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Ecole Nationale de l’Aviation Civile (ENAC)

F-31055 Toulouse, France
Email:delahaye@recherche.enac.fr

Abstract—This paper presents a methodology to tackle the
problem of strategic aircraft conflict detection and resolution, up
to 60 minutes in advance, considering wind and temperature
uncertainties. The problem of hundreds of en-route aircraft
flying multi-segmented 2D trajectories is considered. The weather
uncertainty is retrieved from Ensemble Prediction Systems. The
conflict detection is based on ensemble trajectory prediction,
and is performed using an efficient grid-based procedure. A
metaheuristic approach is developed to solve the conflicts, based
on simulated annealing, which generates resolution trajectories
by modifying the location of the route waypoints (vectoring),
with the aim of lowering the probabilities of the conflicts while
also minimising the deviation from the nominal paths. Realistic
applications in scenarios with different traffic densities are
presented.

I. INTRODUCTION

The efficiency and safety of the Air Traffic Management
(ATM) system is challenged by the ever increasing levels of
air traffic demand. Projects around the world like SESAR
in Europe, NextGen in the United States, and CARATS in
Japan, work towards increasing the ATM system capacity and
efficiency, while maintaining, or even improving, its safety
levels. A promising approach towards meeting these goals is
the development of automated decision support tools able to
integrate and manage the uncertainty present in the ATM.

As discussed by Rivas and Vazquez [1], the ATM system
is affected by several uncertainty sources, ranging from data
uncertainty and unavailability to decisions taken by humans.
Among these sources, weather uncertainty plays a key role
in the ATM system performance: the limited knowledge about
present and future meteorological conditions is responsible for
many delays and flight cancellations, negatively affecting ATM
efficiency and translating into extra costs for aircraft operators.

This paper addresses the problem of strategic aircraft con-
flict detection and resolution (CDR), up to one hour in ad-
vance, subject to weather uncertainty. In comparison to a tac-
tical approach, strategic deconfliction enables the planning of
more efficient resolution trajectories, while also reducing the
workload of air traffic controllers [2]. Because the uncertainty

in the prediction of the aircraft trajectories increases with
extended time horizons, a probabilistic approach is necessary
to tackle the strategic CDR problem.

The CDR problem has been widely studied in the literature,
from both deterministic and probabilistic points of view. A
review on CDR methods was presented by Kuchar and Yang
in the year 2000 [3], and numerous studies on the subject
have been published since then. More particularly, several
examples of the integration of wind uncertainty into the CDR
problem can be found in the literature. For instance, Matsuno
et al. [4] present a stochastic methodology for mid-term
conflict resolution, about 10 minutes in advance, considering a
Gaussian spatially-correlated wind model; Rodionova et al. [5]
develop several conflict resolution algorithms, at the strategic
level of flight-planning, in the North Atlantic oceanic airspace.

In this paper, weather uncertainty data is retrieved from
Ensemble Prediction Systems (EPS). Ensemble forecasts are
found to represent weather uncertainties satisfactorily [6]. The
use of EPS in trajectory prediction and CDR has been the sub-
ject of recent studies. Franco et al. [7] present a probabilistic
trajectory predictor based on the Probabilistic Transformation
Method (PTM) and apply it to the analysis of cruise flight
time and fuel consumption considering wind uncertainties.
Previous works by the authors [8,9] also apply the PTM
method to the CDR problem for time horizons up to 20
minutes, a limited number of aircraft, and constant uncertain
winds. Courchelle et al. [10] address the problem of strategic
conflict resolution (CR), prior to take-off, using a worst-case
approach to integrate wind and temperature uncertainties.

The methodology presented in this paper considers a time
horizon of 60 minutes. It aims to expand the capabilities
of conflict detection (CD) tools currently in use in Europe,
such as Short-Term Conflict Alert (STCA) and Medium-
Term Conflict Detection (MTCD), with time horizons of 2
and 20 minutes, respectively. Because aircraft travel hundreds
of kilometres in one hour, the methodology is applied to a
large airspace, as for example those handled by Area Control
Centres, where hundreds of aircraft are simultaneously present.
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Centralized conflict resolution is a highly combinatorial
problem whose complexity significantly increases as the num-
ber of aircraft grows. Given the large number of aircraft
considered in this work, a metaheuristic approach is convenient
to tackle this problem. Metaheuristic approaches have already
been used in large-scale CR problems by some authors:
for example, Chaimatanan [11] uses a hybrid-metaheuristic
approach based on Simulated Annealing (SA) to compute
conflict-free trajectories on a continental scale; Courchelle
et al. [10] also employ SA in strategic aircraft deconfliction
covering a national airspace. The work presented in this paper
follows these two works.

This paper focuses on the CDR problem of aircraft flying
en-route multi-segmented 2D trajectories subject to wind and
temperature uncertainties. The approach proposed in this paper
can be summarized as follows. The wind and temperature
uncertainties are retrieved from EPS; in particular, the Eu-
ropean COSMO-D2-EPS is used. The CD methodology is
based on ensemble trajectory prediction, where the aircraft
trajectories are computed for each member of the ensemble
to obtain an ensemble of trajectories. In comparison to a
worst-case approach, this probabilistic methodology allows
the computation of a probability of conflict by taking into
account the contribution of each member of the ensemble. The
conflict detection is performed using an efficient grid-based
approach. The CR methodology uses the Simulated Annealing
algorithm to generate resolution trajectories by modifying the
trajectories’ waypoints (vectoring). The objective is to lower
the total probability of conflict between pairs of aircraft while
minimising the deviation from the nominal paths.

This paper is structured as follows. First, EPS and their
use in trajectory prediction are described in Section II. In
Section III, the probabilistic trajectory prediction is presented.
The conflict detection strategy is detailed in Section IV,
followed in Section V by the description of the conflict
resolution methodology. Results are presented in Section VI
for two different conflict scenarios with low and high traffic
densities. Finally, the conclusions and future steps of this work
are discussed in Section VII.

II. ENSEMBLE PREDICTION SYSTEMS

In order to characterise and quantify the uncertainty in a
weather forecast, it is convenient to use a probabilistic ap-
proach. One of today’s most promising trends in probabilistic
forecasting is Ensemble Prediction Systems. An ensemble
forecast comprises multiple runs of a Numerical Weather
Prediction (NWP) model which differ in the initial conditions
and/or the physical parametrisation of the atmosphere; some
ensembles use more than one NWP model [12]. The goal is to
generate a sample of possible future states of the atmosphere.
The uncertainty information is on the spread of the members
in the ensemble, and the hope is that this spread brackets the
true weather outcome.

There are two main approaches for trajectory prediction
subject to uncertainty provided by ensemble weather forecasts:

1) Ensemble approach: a deterministic trajectory predictor
is used for each member of the ensemble, leading
to an ensemble of trajectories from which probability
distributions can be derived.

2) Transformation approach: probability distributions of
meteorological parameters of interest (such as wind) are
obtained from the ensemble forecast and evolved using
a probabilistic trajectory predictor.

Previous works by the authors on probabilistic CDR fol-
lowed the second approach [8,9]; a probabilistic trajectory pre-
dictor based on the Probabilistic Transformation Method was
developed, limited to constant wind scenarios. In this paper,
since the aircraft travel large distances and the atmospheric
variables are expected to change, a deterministic trajectory
predictor able to handle these changes is developed, and the
ensemble trajectory prediction approach is followed.

In this work, the weather uncertainty is retrieved from
COSMO-D2-EPS, developed and operated by the German
Weather Service [13,14]. It is a 20-member ensemble which
covers a wide area in central Europe, see Figure 1. This
forecast is operated for the very short-range, has a fine-scale
horizontal resolution of 2.2 km, and vertical resolution of 65
atmosphere levels. It is run at 00, 03, 06, 09, 12, 15, 18 and
21 UTC, providing hourly forecasts up to 27 hours. They are
available about one hour after the run.

Figure 1. COSMO-D2-EPS: average meridional wind at pressure level 
200 hPa. 3-hour forecast ran at 09 UTC 2019-02-14.

III. ENSEMBLE TRAJECTORY PREDICTION

Let us consider N aircraft flying in the same airspace and 
altitude, h. The aircraft follow multi-segmented 2D trajectories 
defined by a series of waypoints, provided by their flight plans. 
The aircraft trajectories are composed of straight segments and 
fly-by t urns, as depicted i n Figure 2.

The following assumptions are taken into consideration:
• An spherical, non-rotating Earth model is considered,

with radius RE .
• The aircraft motion is considered as that of a point mass

with three degrees of freedom.
• The aircraft initial positions are certain and known.
• Each aircraft i flies at constant Mach number Mi, which

is certain and known.

2
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Figure 2. General trajectory for aircraft i.

• The aircraft are affected by horizontal uncertain winds,
described by their zonal (West-East), wλ, and meridional
(South-North), wϕ, components. The air temperature, Θ,
is also uncertain.

• Turns are modelled as constant radius turns. The turn
radius Ri for each aircraft is that resulting from a
constant bank angle, constant temperature given by the
International Standard Atmosphere (ISA) at the aircraft’s
altitude, and no winds:

Ri =

(
Mi

√
γgRgΘISA(h)

)2

g tanµ
, (1)

where γg and Rg are the ratio of specific heats and the
gas constant, respectively, ΘISA(h) is the air temperature
given by the ISA model at altitude h, g is the gravitational
acceleration, and µ is the bank angle.

• No turns are performed at the origin and destination
waypoints of the trajectories.

• A quasi-steady state is assumed, thus the temporal and
spatial derivatives of wind and temperature are negligible.

By considering the previous assumptions, the equations that
describe the movement of aircraft i can be expressed as the
following system of differential equations:

dϕi
dt

=
1

RE + h
Vg,i cosψi, (2)

cosϕi
dλi
dt

=
1

RE + h
Vg,i sinψi, (3)

dri
dt

=
RE

RE + h
Vg,i, (4)

dψi
dt

=
1

Ri

dri
dt
, (5)

being λi and ϕi the aircraft longitude and latitude, ψi the
aircraft course, ri the ground distance along the trajectory and
Vg,i the groundspeed. The straight segments of the trajectories
are computed using Eqs. (2) to (4), with constant course, ψi;
on the other hand, turn segments are computed using Eqs. (2)
to (5), considering constant turn radius, Ri. The groundspeed

of aircraft i is computed from its airspeed Vi using the velocity
triangle, depicted in Figure 3, as follows:

Vg,i =
√
V 2
i − w2

XT,i + wAT,i. (6)

In this equation, wXT,i and wAT,i are the cross-track and
along-track components of the wind affecting the aircraft,
respectively, which can be obtained from the zonal and merid-
ional wind components given by the weather forecast:

wXT,i = wλ cosψi − wϕ sinψi, (7)
wAT,i = wλ sinψi + wϕ cosψi. (8)

Figure 3. Velocity triangle for aircraft i.

The aircraft airspeed can be computed from its Mach
number and the temperature given by the weather forecast as:

Vi = Mi

√
γgRgΘ. (9)

The wind and temperature values for a particular location
and time are linearly interpolated from the data provided by
the EPS. Because the wind components and the air temperature
are uncertain, the aircraft groundspeeds are also uncertain, and
so are their positions along the trajectory at a given time.

The differential equations are integrated for each one of
the 20 members of the EPS, resulting in an ensemble of 20
different trajectories for each aircraft. Figure 4 illustrates the
computed advance or delay of each trajectory with respect to
the mean flight time as a function of the travelled distance
for one of the aircraft later used in the application. It can be
clearly seen how the uncertainty increases for distant points.

IV. CONFLICT DETECTION

A conflict between two aircraft exists when their future po-
sitions are predicted to be closer than a given set of separation
minima. In a two-dimensional environment, as considered in
this work, a conflict exists when the minimum horizontal dis-
tance between two aircraft is less than a minimum separation
requirement D.

Since an ensemble of trajectories is predicted for each
aircraft, the existence of a conflict is uncertain. The probability
of conflict between aircraft i and j is obtained as follows:

3
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Figure 4. Advance or delay for each member of the ensemble of trajectories.

1) For each member of the ensemble, m, the minimum
distance between i and j, dij,m, is determined.

2) A conflict in member m between i and j, cij,m, is
identified if the minimum distance is less or equal to
the minimum separation requirement:

cij,m =

{
1 if dij,m ≤ D,
0 if dij,m > D.

(10)

3) The probability of conflict between i and j, Pcon,ij , is
computed as the fraction of members for which a conflict
is identified:

Pcon,ij =
1

20

20∑
m=1

cij,m. (11)

The probability of conflict is pairwise determined for the
N aircraft. In order to alleviate the computational effort of
determining the minimum distance for all the aircraft pairs,
which is very demanding for a high number of aircraft, a
grid-based conflict detection scheme is used. This method,
introduced by Jardin [15], aims at reducing the computational
cost of the conflict detection problem at the expense of
additional required computer memory.

The application of this method to the probabilistic conflict
detection presented in this paper is as follows. For each one
of the 20 members of the ensemble, a three-dimensional grid
(longitude, latitude, and time) is constructed, as illustrated in
Figure 5. The size of the cells in the spatial dimensions must be
greater or equal to the minimum separation requirement, and
the size in the temporal dimension should be small enough so
no conflict goes unidentified. In each cell of the grid, a list of
the aircraft occupying the cell is stored. In order to reduce the
memory requirement, this information is stored as a hash table
(see Hastings et al. [16]). Then, for aircraft i and j, if their
trajectories occupy the same or adjacent cells, the minimum
distance between the aircraft is calculated, and the conflict is
characterized using Eq. (10); otherwise, the variable cij,m is
directly set to zero.

Figure 5. Three-dimensional (space and time) grids for each member of the 
ensemble.

V. CONFLICT RESOLUTION

In this work, vectoring is chosen as the resolution manoeu-
vre, that is, conflicts are solved by modifying the trajectories’ 
waypoints. Conflict resolution is formulated as an optimization 
problem where the objective is to lower the probabilities of 
the conflicts b etween p airs o f a ircraft w hile a lso minimising 
the deviation from the nominal paths. This problem is solved 
using the Simulated Annealing algorithm. Next, the decision 
variables, constraints, cost function, and the optimisation al-
gorithm are described.

A. Decision variables

All the waypoints that define the flight path, with the
exception of the initial points where the aircraft are located,
are considered as modifiable. Thus, the decision variables are
the coordinates of the modifiable waypoints.

For aircraft i, the decision variables are collected in a control
matrix ui. Each row of this matrix, uik, corresponds to one
waypoint, the first element is the longitude of the waypoint,
and the second element is the latitude:

uik = [uikλ , uikϕ ], k = 1, . . . ,Ki, (12)

where Ki is the total number of modifiable waypoints for
aircraft i. An example is illustrated in Figure 6. In this Figure,
the nominal path of the aircraft, collected in the matrix u0,i,
is also depicted. The decision variables of the N aircraft are
stored in a control set as follows:

u = {u1,u2, . . . ,ui, . . . ,uN} , i = 1, . . . , N. (13)

B. Constraints

The decision variables are subject to the following two kinds
of constraints:

1) The distance between consecutive waypoints k and k+1,
Lik, must be large enough to accommodate the fly-by
turns performed at the each waypoint, see Figure 7. The

4
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Figure 6. Decision variables for aircraft i.

minimum distance criterium recommended by ICAO for
the design of flight procedures is considered [17]:

Lik ≥ lik + lik+1, (14)
lik = Ri tan(αik/2) + 5Vi, (15)

where lik is the minimum stabilization distance at way-
point k, and αik is the course change at waypoint k.
Notice that the minimum stabilization distance considers
a five second delay to take into account the bank
establishing time. Since no turns are performed at the
origin and destination waypoints, at these points the
minimum stabilization distances are nil.

Figure 7. Minimum distance between waypoints.

2) To prevent large lateral deviations, the possible locations
of the modified waypoints uik are bounded:

uikλ ∈ [u0,ikλ − δλ/2, u0,ikλ + δλ/2], (16)
uikϕ ∈ [u0,ikϕ − δϕ/2, u0,ikϕ + δϕ/2]. (17)

where δλ and δϕ are configurable limits. Figure 8
graphically illustrates this constraint.

Figure 8. Decision variables boundaries.

C. Cost function

As previously stated, the objective is to minimise the prob-
abilities of conflict between pairs of aircraft while minimising

the deviation from the nominal paths. Taking this into account,
the following cost function Φ is used:

Φ =
N∑
i=1

Φi =
N∑
i=1

 N∑
j=1,j 6=i

(Cij − δij) + a
Ai
L0,i

 . (18)

where Φi is the cost related to trajectory i.
The variable Cij represents the conflict probability between

aircraft i and j; it is defined as:

Cij =

{
Pcon,ij if Pcon,ij ≥ Pτ
0 if Pcon,ij < Pτ

, (19)

where Pτ is a configurable probability threshold. This thresh-
old differentiates between high- and low-probability conflicts;
it aims to focus the resolution on certain conflicts and avoid
wasting resources on conflicts which may not materialise.

Since the presented methodology is envisioned for strategic
resolution, those aircraft that at the time of the prediction are
in loss of separation should be solved by tactical tools, and are
disregarded from this process. The variable δij addresses this
idea by removing the cost of these losses of separation from
the cost function: it takes value one if aircraft i and j are in
loss of separation at their initial positions and zero otherwise.

Finally, Ai is the area between the modified and the nominal
path of aircraft i (defined by ui and u0,i), as depicted in
Figure 6, and L0,i is the total flight distance of the nominal
trajectory. The ratio Ai/L0,i is an evaluation of the average
lateral deviation from the original intent. The coefficient a
is a configurable parameter used to balance the resolution
of conflicts and the deviations from the nominal paths; this
coefficient should be small enough so that this last term does
not overpower the other two.

D. Simulated Annealing

In this work, hundreds of aircraft are simultaneously han-
dled, deriving into thousands of decisions variables. Due to
this complexity, the Simulated Annealing (SA) algorithm is
chosen to solve the optimization problem. This metaheuristic
technique was introduced in 1983 by Kirkpatrick et al. [18],
inspired by the annealing process in metallurgy. In SA, the cost
function is analogous to the energy of the physical process,
and the decision variables are analogous to the coordinates
of the material’s particles. Next, the adaptation of the SA
algorithm to the problem presented in this paper is described.
The algorithm is summarized in the diagram in Figure 9.
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1) Neighbourhood function: Starting from a current solu-
tion, described by the current state uc (that is, the control set
for the N aircraft) and cost Φc, the neighbourhood function
generates a candidate solution by performing local modifica-
tions, creating a neighbour state un and a neighbour cost Φn.
In the iteration, the current solution is described by the initial
state (nominal paths) u0 and cost Φ0. The neighbourhood
function used in this work follows these steps:

1) First, an aircraft i ∈ {1, . . . , N} is randomly selected
with a probability proportional to its individual cost Φi,
therefore those aircraft that contribute the most to the
cost function are more likely to be selected.

2) For the chosen aircraft i, a point uik is chosen by
randomly selecting an index k ∈ {1, . . . ,Ki}.

3) The coordinates of uik are randomly modified inside the
boundaries defined by Eqs. (16,17), following uniform
statistical distributions. If the resulting coordinates do
not comply with the constraint defined by Eq. (14),
another index k is randomly selected and new coordi-
nates are generated. This search is repeated until a new
location for a point uik is accepted. This step guarantees
that the neighbourhood state is feasible.

Start

Neighbourhood
function

Accept un?

Φc < Φbest?

uc = un
Φc = Φn

κ < I?

ubest = uc
Φbest = Φc

Decrease T

T < Tf?

Return ubest, Φbest

uc = u0, Φc = Φ0, κ = 0

un, Φn

yes

no

yes

no

κ = κ+ 1

no

yes

yes

no
κ = 0

Figure 9. Simulated Annealing algorithm flow diagram.

2) Acceptance function: The acceptance function deter-
mines whether a neighbour solution is accepted or not. In
this work, if the cost is improved (Φn < Φc), the solution is
always accepted. Otherwise, there is a probability of accepting
the solution that follows a Boltzmann distribution:

Paccept = e−(Φn−Φc)/T , (20)

where T is a varying parameter called temperature. The prob-
ability of acceptance decreases as the temperature decreases.
If the neighbour solution is accepted, the current state and cost
are updated to the neighbour state and cost.

3) Initial temperature: In this work, the initial temperature
is chosen so that the initial acceptance rate is over a con-
figurable threshold τ0. The acceptance rate is computed by
generating I neighbour solutions and evaluating the acceptance
function in these solutions.

4) Cooling schedule: In this work, the temperature de-
creases following a geometrical law Tc = βTc−1, where β
is a configurable constant value between 0 and 1. A slow-
decreasing temperature is more likely to produce a better
solution than a fast-decreasing temperature, but it will require
more computation time.

5) Equilibrium state: The equilibrium state is reached after
a selected number of iterations I are performed at each
temperature state.

6) Termination criterion: The algorithm stops and returns
the final solution, ubest and Φbest, when the temperature
reaches a sufficiently small value so that the probability of
acceptance becomes negligible. In this work, the process ter-
minates when the temperature reaches a final value Tf = γT0,
where γ is a configurable constant between 0 and 1.

VI. APPLICATION

Next, results are presented for two different scenarios: low
and high traffic density. In both scenarios, the CDR process is
launched at 12:00 UTC on the 14th of February of 2019, and
conflicts are detected and solved for the next 60 minutes. The
weather data is retrieved from COSMO-D2-EPS: in particular,
the most recent available forecast, run at 09:00 with lead times
of 3 and 4 hours, is used (since the weather forecasts are
available about an hour after they are run, 12:00 forecast would
not be yet available). The air traffic over Europe inside the
EPS coverage area is considered. The flight data are collected
from the last filed flight plans stored in Eurocontrol’s Demand
Data Repository (DDR). The aircraft Mach number and bank
angle values are obtained from Eurocontrol’s Base of Aircraft
Data (BADA 3.13). In the first scenario, flights in the en-route
phase at flight level FL380 at 12:00 are considered, resulting
in an scenario with N = 92 aircraft. Those aircraft that at
the starting time are not present in that flight level or in the
designated area are not considered. The second, high-traffic-
density, scenario is artificially generated by merging in a single
level (FL380) all flights that are en-route in flights levels 370,
380, and 390 at 12:00, resulting in a total number of N = 214
aircraft. Notice that face-to-face severe encounters are found
in this artificial and more demanding scenario.
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The minimum separation requirement is D = 5 NM. The
3D-grid cells used in the conflict detection have a size of ∆λ =
∆ϕ = 0.1◦ and ∆t = 10 s. The conflict resolution uses the
following parameters: δλ = δϕ = 0.7◦, Pτ = 50%, a =
10−4 m−1, I = 200, τ0 = 50%, β = 0.98, and γ = 10−5.

As an example of the effects of the methodology on the
aircraft trajectories, Figure 10 shows the distance between two
aircraft over time, for each member of the ensemble, before
and after the conflict resolution. The dash-dotted line at 5 NM
represents the minimum separation requirement. Before CR,
for some members of the ensemble a conflict is detected at
about 14 minutes, leading to a probability of conflict of 80%.
After CR, and by modifying the trajectories, the conflict is
solved for all members.

Figure 10. Distance between two aircraft over time for each ensemble member.

The nominal paths of the low-density-scenario flights are
depicted in Figure 11(a). In total, 11 high-probability conflicts
(with probability Pcon ≥ 50%) are detected; their locations are
represented by red marks. Five of these conflicts correspond to
losses of separation at the starting time (as given by the filed
flight plans); therefore, they are tactical conflicts not solved by
the CR method here presented. Additionally, another 4 low-
probability conflicts (Pcon < 50%) are detected. The nominal
value of the cost function is Φ0 = 9.9.

The resolution paths, obtained after the application of the
CDR methodology developed in this paper, are shown in
Figure 11(b); results are summarized in Table I. The number
of high-probability conflicts is reduced, from 11 to 5 (the re-
maining unresolved conflict correspond to losses of separation
at the starting time, which cannot be solved), and the number
of low-intensity conflicts is reduced from 2 to zero. The value
of the cost function is reduced to Φbest = 4.5 · 10−4.

The nominal paths of the high-density-scenario flights are
depicted in Figure 12(a). In this scenario, 88 high-probability
conflicts are initially detected, 8 times more than in the low-
density scenario. Some hotspots can be observed, where many
conflicts take place, e.g. at the South-West and the North-West.
The number of low-probability conflicts is 12, and the nominal

value of the cost function is Φ0 = 146.5. The resolution paths
are shown in Figure 12(b). The number of high-probability
conflicts is reduced to 14: 13 of them correspond to losses
of separation at the starting time, which are disregarded; the
other remaining conflict corresponds to a face-to-face severe
encounter that the CDR algorithm is not able to resolve
because the aircraft are already very close at the start, it should
be solved tactically. The number of low-intensity conflicts
increases from 12 to 20. These low-intensity conflicts may
not realise or, if their probabilities increase along time, may
be solved in posterior executions of the CDR algorithm. The
value of the cost function is reduced to Φbest = 4.2.

TABLE I. CDR results for Pτ = 50%.

Number of conflicts

Scenario Low prob. High prob. Φ

Low density
(N = 92)

Nominal 2 11 9.9

After CDR 0 5 4.5·10−4

High density
(N = 214)

Nominal 12 88 146.5

After CDR 20 14 4.2

VII. CONCLUSIONS

In this work, a probabilistic methodology for strategic
conflict detection and resolution, up to 60 minutes in advance,
for en-route aircraft under wind and temperature uncertainties
has been introduced. The resolution trajectories are generated
by modifying the route waypoints (vectoring), with the aim
of lowering the probabilities of the conflicts below a given
threshold; the probabilistic analysis has been based on an
ensemble approach, where the weather uncertainty is retrieved
from Ensemble Prediction Systems.

The methodology has been successfully applied to two
different en-route conflict scenarios, with very different traffic
densities and with hundreds of aircraft. The numerical results
show that the number of high-probability conflicts, even in
the very demanding artificial scenario, can be significantly
reduced. The aim of this methodology is to expand the time
horizons of conflict detection and resolution tools currently
in use in Europe, enabling the planning of more efficient
trajectories and reducing the workload of air traffic controllers.

This work constitutes a first step on the development of a
fully functional methodology, that will consider all phases of
the flight and will cover an extended geographical area. The
development of this complete methodology will involve the
extension of the work to the three-dimensional case, and the
consideration and integration of different global and regional
Ensemble Prediction Systems to widen the coverage area.
Additional sources of uncertainty, such as the aircraft departure
times, will also be included. Next steps in this line of research
will also allow for new decision variables, such as the aircraft
speeds or flight levels.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of
the Spanish Ministerio de Ciencia, Innovación y Universidades
through Grant RTI2018-098471-B-C31.

7

 9th SESAR Innovation Days 
2nd – 5th December 2019 

ISSN 0770-1268 

 

 

 
 

 

 



(a) Nominal paths. (b) Resolution paths.

Figure 11. Low-density scenario.

(a) Nominal paths. (b) Resolution paths.

Figure 12. High-density scenario.

REFERENCES

[1] D. Rivas and R. Vazquez, “Uncertainty,” in Complexity Science in Air
Traffic Management, A. Cook and D. Rivas Ed., Ashgate Publishing
Limited, 2016, Chap. 4.

[2] International Civil Aviation Organization, “Doc. 9750. Global Air Navi-
gation Plan,” Third Edition, 2007, pp. 1–23.

[3] J. K. Kuchar and L. C. Yang, “A review of conflict detection and resolu-
tion modeling methods,” IEEE Transactions on Intelligent Transportation
Systems, Vol. 1, No. 4, 2000, pp. 179–189.

[4] Y. Matsuno, T. Tsuchiya, J. Wei, I. Hwang, and N. Matayoshi, “Stochastic
optimal control for aircraft conflict resolution under wind uncertainty,”
Aerospace Science and Technology, Vol. 43, 2015, pp. 77–88.

[5] O. Rodionova, B. Sridhar, and H. K. Ng, “Conflict resolution for wind-
optimal aircraft trajectories in North Atlantic oceanic airspace with
wind uncertainties,” Proceedings on the 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), Sep., 2016, pp. 1–10.

[6] M. Steiner, R. Bateman, D. Megenhardt, Y. Liu, M. Pocernich, and J.A.
Krozel, “Translation of ensemble weather forecasts into probabilistic air
traffic capacity impact,” Air Traffic Control Quarterly, Vol. 18, 2010, pp.
229–254.

[7] A. Franco, D. Rivas, and A. Valenzuela, “Probabilistic aircraft trajec-
tory prediction in cruise flight considering ensemble wind forecasts,”
Aerospace Science and Technology, Vol. 82–83, 2018, pp. 350–362.

[8] E. Hernández-Romero, A. Valenzuela, and D. Rivas, “Probabilistic air-
craft conflict detection and resolution considering wind uncertainty,” Proc.
7th SESAR Innovation Days (SID), pp. 1–8, 2017.

[9] E. Hernández-Romero, A. Valenzuela, and D. Rivas, “A probabilistic
approach to measure aircraft conflict severity considering wind forecast
uncertainty,” Aerospace Science and Technology, Vol. 86, 2019, pp. 401–
414.

[10] V. Courchelle, M. Soler, D. Gonzlez-Arribas, and D. Delahaye, “A
simulated annealing approach to 3D strategic aircraft deconfliction based
on en-route speed changes under wind and temperature uncertainties,”
Transportation Research Part C: Emerging Technologies, Vol. 103, 2019,
pp. 194–210.

[11] S. Chaimatanan“Planification stratégique de trajectoires d’avions,” PhD
Thesis. Universit Toulouse III-Paul Sabatier, 2014.

[12] World Meteorological Organization, “Guidelines on Ensemble Predic-
tion Systems and Forecasting,” WMO-No. 1091, 2012.

[13] M. Baldauf, C. Gebhardt, S. Theis, B. Ritter, and C. Schraff, “Beschrei-
bung des operationellen Kürzestfristvorhersagemodells COSMO-D2 und
COSMO-D2-EPS und seiner Ausgabe in die Datenbanken des DWD,”
Deutscher Wetterdienst (DWD), Offenbach, Germany, 2018.

[14] Deutscher Wetterdienst, “NWP forecast data,” https://www.dwd.de/EN/
ourservices/nwp forecast data/nwp forecast data.html, accessed: 2019-
04.

[15] M. Jardin, “Grid-based strategic air traffic conflict detection,” AIAA
Guidance, Navigation, and Control Conference and Exhibit, San Fran-
cisco, California, 2019, pp. 1–11.

[16] E. J. Hastings, J. Mesit, and R. K. Guha, “Optimization of large-scale,
real-time simulations by spatial hashing,” Proc. 2005 Summer Computer
Simulation Conference, 2005, Vol. 37, No. 4, pp. 9–17.

[17] International Civil Aviation Organization, “Aircraft Operations. Volume
II: Construction of Visual and Instrument Flight Procedures”, ICAO,
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