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Abstract
Self-reconfigurable robots are built by modules which can move in relationship to each other, which allows the robot to

change its physical form. Finding a sequence of module moves that reconfigures the robot from the initial configuration to

the goal configuration is a hard task and many control algorithms have been proposed. In this paper, we present a novel

method which combines a cluster-flow locomotion based on cellular automata together with a decentralized local repre-

sentation of the spatial geometry based on membrane computing ideas. This new approach has been tested with computer

simulations and real-world experiments performed with modular self-reconfigurable robots and represents a new point of

view with respect other control methods found in the literature.

Keywords Modular robots � Membrane computing � Distributed control � Self-reconfiguration � Cellular automata �
P systems

1 Introduction

Self-reconfigurable robots (Fukuda and Nakagawa 1988;

Baca et al. 2017) are robots consisting of modules which

can move in relationship to each other, which allows them

to change the physical form of the whole robot. Such

feature allows the robot to optimize their shape for dif-

ferent tasks. According to Stoy et al. (2010), the problem

of self-regulation can be settled as follows: Given an initial

configuration and a goal configuration, find a sequence of

module moves that will reconfigure the robot from the

initial configuration to the goal configuration. Choosing an

appropriate mechanism (Yim et al. 2007) for controlling

the self-reconfiguration is an extremely hard task, due to

the diversity and various scales of available motion

strategies. Current approaches can be generally divided

into two categories: centralized control and decentralized

control. It has been proved that the centralized control is a

NP problem (Hou and Shen 2014) and decentralized

approaches are currently the focus in order to achieve

effective solutions. Nonetheless, the main problem in

decentralized control is how to provide global sense about

the desired configuration to local modules (Stoy 2015a).

This problem has been studied from different points of

view. One of the most interesting is to consider nature as a

source of inspiration. In the literature, several bio-inspired

methods have been applied for the distributed control of

self-reconfigurable robots, among them, we can cite

methods based on cellular automata (CA, for short) (Zhu

et al. 2015; Wu et al. 2005; Butler et al. 2001b) or particle

swarm optimization (Zhao et al. 2015). In this paper, we

propose a novel method which combines a cluster-flow

locomotion based on CA together with a decentralized

local representation of the spatial geometry based on

membrane computing ideas. Both the decentralized local-

ization of independent modules and modular level predic-

tions of global state are managed. To the best of our

knowledge, this is the first time where membrane
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robots and hence, the reconfiguration process can hardly

converge to a satisfactory structure.

In order to guarantee convergence of self-reconfigura-

tion process, a global-centralized to local-distributed model

has been widely used. With an external controller, target

configurations are translated to executable rules for inde-

pendent modules. The remaining self-reconfiguration

depends on the automatic interaction of decentralized

modules. In this way, Stoy (2004) and Stoy and Nagpal

(2007) take an overlapping bricks approach to convert the

goal configurations into lattice automata rules and Ruben-

stein and Shen (2010) convey a complete description of the

desired configuration to each module in the system. More

similar research work can be found in Jones and Mataric

(2003), Goldstein et al. (2005), Walter et al. (2005),

Funiak et al. (2009) and Pillai et al. (2006).

While allowing large collections of independent mod-

ules to form determinate shapes, these works have one

common problem in the limitation of attached assumptions

for decentralized localization. For example, the localization

capability of a module to detect whether it is located inside

the approximated volume (Fitch et al. 2005; Zoppi 2011)

or on the exterior surface (Fitch and McAllister 2010). This

is unpractical for mechanical robots and has been a corner

stone of self-reconfiguration control for physical robots

(Stoy 2015b). In order to deal with this problem, an

extended turtle interpretation for decentralized localization

of independent modules through distributed local commu-

nication is considered in this paper. The extended turtle

interpretation can generate module-level predictions about

global self-reconfiguration state through interpreting sym-

bols in membrane systems.

Self-reconfiguration by the proposed method takes place

in the development style through modules continuously

moving to needed areas. According to module-level pre-

dictions transforming in the robotic system, individual

modules move in parallel. Because of the high frequency of

physical interactions between neighboring modules, and

the constraints arising from actuator geometry and power

limitations, local movements pose a significant challenge

for multi-agent control (Bojinov et al. 2002) and hence,

local control of decentralized modules is one of the key

elements for successful distributed self-reconfiguration.

Finally, we would like to briefly recall some ideas about

the bio-inspired computational research areas used in this

paper, membrane computing and cellular automata.

Membrane computing1 is an emergent branch of natural

1 We refer to Paun (2002) for basic information in this area, to Păun

et al. (2010) for a comprehensive presentation and the web site http://

ppage.psystems.eu for the up-to-date information.

computing is used for the development of self-reconfig-
urable robots.

The proposed method represents a novelty in the 
framework of self-configurable robots in a double sense, 
from a theoretical and practical point of view. From a 
theoretical side, this paper proposes an abstract represen-
tation of the robot beyond its physical representation. This 
abstract representation opens a door for theoretical studies 
related to formal languages and more complex represen-
tation. Moreover, the chosen abstract representation has a 
biological inspiration and bridges the area of self-config-
urable robots with membrane computing field. These 
bridges can allow the flow of ideas, problems and solutions 
enriching both research areas. From a practical point of 
view, the proposed solution is based on two of the basic 
features of one of the most studied membrane computing 
devices, the so-call cell-like P systems: On the one hand, 
the tree-like graph structure which can be abstracted from 
the hierarchical arrangement of vesicles in an eucaryotic 
cell. Such tree-like structure allows the flow of information 
between a vesicle and the vesicles placed inside of it and 
this inspires for establishing a formal representation of the 
relative position of robotic modules which provides a 
natural solution to the decentralized localization problem in 
self-configurable robots (Stoy and Nagpal 2007). On the 
second hand, in membrane computing the information is 
encapsulated in vesicles and encoded by multisets of sim-

ple objects by following the biological metabolites placed 
inside the alive cells. The key point for the use of such 
multisets in the framework of self-configurable robots is 
the interpretation of the objects. As it will be pointed out 
below, such objects can represent the length or the relative 
angle of a module of the robot. But the meaning of symbols 
in such interpretation can be changed according to different 
targets, which opens new research possibilities.

We would also like to remark the scalability of the 
proposed solution in the number of modules. The proposed 
method for self-reconfiguration of modular robots is con-
vergent to target configurations and scalable in the number 
of used modules. For the sake of simplicity, the presented 
method will be illustrated with some simple configurations. 
Obviously, more complex robots need more modules, but 
the principles of the decentraliced representation are the 
same. At the end of the paper we will show some studies of 
such scalability.

In the literature, there are a few absolutely decentralized 
algorithms without either external controller or predefined 
configurations (see e.g., Yoshida et al. 1998; Bojinov et al. 
2002; Christensen 2006; Gilpin and Rus 2012; Zavlanos 
and Pappas 2008). The result structure emerges through 
independent modules interacting with surroundings. In 
such way, the scalability of those methods has a high 
degree of dependence on the distributed nature of modular

http://ppage.psystems.eu
http://ppage.psystems.eu


computing introduced by Paun (2000).2 This model of

computation is inspired by the structure and functioning of

cells as living organisms able to process and generate

information. In particular, it focuses on membranes, which

are involved in many reactions taking place inside various

compartments of a cell.

The basic idea is inspired by the flow of metabolites

between cells of a living tissue or between the organelles in

an eucaryotic cell. This flow of metabolites takes place in

parallel in nature and it can be interpreted as a flow of

information for computational purposes. Instead of a set of

few instructions with complex data structures, the com-

putation steps in a membrane computing device are regu-

lated by a set of rules with a notation close to biochemical

reactions.

Membrane computing devices are called P systems.

They are distributed and have a high degree of parallelism

at two levels. On the one hand, several objects can evolve

simultaneously in the same membrane and, on the other

hand, different membranes can evolve in parallel. Such

degree of autonomy and the possibility of locally encap-

sulating the local information needed for the next step of

computation make these devices suitable for modelling the

geometry of modular self-reconfigurable robots.

The second bio-inspired tool used in this paper, cellular

automata, has been widely used in the literature for the

control of self-reconfigurable robots. CA were introduced

by John von Neumann (Kari 2005; Wolfram 1994) with the

biological motivation of obtaining self-replicating artificial

systems. CA are decentralized discrete computational

systems which consist of large numbers of simple identical

components (cells) placed on an N-dimensional grid with

local connectivity defining the neighbourhood of a cell.

The cells are in one of a finite set of states. A discrete

global clock is assumed and cells change their states syn-

chronously depending on their own state and the states of

the neighbours, as determined by a local update rule.

Technically, a CA consists of two components. The first

one is a cellular space: a lattice of N identical finite-state

machines (cells) each with an identical pattern of local

connections to other cells, with boundary conditions if the

lattice is finite. The second component is a set of transition

rules that gives the update state of each cell. These features

make CA suitable for dealing with the control of self-re-

configurable robots.3

In this paper, CA are used to handle the distributed and

parallel motion of decentralized modules. Since the

distributed nature of cellular automata and the major

properties of the desired controller for modular self-re-

configurable (MSR, for short) robots are complementary, it

is possible to develop algorithms based on CA. Cellular

automata were introduced to MSR robots by Butler et al.

(2001a). Research on distributed control in MSR robots

using CA has been productive (Butler et al. 2001a, 2004;

Butler and Rus 2003). Bojinov et al. (2000, 2002) com-

bined gradients and CA rules to generate global configu-

rations where rules are based on interactions with

surrounding obstacles.

The CA rules in this article are effective in different

self-reconfigurations. This efficiency avoids the manual

design of CA rules for different tasks (Ostergaard and Lund

2004). In the literature, one can find different efforts for

generating an automated design of CA rules, including

reinforcement learning-based approaches (Varshavskaya

et al. 2008) and evolutionary algorithms (Ostergaard and

Lund 2004), but both methods are only effective for rela-

tively small tasks.

The paper is organized as follows: firstly, we recall

some basics on membrane computing and show how the

cell-like structure of a P system can be interpreted as a 3D

configuration of a self-reconfigurable robot. In Sect. 3, we

show how the configuration of a tree-like structure can be

geometrically represented by a self-reconfigurable robot.

Such representation is performed by a cluster-flow loco-

motion of spare modules inspired on the well-known turtle

graphics methods. Finally, several simulations and world-

real experiments are shown. The paper finishes with some

conclusions and open research lines.

2 Membrane computing

From the birth of membrane computing at the end of the

past century, many different computational models have

been added to the general framework. If we classify the

models according to their topology, there are three basic

sets of models, although other approaches are possible

(Păun et al. 2010): cell-like P systems, where membranes

have a tree-like structure following the inspiration of bio-

logical membranes inside an eucaryotic cell; tissue-like P

systems, where membranes are placed in the nodes of a

general graph as cells in a tissue; and spiking neural P

systems, which are inspired by the structure of living

neurons in a brain. In this paper we will explore the pos-

sibilities of cell-like P systems in order to represent the

spatial geometry of modular self-reconfigurable robots.

The basic cell-like P system model consists of a hierar-

chical structure composed by several membranes, embedded

into a mainmembrane called the skin. Membranes divide the

Euclidean space into regions, that contain multisets of

2 See also Păun (1998).
3 Since cellular automata has been widely used in the literature of

self-reconfigurable robots, we assume the reader familiar with these

concepts and we stress the use of membrane computing techniques as

the main novelty of this paper.



objects (represented by symbols of an alphabet) and/or other

membranes. Membranes which do not contain other mem-

branes are called elementary. The intuition behind this

membrane structure is taken from biology. A membrane can

be seen as a three-dimensional vesicle which is a separator of

the region inside and the region outside. Biological

metabolites inside the regions are modelled by object-sym-

bols. Each region, which is defined by a membrane, can

contain other symbols or othermembranes, so that a P system

has exactly one outer membrane, called the skin membrane,

and a hierarchical relationship governing all its membranes

under the skin membrane. The information encapsulated

inside each region is encoded in the type of symbols, but also

in its multiplicity.

In this paper, the structure of cell-like P systems is used

to construct branching structures of self-reconfigurable

robots. The rooted tree nature of membranes is a perfect

frame to encode the branching structure. Each membrane

describes a segment composed of linearly connected

modules. The containing membrane structure provides

connecting relationship between robotic segments. Rela-

tionship between two contained membranes gives the

topological orientation of two connected segments.

3 Graphical representations of tree-like
structures

In this paper we use the formal framework of membrane

computing in order to describe the geometry and the

topology of self-reconfigurable robots whose modules can

be represented with a tree-like structure. The key points of

the representation are the following:

1. Firstly, the geometrical structure of each segment

(concerning to length, thickness, color or whatever

other features) is represented by a multiset of objects

placed in the corresponding membrane.

2. Secondly, the topological relations among the seg-

ments are represented by the tree-like membrane

structure of the P system. If two segments are joint

in the robot, the corresponding membranes are joint in

the tree-like structure of the P system, i.e., one of them

is contained in the other one.

3. Thirdly, the relativepositionof amodulewith respect to its

father in the segment will be also encoded with a multiset

of objects placed inside the corresponding membrane.

3.1 A first example

As an initial example, we can take the stick-man (see Fig. 1

left). It is composed of 12 segments in a tree-like structure.

In Fig. 1, a label is associated to each segment (center) and

a kind of dual representation of this tree-like structure is

depicted (right). In this new representation, segments of the

robot are represented by nodes in the graph and there is an

edge between the nodes x and y if and only if the segments

x and y are joint in the robot. This dual representation will

be used for representing the topology of the robot as a cell-

like P system structure.

In this way, the tree-like structure of a modular robot has

an immediate correspondence with a cell-like membrane

structure of a P system. Figure 2 shows a cell-like P system

structure associated to the stick man in Fig. 1 (left). Let us

remark that this cell-like P system structure takes the vertex

a as the root of the tree and hence, the corresponding

membrane in the P system structure is the skin of the P

system, but any other terminal node could be taken as root

of the tree.

Obviously, we can obtain the tree-like graph in Fig. 1

(right) from the P system membrane structure in Fig. 2, but

if we want to obtain the original stick man in Fig. 1 (left),

we must place symbols in the membrane structure which

encode the geometric features. Such combination of

membrane structure plus the symbols associated to each

membrane is called a configuration in membrane comput-

ing. In this example, we choose the symbol F for repre-

senting a length unit. For the sake of simplicity, in this

example the unique feature of the segment of the robot

described by symbols is the length. Nonetheless, many

other features as the width or the color can also been

described by multisets of symbols.

According to the membrane computing theory, several

copies of a symbol can appear in a membrane. The number

of copies of F in a membrane will represent the length of

the segment. Instead of a global position of each segment, a

representation of the relative position of a segment with

Fig. 1 A stick man configuration, the corresponding scheme graph

and an associated labelled tree structure

The encapsulation of the information intrinsic to P 
systems makes possible a natural translation of the idea of 
module from a physical real robot to the formal computa-

tional model. One of the main advantages of this formalism 
is that no global position is needed in order to describe the 
topology or geometry of the robot.



respect to its father in the tree-like representation is pro-

posed. In this way, we borrow ideas from Abelson and

DiSessa (1981) and Prusinkiewicz and Lindenmayer

(1990).

Let us consider the set of vectors ðH;L;UÞ, with unit

length, perpendicular to each other and satisfying

H� L ¼ U. A new vector ðH0;L0;U0Þ can be obtained

from the vector ðH;L;UÞ by using a rotation matrix R

ðH0;L0;U0Þ ¼ ðH;L;UÞR

Rotations by angle a about vectors U, L and H are repre-

sented by

RUðaÞ ¼
cos a sin a 0

� sin a cos a 0

0 0 1

0
B@

1
CA

RLðaÞ ¼
cos a 0 � sin a

0 1 0

sin a 0 cos a

0
B@

1
CA

RHðaÞ ¼
1 0 0

0 cos a � sin a

0 sin a cos a

0
B@

1
CA

Figure 3 illustrates the rotation around the axis. In this

paper, we only consider the angle a ¼ p=2, but the con-

struction can be made in general. By fixing a ¼ p=2, we
have the matrices

RU ¼
0 1 0

� 1 0 0

0 0 1

0
B@

1
CA RL ¼

0 0 � 1

0 1 0

1 0 0

0
B@

1
CA

RH ¼
1 0 0

0 0 � 1

0 1 0

0
B@

1
CA

Since all the rotations in this example are p=2 rotations,

it suffices to introduce the symbols RL, RU and RH into the

membranes.4 The occurrence of such symbol in a mem-

brane will be interpreted as the rotation angle of the cor-

responding robot segment with respect its segment father in

the like-tree structure. In a similar way that with the F

symbol, the multiplicity has also a associated meaning. In a

natural way, we will consider that the rotation is applied as

many times as the number of copies. In such way, we can

represent rotations of p=2, p or � p=2 by considering one,

two or three copies of the symbol.

In this way, the general position of the stick man, can be

encoded in a P system configuration by considering the

membrane structure shown in Fig. 2 and adding to the

membrane i in the membrane structure the multiset of

symbols wi (the superscripts denote the multiplicity):

Fig. 2 A P system membrane

structure for the stick man

Fig. 3 Rotation around axis

wa ¼ F6 wb ¼ F4 R3
H wc ¼ F3 RH wd ¼ F3 R3

H

we ¼ F10 RH wf ¼ F3 RH wg ¼ F11 R3
H wh ¼ F3 R3

H

wi ¼ F11 RH wj ¼ F3 wk ¼ F4 RH wl ¼ F5 RL

:

4 Let us notice that the interpretation of the symbols RL, RU and RH

as p=2 rotations is a choice suitable for this example. The use of P

systems for the abstract representation of the robot is versatile enough

for adapting to different topologies and robot structures not presented

in this paper. Such versatility allows to identify the symbols RL, RU

and RH with the rotation angle chosen by the designer or by taking

new symbols associate to them different features of the robot.



4 Geometrical interpretation of a P system
configuration

number of straightforward steps and the angle and direction

of turns. In this way, turtle interpretation is an appropriate

tool for obtaining a 3D model of a P system configuration.

As an illustrative example, let us consider the P system

with three membranes shown in Fig. 4. It has three mem-

branes, the skin (labeled by a) and two elementary mem-

branes (labelled by b and c). The multisets placed in the

membranes are wa ¼ F5, wb ¼ F3R3
U and wc ¼ F4,

respectively. Figure shows the turtle interpretation of the P

system configuration, with three segments of length 5, 3

and 4 determined by the multiplicity of the symbol F. The

symbol RU determines the turn angle of the second seg-

ment with respect to the segment represented by its upper

membrane in the cell-like structure.

5 Cluster-flow locomotion of spare modules

In this paper, the final configuration is obtained by a

cluster-flow locomotion of the modules of the robot.5

These modules move from the initial configuration to the

final one determined by a P system configuration. A seg-

ment of the robot determined by a membrane containing

n objects F will be built by n modules in a row. Modules

have three kinds of states during the interpretation:

• Turtle module Modules that do the moving search work

as the turtle.

• Spare module Modules that can move to other areas to

continue the growth of robotic structures.

• Finalized module Modules that have reached the final

position will not move any more.

Turtle modules do the turtle search work according to

inner objects in membrane configuration, as shown in

Fig. 5. Connected modules at the moving direction receive

a string of objects in membrane configuration from former

turtle modules and become new turtle modules. New turtle

Fig. 4 Turtle interpretation of a

simple P system

5 A detailed description of the cluster-flow locomotion is out of the

scope of this paper. A good introduction can be found, e.g., in Fitch

and Butler (2007) or Butler et al. (2002).

The structure of membranes in a cell-like P system is a 
tree-like graph. Such graph does not have an intrinsic 
geometric interpretation, but we can add such interpreta-
tion by giving a geometric meaning to the objects placed 
inside the membranes. This has been the starting point of 
view of several approaches which give a geometrical 
interpretation to the symbols in a P system in order to 
obtain a two dimensional representation of higher plants 
(Georgiou et al. 2006; Romero-Jiménez et al. 2006; Riv-
ero-Gil et al. 2011), where some basic properties, such as 
thickness and length of the branches, are represented by 
symbol placed in the membranes.

Given a P system configuration, the membrane structure 
and the multisets placed in the membranes encoded all the 
needed information for settling the features of the models 
in the robot and their relative position. Nonetheless, from a 
methodological point of view, such information must be 
interpreted in order to have a 3D model of the robot. A 
simple model to graphically represent a membrane struc-
ture is to make a depth-first search of it, drawing, for each 
membrane containing the object F, a segment of length 
m � l, where m is the multiplicity of F and l is a length 
unit. This segment is drawn rotated with respect to the 
segment corresponding to the parent membrane with an 
angle of n � d, where n is the multiplicity of objects Ri, 
i 2 fH; L; Ug.

Obtaining a 3D model from a P system configuration 
can be made by using different methods. In this paper, the 
well-known turtle interpretation (Prusinkiewicz 1986; Zhu 
et al. 2017) is considered. It was originally used for 
graphical interpretation of formal languages. The basic 
idea of this interpretation is quite intuitive. We only recall 
here some basics principles.

A turtle is placed on an N-dimensional space (usually, 
N 2 f2; 3g) facing in a certain direction. The turtle can 
move and its movements are determined by a simple object 
language. The interpretation of the symbols can be extre-
mely complex, but in its basic version they only control the



modules receive P system objects by reducing one F. When

all neighbouring lattices meet the membrane configuration

description, the turtle module changes to finalized module

as a fixed part of the reconfiguration result. This locomo-

tion allows the robot to reach the final configuration for

totally connected robots. Segments correspond to turtle

traces in 3D interpretation.

A distributed localization strategy is used in this

decentralized control mechanism. In decentralized control,

there is no global map available for local modules to search

for their global position and orientation in the whole

robotic system. Local modules can only take the relative

orientation and position to connected neighbors. During the

turtle interpretation in robotic system, a turtle module

move by continually attaching spare modules to the

neighboring lattice at the moving direction. For their global

state, new attached modules take the relative position and

orientation to the connected father module, which is the

former turtle module. Directly connected modules can

determine relative orientation through local communica-

tion on connecting surface.

Spare modules can move on the surface of other mod-

ules, including finalized modules. Robotic segments

develop in the growing style by constantly attaching new

modules to the developing front. Figure 6 shows the evo-

lution of the modules from an initial configuration to a final

configuration determined by the simple P system shown in

Fig. 4. Video attachments (http://www.cs.us.es/*naranjo/

MC_SRR/) record the corresponding self-reconfiguration

process.

CA is used for the cluster-flow locomotion of spare

modules as shown in Zhu et al. (2015). In order to get a

computational model for controlling the movement of the

modules, a set of CA rules is designed, which only contains

two rules. This set of rules is obviously simpler in numbers

than the set presented in Butler et al. (2002). Figure 7

shows a scheme of both rules. The scheme on the left will

be used for representing a turn of 90 degrees of one of the

modules. The scheme on the right represents a one module

length movement of a module along the moving direction.

The efficiency of designed rules is verified in latter simu-

lations through successful self-reconfiguration motion.

The gradient attraction strategy (Zhu et al. 2015; Stoy

2006) is used to provide moving directions for decentral-

ized modules. Gradient information transferred between

connected modules through local communication (Naz

et al. 2018) on the connecting surface. Each connecting

surface receives gradient value from directly connected

neighboring modules. The surface with no connecting

module receives 0 as the gradient value. Modules take the

Fig. 5 Robotic segments

develop by constantly attaching

new modules at neighboring

lattice position in develop

direction

Fig. 6 Turtle interpretation in 3D lattice surroundings

Fig. 7 A simplified set of CA rules for SCM

http://www.cs.us.es/%7enaranjo/MC_SRR/
http://www.cs.us.es/%7enaranjo/MC_SRR/


average value from all 4 (2D lattice modules) or 6 (3D

lattice modules) connecting surfaces as the gradient value

to fix the moving direction. And modules also transferred

this average value to neighboring modules. At the same

time, During the movement of moving modules, all their

neighboring modules must keep at least one connecting

path to the current module. This strategy (Zhu et al. 2015)

is used for maintaining the global connection during the

locomotion (when several modules can move indepen-

dently and simultaneously).

6 Simulation and experimental results

The proposed control mechanism is absolutely distributed

and it combines CA and membrane computing. In this

section we show how these ideas can be implemented in

two different ways. Firstly, we present software simula-

tions for 3D modular robots. Secondly, some 2D experi-

ments performed in a hardware lab are presented.

6.1 Simulations

The decentralized nature of modular robots requires the

simulator to be absolutely distributed. Our simulation

environment is built using Microsoft Robotics Developer

Studio6 and its Decentralized Software Services (DSS),

which match with the distributed nature of modular robots.

Each module, a sliding cube model (SCM) (Fitch et al.

2003), is handled as an independent thread in the simulator.

The control of the motion of each module is independent of

the others and several modules can move independently.

Turtle modules attracting new modules to the moving

direction through gradient attraction. The interpretation of

membrane configuration is a depth-first search process.

Several turtle modules can be alive simultaneously in the

robot system and send out gradient information. Gradient

information spreads out in the robot system through local

communication. In this work, we use the decreasing gra-

dient with turtle modules as gradient source. So spare

modules move climbing by gradient attraction with local

motion controller by CA.

As an illustrative example, Fig. 8 shows the software

simulation of the self-reconfiguration process of the stick-

man shown in Fig. 1, by using the P system configuration

as target configuration whose membrane structure is shown

in Fig. 2.

The proposed method is convergent by using membrane

computing construction and turtle interpretation. Because

the interpretation process is serial by attaching modules

one by one. The convergence state is recorded by the

completion of topological description. Using the membrane

structure in Fig. 2, two simulations are done in robotic

systems with 193 and 321 modules, as shown in Figs. 9 and

10. The stick-man configuration in Fig. 1 are repeated as

module numbers increasing, just like the cell division. Each

simulation is repeated 50 times and all simulations are

convergent to desired configuration.

The proposed method is scalable by using both decen-

tralized methods. Locomotion of spare modules is scalable

as all modules moving independently by CA rules. The use

of membrane computing is scalable by generating new

structures as natural cell division. Multi simulations are

done in robotic systems with module numbers increasing.

The time steps for convergence of self-reconfiguration

process are recorded in each simulation. As shown in

Fig. 11, the time step number increases linearly with the

number of modules. Video attachments (http://www.cs.us.

es/*naranjo/MC_SRR/) record the corresponding self-re-

configuration process.

6.2 Experiments

In order to perform experimental simulations of the pro-

posed control method, a pivoting cube model robot has

been designed. Each module is a 80 mm cube and it holds

eight diametrically polarized magnets that are free to rotate

along the axial direction, as shown in Fig. 12. Magnets in

the four legs form hinge bonds for relative pivoting

between modules, as shown by the orange arrows in the

figure. Magnets on four face edges help aligning neigh-

boring modules as shown by the black arrows. Modules can

communicate with connected modules through onboard

Fig. 8 Reconfiguration process of the stick man

6 https://msdn.microsoft.com.

http://www.cs.us.es/%7enaranjo/MC_SRR/
http://www.cs.us.es/%7enaranjo/MC_SRR/
https://msdn.microsoft.com


infrared sensor on each connecting face. For more details

about this robotic module can refer to the site web (https://

sites.google.com/site/modularrobots/).

Each module is able to perform 2D movements using

inertial servo and DC motor, as shown in Fig. 13. A servo

located inside each module, is used to adjust the orientation

of DC motor pointing to one of the four edges. The DC

motor connected with a wheel, determines the pivoting

direction of modules centring on the servo selected edges.

This module in 2D (Piranda et al. 2013) realizes the motion

ability of simulating sliding cube model (SCM) and the

M-Block (Romanishin et al. 2013). A group of modules

can reconfigure autonomously through this rolling loco-

motion and move as a whole robot using the wheels.

The reconfiguring framework designed in this paper has

been verified on a MSR robot. Next, two hardware

experiments are presented. In order to verify the conver-

gence of proposed method, each experiment is repeated ten

times. Robots in all experiments converge to the desired

configuration by given P system.

Figure 14 shows a first hardware experiment. The robot

consists of eight modules. The initial configuration is a

4� 2 rectangle and the final configuration is provided by a

cell-like P system configuration. Figure 14 (left) shows the

membrane structure composed by the skin and two ele-

mentary membranes. Such simple membrane structure can

be interpreted as a tree with the label a for the root vertex

and b and c as leaves vertices. Such P system configuration

contains all the information of the final desired configura-

tion of the robot. The top (right) scheme in the figure shows

a turtle interpretation of such configuration and finally, the

bottom (right) six pictures shows the evolution of the robot

from the initial configuration to the final one. Video

attachments (http://www.cs.us.es/*naranjo/MC_SRR/)

record the corresponding self-reconfiguration process.

Figure 15 shows another simple P system configuration

with three elementary membranes placed in the region

surrounded by the skin, together with the tree structure and

the multisets placed in the membranes. Starting from a

3� 3 configuration of 9 modules, Fig. 16 shows the evo-

lution from the initial configuration to the one determined

by the P system. Video attachments (http://www.cs.us.es/

*naranjo/MC_SRR/) record the corresponding self-re-

configuration process.

Fig. 9 Convergence of the self-reconfiguration with 193 modules

Fig. 10 Convergence of the self-reconfiguration with 321 modules

Fig. 11 Scalability of the proposed method for self-reconfiguration of

modular robots

Fig. 12 A 2D pivoting cube model

https://sites.google.com/site/modularrobots/
https://sites.google.com/site/modularrobots/
http://www.cs.us.es/%7enaranjo/MC_SRR/
http://www.cs.us.es/%7enaranjo/MC_SRR/
http://www.cs.us.es/%7enaranjo/MC_SRR/


relative position among modules. To achieve this goal,

many different ideas coming from different research areas

are brought together. Among them, the partition of the

Fig. 13 The basic pivoting

motion of modules

Fig. 14 Self-reconfiguration of

an 8-module robot with a simple

P-system

Fig. 16 Experiment with 9 modules from lattice structure to a cross

shape

Fig. 15 P system configuration for a cross shape

7 Conclusions

The control of self-reconfigurable robots in an extremely 
hard task in the interplay of many different research dis-
ciplines. Such robots are distributed devices where each 
module has only local information and there is no central 
unit to process the information provided by the modules. 
Each module processes this information locally and inde-
pendently from the other modules. Several modules can 
move simultaneously in order to reach the final configu-
ration. Robotic configuration is not determined by a global 
position in a 3D space, but is only determined by the



Euclidean space into similar tiles where a module can be

alive or not; a turtle interpretation for giving a dynamic

meaning to a set of static symbols representing a config-

uration or a gradient attraction strategy for moving inde-

pendent modules in order to achieve a final configuration.

In this paper, we provide a new contribution to this big

target by considering how ideas from membrane comput-

ing can shed a new light to the local representation of the

information. The framework presented in this paper can be

the starting point for further research from both theoretical

and practical sides, enriching each other with ideas coming

from the self-configurable robots and from membrane

computing. Such open research lines involve new devel-

opments in the application of the well-stablished theoreti-

cal framework of membrane computing for the abstract

representation of robots (and hence a deeper understanding

of the theoretical possibilities). and also, from the practical

side, the development of new abilities of physical robots

inspired by the local relative position of the modules and

the local encapsulation of the information. Many problems

remain open, for example the automatic design of P-system

for a given target robotic configuration. The study of how

problems and techniques from both research areas can

provide new solutions on the other side is matter of future

research.
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Păun G (2000) Computing with membranes. J Comput Syst Sci

61(1):108–143. https://doi.org/10.1006/jcss.1999.1693
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Núñez A (2011) A software tool for generating graphics by

means of P systems. Nat Comput 10(2):879–890. https://doi.org/

10.1007/s11047-010-9198-9

Romanishin J, Gilpin K, Rus D (2013) M-blocks: momentum-driven,

magnetic modular robots. In: 2013 IEEE/RSJ international

conference on intelligent robots and systems, Tokyo, Japan,

November 3–7, 2013. IEEE, pp 4288–4295. https://doi.org/10.

1109/IROS.2013.6696971
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