-
ology,4,5 was unable to reconstruct them. Furthermore, in two
out of three cases, more particularly where E1 and E3 are
minimized and maximized, we have identified the true θ in eq 9,
with three decimal digits.

θ θ θ θ
θ

θ

= = = =
=

= − −

(0.0529, 0.1280, 0.0280, 0.0001)

(545.4243, 0.1279, 0.0279, 120.6754)

(10 , 0.1280, 0.0280, 10 )

1 1 3 3

5

5
10 10

(17)

The study of our methodology with noisy data have been
analyzed in this example by removing the species E1, E3, and E5
from Table 3, yielding Table 12.
Following Brendel’s method,4,5 none of the species can be

reconstructed. Thus, Problems 7 and 8 are solved in order to

find the extreme concentrations. The solutions so-obtained can
be seen in Table 13, and the associated parameters are shown
in eq 18.

θ θ θ θ θ
θ

= = = = =
=

(0.0529, 0.1272, 0.0240, 0.0001)

(3893.4066, 0.1272, 0.0240, 1103.9838)
1 1 3 3 5

5

(18)

We observe that, in spite of the noisy data, we are able to find the
values of two out of three of the incomplete measurements,
by searching the highest and the lowest values that these con-
centrations can take. In fact, the method used in refs 4 and 5 does
not allow concentrations reconstruction, but our method shows
that the range of possible concentrations is degenerate, meaning
that, indeed, the concentration value has been reconstructed
(though we do not claim uniqueness of the parameter yielding
such concentration).

2.3.3. Example 3. In the third example, the species E2 has
been removed; that is, = {2}. Hence, we assume that we
have the experimental concentrations of Table 14, coming from
Table 2.

The stoichiometry matrix, A, is given by

=

−
− − − −

−

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
A

1 0 0 0
1 2 1 1

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

Following Brendel et al.,4,5 we build the submatrix, Aobs, of
measured species,

Table 9. Extreme Concentrations When Experimental Concentrations Are Noisy and = {2, 4}

E1 E2 E3 E4 E5 E6

noisy y for the true θ <10−8 2.6974 <10−8 1.5431 0.2460 <10−8

y for θ2 <10−8 0.0052 <10−8 2.8743 0.2460 <10−8

y for θ2 <10−8 5.7539 <10−8 0.5517 × 10−8 0.2460 <10−8

y for θ4 <10−8 5.7539 <10−8 0.5517 × 10−8 0.2460 <10−8

y for θ4 <10−8 0.0064 <10−8 2.8773 0.2460 <10−8

Table 10. Experimental Concentrations of Species E2, E4, E6

E1 E2 E3 E4 E5 E6

expt concn 2.6815 1.5341 <10−8

Table 11. Extreme Concentrations When = {1, 3, 5}

E1 E2 E3 E4 E5 E6

y for true θ, θ1,
θ1, θ3, θ3, θ5
and θ5

<10−8 2.6815 <10−8 1.5340 0.2502 <10−8

Table 12. Noisy Experimental Concentrations When
= {1, 3, 5}

E1 E2 E3 E4 E5 E6

expt concn 2.6974 1.5431 <10−8

Table 13. Extreme Concentrations when = {1, 3, 5} and
the Data Are Corrupted

E1 E2 E3 E4 E5 E6

Noisy y for
the true θ

<10−8 2.6974 <10−8 1.5431 0.2460 <10−8

y for θ1, θ1,
θ3, θ3, θ5

and θ5

<10−8 2.6974 <10−8 1.5431 0.2163 <10−8

Table 14. Experimental Concentrations of Species E1, E3, E4,
E5, E6

E1 E2 E3 E4 E5 E6

expt concn <10−8 <10−8 1.5341 0.2502 <10−8
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=

−
−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
A

1 0 0 0
1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

obs

Since the rank of Aobs is equal to the number of reactions, 4, it
follows that species E2 is identifiable, but we do not know its
concentration value. Also, the generating series approach9 reveals
that E2 is structurally identifiable, meaning that E2 has a unique
solution, obtained with a unique set of parameters if the experi-
mental data are good enough. Therefore, we solve the optimiza-
tion Problems 7 and 8 in order to find the extreme concentra-
tions that E2 can reach.
The concentrations obtained by solving the steady state eqs 4

respectively for the parameters θ in eq 9, that is, the true θ, for θ2

and θ2, in eq 9 are given in Table 15.

θ
θ

=
=

(9.9336, 0.1280, 0.0279, 85.29)

(532.5699, 0.1279, 0.0279, 165.0361)
2

2 (19)

In this case, looking for the extreme concentrations of the
unknown species E2, we have found a degenerate interval with
one single point, whose value is 2.6815, which corresponds to the
value of the concentration of the species E2 obtained by solving
eq 4 with the true θ; that is, the incomplete concentration has
been reconstructed, as Brendel et al. stated.4,5 Nevertheless, since
our goal is not to reconstruct the unknown species but to find
the corresponding extreme concentrations, it makes sense that
the extreme parameters are different from the true θ.
Regarding the behavior of our approach with respect to the

noisy data, we have removed the species E2 fromTable 3, yielding
Table 16.

Problems 7 and 8 have been solved in order to find the highest
and the lowest value of E2. Such extreme concentrations and the
corresponding extreme parameters can be seen in Table 17 and
eq 20, respectively.

θ
θ

=
=

(255.3638, 0.1300, 0.0276, 401.1641)

(0.529, 0.1300, 0.0276, 0.0001)
2

2 (20)

This example shows that the minimum and the maximum
concentrations of E2 have the same value and equal to 2.6677.
This value is different from the corresponding noisy concen-
tration. However, we are able to fully satisfy the constraints

related with the observed concentrations, E1, E3, ..., E6, in spite of

the corrupted data.
2.3.4. Example 4. In this last example, species E1, E4, and E5

have been deleted from Table 4, that is to say, = {1, 4, 5},
yielding Table 18.
The method of Brendel et. al,4,5 states that in this case none

of the species can be reconstructed. Therefore, the extreme

concentrations of the incomplete measurements are sought by

solving Problems 7 and 8. They can be seen in Table 19, and the

associated parameters are in eq 21−23.

= × × × ×

× ×
=

= × × × ×

× ×
=

a

Ea

a

Ea

(5 10 , 2 10 , 9.9999 10 , 4.9999 10 ,

3.9999 10 , 1.9999 10 )

(57557.5157, 160604.9833, 66913.9964, 85733.9848,

133815.4526, 64483.7680)

(5 10 , 2 10 , 9.9999 10 , 4.9999 10 ,

4 10 , 2 10 )

(64678.3399, 69260.9687, 66913.9999, 85733.9993,

133857.7498, 63537.4101)

1

1

1

1

10 10 9 9

9 9

10 10 9 9

9 9

(21)

= × × × ×

× ×
=

= × × × ×

× ×
=

a

Ea

a

Ea

(5 10 , 2 10 , 9.9999 10 , 4.9999 10 ,

4 10 , 2 10 )

(64678.3398, 69260.9692, 66913.9991, 85733.9992,

133828.9655, 63537.4074)

(4.9999 10 , 2 10 , 9.9999 10 , 5 10 ,

4 10 , 2 10 )

(51557.5138, 164577.0411, 66913.9979,

85734.0002, 133704.0664, 64483.8224)

4

4

4

4

10 10 9 9

9 9

10 10 9 9

9 9

(22)

= × × × ×

× ×
=

= × × × × ×

×
=

a

Ea

a

Ea

(4.9999 10 , 2 10 , 9.9999 10 , 4.9999 10 ,

4 10 , 1.9999 10 )

(57557.5154, 138863.2615, 66913.9996, 85734.0021,

133770.9126, 64483.7748)

(5 10 , 2 10 , 10 10 , 5 10 , 4 10 ,

2 10 )

(64677.8560, 69261.3722, 66914.0013, 85734.0026,

133951.3483, 63537.5477)

5

5

5

5

10 10 9 9

9 9

10 10 10 9 9

9

(23)

Finally, the behavior of our methodology with regard to the noisy

data has also been analyzed in this industrial example. To test it,

species E1, E4, and E5 have been removed from Table 5, yielding

Table 20.
As happens with the noiseless data, according to Brendel’s

method,4,5 the incomplete measurements cannot be recon-

structed. Thus, we look for the extreme concentrations by solving

Problems 7 and 8. The solutions so-obtained are in Table 21, and

their extreme parameters are shown in eq 24−26.

Table 15. Extreme Concentrations When = {2}

E1 E2 E3 E4 E5 E6

y for the true
θ θ, 2 and θ2

<10−8 2.6815 <10−8 1.5341 0.2502 <10−8

Table 16. Noisy Experimental ConcentrationsWhen = {2}

E1 E2 E3 E4 E5 E6

expt concn <10−8 <10−8 1.5431 0.2460 <10−8

Table 17. Extreme Concentrations When = {2}

E1 E2 E3 E4 E5 E6

noisy y for the
true θ

<10−8 2.6974 <10−8 1.5431 0.2460 <10−8

y for θ2 and θ2 <10−8 2.6677 <10−8 1.5431 0.2460 <10−8
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Table 18. Experimental Concentrations When = {1, 4, 5}

E1 E2 E3 E4 E5 E6

expt concn 0.0329 0.9587 0.0081
E7 E8 E9 E10 E11 E12

expt concn 0.0045 0.0001 0.0001 0.23 × 10−8 0.23 × 10−8 0.0035

Table 19. Extreme Concentrations When = {1, 4, 5}

E1 E2 E3 E4 E5 E6

y for the true (a, Ea) 0.1791 0.0329 0.9587 0.8172 0.0689 0.0081

y for a Ea( , )1 1 0.0412 0.0329 0.9587 0.9552 <10−8 0.0081

y for a Ea( , )1 1 0.2867 0.0329 0.9587 0.7096 0.1194 0.0081

y for a Ea( , )4 4 0.2867 0.0329 0.9587 0.7096 0.1227 0.0081

y for a Ea( , )4 4 0.0412 0.0329 0.9587 0.9552 <10−8 0.0081

y for a Ea( , )5 5 0.0412 0.0329 0.9587 0.9552 <10−8 0.0081

y for a Ea( , )5 5 0.2867 0.0329 0.9587 0.7547 0.1227 0.0081

E7 E8 E9 E10 E11 E12

y for the true (a, Ea) 0.0045 0.0001 0.0001 0.2333 × 10−8 0.2333 × 10−8 0.0035

y for a Ea( , )1 1 0.0045 0.0001 0.0001 0.2243 × 10−8 0.2243 × 10−8 0.0035

y for a Ea( , )1 1 0.0045 0.0001 0.0001 0.2312 × 10−8 0.2312 × 10−8 0.0035

y for a Ea( , )4 4 0.0045 0.0001 0.0001 0.2333 × 10−8 0.2333 × 10−8 0.0035

y for a Ea( , )4 4 0.0045 0.0001 0.0001 0.2426 × 10−8 0.2426 × 10−8 0.0035

y for a Ea( , )5 5 0.0045 0.0001 0.0001 0.2376 × 10−8 0.2376 × 10−8 0.0035

y for a Ea( , )5 5 0.0045 0.0001 0.0001 0.2245 × 10−8 0.2245 × 10−8 0.0035

Table 20. Noisy Experimental Concentrations When = {1, 4, 5}

E1 E2 E3 E4 E5 E6

expt concn 0.0331 0.9495 0.0080
E7 E8 E9 E10 E11 E12

expt concn 0.0044 0.0001 0.0001 0.2350 × 10−8 0.2325 × 10−8 0.0035

Table 21. Extreme Concentrations When = {1, 4, 5} Using Noisy Data

E1 E2 E3 E4 E5 E6

Noisy y for true (a, Ea) 0.1755 0.0331 0.9495 0.8221 0.0678 0.0080

y for a Ea( , )1 1 0.0405 0.0405 0.9594 0.9594 <10−8 <10−8

y for a Ea( , )1 1 1 0.0331 0.9586 <10−8 0.4793 0.0080

y for a Ea( , )4 4 1 0.0419 0.9580 <10−8 0.4790 <10−8

y for a Ea( , )4 4 0.0405 0.0405 0.9594 0.9594 0.4852 × 10−6 0.9498 × 10−5

y for a Ea( , )5 5 0.0417 0.0417 0.9582 0.9582 <10−8 <10−8

y for a Ea( , )5 5 1 0.0405 0.9594 <10−8 0.4797 <10−8

E7 E8 E9 E10 E11 E12

Noisy y for true (a, Ea) 0.0044 0.0001 0.0001 0.2350 × 10−8 0.2325 × 10−8 0.0035

y for a Ea( , )1 1 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

y for a Ea( , )1 1 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

y for a Ea( , )4 4 <10−8 1.6231 × 10−4 1.6231 × 10−4 <10−8 <10−8 <10−8

y for ( a Ea,4 4) 0.9492 × 10−5 0.1137 × 10−4 0.1137 × 10−4 <10−8 <10−8 0.6499 × 10−8

y for a Ea( , )5 5 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

y for a Ea( , )5 5 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8
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= × × × ×

× ×
=

= × × × ×

× ×
=

a

Ea

a

Ea

(4.9999 10 , 2 10 , 9.9999 10 , 5 10 ,

3.9999 10 , 1.9999 10 )

(58161.8648, 282914.7484, 297418.3882,

166938.5726, 321162.7724, 113545.5758)

(5 10 , 1.9999 10 , 9.9999 10 , 5 10 ,

4 10 , 1.9999 10 )

(1540044.6111, 64961.9046, 66962.7447, 85782.1988,

131955.0543, 92596.3052)

1

1

1

1

10 10 9 9

9 9

10 10 9 9

9 9

(24)

= × × × ×

× ×
=

= × × ×

× × ×
=

a

Ea

a

Ea

(5 10 , 1.9999 10 , 9.9999 10 , 5 10 ,

4 10 , 1.9999 10 )

(355687.2217, 66464.7956, 270519.1337,

101268.7020, 303981.5657, 153259.0506)

(4.9999 10 , 1.9999 10 , 9.9999 10 ,

5 10 , 4 10 , 1.9999 10 )

(58160.3235, 110197.7655, 89727.8020,

94959.1006, 160155.0092, 86871.6213)

4

4

4

4

10 10 9 9

9 9

10 10 9

9 9 9

(25)

= × × × ×

× ×
=

= × × ×

× × ×
=

a

Ea

a

Ea

(5 10 , 2 10 , 10 10 , 4.9999 10 ,

3.9999 10 , 1.9999 10 )

(58362.6727, 503636.6170, 193016.0150,

204589.6321, 329745.2070, 305126.6796)

(4.9999 10 , 1.9999 10 , 9.9999 10 ,

5 10 , 3.9999 10 , 1.9999 10 )

(432983.2223, 66240.8717, 555394.1069,

259001.6773, 510704.6598, 417831.0859)

5

5

5

5

10 10 10 9

9 9

10 10 9

9 9 9

(26)

3. AN EXTENSION. THE TRANSIENT STATE

An extension of the problem considered in section 2 is detailed
here. We explain first how to extend the analysis to the evolution
of the concentrations (transient state). Then, some examples are
given to show the benefits of our approach.
3.1. Mathematical model. In practice it may be difficult,

even impossible to measure concentrations of some reactants
inside a reactor, and only their initial concentrations are
known. When we do not have measurements in some time
instants, or in all the time instants different from the initial one,
analytical techniques, such as Brendel’s method,4,5 are useful,
when applicable. However, this is not our aim, and instead this
section details the problem of finding the extreme concentrations
and their associated parameters in the transient state, where the
evolution of the concentrations is obtained by solving the Cauchy
Problem, eq 1. To experimentally address the inference problem,
experimental measurements, ̂yin, of the species Ei, i = 1, ...,N at the
time instants tn, n = 1, ..., S, are taken.
As in the steady state (section 2), there may exist differ-

ent sets of parameters θ which give good fits and satisfy eq 1.
This difficulty is even worse when incomplete measurements
in the experimental data appear, since different concentra-
tions curves may be coherent with the poor experimental data
available.

Unlike the steady state, in the transient state we assume that
we always have some information about all the species, because at
least the initial concentration is known. For a fixed species
Ei, i = 1, ..., N we can define the S-dimensional vector, ̂yi as the
vector of experimental concentrations of the species Ei taken in
all the time instants, tn. This vector can be divided into two parts,
̂y i

obs which represents the observed experimental data, and ̂y i
mis,

which denotes the concentrations that are missing.

= |̂ ̂ ̂y y y( )i i i
obs mis

Analogously to the steady state, for each fixed i = 1, ..., N, the set
of time instants tn, n = 1, ..., S is split into two sets i and i.
In i we include the time instants for which the concentrations
of the species Ei are available, and i corresponds to the
time instants for which the concentrations of the species Ei are
incomplete.
To calculate the incomplete measurements at a given time

instant the structural approach described in refs 4 and 5 is used as
a preprocessing step. This is a simple and fast algorithm based on
the analysis of the rank of the stoichiometric matrix, which may
allow us to obtain some reaction fluxes. When applicable, this
method reconstructs the incomplete measurements perfectly.
However, such methodology is limited, and unfortunately it is
not always the case that incomplete data can be properly inputted
from the available data. Hence, one should first restore as many
data as possible in this preprocessing step, and later apply our
method for the remaining missing data. As in section 2, we
propose not to give one parameter vector providing a good
fit, and instead we give for each species Ei, i = 1, ..., N and for
each missing time instant tn, ∈n i the extreme concentrations

in which ̂yin
mis can take values, as well as the vector of parameters

θin and θin associated with them. The extremes of the interval
are the minimum and the maximum values, yin and yin respec-

tively, that the missing concentration ̂yin
mis can reach. Two

optimization problems have to be solved in order to find out the
values of yin and yin and the associated values of θin and θin

respectively, for i = 1, ...,N, ∈n i. These problems are stated in
eq 27 and 28.

θ
θ

θ

ε

=
̇ = ∈
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∈ = ∈
∈ Θ
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⎧

⎨
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⎩

⎪⎪⎪⎪

y
y t t t t t T

y t y j N m

y t l N t T

F y u
y y

arg min

s.t. ( ) ( , ( ), ( ), ), [0, ]
(0)
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j m jm
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l l
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To find the global optimum of Problems 27 and 28, we first
use the Brendel’s method,4,5 as a preprocessing step, not only
identifying which are the species that can be reconstructed, but
also giving an approach to reconstruct them. Then, Algorithm 1
is applied.
3.2. Examples.Here, we analyze the behavior of our approach

in the transient state by means of two examples, detailed in
sections 3.2.1 (Example 5) and 3.2.2 (Example 6). In Example 5,
we select the transient state of the reaction network in eq 4 from
ref 2, while in Example 6, we study the transient state of a real-
world instance coming from the petrochemicals company
REPSOL given by the reaction network in eq 10. The different
systems of ODEs have been solved by using the function IVPRK
available in the IMSL Fortran Library. The parameter Rmax of the
VNS algorithm has been set equal to 5, and the parameter γ = 0.5
in section 3.2.1, while γ = 5000 in section 3.2.2. The tolerance
ε in Problems 27 and 28 is fixed to 10−7 in section 3.2.1 and
10−3 in section 3.2.2. Finally, the sets Θ and l, ∈l have the
same expression as in section 2.3.
The concentrations, measured in mol/L, of the section 3.2.1,

have been obtained by solving the system of differential
equations given in eq 29 in four time instants measured in
minutes: t1 = 0, t2 = 10, t3 = 20, and t4 = 30 with initial value
y0 = (1, 1, 1, 1, 1, 1) and with the parameters θ in eq 9, that is, with
the true θ are given in Table 22.

θ

θ θ θ

θ
θ θ

θ
θ
θ

̇ = − −

̇ = − − −

− + −
̇ = − −

̇ = −
̇ = −
̇ = −

y t y t y t y u y t

y t y t y t y y t y y t

y t y t y W u u y t

y t y t y t y y t y t y u y t

y t y t y u y t

y t y t u y t

y t y t y t y u y t

( ) ( ) ( ) ( )

( ) ( ) ( ) 2 ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ),

1 1 1 2 Cat out 1

2 1 1 2 Cat 2 2
2

Cat 3 2

4 3 2 Cat 2 in out 2

3 1 1 2 Cat 4 3 2 Cat out 3

4 2 2
2

Cat out 4

5 3 2 out 5

6 4 3 2 Cat out 6

(29)

where yi(t), i = 1, ..., N denotes the curve of concentration of the
species Ei for t ∈ [0, T]. The vector θ = (θ1, θ2, θ3, θ4) yields the
rate constants vector, and yCat, uin, uout, and W2 have the same
values as in eq 4.

Table 22. Concentrations with the True θ in Equation 9

time E1 E2 E3 E4 E5 E6

t1 1 1 1 1 1 1
t2 0.0258 2.6786 0.0257 1.4573 0.2829 0.0498
t3 0.0006 2.6815 0.0006 1.5298 0.2518 0.0024
t4 10−5 2.6815 10−5 1.5338 0.2503 0.0001

Table 23. Concentrations with the True a and Ea in eq 12

time E1 E2 E3 E4 E5 E6

t1 1 1 0 0 0 0

t2 0.5386 0.2132 0.7686 0.4613 0.1536 0.0180

t3 0.4464 0.0955 0.8848 0.5543 0.1656 0.0194

t4 0.4092 0.0547 0.9255 0.5904 0.1673 0.0196

t5 0.3904 0.0367 0.9435 0.6091 0.1670 0.0196

t6 0.3795 0.0279 0.9524 0.6199 0.1659 0.0195

t7 0.3724 0.0235 0.9570 0.6269 0.1647 0.0193

t8 0.3673 0.0211 0.9595 0.6320 0.1634 0.0192

t9 0.3623 0.0199 0.9609 0.6359 0.1620 0.0190

t10 0.3597 0.0193 0.9616 0.6393 0.1607 0.0189

t11 0.3565 0.0191 0.9621 0.6424 0.1593 0.0187

time E7 E8 E9 E10 E11 E12

t1 0 0 0 0 0 0

t2 0.0180 2.2667 × 10−5 2.2667 × 10−5 <10−8 <10−8 4.4269 × 10−5

t3 0.0193 2.9656 × 10−5 2.9656 × 10−5 <10−8 <10−8 0.0001

t4 0.0194 3.3013 × 10−5 3.3013 × 10−5 <10−8 <10−8 0.0002

t5 0.0192 3.4944 × 10−5 3.4944 × 10−5 <10−8 <10−8 0.0003

t6 0.0190 3.6210 × 10−5 3.6210 × 10−5 <10−8 <10−8 0.0004

t7 0.0188 3.7141 × 10−5 3.7141 × 10−5 <10−8 <10−8 0.0005

t8 0.0185 3.7897 × 10−5 3.7897 × 10−5 <10−8 <10−8 0.0006

t9 0.0182 3.8559 × 10−5 3.8559 × 10−5 <10−8 <10−8 0.0007

t10 0.0180 3.9170 × 10−5 3.9170 × 10−5 <10−8 <10−8 0.0008

t11 0.0177 3.9754 × 10−5 3.9754 × 10−5 <10−8 <10−8 0.0009

Table 24. Experimental Concentrations

time E1 E2 E3 E4 E5 E6

t1 1 1 1 1 1 1
t2
t3
t4

Table 25. Concentrations Obtained Using the Parameters θ5 4
in Equation 31

time E1 E2 E3 E4 E5 E6

t1 1 1 1 1 1 1
t2 0.0497 0.4053 0.0497 2.7226 0.0497 0.0497
t3 0.0024 0.4053 0.0024 2.7936 0.0024 0.0024
t4 0.0001 0.4053 0.0001 2.7971 0.0001 0.0001
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The concentrations of section 3.2.2 are also measured in
mol/L, and they have been obtained by solving the system
(eq 30) in 11 time instants, ti = 10(i − 1), i = 1, ..., 11 with the
data and parameters used in section 2.3 and with y0 = (1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0) . Such concentrations can be seen in
Table 23.
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(30)

3.2.1. Example 5. We now assume that concentrations are
measured only at time t1 = 0, that is, the information available is
the one given in Table 24. Since only initial concentrations are
given, it is not possible to infer the parameters or reconstruct
concentrations by Brendel’s method,.4,5 However, our method is
useful to determine the extreme concentrations and infer the
parameters associated with them.
As illustration, we have chosen y5 4 as the concentration to be

minimized and maximized, that is to say, we will search for the

extreme concentrations of the species E5 at time instant t4 and as
a byproduct the associated parameters are obtained.
The concentrations obtained by solving eq 29 with the para-

meters in eq 31 are shown in Tables 25 and 26.
The optimal parameters associated with Problems 27 and 28

can be seen in eq 31.

θ
θ

=
=

− − −(10 , 10.2158, 10 , 10 )

(0.7385, 0.0678, 562.5779, 0.1566)
54

10 10 10

54 (31)

If we compare Tables 25 and 26 we observe that the con-
centrations of E1, E3, and E6 remain unchanged, while from the
poor experimental data available (see Table 24), the uncertainty
in the concentrations of E2, E4, and E5 are very high. For instance,
E5 may have at time t4 a concentration of 0.0001 or 5.9963.
The first case corresponds to a model with parameters θ54 and

the latter with θ54.
A plot with the curve y5(t), t ∈ [0, 30] obtained as solution of

eq 29 with the true parameters θ in eq 9, in black, θ54 in eq 31,

in green, and θ54 in eq 31, in pink, is shown in Figure 1. The big
points indicate the concentrations y5n, n = 1, ..., 4.

3.2.2. Example 6. For this particular example the method
described in refs 4 and 5 reveals that all the species can be
perfectly reconstructed in the cases where any combination of
1, 2, 3, or 4 species is deleted from Table 23, and only in 7
combinations of 4 species such methodology cannot be applied.
In order to analyze the complementarity of both methods,
Brendel’s approach and our algorithm, we focus on an example in
which refs 4 and 5 reconstruct one out of the four missing species.
Our methodology will be applied to find some information
about the remaining species. In fact, in this example, we assume
that the concentrations of species E1,E4,E5, and E6 have been
removed, that is to say, we only have the concentrations shown
in Table 27.
In this case, Brendel et al.,4,5 state that only the species E6 can

be reconstructed. Thus, our method is very useful in order to
find a possible solution of the incomplete measurements. Indeed
we will find the highest and the lowest values of such incomplete
concentrations of the species E1,E4, and E5.
Observe that after applying Brendel’s methodology,4,5 the

species E6 is not incomplete anymore, and therefore the sets i
and =i, 1, ..., 12i , that we consider in Problems 27 and 28 are

= = =
= = ⌀ =

i
i

{1}, {2, ..., 11}, 1, 4, 5
{1, ..., 11}, , 2, 3, 6, ..., 12

i i

i i

To show the strength of our approach, as an illustration we find
the extreme values of the species E4 at the time instant t2; that is,
we want to minimize and maximize y4 2. The concentrations of the
species E4 obtained after solving Problems 27 and 28 are shown in
Table 28. We highlight in bold the extreme concentrations of the
speciesE4 at the time instant t2. The corresponding parameters can
be seen in eq 32.

Table 26. Concentrations Obtained Using the Parameters θ5 4
in Equation 31

time E1 E2 E3 E4 E5 E6

t1 1 1 1 1 1 1
t2 0.0491 0.0031 0.0490 0.0497 5.7969 0.0499
t3 0.0024 0.0031 0.0024 0.0024 5.9868 0.0024
t4 0.0001 0.0031 0.0001 0.0001 5.9963 0.0001

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.6b00714
Ind. Eng. Chem. Res. 2016, 55, 11417−11430

11427

http://dx.doi.org/10.1021/acs.iecr.6b00714


= × × ×

× × ×
=

= × ×

× × ×
=

a

Ea

a

Ea

(4.9999 10 , 2 10 , 9.9999 10 ,

5 10 , 3.9999 10 , 1.9999 10 )

(63160.8851, 70663.4134, 66922.6451,
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245633.4515, 534743.5380, 63751.6647)
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42
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10 10 9

9 9 9

10 10 10

9 9 9

(32)

In Figure 2 a plot with the curve y4(t),t ∈ [0, 100] obtained
by solving the system (eq 30) with the true (a, Ea) in eq 12),
in black, a Ea( , )42 42 and a Ea( , )42 42 in eq 32 in pink and green,
respectively, is depicted. The big points denote the concentra-
tions of y4n, n = 1, ..., 11.

4. CONCLUSIONS

In this work we have proposed a new strategy to analyze con-
centrations in chemical reactions networks when experimental
information is incomplete. Our scheme is not designed to
provide a single set of parameters which explains the reactions
network. Instead, we provide the so-called extreme concentrations,

Figure 1. Concentration of species E5 obtained with the true parameters θ in eq 9 (black), θ54 in eq 31 (green), and θ54 in eq 31 (pink).

Table 27. Experimental Concentrations

time E1 E2 E3 E4 E5 E6

t1 1 1 0 0 0 0
t2 0.2132 0.7686
t3 0.0955 0.8848
t4 0.0547 0.9255
t5 0.0367 0.9435
t6 0.0279 0.9524
t7 0.0235 0.9570
t8 0.0211 0.9595
t9 0.0199 0.9609
t10 0.0193 0.9616
t11 0.0191 0.9621

time E7 E8 E9 E10 E11 E12

t1 0 0 0 0 0 0
t2 0.0180 2.2667 × 10−5 2.2667 × 10−5 <10−8 <10−8 4.4269 × 10−5

t3 0.0193 2.9656 × 10−5 2.9656 × 10−5 <10−8 <10−8 0.0001
t4 0.0194 3.3013 × 10−5 3.3013 × 10−5 <10−8 <10−8 0.0002
t5 0.0192 3.4944 × 10−5 3.4944 × 10−5 <10−8 <10−8 0.0003
t6 0.0190 3.6210 × 10−5 3.6210 × 10−5 <10−8 <10−8 0.0004
t7 0.0188 3.7141 × 10−5 3.7141 × 10−5 <10−8 <10−8 0.0005
t8 0.0185 3.7897 × 10−5 3.7897 × 10−5 <10−8 <10−8 0.0006
t9 0.0182 3.8559 × 10−5 3.8559 × 10−5 <10−8 <10−8 0.0007
t10 0.0180 3.9170 × 10−5 3.9170 × 10−5 <10−8 <10−8 0.0008
t11 0.0177 3.9754 × 10−5 3.9754 × 10−5 <10−8 <10−8 0.0009
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i.e., the lowest and highest values which can be reached by the
species with such incomplete information. The resolution of
a series of nonlinear optimization problems allows one to obtain
not only the extreme concentrations but also the parameters
associated with them. For the sake of simplicity such optimization
problems are solved by using the metaheuristics VNS to avoid
getting stuck at (bad) local optima. The approach is valid for
both the steady-state and the transient-state cases, as illustrated in
examples.
Regarding interval analysis and, in general, branch and bound

methods, they have been used to address related global optimiza-
tion problems.23,24 These methods guarantee acquisition of the
true global optimum of the optimization problems at the expense
of high running times. Good heuristic solutions may speed up
dramatically the convergence of such methods. Hence, testing
how our stochastic global optimization method can be used to
speed up convergence of deterministic global optimizationmethods
is an interesting research line.
Furthermore, we have assumed throughout this paper that

the kinetic laws governing the evolution of concentrations are
known, though their parameters have to be inferred. However,
our approach is also valid for the more general case in which
uncertainty in the model does affect not only some parameters
but also the kinetic law, to be taken from a given catalogue of
kinetics. Designing an optimized algorithm for this challenging

problem is an interesting research topic. Indeed, one has to
take into account that the search of the parameters maximizing
(or minimizing) the concentration of a given species must be
replaced by a more complex problem of searching the kinetic law
from a given catalogue and its associated parameter maximizing
(or minimizing) such concentration. Such an optimization
problem has now a combinatorial behavior in terms of the set of
the possible kinetic laws, and thus both local and global searches
must be conveniently adapted.
Moreover, we have worked under the assumption that the

network is completely identified, in other words, the stoichio-
metry of the network is known. Usually, these stoichiometry
coefficients take integer values. Nevertheless, this challenging
problem in which we have to find the extreme concentrations
of the incomplete measurements in the case where both integer
and continuous parameters appear can be easily solved by
applying our methodology, making some changes, in which the
combinatorial behavior should be taken into account.
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Table 28. Concentrations of the Species E4 Obtained with a Ea( , )42 42 and a Ea( , )42 42 in Equation 32

t1 t2 t3 t4 t5

y4 for a( , Ea )42 42 0 0.4175 0.5058 0.5423 0.5611

y4 for a( , Ea )42 42 0 0.4736 0.5665 0.6037 0.6223

t6 t7 t8 t9 t10 t11

y4 for a( , Ea )42 42 0.5722 0.5796 0.5850 0.5894 0.5932 0.5967

y4 for a( , Ea )42 42 0.6330 0.6399 0.6448 0.6487 0.6520 0.6549

Figure 2. Concentration of species E4 obtained with the true parameters (a, Ea) in eq 12 (black), a Ea( , )42 42 in eq 32 (green) and a Ea( , )42 42 in
eq 32 (pink).
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