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In this paper the linear regression problem is studied in the context of vector
optimization theory. The set of Pareto-optimal solutions is represented as the set
of optimal solutions to certain optimization problems, and is geometrically charac-
terized as a finite union of bounded polyhedra. ®© 1995 Academic Press, Inc.

1. INTRODUCTION

Let C = {(x, y1), ..., (x,, ¥a)}, €ach x; being a d X | matrix (d = 2) and
each y; € R. In the linear regression model, it is assumed that O is a
sample drawn from a certain multivariate random variable (X, Y) in
R4 x R, such that the response variable Y is a linear function of the pre-
dictive variable X, affected by a perturbation term . In other words,
it is assumed that @ is a sample from a multivariate random variable (X, Y)
that verifies

Y=X8+¢,

where 8 is an unknown parameter and X'B denotes the usual scalar prod-
uct in R?. The aim is to determine

(i) The parameter 8* such that the hyperplane Ag*: y = x'g8* gives
the best fit to the sample.

(ii) Foreach x € R, the value x'8* (prediction at x), where 8* is the
parameter obtained in (i).

The set O induces a vector function (error function) e: RY — R,
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&(B) = (ei(B), ..., &x(B)) = (

yi = XiBls oo [yn = x0B8D.

from which we want to determine the value 8* for 8 that minimizes (in
some sense) the vector function & and, for each x € RY, the prediction
x'B*.

This problem, seeking the simultaneous minimization of the errors ¢;
(i =1, ..., n) is in nature a vector optimization problem, which can be
stated as

(VOP) min £(B),

BERY

where the minimization must be understood in the vectorial sense (see,
e.g., [3, 16, 17]).

Given the vectorial essence of problem (VOP), the most commonly
used strategy to face problem (i) has consisted of scalarizing (VOP)
through a certain globalizing function ¢.

Hence, instead of ‘‘solving’’ (VOP), one solves a scalarized version
(Py),

(Py) min ¢(e(B3))
BERS

For ¢ = |||, (the Euclidean norm), (P,) leads to the least sum of squares
regression, which, although the most popular with researchers, is not the
only globalizing function in the literature (see, e.g., [1, 4, 10]): one should
mention, among others, ¢ = |||, (least absolute deviations regression),
¢ = | |- (Chebychev regression), ¢ = |||, I < p <= (L, regression [10]),
convex combinations of the former [11], and ¢ = median {15]. It is intui-
tively clear that these different approaches lead to different optimal pa-
rameters 8. What is not so evident is the range of variation for this set of
optimal parameters. In this paper we address this question by studying
the linear regression problem through the vector optimization problem
(VOP) defined above.

First (in Section 2) we discuss the concept of a Pareto-optimal solution,
and the set ¥ of Pareto-optimal solutions to (VOP) is identified with a set
of oprimal solutions to optimization problems.

Section 3 is devoted to a geometrical characterization of & in terms of
the elementary convex sets associated with (VOP). The results obtained
also enable determination of the set of optimal predictions, discussed in
Section 4.
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2. PARETO-OPTIMAL SOLUTIONS

Given a family {f, : a € A} of functions f,: Q CR?— Rand aset Z C Q,
a point z* € Z is said to be a Pareto-optimal solution to problem min,c,
(fi(2))uea Iff there exists no z € Z such that

fl2) = fAz¥) foralla € A, fu(2) < f(z*) for some a € A.
Consider the vector optimization problem (VOP),

(VOP) min &(3),

BER!

and denote by ¥ the set of Pareto-optimal solutions to (VOP).

In this section we state some properties of ¥ that allow a representation
of ¥ as a set of optimal solutions to problems of the form mingegs ¢(£(3))
when ¢ varies in a certain set % of functions.

For the sake of simplicity, throughout this paper the following assump-
tion 1s made:

A: The matrix X = (x{, ..., x,) has rank d.

PROPOSITION 1. For eacht = (1), -, ..., t,) € R, the level set C =
{BER: eB) =1, Vi=1, .., n}is compact.

Proof. Given t € R”, the result is trivial if ¢ has at least a negative
component; hence, we can assume that ¢, = Oforalli =1, ..., n. Aseachg;
is a continuous function, it follows that C is closed. To prove that C is
bounded, it suffices to show that C has no direction of recession (see |14,
Theorem 8.4]). Suppose that there exist 3 € C, 8 # O such that 8 + AB €
C for all A = 0. Then, for every i, |y, — x{ 8 — Ax/B] = t; for all A = 0.
Hence, x,-'[_? = O for all i, thus E = 0 (by assumption A). This is a contradic-
tion with 8 # 0, thus the result holds. |

The next proposition shows that ¥ dominates R?, in the sense that,
for any parameter 8 € R, there exists 8* € & such that the hyperplane
hg*: y = x'B8* gives a better or equal (componentwise speaking) fit to
U than the hyperplane Az y = x'8.

ProrosITION 2.  for all B € RY there exists B* € ¥ such that
edB*) = eB) Vvi=1,.. n

with at least one inequality strict if B & .
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Proof. Define on R? the quasiorder R, B/Rf; iff £(8)) = &/{B,) Vi =
1, ..., n. By the proposition above, the set {8 € R?: BRB*} is compact for
all B* € R9. The result then follows by using Theorem 2.3.6 of [17]. |

The proposition above enables the statement of localization theorems,
which are completely analogous to those obtained in [13] for the location
parameter:

A function ¢: R” — R is said to be nondecreasing iff
du) = ¢p(v) VY u, v € R” such that u; < v; Vi
A function ¢: R" — R is said to be strictly increasing iff
d(u) < d(v) Yu, v € R” such that u4; < v; Vi, u; < v; for some i.
ProrosiTioN 3. (i) If ¢: R* — R is a strictly increasing function,

then & contains all the optimal solutions to problem (Pd),

P¢: min ¢(e(B)).
BERS

(ii) If ¢: R*— R is lower semicontinuous and nondecreasing, then
¥ contains at least one optimal solution to Pé.

Proof. (i) Assume that there exists 8 € ¥ such that 8 is an optimal
solution to (P¢). By Proposition 2, there exists 8* € ¥ such that

edB*) = e{B) for all i; e{B*) < e{B) for some i.
As ¢ is strictly increasing,
d(e1(BF), ..., £4(B%)) < P(&1(B), ..., £.(B)),

which contradicts the optimality of 8.
Hencz, & contains all the optimal solutions to P¢.

(i) As, by Proposition 1, &(-) has compact level sets, the lower
semicontinuity of ¢ implies that (Py) has an optimal solution. In other
words, there exists 8! € R¢ such that

d(e(Bh) = ¢d(e(B))  forall B € R
By Proposition 2, there exists 82 € ¥ such that (32 = /(8" for all i.

As ¢ is nondecreasing, it follows that 82 is Pareto-optimal and also an
optimal solution to (Py). |
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Hence, as soon as ¢ is nondecreasing and lower semicontinuous, the
search of optimal solutions to (Py) can (or should) be restricted to the
points in ¥. This is of particular interest when (P,) may have several
optimal solutions (as occurs, €.g., in least absolute deviations or least-
median regression). In such cases, it would be clear that, among all the
optimal solutions to (P,), one should choose one which is also Pareto-
optimal.

In order to gain insight into the problem, observe that the error function
€ is a convex piecewise linear vector function, thus (VOP) can be trans-
formed into an equivalent linear vector optimization problem. Indeed, let
(Q) be the problem

(Q mint = (¢, ..., ty)
L=y —xi B for all i
ti= —(y;—x/ B) foralli
(B, 1) € RY x Ry,

and denote by ¥ the set of Pareto-optimal solutions to (Q).
Let ¥' = {8 € R?: (B, 1) € ¥ for some t € R"}; i.e., ¥ is the projection
onto R? of ¥°. One has

ProposITION 4. & = &1,

Proof. We first show that ¥ C &', by showing that (8, &(8)) € ¥° for
all 8 € ¢. Indeed, let 8 € ¥, and suppose that (8, £(8)) € ¥9; then there
exists (8*, t*) such that

e(B*) = r* = g(B) and r* # &(B).

Hence, &(8*) = &(B), and =(8*) # &(B), which implies that 8 is not
Pareto-optimal to (VOP), which is a contradiction. Hence, (8, &(8)) € ¥°
which implies that 8 € &' for all B € &.

Conversely, let 8 € ¥'; by definition, there exists ¢ € R” such that
e(B) < t and (8, 1) € ¥°. Suppose that 8 € ¥; then, there exists 8* such
that e(8*) =< &(8), and &(8*) # &(8). Let t* = &(8*); then, &(8*) = * =
e(B) < tand r* # ¢, thus (B, 1) € ¥°, which is a contradiction. |

The proposition above enables us to use the powerful tools of linear
vector optimization. In particular, one can characterize the set ¥ as the
set of optimal solutions to problems of the form (P4} when ¢ varies in the
set F of strictly increasing functions. As the functions g; are polyhedral,
one has (see [5, Theorem 3.2])

PrROPOSITION 5. Let B* € RY. The following statements are equiva-
lent:
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0 B* e 9.
(i) There exists w € W = {w € R": w; > 0 for all i} such that 8* is an
optimal solution to problem ming X7, w;e(8).

(iii)) There exists a strictly increasing function ¢: R* — R such that
B* is an optimal solution to (Py).

3. A GEOMETRICAL CHARACTERIZATION OF ¥

As Proposition 4 shows, (VOP) can be transformed into an equivalent
linear vector optimization problem (Q). As the set ¥° of Pareto-optimal
solutions to (Q) can be obtained by means of existing methods ([3, 16,
18]), & can be obtained as follows:

(1) Find 9°.
(2) Use Proposition 4.

However, we can exploit the special properties of the functions in-
volved in (VOP) to describe geometrically ¥.

Indeed, ¢ is a polyhedral (convex piecewise linear) function, thus R¢
can be split into domains of linearity of £, which will be called, following
[7]1, eiementary convex sets. This idea, successfully used for location
problems ([6, 7, 8]), leads to a geometrical characterization of ¥, as we
show in this section.

Fori=1, ..., n, let
D) ={BER:y —xi >0}
D(-1) ={BER:y —xi B <0}
D(0) = {BER:y, — x{ B =0}
For each k = (ky, ky, ..., k,) € {—1, 0, 1}", let C(k) be the polyhedron
C(k) = Ny Dilky).

DerINITION 1. A nonempty set C C RY is said to be an elementary
convex set if C = C(k) for some k € {—1, 0, 1}~

Derote by € the family of elementary convex sets.

Evidently, the nonempty sets C(k) are polyhedra that split R? into do-
mains of linearity of ¢, i.e.,

« If B € D(1) U Dy(0), then |y; — x{ 8] = y; — x/ B.

« If B € D(—1), then |y, — x{ 8] = —(y; — x{ B).
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\ (-3,6)

\(-6.4) (-ZSX(-IA) /

(-3,
(-3,0)

/’(-6,-3)

As a consequence, for any elementary convex set C, there exists
k="(ki, ks, ....ky) €E{=1, 1}*suchthat, fori=1, ..., n, e{B) = k{y; — x/'

B) for all g € C.
As an illustration, consider the following example:

Fic. 1. Elementary convex sets.

EXaMPLE L. letd=2,n=6,x=(0,1),y,=4x2=0,1),y: =3;
x=0,1),y;= =3 x4 =1L 1D, ys=3xs=(1, 0, ys = —3; and
x = (—1, 1), y¢ = —2. As shown in Fig. 1, € consists of 65 different
elementary convex sets, 20 of which have dimension 2, 32 of which have
dimension 1, and 13 of which have dimension 0.

The elementary convex set C(1, 1, =1, 1, =1, —1) is the compact
polyhedron with vertices (0, 3), (6, —3), (1, —3), and (—5/2, 1/2).

Although the cardinality of % may be rather high, it can only increase
polynomially in the sample size n. Indeed, one has

PROPOSITION 6. € has cardinality O(n?) and can be described in O(n9)
time with O(n) space.

Proof. One only has to see that 6 corresponds to the different pieces
obtained with the arrangement associated with the family of hyperplanes
% = {y; = x/ B}~,, thus Theorem 3.3 in [9] applies. |

As shown below, the family € plays a crucial role in the characteriza-
tion of ¥; in fact, the main result in this paper is the following theorem.
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THEOREM 1. ¥ = Ucece cvounded C» and F is connected.

The proof is postponed after the statement of the following lemmas.
Given a polyhedron C, denote by ri(C) its relative interior [2].

LEMMA 1. Given C € €6, the following statements are equivalent:
i) CCd.
) )Ny +g.

Proof. As Cis convex and nonempty, ri(C) # J, thus (i) implies (ii).
Let us show now the converse:
Let 8* € ri(C) N &. By Proposition 5, there exists w € W such that

i w;&(B8*) = min i w;g; (B)
i=1 BERY =

Hence,

i w;€/(B*) = min i w;ei(B)
py

BEC i=1
As C € 4, there exists k € {—1, 1} such that
(B) = ki(y: — x{ B) Vi=1,..,n VBELC.
Hence, 2, w;&; is a linear function (restricted to C), attaining its mini-

mum at a point in ri(C).
1t then follows that 2| w;g; is constant on C, thus

i W,'B,'(B*) = min 2": W,‘Si(ﬁ) VB* (S C
i=1 BERY i=|

Hence, by Proposition 5, it follows that C C ¥. |
LEMMA 2. Let C € 6. Then,

cCcy iff C is bounded.

Proof. let C C 4. We show (by contradiction) that C is bounded.
Indeed, if C is not bounded, ri(C) contains a ray, i.e.,

360, B € RY, Bi#0/By+ A3 EC YA=0 ()
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As ri(C) C &, by Proposition 5, following the proof of Lemma 1, it is
easily shown that there exists w € W such that

'rgrégz g wigi(B) = g wigi(B*) = « vp* e C. (i1)
On the other hand (recall that C is an elementary convex set), one has
3k € {—1, 1}" such that &(8) = k:(y; — x/ B) VB E€ C, Vi (iii)
By (),
ki{yi — xi Bo) — Akixi 81 =0 VYi=1,.. n V¥A=0,
thus
kixi By =0 Yi=1,..n (iv)

By (ii) and (iii),
a = 2wiki(y; — x{ Bo — Ax{ B1) VA =0,
i=1

thus 22, w;k;x! B: = 0, which, by (iv), implies that
k,‘X; ,B] =0 Vi = 1, sy 1,

contradicting assumption A (k € {1, 1} and 8, # 0). Hence, C is
bounded, as we wanted to show.

The converse can also be shown by contradiction: Suppose that Cis a
bounded elementary convex set which is not contained in ¥. As C is a
nonempty convex set, its relative interior ri(C) is not empty. Let By €
ri(C); by Lemma 1, ri(C) N ¥ = (J, thus By € ¥. By Proposition 2, there
exists B € ¥ such that

£:(B1) = ei(Bo) Vi, £:(B1) < &:(By) for some i (v)

As Cis bounded, the ray {8y + A(Bo — B81): A = 0} is not contained in C.
Let A* = max{A = 0: By + MBo — B1) € C}, and let 8* = By + AX(By — B)).
It follows that 8* &€ C\ri(C), thus there exists j € {1, ..., n} such that
g(B*) = 0 < gi{(By).

Bo is an interior point of the segment with endpoints 8, and 8*, i.e.,
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3r € (0, 1) such that 8, = 18, + (1 — 1)B*. By convexity of the function g;,
e{Bo) = te;(B1) + (1 — He;i(B*) = 1 &/(B1) < &(B),

thus £;(8o) < £;(8,), contradicting (v). Hence, C C ¥, as asserted. |

Proof of Theorem |. Evidently, for each 8 € R there exists C € €
such rhat 8 € ri(C). Hence, one has

F = Ucee {BE T BEIC) (by Lemma 1)

Uecee: ccy € (by Lemma 2)

= Uceis bounded C»
as asserted.

Finally, connectedness of ¥ can be proved as follows: As (Q) is a linear
vector optimization problem, the set #? of its Pareto-optimal solutions is
connected [12]. Hence, as the projection function (4, v) E R X R*— u €
R< is continuous, the set ¥!' = {8 € R% (B, 1) € ¥ for some 1} is con-
nected. By Proposition 5, ¥' = &, thus the result holds. |

ExaMpPLE 2. For the sample G in Example 1, Theorem 7 implies that &
is the set enclosed by the polygonal with vertices (=3, 6), (=1, 4), (0, 3),
(6, —3), (=6, —3), (=3, 0), (=3, 1), (-6, 4), depicted in Fig. 2.

(-6,-3)

Fi1G. 2. The set of pareto—optimal parameters.
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4. OpTIMAL PREDICTIONS

The final aim of linear regression consists in predicting the response
variable (y) by means of the predictor variable (x) following the model

Y=X B+ e

As we showed in Section 2, & corresponds to the set of hyperplanes
which are optimal solutions to problems of the form (P¢), for some
strictly increasing function ¢.

In this section we characterize the set of predictions for x, when the
parameter S8 varies in ¥.

DEeFINITION 2. The point-to-set function IT: x € RY— {x’ B8: B € ¥} is
called the prediction function.

In order to determine the prediction function Il, some notation is
needed:

* Let V denote the set of vertices of the elementary convex sets:

v = {: {8} € €.
o Let L: RY— R and U: RY — R be the functions defined as

L(x) = min {x' 8: B € V}
U(x) = max {x’' 8: B € V}.

Observe that L (respectively, U) is concave (respectively, convex)
piecewise linear. One then has

THEOREM 2. II(x) = [L(x), U(x)] for all x € R".

Proof. Let x € R9. The set I(x) is a compact connected subset of R,
because Il(x) is the image of the compact connected ¥ under the linear
(thus continuous) function 8 € RY — ¢’ S.

One then has

II(x) = [ min z. max z] (vi)
=153 el

Consider the family ¢* of bounded elementary convex sets. Evidently,
every C € €* is a bounded polyhedron, whose extreme points are ele-
ments of V. Furthermore, every vertex 8 € V verifies {8} € €*.
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Hence, one has

min z = min x’' 8 =min min x’ 8

z€Ilix) BEY cee* geC
= min min x’ 8 = min x’ 8 = L(x).
ce€*r Becny gev

The equality max.enu) z = U(x) can be shown in the same way.
By (vi), II(x) = [L(x), U(x)], as asserted. |

5. CONCLUDING REMARKS

In this paper we have considered the linear regression problem as a
vector optimization problem, whose set ¥ of Pareto-optimal solutions has
been characterized as:

(i) The set of optimal solutions to problems where the error mea-
sure is a strictly increasing function.

(i1) The union of all the elementary convex sets which are bounded.

Furthermore, ¥ can be obtained by standard vector linear programming
techniques. These properties enable us to say, although depending on the
error measure used one can obtain different predictions at a point x, the
possibie predictions are given by the points in a certain interval TI(x),
which can be explicitly obtained.

An interesting line of future research could be the study of reductions of
the set of optimal parameters by reducing the family ¥ of globalizing
functions ¢ allowed (by imposing, say, that ¢ must be a nondecreasing
symmetric and convex function, or a norm).
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