
 

High Radix Implementation of Montgomery 

Multipliers with CSA 

Gashaw Sassaw 
lnstituto de Microelectr6nica de 

Sevilla 
Sevilla, Spain 

Carlos J. Jimenez 
University of Seville / lnstituto de 

Microelectr6nica de Sevilla 
Sevilla, Spain 

Manuel Valencia 
University of Seville / Instituto de 

Microelectr6nica de Sevilla 
Sevilla, Spain 

Email: sassaw@imse-cnm.csic.es Email: cjesus@imse-cnm.csic.es Email: manolov@imse-cnm.csic.es 

Abstract- Modular multiplication is the key operation in 

systems based on public key encryption, both for RSA and 

elliptic curve (ECC) systems. High performance hardware 

implementations of RSA and ECC systems use the Montgomery 

algorithm for modular multiplication, since it allows results to be 

obtained without performing the division operation. The aim of 

this article is to explore various modified structures of the 

Montgomery algorithm for high speed implementation. We 

present the im plementation of a modified Montgomery algorithm 

with CSA and with different radix. In order to optimize the 

implementation regarding operation speed, we considered carry 

save adders structures and the Booth recoding scheme. The 

structure used in this paper simplifies the computation of the 

partial products avoiding the use of memories to store pre­

calculated data for partial products which cannot be achieved by 

the shifting operation. The result shows that high-radix 

implementations are better for high speed applications. 

Index Terms- Hardware implementation, Modular 

multipliers, Montgomery Multipliers, Public key cryptosystems. 

I. INTRODUCTION 

The increase in data communication and the expansion of 

internet services like email, e-commerce and e-banking have 

made cryptography an important research topic crucial for the 

provision of confidentiality, authentication, data integrity, and 

non-reputation. Unlike symmetric key cryptosystems, public­

key cryptosystems are capable of fulfilling all of these 

objectives. The use of portable devices and the need for 

increased speed in some applications, means that public-key 

schemes should preferably be implemented in hardware. 

The idea of public-key cryptosystems was originally 

presented by Diffie and Hellman [1]. With this scheme, two 

entities can communicate securely via an insecure 

communication channel without sharing a secret key. Today 

there are two alternatives for communicating with public key 

cryptography: RSA [2] and Elliptic Curve Cryptography 

(ECC) [3][4]. In RSA the main operation is to compute 

I This work was supported in part by the European Community through the 
MOBY -DIC project (FP7-INFSO-ICT-248858, www.mobydic-project.eu), the 
Spanish Government through the TEC2007-65I 05/MIC project and for the 
Junta de Andalucia through the P08-TIC-03674 project. 

modular exponentiation by repeat modular multiplication. The 

security of RSA algorithms lies in the difficulty of factorizing 

large integers (e.g. 1024 bits). For elliptic-curve-based 

protocols, it is assumed that finding the discrete logarithm of a 

random elliptic curve element with respect to a publicly­

known base point is not feasible. The size of the elliptic curve 

determines the difficulty of the problem. ECC has shorter key 

size than RSA. Both RSA and ECC require fast modular 

multiplication at a precision of 192 to 2048 bits. 

Among the various algorithms presented for carrying out 

modular multiplications, Montgomery's algorithm is the one 

best suited for hardware implementations and therefore the 

most widely used [5]. The algorithm, presented by Peter L. 

Montgomery in 1985 [6] is used to speed up modular 

multiplication [7][8]. 

This paper is organized as follows: the section below 

briefly describes the Montgomery multiplication algorithm. 

The options for an efficient hardware implementation are 

discussed in Section III. Section IV presents the results of the 

hardware implementations and finally some conclusions are 

drawn. 

II. MONTGOMERY'S MULTIPLICATION ALGORITHM 

The most relevant feature of the Montgomery algorithm is 

that it avoids the division operation during modular 

multiplication. It only needs multiplication, addition and right 

shift which are easily implemented in hardware. 

The modular multiplication problem is defmed as the 

computation of P = AB (mod N), where A, B and N are 

positive n bits numbers with 0 :S A, B < N. The Montgomery 

algorithm solves the operation as: 

P = AB (mod N) = ABKI (mod N)

where KI is the inverse of R modulo N, i.e., it is a number 

with the property 

Montgomery's multiplication algorithm requires Rand N to 

be relatively prime, i.e.: 



gcd(R,N) = gcd(2",N) = 1 

Where gcd is the "greater common divisor", and R > N. 
This expression is satisfied if N is odd as is required by the 
algorithm. In order to describe his algorithm, Montgomery 
introduced the quantity, N' , which should satisfy 0 < N' < R 
and RKI -NN'=l. 

The Montgomery multiplication is computed as follows: 

Step 1: T= AB 
Step 2: P = (T + (TN' mod R)N)/R 
Step 3: ifP�N thenP=P-N 

This algorithm uses multiplication modulo R and division 
by R, which are faster and simpler than the computation of 
AS mod N by conventional methods involving division by N 
[9]. This algorithm is only efficient when performing multiple 
modular multiplications, such as modular exponentiation 
operations. 

In hardware implementation of modular exponentiation, the 
exponentiation operation is replaced by a series of squaring 
and multiplication operations [\ 0]. The expression x = ae 
(mod n), where e is a number of j bits, can be calculated with j 
calls to a modular multiplication. The steps are: 

Step 1: a = a· r mod n 

Step 2: x = \. r mod n 
Step 3: for i=j-\ downto 0 

x =MonPr o(x, x) 

If ej= \ then x = MonPr o(x,a) 

Step 4: return x = Mon Pr o(x,l) 

Step 4 of the modular exponentiation algorithm computes x 

using X via the property of Montgomery algorithm: 

MonPro (x,I ) =xlr-1 =xrr-I =x mod n 

III. HARDWARE IMPLEMENTATION OF MONTGOMERY 

MULTIPLIERS 

For efficient hardware implementations of Montgomery 
multipliers some modifications to the original algorithm have 
been proposed [\\]. These changes follow several lines: one 
of these lines is the use of graphical models for multiplier 
partitioning [12] [13]. Another line is the implementation of 
modular multipliers through partitioning, obtaining scalable 
architectures [\4][\5][\6]. With this structure the modular 
multiplication of numbers with many bits is achieved from 
multipliers with smaller numbers of bits. 

Another line of work is aimed at improving the 
performance of implementations of Montgomery multipliers 
by introducing carry save adders and using of high radix 
[17][18]. The implementations presented in this paper follow 
this line. 

The introduction of carry-free adders helps to reduce the 
delay that arises because of the long carry propagation line 
from the adding process that has to be done in a modular 

exponentiatIon operation. Several alternatives have been 
proposed to reduce carry propagation, but they can be divided 
into two categories. In the flfSt category, intermediate results 
are kept in redundant form with the help of carry save adders. 
However, at the end of each modular multiplication the output 
needs to be converted to a conventional binary number 
[\9][20]. In the second category, Montgomery multiplier 
inputs and outputs are also kept in redundant format. In a 
modular exponentiation operation the Montgomery algorithm 
is executed several hundred times, so the latter option is more 
efficient [12]-[19]. 

Furthermore, implementations of Montgomery multipliers 
with high-radix reduce the number of iterations required to 
obtain each result. The combination of carry save adders with 
high-radix implementations increases operating speed but 
consumes more resources. 

We have implemented Montgomery multipliers with radix-
2, radix-4, radix-8 and radix-64. All implementations 
considered CSA adders, where both the intermediate data and 
the inputs and outputs are kept in redundant format. In 
addition to the CSA adders, high-radix structures are 
implemented using the Booth algorithm, which simplifies the 
accumulation of partial products. 

We started implementing the radix-2 Montgomery 
multiplier with CSA. There are two alternatives for the radix-2 
CSA adder structure: five-to-two and four-to-two [15]. In this 
paper we used the five-to-two structure, because its simpler 
control system makes it suitable for high-radix 
implementations. The design methodology for Booth encoded 
Montgomery modules based on ripple carry adders is 
presented in [20]. Figure 1 illustrates the implementation of 
the Montgomery algorithm stated in section II, but it was 
modified somewhat with regard to the accumulation of the 
partial product and zeroing factor (parity; which ensures that 
the least significative bit is zero before the shifting process). 
In the figure the control circuits are not shown. As can be seen 
in Figure 1, this structure prevents the propagation of carry in 
the intermediate operations and also between successive 
operations of the Montgomery algorithm, since the inputs and 
outputs are in redundant format. 

Fig. I: five-to-two structure for Mongomery Algorithm 



As already mentioned, the implementation of high-radix 

multipliers increases circuit complexity, and therefore reduces 

the maximum operation frequency. The main problem is 

obtaining a partial product of the multiplicand (B) and the 

module (M), which cannot immediately be done through 

shifting. In most implementations, the partial product 

(multiples) is generated with ripple carry adders, using 

memories or registers for the storage of pre-computed values 

[21]. However, in the implementations presented here, the 

multiple that cannot be obtained by shifting is achieved 

directly through the carry save adders structure. The 

application of this technique is simplified when it is applied in 

conjunction with the Booth recoding scheme [18]. 

In the case of radix-8 multipliers, with the Booth recoding 

scheme the set of values that multiply the multiplicand and the 

module are (-4, -3, -2, -1, 0, 1, 2, 3, 4). Within the set the 

multiple factors 3 and -3 are not achieved without an 

arithmetic operation. In the implementations proposed in this 

paper, both values are obtained with the sums 2 + 1 and -1 + -

2 respectively. The multipliers include a CSA adder structure 

capable of performing these calculations without pre­

calculating and storing the value. 

In the case of radix-64 implementations, of the 32 

combinations of values for the multiple of the multiplicand 

and the module, only 11 can be calculated through a shifting 

operation. The remaining 20 must be calculated using the 

available CSA structure. The Booth encoding scheme is used 

for generating multiples of both the multiplicand and the 

module. The purpose of the multiple of the module is to 

prevent data loss during right shifting. 

Figure 2 illustrates all the partial products that must be 

generated for a radix-64 implementation. These partial 

products are divided into three groups. In each clock cycle 

three partial products are generated (one in each group). These 

partial products are applied for both the multiplicand and the 

module. 

B 
2xB 

4xB 
8xB 

16xB 
32xB 

-B 
-2xB 
-4xB 
-8xB 

-16xB 
-32xB 

B 
2xB 
4xB 
8xB 

Pp1 
-B 

-2xB 
-4xB 
-8xB 

Pp2 
:, } ' 0 

-B 
po 

-2xB 

Fig. 2: Partial Product for radix-64 

In each clock cycle it will therefore be necessary to 

accumulate a maximum of three partial products for both the 

multiplicand and the module, and the outputs of the 

accumulation registers. This requires an eight-to-two structure 

as is shown in Figure 3. In this CSA structure there are six 

inputs available for multiples, 3 for the multiplicand (B) and 3 

for the module (M). 

Fig. 3: Eight-ta-two CSA structure for radix-64 Montgomery Algorithm. 

IV. RESULTS 

Implementation was started by describing the design in 

VHDL language. The VHDL description is parametrizable, 

meaning that the number of bits of the inputs and outputs was 

determined at the beginning of the synthesis process. The 

VHDL description also fulfils the synthesis tool requirement. 

Once the logical functionality of the design was verified, we 

proceeded to the implementation, for which we used two 

technologies, one FPGA and one ASIC. 

For FPGA implementations the Xilinx device XC2V6000 

was used. Table I shows the results of the occupied area for 

the different implementations. The number of slices grows 

with the increase in the base. 

TABLE I 
AREA SIZE AND CLOCK CYCLES FOR FPGA IMPLEMENTATIONS 

Slice Radix-2 Radix-4 Radix-8 Radix-64 

Occupied 10,683 13,535 29,459 33,187 

Clock 1024 512 256 32 

cycles 

For ASIC implementations a CMOS 130 nm technology 

was used. The design and characterization methodology 

followed was based on a semicustom design flow and the use 

of commercial tools, for both front-end and back-end. The 

characterization methodology followed in this study was the 

one proposed in [22]. The characterization results are shown 

in Table II. In this table it can be seen that increasing the radix 

increases the consumption of resources, thus increasing the 

area occupied by the circuit and reducing the maximum 

frequency. 

TABLE II 
AREA DELAY AND FREQUENCY FOR ASIC IMPLEMENTATIONS 

Radix-2 Radix-4 Radix-8 Radix-64 

Area 265,57 345,82 585,62 1,056,18 

Delay 3.17 6.16 11.86 19.89 

Frequency 200 Mhz 135 Mhz 83 Mhz 50 Mhz 



The increased area of the radix-4 multiplier with respect to 

the radix-2 is almost 30%. The increase in the radix-8 with 

respect to the radix-4 is 69%, and the increase in the radix-64 

with respect to the radix-8 is 80%. The growth in area is even 

with the radix, except in radix-8, where the reduction in the 

number of operands in CSA is less efficient. 

The critical path delay increases with the radix. The delay 

of the radix-4 multiplier increases by 94% with respect to the 

radix-2 multiplier. The radix-8 delay increases by 92.5% with 

respect to the radix-4, and the radix-64 delay increases by 

68% with respect to the radix-8. However, the minimum 

latency is reduced in same proportion. For the radix-2 

implementation the latency is 3246 ns, for the radix-4 it is 

3153 ns, for the radix-8 it is 3036 ns and for radix-64 it is 637 

ns. It can be seen that the radix-64 multiplier implementation 

is the most suitable for high speed applications, while for area 

critical implementations the radix-2 is the most suitable, 

because the latency is very similar but has the smaller area. 

Y. CONCLUSIONS 

In this paper the implementation of various structures of 

modular multiplier for the Montgomery algorithm has been 

presented. These structures have different radix (radix-2, 

radix-4, radix-8 and radix-64) and all are implemented with 

carry save adders to enhance performance. The radix-2, radix-

4 and radix-8 structures maintain input and output data and 

intermediate results in redundant format. Radix-64 

implementations only maintain intermediate results in 

redundant format. In high-radix implementations, the 

calculation of the multiples of the multiplicand and the 

modules requiring arithmetic operations are performed using 

the CSA adders structure, and do not need to be pre-calculated 

and stored in memory. The use of the Booth encoding scheme 

has helped to reduce the amount of partial products, which 

cannot be achieved by a shifting process. 

Each of the structures has been described in YHDL, and 

implemented with FPGA (Xilinx) and ASIC (CMOS 130 nm) 

technology. The results show that the increase in the radix 

means an increase in area and a decrease in the maximum 

operation frequency. The reduction in the number of clock 

cycles in high-radix implementations offsets these 

disadvantages. The radix-64 implementation is therefore the 

fastest, being the best choice for applications where operating 

speed is critical. For applications requiring a low consumption 

of resources the radix-2 implementation is the one that offers 

better performance. 

REFERENCES 

[I] W. Diffie and M.F Hellman "New Direction in Cryptology" IEEE on 

Information TheO/y 1976, vo122, no.6, pages:644-654. 
[2] Rivest R L, SHamir, L. "A Method for Obtaining Digital Signatures and 

Public Key Cryptosystem", Communication ACM, 1978. 
[3] N. Koblitz "Elliptic Curve Cryptosystem" Mathematics of 

computations, 1987, 48:203-209. 

[4] V. S. Miller, "Use of elliptic curves in cryptography", in CRYPTO'85, 

1986, pp. 417-426. 
[5] J-h. Zhang, X. Ting-Gang, X-y Fang, "Hardware Implementation of 

Improved Montgomery's Modular Multiplication Algorithm", Proc. of 

2009 Int. Con! on Communications and Mobile Computing, pp. 370-
374. 

[6] P. L. Montgomery. "Modular Multiplication without trial division", 
Mathematics of Computation, April 1985, 44(170) 519-521. 

[7] S.S. Ghoreishi, M.A. Pourmina, H. Bozorgi, M. Dousti, "High Speed 
RSA Implementation Base don Modified Booth's Technique and 
Montgomery's multiplication for FPGA Platform",Second International 

conference on Advances in Circuits, Electronics and Micro-electronics, 

2009, pp. 86-93. 

[8] "High-Throughput FPGA Implemetation of 256-bit Montgomery 
Modular Multiplier", International workshop on Education Technology 
and Computer Science (ETCS), 20 I 0, pp 173: 176. 

[9] C. K. Koc, T,Acar, and B. S. Kaliski, Jr, " Analyzing and comparing 
Montgomery multiplication algorithms", IEEE micro, 1996, 16(3):26-
33. 

[10] D.E.Knuth. The Art of Computer Programming: Seminumerical 

Algorithms, volume 2, Reading, MA: Addison-Wesley, Second edition, 
1981. 

[II] N. Nedjah and L. de M. Mourelle, "Three Hardware Implementation for 
Binary Modular Exponentiation Sequential, Parallel and Systolic", 
Computer Architecture and High Peljormance Computing,2003. 

[12] A. A. Tiountchik , "Systolic modular exponentiation via Montgomery 
algorithm", Electronics Letters, 1998, Volume: 34 , Issue: 9. 

[13] J.B. Shin, J. Kim; H. Lee-Kwang; "Optimization of Montgomery 
modular multiplication algorithm for systolic arrays", Electronics 

Letters, 1998, Volume: 34, Issue: 19. 
[14] A. Tenca and C. Koc, "A Scalable Architecture for Modular 

Multiplication Based on Montgomery's Algorithm", IEEE Trans. 

Computers, 2003, vol. 52, no. 9: 1215-1221. 
[15] D. Harris, R. Krishnamurthy and M. Anders, "An Improved Unified 

Scalable Radix-2 Montgomery Multiplier", Proceedings 17th IEEE 

Symposium on Computer Arithmetic, 2005. 
[16] Z. Chen, Y. Sun and G. Bai, "A scalable architecture of high­

performance Montgomery multiplier for design reuse",. Proceedings. 5th 

International Conference on ASIC, 2003. 
[17] C. Mcivor, M. McLoone and lV. McCanny, "Modified Montgomery 

modular multiplication and RSA exponentiation techniques", IEEE 

Proc.-Comput. Digit. Tech. , November 2004, Vol. 151, NO. 6. 
[18] l Leu" and A. Wu, "Design methodology for Booth-encoded 

Montgomery module design for RSA cryptosystem", Proc. IEEE Int. 

Symp. Circuits and Systems (ISCAS-2000) , May 2000, pp. 357-360. 
[19] T. W. Kwon, C.S. You, W.S. Heo, Y.K. Kang, and J. R. Choi, "Two 

implementation methods of a 1024-bit RSA Cryptoprocessor based on 
modified Montgomery algorithm", in Proc. IEEE Int, Symp. Circuits 

Syst., May 200 I, vol. 4, pp. 650-653. 
[20] Y. Fan, X. Zeng, Y. Y. Wang, H. Deng, Q. Zhang , "High Speed Radix-

16 Design of a Scalable Montgomery Multiplier", 6th International 

Conference On ASIC, ASICON, 2005. 
[21] T. Blum and C. Paar , "High-Radix Montgomery Modular 

Exponentiation on Reconfigurable Hardware", IEEE transactions on 

computers, July 2001, vol. 50, no. 7. 
[22] G. Sassaw, Cl Jimenez, M. Valencia, "Influencia de la caracterizaci6n 

en el flujo de diseiio de circuitos CMOS nanometricos", 20 10. 


