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Abstract: This paper studies the fluctuations of the signal-to-noise ratio
(SNR) of minimum variance distorsionless response (MVDR) filters imple-
menting diagonal loading in the estimation of the covariance matrix. Previ-
ous results in the signal processing literature are generalized and extended
by considering both spatially as well as temporarily correlated samples.
Specifically, a central limit theorem (CLT) is established for the fluctua-
tions of the SNR of the diagonally loaded MVDR filter, under both super-
vised and unsupervised training settings in adaptive filtering applications.
Our second-order analysis is based on the Nash-Poincaré inequality and the
integration by parts formula for Gaussian functionals, as well as classical
tools from statistical asymptotic theory. Numerical evaluations validating
the accuracy of the CLT confirm the asymptotic Gaussianity of the fluctu-
ations of the SNR of the MVDR filter.
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1. Introduction

The minimum variance distorsionless response (MVDR) filter is a prominent
instance of multivariate filtering structure in statistical signal processing. Re-
garded as Capon beamformer, the MVDR spatial filter is widely utilized in sen-
sor array signal processing applications, such as the estimation of the waveform
and/or power of a given signal of interest (SOI) [1, 2]. The theoretically optimal
Capon/MVDR spatial filter is constructed based on a covariance matrix that
is unknown in practice, and so any filter implementation must rely on sample
estimates computed from the array observations available. Sample covariance
estimators are well-known to be prohibitively inaccurate for sample volumes of
small size, relatively high dimension. Indeed, a vast body of contributions in
the literature of array processing and other fields of applied statistics has been
devoted to remedies for lifting the curse of dimensionality, such as those based
on regularization techniques and shrinkage estimation.

In this work, we are interested in the signal-to-noise ratio (SNR) at the output
of MVDR filter realizations using a diagonally loaded sample covariance matrix
(SCM). We focus on the SNR as a measure conventionally used to evaluate the
performance of a filter implementation. Due to its dependence on the sample
data matrix, the SNR is itself a random variable whose behavior highly depends
on the ratio between sample size and observation dimension. This ratio is indeed
of much practical relevance for characterizing the properties of the filter per-
formance. Motivated by this fact, a large-system performance characterization
was presented in [3, Proposition 1], where the authors provide a deterministic
equivalent of the output SNR in the limiting regime defined by both the number
of samples and the observation dimension growing large without bound at the
same rate (see also [4]).

A first-order asymptotic analysis precludes us from gaining any insight on the
fluctuations of the SNR performance measure. Therefore, our focus in this work
is on a second-order analysis of the previous quantity. In the case of Gaussian
observations, when the maximum likelihood estimator of the population covari-
ance matrix is applied without diagonal loading, the normalized output SNR
is known in the array processing literature to follow a Beta distribution [5]. In
the general and more relevant case for practical implementations considering the
application of diagonal loading, the problem of characterizing the distribution of
the previous random variable remains unsolved. Earlier attempts focused on the
output response of the classical diagonally loaded Capon/MVDR beamformer,
by approximating its probability density function via the truncation of a matrix
power series [6] (see also introductory exposition therein for details on previous
related work), and for the particular cases of zero- and single-source scenarios
[7], as well as a two-source scenario [8].

In this paper, we generalize previous studies by considering both the use of
diagonal loading as well as general spatio-temporally correlated observations.
Specifically, we prove the asymptotic Gaussianity of the sample performance
measure by establishing a central limit theorem (CLT) on the output SNR of
a diagonally loaded MVDR filter implementation. To that effect, we resort to
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a set of techniques for Gaussian random matrices, namely the Nash-Poincare
inequality as well as the integration by parts formula for Gaussian function-
als. These tools were originally proposed in [9] for the study of the asymptotic
distribution of the mutual information of correlated MIMO Rayleigh channels.
More recently, they have also been applied, for instance, to obtain asymptotic
non-Gaussian approximations of the distribution of the SNR of the linear min-
imum mean-square error (LMMSE) receiver [10], as well as to derive the input
covariance matrix maximizing the capacity of correlated MIMO Rician channels
[11].

Our framework relies on a limiting regime defined as both dimensions of
the data matrix going to infinity at the same rate. Indeed, in real-life array
processing applications, both the number of samples and the dimension of the
array are comparable in magnitude, and so a limiting regime allowing for both
sample size and dimension growing large with a fixed, non-zero ratio between
them is of more practical relevance. We will consider both supervised and un-
supervised training methods in statistical signal and sensor array processing
applications (see, e.g., [12, 13]). In the former, access to SOI-free samples of
the interference-plus-noise process is granted for covariance matrix estimation
(e.g., clutter statistics in space-time adaptive processing applications to radar),
whereas only SOI-contaminated samples are available for inference in the latter.

The structure of the rest of the paper after the previous exposition of the re-
search motivation is as follows. Upon concluding this section by introducing the
notation that will be used throughout the paper, Section 2 briefly presents the
problem of multivariate minimum variance filtering; the typical implementation
based on a diagonally loaded sample covariance matrix (SCM) is introduced
along with the definition of SNR as performance measure of relevance. In Sec-
tion 3 we establish the CLT for the fluctuations of the SNR performance of both
supervised and unsupervised training methods. In Section 4, we introduce the
main mathematical tools for our analysis and state some preliminary results
serving as preparation for the proof of the CLT. Our result on the asymptotic
Gaussianity of SNR measures is numerically validated in Section 6, before con-
cluding the paper with Section 7. The technical details of the proof of the CLT
in Section 4 are postponed to the appendices.

Notation. In this paper, we use the following notations. All vectors are
defined as column vectors and designated with bold lower case; all matrices are
given in bold upper case; for both vectors and matrices a subscript will be added
to emphasize dependence on dimension, though it will be occasionally dropped
for the sake of clarity of presentation; [·]ij will be used with matrices to extract
the entry in the ith row of the jth column, [·]j will be used for the jth entry of a

vector or the nonzero elements of a diagonal matrix; (·)T denotes transpose; (·)∗
denotes Hermitian (i.e. complex conjugate transpose); IM denotes the M ×M
identity matrix; tr [·] denotes the matrix trace operator; R and C denote the real
and complex fields of dimension specified by a superscript; R+ denotes the set
of positive real numbers; P (·) denotes the probability of a random event, E [·]
denotes the expectation operator, and var (·) and cov (·, ·) denote, respectively,
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variance and covariance; K,Kp denote constant values not depending on any
relevant quantity, apart from the latter on a parameter p; |·| denotes absolute
value; for any two functions fN , gN depending on N , fN = O (gN) will denote
the fact that |fN | ≤ K |gN |, for sufficiently large N , and fN = op (1) will
denote convergence in probability to zero of fN ; ‖·‖ denotes the Euclidean norm
for vectors and the induced norm for matrices (i.e. spectral or strong norm),
whereas ‖·‖F and ‖·‖tr denote the Frobenius norm and trace (or nuclear) norm,
respectively, i.e., for a matrix A ∈ CM×M with eigenvalues λm,m = 1, . . . ,M

and spectral radius ρ (A) = max1≤m≤M (|λm|), ‖A‖ = (ρ (A∗A))
1/2

, ‖A‖F =

(tr [A∗A])
1/2

and ‖A‖tr = tr
[

(A∗A)
1/2
]

.

2. MVDR filtering with diagonal loading

In this section, we introduce the signal model and briefly review the problem
of spatial or multivariate MVDR filtering motivating our research. Let Yβ,N =
[yβ (1) , . . . ,yβ (N)] be the data matrix with sample observations in a statistical
signal processing application, where the parameter β indicates presence (β = 1)
or not (β = 0) of the SOI in the observations, which are modeled as:

yβ (n) = βs (n) s+ n (n) ∈ C
M , 1 ≤ n ≤ N (2.1)

where s (n) is the waveform process of a given SOI, the vector s models the
SOI signature, and n (n) represents the contribution from some colored inter-
ference and the cross-sectionally uncorrelated background noise, which we model
jointly as a zero-mean Gaussian process with covariance matrix R0,M . Signal
and interference-plus-noise processes are assumed to be independent. Addition-
ally, without loss of generality we will assume that the SOI power is 1, and also
that ‖s‖ = 1. In particular, we consider applications relying on supervised train-
ing, whereYβ,N = Y0,N contains SOI-free samples of the interference-plus-noise
process, or unsupervised training, where the training samples in Yβ,N = Y1,N

are contaminated by the SOI. Notice that each observation yβ (n) might be
modeling the matched filter output sufficient statistic for the received unknown
symbols s (n) at a multiuser detector in a communications application, where
s is the effective user signature; or an array processor, where s contains the
angular frequency information (steering vector) related to the intended source,
represented by s (n).

In order to allow for a more general signal modeling context, we consider the
case in which the vector observations are not only spatially or cross-sectionally
correlated but also present a certain correlation in the time domain. This is
typically the case in array processing applications where the sources exhibit
nonzero correlation between delayed samples [14], as well as generally for wire-
less communication signals that are transmitted over a dispersive radio channel.
In this work, we consider spatio-temporal processes with separable covariance
structure, also regarded as having Kronecker product structure, and thoroughly
studied in the literature on multiple-input multiple-output wireless communi-
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cation channels [15], and sensor array and multichannel processing [16]. In par-
ticular, the spatial covariance matrix will be denoted by Rβ,M , and the time
correlation pattern will be modeled by a nonnegative matrix denoted by TN ,
so that the column vectors of YN are correlated (in the time domain) but
the correlation pattern is identical for all rows. Notice that the spatial covari-
ance matrix Rβ,M is intrinsically different depending on the type of training,
i.e., Rβ,M ≡ R0,M for supervised training, and Rβ,M ≡ R1,M = ss∗ + R0,M

for unsupervised training. As an illustrative example, consider the following

first-order vector autoregressive process: yβ (n) = ψyβ (n− 1) + R
1/2
β,Mv (n),

where ψ is a real-valued constant and v (n) is a white Gaussian noise process

with zero mean and identity covariance matrix, and R
1/2
β,M is a square-root of

a positive matrix Rβ,M . In particular, the previous so-called VAR(1) model
has covariance matrix with separable (Kronecker product) structure given by

cov
(

[yβ (n)]i , [yβ (n+ τ)]j

)

= [Rβ,M ]ij ψ/
(

1− ψ2
)|τ |

.

Motivated by typical applications in sensor array signal processing, in this
paper we concentrate on the problem of linearly filtering the observed samples
with a Capon/MVDR beamformer to estimate the SOI waveform assuming that
the SOI signature is known. We notice that a related problem that is not handled
here but can also be fitted into our framework is that of estimating the SOI power
[2]. Customarily, the problem of optimizing the coefficients of the Capon/MVDR
spatial filter is formulated in terms of the spatial covariance matrix as:

wβ,MVDR = arg min
w∈CM :w∗

s=1
w∗Rβ,Mw

with explicit solution being given by

wβ,MVDR =
R−1

β,Ms

s∗R−1
β,Ms

. (2.2)

Under the above conventional assumptions, the two previous covariance ma-
trices differ by the rank-one matrix term ss∗, and so it is easy to see that the
optimal solutions with R0,M and R1,M are equivalent, i.e., w0,MVDR = w1,MVDR.
Conventionally, the evaluation of the performance of the filter is based on the
SNR measure, which is defined as

SNR (w) =
|w∗s|2

w∗R0,Mw
. (2.3)

In particular, we have1 SNR (w0,MVDR) = SNR (w1,MVDR) = s∗R−1
0,Ms ≡ SNRopt.

In practice, the covariance matrix is unknown and so any implementation
of the filter must rely on estimates built upon a set of training samples. The

1It is not difficult to see that the maximum SNR values for supervised and unsupervised
training theoretically coincide. In practice, however, the actual performance of an unsupervised
training method would be diminished by inaccuracies about the knowledge of the precise SOI
signature, and therefore a supervised training method is preferred in this sense.
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standard SCM estimator is usually improved by means of, for instance, regular-
ization or shrinkage. In particular, we consider covariance matrix estimators of
the type

R̂β,M =
1

N
Yβ,NY∗

β,N + αIM (2.4)

where α > 0 is a constant scalar that in the array processing literature is referred
to as diagonal loading factor, and is also known in the statistics literature as
shrinkage intensity parameter for the type of James-Stein shrinkage covariance
matrix estimators. In brief, the purpose of the regularization term αI is to
improve the condition number of an a priory possibly unstable estimator of the
covariance matrix of the array observations. This is particularly the case for the
SCM in situations where N is not considerably larger than M . Indeed, notice
that the SCM might not even be invertible, as it happens in the case M > N .
Well-conditioned covariance matrix estimators can be expected to improve the
filter performance as measured by the realized SNR defined in (2.3). In this
work, we assume that the parameter α is given and fixed. For sensible choices
of the regularization or diagonal loading parameter α, we refer the reader to,
e.g., [1, 17].

We now handle the situation in which a covariance matrix estimator of the
type of (2.4) is used in order to implement the sample version of the theoretical
MVDR filter, which will be denoted in the sequel by ŵβ,MVDR, β = 0, 1. Then,
using w = ŵβ,MVDR in (2.3), we obtain, respectively,

SNR (ŵ0,MVDR) =

(

s∗R̂−1
0,Ms

)2

s∗R̂−1
0,MR0,MR̂−1

0,Ms
(2.5)

and

SNR (ŵ1,MVDR) =







s∗R̂−1
1,MR1,MR̂−1

1,Ms
(

s∗R̂−1
1,Ms

)2 − 1







−1

. (2.6)

Equations (2.5) and (2.6) are obtained by directly replacing in (2.3) the optimal
MVDR filter solution in (2.2) for, respectively, the supervised (β = 0) and
unsupervised (β = 1) cases. Notice that, while the expression in (2.5) follows
straightforwardly, in order to get (2.6) it is enough to apply the matrix inversion
lemma using the fact that R1,M = ss∗ +R0,M .

In effect, due to the dependence on the random data matrix Yβ,N , the quan-
tities (2.5) and (2.6) are random variables themselves whose distribution specify
the fluctuations of the SNR performance at the filter output. Consequently, in
order to understand the behavior of the output SNR performance, it is of much
practical interest to investigate the distribution of the random variables (2.5)
and (2.6), and characterize their properties. Under the supervised training set-
ting, in the special case given by R̂β,M being the standard SCM estimator, i.e.,
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TN = IN and α = 0, the distribution of the normalized output SNR, namely,

SNR (ŵ0,MVDR)

SNRopt

=

(

s∗R̂−1
0,Ms

)2

s∗R̂−1
0,MR0,MR̂−1

0,Mss∗R−1
0,Ms

is known to be distributed as [5]

SNR (ŵ0,MVDR) /SNRopt ∼ Beta (N + 2−M,M − 1) .

In the general, more relevant case for practical implementations, where arbitrary
positive definite TN and α are considered, the problem of characterizing the
distribution of the random variable SNR (ŵ0,MVDR) remains unsolved. Likewise,
so is the case for SNR (ŵ1,MVDR).

In the next section, we provide a CLT on the realized SNR performance
at the output of a sample MVDR filter implementing diagonal loading and
based on a set of spatio-temporally correlated observations, for both supervised
and unsupervised training applications. We remark that in this paper we are
specifically concerned with the case α > 0. In fact, the case α = 0 has been
seldom considered in the large random matrix literature, and would require
indeed specific tools different from those used here.

3. CLT for the fluctuations of SNR performance measures

3.1. Definitions and assumptions

We next summarize our research hypotheses and introduce some new definitions.
We first remark that, anticipating that the statistical properties of the random
matrices Yβ,M and R̂β,M for both values of β are equivalent for the purposes
of our derivations, we will drop the subscript β in the sequel. Our analysis is
based on the following technical hypotheses:

(As1) The observations are normally distributed with zero mean and separable
covariances RM and TN in the spatial and time domain respectively.

(As2) The nonrandom matrices RM and TN have eigenvalues bounded uni-
formly in, respectively, M and N = N (M), from above, i.e., ‖R‖sup =
supM≥1 ‖RM‖ < +∞ and ‖T‖sup = supN≥1 ‖TN‖ < +∞, and from

below (away from zero): ‖R‖inf = infM≥1

∥

∥R−1
M

∥

∥

−1
> 0 and ‖T‖inf =

infN≥1

∥

∥T−1
N

∥

∥

−1
> 0.

(As3) We will consider the limiting regime defined by both dimensions M and
N growing large without bound at the same rate, i.e., N,M → ∞ such
that (cM =M/N):

0 < cinf = lim inf cM ≤ csup = lim sup cM <∞.

Let XM be anM×N matrix whose elements Xij , 1 ≤ i ≤M , 1 ≤ j ≤ N , are
complex Gaussian random variables having i.i.d. real and imaginary parts with
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mean zero and variance 1/2, such that E [Xij ] = E
[

X2
ij

]

= 0 and E

[

|Xij |2
]

= 1.

Under the Gaussianity assumption, observe that we can write the data matrix in

Section 2 as YN = R
1/2
M XMT

1/2
N , where R

1/2
M and T

1/2
N are the positive definite

square-roots of RM and TN , respectively. Hence, the data matrix YN is matrix-
variate normal distributed, i.e., YN ∼ CMNM×N (0M×N ,RM ,TN ), or equiva-
lently, vec (YN ) ∼ CNMN (0M ,RM ⊗TN ) [18]. Moreover, in the case of an ar-
bitrary positive definite matrix TN , we have that YNY∗

N is a central quadratic
form, such that E [YNY∗

N ] = Tr [TN ]RM . Thus, in particular, if TN = IN
then YNY∗

N is central Wishart distributed, and we have E [YNY∗
N ] = NRM

(see also, e.g., [19, Chapter 2]). We note that our spatio-temporal covariance
model represents a non-trivial generalization of previous models, which is of
interest for the signal processing and the applied statistics community. For in-

stance, the model in [20, 21] consisting of a data matrix YM = R
1/2
M ΞN , where

RM = E [YMY∗
M ] and ΞN is a Gaussian matrix with standardized entries (i.e.,

with mean zero and variance one), is clearly a special case of our model.
We recall that the previous distributional assumption is fairly standard in

the array processing literature (e.g., [5, 6, 7], and [20, 21]). In particular, the
Gaussianity assumption provides a means to obtain valuable approximations of
the system performance by analytically characterizing the theoretical properties
of otherwise intractable expressions of practical interest. On the other hand,
the assumption of centered observations has minor impact, since observations
can always be demeaned by extracting the sample mean. In fact, for Gaussian
sample observations, the sample covariance matrix with and without estimation
of the mean has the Wishart structure described above (with one degree-of-
freedom less in the case of having to estimate the mean, which does not affect
our asymptotic results).

Before proceeding any further, we also notice that, thanks to the isotropic
invariance to orthogonal transformations of Gaussian matrices, the two corre-
lation matrices RM and TN can be assumed to be diagonal without loss of
generality. More specifically, using the fact that the distribution of a Gaussian
matrix is unaffected by unitary transformations, it is easy to see that we can
always write the SNR in (2.5) and (2.6) in terms of a unit-norm determinis-
tic vector, a Gaussian matrix with standardized entries, and diagonal spatial
and temporal covariance matrices. Such a parsimonious representation is more
convenient for proving our statistical results, and is therefore preferred.

We next introduce some notation that will be useful throughout the rest

of the paper. Let us first introduce the vector uM = R
−1/2
M s and the matrix

QM =
(

1
NXNTNX∗

N + αR−1
M

)−1
, where α > 0. Moreover, we define

aM = u∗
MQMuM bM = u∗

MQ2
MuM , (3.1)

along with

āM = u∗
MEMuM b̄M = (1− γM γ̃M )

−1
u∗
ME2

MuM . (3.2)
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where γ = γM = 1
N tr

[

E2
M

]

and γ̃ = γ̃M = 1
N tr

[

Ẽ2
N

]

, with

EM = RM

(

δ̃MRM + αIM

)−1

ẼN = TN (IN + δMTN )
−1

and
{

δ̃M , δM

}

being the unique positive solution to the following system of

equations:










δ̃M = 1
N tr

[

TN (IN + δMTN )
−1
]

δM = 1
N tr

[

RM

(

δ̃MRM + αIM

)−1
]

.
(3.3)

The existence and uniqueness of the solution to (3.3) follow by similar arguments
as those in the proof of Proposition 1 in [9]. Additionally, notice that EM and
ẼN are positive definite matrices. Before concluding, a final remark is in order.
Under Assumption (As2), all previously defined elements are well defined for all
M in the sense of the Euclidean norm for vectors or induced norm for matrices
(see uniform bounds provided at the end of Appendix A, which will be useful
for the derivation of our asymptotic results).

3.2. First-order approximations

The following proposition provides asymptotic approximations for the expected
values of the random variables aM and bM . The result follows readily from
Proposition 1 and Proposition 2 in Section 4.

Lemma 1. With the definitions and under the assumptions above, the following
expectations hold:

E [aM ] = āM +O
(

N−3/2
)

E [bM ] = b̄M +O
(

N−3/2
)

.

Based on the previous approximation rules, we will consider the following
two first-order estimates of the SNR under the supervised and the unsupervised
training settings, namely, SNR (ŵ0,MVDR) = ā2M/b̄M , and SNR (ŵ1,MVDR) =
(

b̄M/ā
2
M − 1

)−1
, respectively.

3.3. Second-order analysis

The following two theorems establish the asymptotic Gaussianity of the fluc-
tuations of the SNR performance measures (2.5) and (2.6). Before stating the
results, we introduce the following quantity, which is shown to be positive in
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Section 5:

VM = γ̃2
1

N
tr
[

E4
M

]

+ γ2
1

N
tr
[

Ẽ4
N

]

+ 4γ̃ (1− γγ̃)SM + 4

(

γ̃2
1

N
tr
[

E3
M

]

− γ
1

N
tr
[

Ẽ3
N

]

)

TM

+
2

(1− γγ̃)

(

γ̃3
(

1

N
tr
[

E3
M

]

)2

− 2γγ̃
1

N
tr
[

E3
M

] 1

N
tr
[

Ẽ3
N

]

+ γ3
(

1

N
tr
[

Ẽ3
N

]

)2
)

where we have defined

SM =

(

u∗
ME2

MuM

u∗
MEMuM

)2

− 2
u∗
ME3

MuM

u∗
MEMuM

+
1

2

[

u∗
ME4

MuM

u∗
ME2

MuM
+

(

u∗
ME3

MuM

u∗
ME2

MuM

)2
]

TM =
u∗
ME3

MuM

u∗
ME2

MuM
− u∗

ME2
MuM

u∗
MEMuM

.

Theorem 1. (Supervised Training) Under the definitions and assumptions in
Section 3.1, the following CLT holds:

σ−1
s,M

√
N
(

SNR (ŵ0,MVDR)− SNR (ŵ0,MVDR)
)

L→ N (0, 1)

where

σ2
s,M =

(

(u∗
MEMuM )

2

u∗
ME2

MuM

)2

VM .

Theorem 2. (Unsupervised Training) Under the definitions and assumptions
in Section 3.1, the following CLT holds:

σ−1
u,M

√
N
(

SNR (ŵ1,MVDR)− SNR (ŵ1,MVDR)
)

L→ N (0, 1)

where

σ2
u,M =

(

(u∗
MEMuM )

2

u∗
ME2

MuM

)2(

1− (u∗
MEMuM )

2

u∗
ME2

MuM
(1− γM γ̃M )

)−4

VM ,

The CLT’s established in Theorems 1 and 2 state the intricate but explicit
dependence on the spatial and temporal covariance matrices RM and TN of the
mean and variance of the realized SNR. In particular, notice that these two mo-
ments univocally define the asymptotic Gaussian distributions derived above.
Further insights can be gained by a scenario-based analysis considering partic-
ular choices of the covariances RM and TN . Though undoubtedly of practical
relevance, such an analysis is outside of the scope of this work, and left open for
future research.

We remark that the previous analytical characterization of the asymptotic
distribution of the SNR for a given, fixed diagonal loading parameter, could be
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used for selecting an improved parameter. Previous work by one of the authors
proposes a simple approach for fixing α by considering only a first-order asymp-
totic analysis [4, 3]. Potential approaches exploiting the second-order asymptotic
results provided here might be based on determining the diagonal loading factor
maximizing not only the expected value of the realized SNR, but a linear combi-
nation of the mean and the variance (i.e., the fluctuations). Given that now not
only the variance but the whole distribution of the realized SNR is available,
the previous proposed approach based on the first two moments could also be
extended to the optimization of a given quantile by borrowing techniques from
robust regression and robust statistics. This, again, is a far from trivial problem
which deserves a line of research on its own.

On a final note, we recall how the asymptotic analysis can shed some light
on the convergence properties of the SNR, when the noise includes the con-
tribution from interfering sources. Using a simplified version of Theorem 1 for
time-uncorrelated sources, it was theoretically shown in [4, 3] that, in scenar-
ios where interferences are much more powerful than the background noise, the
minimum number of snapshots per antenna to achieve an output SNR within
3dB of the optimum one becomes: i) N > 2K in the supervised case (compare
with the classical N > 2M of the rule proposed in [5]); ii) N > (2 + SNRopt)K
in the unsupervised case, where K is the dimension of the interference subspace.
Hence, diagonal loading reduces the number of needed samples by approximately
a factor of K/M (relative interference subspace dimension).

4. Mathematical tools and preparatory results

In this section, we introduce some mathematical tools and intermediate technical
results that will be useful for the proof of the central limit theorems in Section
3. In the sequel, we will denote by ZM ∈ C

M×M and Z̃N ∈ C
N×N sequences of

arbitrary diagonal nonrandom matrices with uniformly bounded spectral norm
(in M and N , respectively). Similarly, ΘM ∈ CM×M and Θ̃N ∈ CN×N will rep-
resent sequences of positive definite nonrandom matrices having trace norm uni-
formly bounded from above by finite scalars denoted, respectively, by ‖Θ‖tr,sup
and

∥

∥

∥Θ̃
∥

∥

∥

tr,sup
, and trace operator uniformly bounded away from zero, i.e.,

min
{

θinf , θ̃inf

}

> 0, where θinf = infM≥1 tr [ΘM ] and θ̃inf = infN≥1 tr
[

Θ̃N

]

. In

particular, notice that ‖ΘM‖F ≤ ‖ΘM‖tr, and so the Frobenius norm of ΘM is
also uniformly bounded. For instance, in the cases ΘM = 1

MZ∗
MZM and ΘM =

uMu∗
M , we have

∥

∥

1
MZ∗

MZM

∥

∥

F
= 1

M1/2

(

1
M tr

[

(Z∗
MZM )

2
])1/2

= O
(

N−1/2
)

and ‖uMu∗
M‖F = ‖uM‖2 = O (1), respectively. We remark that the positive

definiteness of the matrices ΘM and Θ̃N only represents a purely technical as-
sumption that will facilitate the proofs, but which can be relaxed to extend the
results to the case of arbitrary not necessarily positive definite matrices.

Next, we introduce some results that will represent a set of essential tools for
the proof of Theorem 1 and Theorem 2.
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4.1. Gaussian tools

We first briefly comment on the bounded character of the empirical moments

of the spectral norm. Let p be a fixed integer and let
{

Z̃
(l)
N

}

, 1 ≤ l ≤ p, denote

a set of p sequences of N × N diagonal deterministic matrices with uniformly
bounded spectral norm in N . Then, for p ≥ 1, we have

E

[∥

∥

∥

∥

∥

XN Z̃
(1)
N X∗

N

N

XN Z̃
(2)
N X∗

N

N
· · · XN Z̃

(p)
N X∗

N

N

∥

∥

∥

∥

∥

]

< Kp. (4.1)

The proof of (4.1) follows by first writing, using the submultiplicative property
of the spectral norm,

E

[∥

∥

∥

∥

∥

XN Z̃
(1)
N X∗

N

N

XN Z̃
(2)
N X∗

N

N
· · · XN Z̃

(p)
N X∗

N

N

∥

∥

∥

∥

∥

]

≤

≤
(

p
∏

r=1

sup
N≥1

∥

∥

∥Z̃
(r)
N

∥

∥

∥

)

E

[∥

∥

∥

∥

XNX∗
N

N

∥

∥

∥

∥

p]

.

and then applying the following intermediate result.

Lemma 2. Let X̃N ∈ RM×N be a matrix having entries defined as i.i.d. Gaus-
sian random variables with mean zero and variance one. Then, the following
inequality holds for every q ≥ 1, i.e.,

sup
N≥1

E

[∥

∥

∥

∥

∥

X̃N√
N

∥

∥

∥

∥

∥

q]

< +∞.

Proof. The proof is based on some well-known results about the concentration
of Gaussian measures and its applications to random matrix theory (see, e.g.,
[22]). In particular, we build upon the following large deviation inequality for
the largest singular value of a Gaussian matrix [23, Theorem II.13], namely,

P

(∣

∣

∣

∥

∥

∥X̃N

∥

∥

∥−
(√

M +
√
N
)∣

∣

∣ ≥ t
)

< 2 exp

(

− t
2

2

)

, (4.2)

for any t > 0. Furthermore, for every non-negative random variable X , we have
E [X ] =

∫∞
0

P (X ≥ x) dx. Now, using the change of variables x = tq, dx =

qtq−1 dt, notice that E [Xq] =
∫∞
0 P (Xq ≥ x) dx =

∫∞
0 P (X ≥ t) qtq−1 dt.

Finally, letting X =
∣

∣

∣

∥

∥

∥X̃N

∥

∥

∥−
(√

M +
√
N
)∣

∣

∣, we get from (4.2)

E

[∣

∣

∣

∥

∥

∥X̃N

∥

∥

∥−
(√

M +
√
N
)∣

∣

∣

q]

≤ 2q

∫ ∞

0

e−
1

2
t2tq−1 dt = 2q/2qΓ

(q

2

)

≤ qq/2+1,

where Γ (x) is the Gamma function, and we conclude that

E

[∥

∥

∥

∥

∥

X̃N√
N

∥

∥

∥

∥

∥

q]

= Kq +O
(

N−1/2
)

.
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Indeed, if we let XN = 1√
2
X̃

(re)
N + i 1√

2
X̃

(im)
N , where the matrices X̃

(re)
N and

X̃
(im)
N are independently defined as the matrix X̃N , then, applying Jensen’s

inequality along with Lemma 2, we get

E

[∥

∥

∥

∥

XN√
N

∥

∥

∥

∥

q]

≤ 2r/2−1

(

E

[∥

∥

∥

∥

∥

X̃
(re)
N√
N

∥

∥

∥

∥

∥

q]

+ E

[∥

∥

∥

∥

∥

X̃
(im)
N√
N

∥

∥

∥

∥

∥

q])

< Kq,

and (4.1) follows finally by taking q = 2p.
We now introduce two further tools; with some abuse of notation, let Γ =

Γ (XN ,X
∗
N ) be a C1 complex function such that both itself and its derivatives

are polynomically bounded. Following the approach in [9], in our proof of the
CLT we will make intensive use of the Nash-Poincaré inequality, i.e.,

var (Γ (XN ,X
∗
N )) ≤

M
∑

i=1

N
∑

j=1

E

[

∣

∣

∣

∣

∂Γ (XN ,X
∗
N )

∂Xij

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂Γ (XN ,X
∗
N )

∂Xij

∣

∣

∣

∣

2
]

, (4.3)

where the upper bar denotes complex conjugation, as well as the integration by
parts formula for Gaussian functionals, namely

E [XijΓ (XN ,X
∗
N )] = E

[

∂Γ (XN ,X
∗
N )

∂Xij

]

. (4.4)

4.2. Variance controls and estimates of expected values

Let us define the random variables

Φ
(k)
M = Φ

(k)
M (XN ) = tr

[

ΘMQk
M

]

, Ψ
(k)
M = Ψ

(k)
M (XN ) = tr

[

ΘMQk
M

XN Z̃NX∗
N

N

]

(4.5)
where k is a finite positive integer. The proof of the following variance estimates
essentially rely on the Nash-Poincaré inequality in (4.3).

Lemma 3. With all above definitions, the following variance controls hold:

var
(

Φ
(k)
M (XN )

)

= O
(

‖Θ‖2F
N

)

,

and

var
(

Ψ
(k)
M (XN )

)

= O
(

‖Θ‖2F
N

)

.

Proof. See Appendix B.

Also of particular use in our derivations will be the following approximation
rules, whose proof has been postponed to Appendix C.
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Proposition 1. With all above definitions, the following expectations hold,
namely

E

[

Φ
(1)
M (XN )

]

= tr [ΘE] +O
(‖Θ‖F
N3/2

)

and

E

[

Ψ
(1)
M (XN )

]

=
1

N
tr
[

Z̃ (IN + δMT)
−1
]

tr [ΘE] +O
(‖Θ‖F
N3/2

)

.

Proposition 2. With all above definitions, the following expectations hold,
namely

E

[

Φ
(2)
M (XN )

]

=
1

1− γγ̃
tr
[

ΘE2
]

+O
(‖Θ‖F
N3/2

)

and

E

[

Ψ
(2)
M (XN )

]

=
1

N
tr
[

Z̃ (IN + δMT)−1
] 1

1− γγ̃
tr
[

ΘE2
]

− 1

N
tr
[

ẼZ̃ (IN + δMT)
−1
] γ

1− γγ̃
tr [ΘE] +O

(‖Θ‖F
N3/2

)

.

Proposition 3. With all above definitions, the following expectations hold,
namely

E

[

Φ
(3)
M (XN )

]

=
1

(1− γγ̃)3

(

γ̃
1

N
tr
[

E3
]

− γ2
1

N
tr
[

Ẽ3
]

)

tr
[

ΘE2
]

+

+
1

(1− γγ̃)
2 tr

[

ΘE3
]

+O
(‖Θ‖F
N3/2

)

and

E

[

Ψ
(3)
M (XN )

]

=

=
tr
[

Z̃ (IN + δMT)
−1
]

N (1− γγ̃)
2







γ̃ 1
N tr

[

E3
]

− γ2 1
N tr

[

Ẽ3
]

1− γγ̃
tr
[

ΘE2
]

+ tr
[

ΘE3
]







−
tr
[

Z̃Ẽ (IN + δMT)−1
]

N (1− γγ̃)
2







1
N tr

[

E3
]

− γ3 1
N tr

[

Ẽ3
]

1− γγ̃
tr [ΘE] + γ tr

[

ΘE2
]







+

(

γ

1− γγ̃

)2
1

N
tr
[

Z̃Ẽ
2
(IN + δMT)

−1
]

tr [ΘE] +O
(‖Θ‖F
N3/2

)

.
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Proposition 4. With all above definitions, the following expectation holds,
namely

E

[

Φ
(4)
M (XN )

]

=
1

(1− γγ̃)3
tr
[

ΘE4
]

+

+
2 tr

[

ΘE3
]

(1− γγ̃)
4

{

γ̃
1

N
tr
[

E3
]

− γ2
1

N
tr
[

Ẽ3
]

}

+
tr
[

ΘE2
]

(1− γγ̃)
4

{

γ3
1

N
tr
[

Ẽ4
]

+ γ̃
1

N
tr
[

E4
]

}

+
2 tr

[

ΘE2
]

(1− γγ̃)
5 ×

×
{

γ4
(

1

N
tr
[

Ẽ3
]

)2

+ γ̃2
(

1

N
tr
[

E3
]

)2

− γ (1 + γγ̃)
1

N
tr
[

Ẽ3
] 1

N
tr
[

E3
]

}

+

+O
(‖Θ‖F
N3/2

)

.

5. Elements of the proof of the asymptotic Gaussianity of the SNR

Let us consider the real-valued random variable ξM = AM

√
N (aM − aM ) +

BM

√
N
(

bM − bM
)

, where aM , aM , bM , bM are defined in (3.1)-(3.2) and where
AM and BM are two real-valued nonrandom coefficients bounded above for
all M by constants Asup and Bsup, respectively. In particular, notice that if

ΘM = uMu∗
M then we have Φ

(1)
M = aM and Φ

(2)
M = bM , and also Φ̄

(1)
M = āM and

Φ̄
(2)
M = b̄M . We begin this section by stating a theorem that establishes a CLT

for the fluctuations of ξM , and which will be instrumental in proving Theorem
1 and Theorem 2.

Theorem 3. Assume that [AM , BM ] is a deterministic real-valued vector whose
norm is uniformly bounded above and below. Then, under (As1 − As3), the
following CLT holds:

√
Nσ−1

ξ,M (AM , BM )
(

AM (aM − aM ) +BM

(

bM − bM
)) L→ N (0, 1) , (5.1)

where σ2
ξ,M (AM , BM ) =

[

AM BM

]

ΣM

[

AM BM

]T
, with ΣM being a

real-valued symmetric positive definite matrix having entries [ΣM ]1,1 = σM,a2 ,
[ΣM ]2,2 = σM,b2 , and [ΣM ]1,2 = [ΣM ]2,1 = σM,ab = σM,ba, given by

σM,a2 =
γ̃

1− γγ̃

(

u∗
ME2

MuM

)2
, (5.2)

σM,ab = σM,ba =
2γ̃

(1− γγ̃)
2u

∗
ME2

MuMu∗
ME3

MuM

+

(

u∗
ME2

MuM

)2

(1− γγ̃)
3

{

γ̃2
1

N
tr
[

E3
M

]

− γ
1

N
tr
[

Ẽ3
N

]

}

, (5.3)
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and

σM,b2 =
2γ̃

(1− γγ̃)
3u

∗
ME4

MuMu∗
ME2

MuM +
2γ̃

(1− γγ̃)
3

(

u∗
ME3

MuM

)2

+
4u∗

ME3
MuMu∗

ME2
MuM

(1− γγ̃)4

{

γ̃2
1

N
tr
[

E3
M

]

− γ
1

N
tr
[

Ẽ3
N

]

}

+

(

u∗
ME2

MuM

)2

(1− γγ̃)4

{

γ̃2
1

N
tr
[

E4
M

]

+ γ2
1

N
tr
[

Ẽ4
N

]

}

+
2
(

u∗
ME2

MuM

)2

(1− γγ̃)5
×

×
{

γ̃3
(

1

N
tr
[

E3
M

]

)2

− 2γγ̃
1

N
tr
[

E3
M

] 1

N
tr
[

Ẽ3
N

]

+ γ3
(

1

N
tr
[

Ẽ3
N

]

)2
}

(5.4)

Proof. Define ΨM (ω) = exp (iωξM ), and let E [ΨM (ω)] be the characteristic
function of ξM . The proof of Theorem 3 is based on Levy’s continuity theorem,
which allows us to prove convergence in distribution by showing point-wise
convergence of characteristic functions [24]. More specifically, similarly as in [9],
we study weak convergence to a Gaussian law by showing

E [ΨM (ω)]− exp

(

−ω
2

2
σ2
ξ,M (AM , BM )

)

→
M,N→∞

0.

In particular, we show that

∂

∂ω
E [ΨM (ω)] = −ωσ2

ξ,M (AM , BM )E [ΨM (ω)] +RN (ω) , (5.5)

where RN (ω) is an error term vanishing asymptotically as N → ∞ uniformly
in ω on compact subsets. In order to prove (5.5), we proceed by differentiating
the characteristic function as

∂

∂ω
E [ΨM (ω)] = iE [ξMΨM (ω)]

= iAM

√
NE [(aM − aM )ΨM (ω)] + iBM

√
NE

[(

bM − bM
)

ΨM (ω)
]

.

The following proposition provides the computation of the expectation E [ξMΨM (ω)];
see Appendix D for a proof.

Proposition 5. With the above definitions, the following expectations hold,
namely

√
NE [(aM − aM )ΨM (ω)] = iω (Aσa2 +Bσab)E [Ψ (ω)] +O

(

N−1/2
)

, (5.6)

and
√
NE

[(

bM − bM
)

ΨM (ω)
]

= iω (Aσba +Bσb2)E [Ψ (ω)] +O
(

N−1/2
)

. (5.7)

Moreover, the term O
(

N−1/2
)

depends neither on the coefficients AM and BM

nor on ω, assuming that this last parameter takes values on a bounded interval.
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Therefore, we have (recall that σM,ab = σM,ba)

E [ξMΨM (ω)] = iω
(

A2
MσM,a2 + 2AMBMσM,ab +B2

MσM,b2
)

E [Ψ (ω)]+O
(

N−1/2
)

.

(5.8)
Furthermore, a sufficient and necessary condition for the matrix ΣM to be
positive definite is stated in the following proposition (see Appendix E for a
proof).

Proposition 6. Under the assumptions of Theorem 3, we have

0 < inf
M≥1

σ2
ξ,M (AM , BM ) ≤ sup

M≥1
σ2
ξ,M (AM , BM ) < +∞.

In order to complete the proof of Theorem 3, we need to show that the sequence

{

σ−1
ξ,M (AM , BM )

(

AM (aM − aM ) +BM

(

bM − bM
))

}

M

is tight, and that every converging subsequence does it in distribution to a stan-
dard Gaussian random variable. The proof of the previous two arguments relies
on Proposition 6 and follows along exactly the same lines of that of Proposition
6 in [9], and so we exclude it from our exposition.

Remark 1. Theorem 3 can be used to characterize the fluctuations of the per-
formance of optimal LMMSE or Wiener filters. Here, we particularly mean the
classical statistical problem of estimating the signal s (n) in the linear signal
model (2.1) with β = 1, by minimizing the Bayesian mean-square error (MSE)
risk. Specifically, recalling that the MSE of a filter w is given by MSE (w) =
1 − 2Re

{

wHs
}

+ wHRw (see, e.g., [25, 26]), we notice that the asymptotic
distribution of the MSE achieved by a sample implementation of the optimal
filter wLMMSE = R−1

M s based on the covariance matrix estimator (2.4), and
denoted by ŵMSE, can be readily obtained by simply applying Theorem 3 with
AM = Amse,M = 2 and BM = Bmse,M = 1 along with ΘM = uMu∗

M , so that
we get the random variable:

MSE (ŵMSE)−MSE (ŵMSE) = Amse,M (aM − āM ) +Bmse,M

(

bM − b̄M
)

.

Related work on the study of the asymptotic Gaussianity of LMMSE receivers
can be found in [27], where different techniques than used here based on the mar-
tingale central limit theorem are considered without the assumption of Gaussian
observations. We notice that the problem above relies on a covariance matrix
which is unknown and therefore estimated, while in [27] the authors rely on a
given model of the covariance matrix itself, whose structure is assumed to be
known.

We now complete the proof of Theorem 1 and Theorem 2 by showing that,
similarly as in Remark 1, the asymptotic distribution of the SNR performance
measure under both supervised and unsupervised training is given by Theorem
1, for sensible choices of the coefficients AM and BM .
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5.1. Completing the proof of Theorem 1 and Theorem 2

Let us define the following nonrandom coefficients:

As,M =
2āM

b̄M
, Bs,M = −

(

āM

b̄M

)2

, (5.9)

and

Au,M =
2āM b̄M

(

b̄M − ā2M
)2 , Bu,M = −

(

āM

b̄M − ā2M

)2

, (5.10)

which are bounded above and away from zero uniformly in M (cf. inequalities
(A.15) - (A.19) in Appendix A). In particular, notice that

As,M

Bs,M
=
Au,M

Bu,M
= −2b̄M

āM
. (5.11)

Now, observe that we can write

√
N
(

SNRs (ŵMVDR)− SNRs (ŵMVDR)
)

=

=
√
N
(

As,M (aM − āM ) +Bs,M

(

bM − b̄M
))

+ εs,M , (5.12)

and

√
N
(

SNRu (ŵMVDR)− SNRu (ŵMVDR)
)

=

=
√
N
(

Au,M (aM − āM ) +Bu,M

(

bM − b̄M
))

+ εu,M , (5.13)

where

εs,M =
√
N

(

aM
bM

− āM

b̄M

)2

bM ,

εu,M =
√
N (aM − āM )

2

(

āM

b̄M − ā2M

)2

+
√
N

(

aM
bM − a2M

− āM

b̄M − ā2M

)2
(

bM − a2M
)

≡ ε
(1)
u,M + ε

(2)
u,M .

Next, we show that εs,M = op (1) and εu,M = ε
(1)
u,M + ε

(2)
u,M = op (1). Indeed,

notice that we can write

P (|εs,M | > ǫ) ≤
√
N

ǫ
E

[

∣

∣

∣

∣

aM
bM

− āM

b̄M

∣

∣

∣

∣

2

|bM |
]

≤ 2

√
N

ǫ

(

E

[

|aM − āM |2
|bM |

]

+
|āM |2
∣

∣b̄M
∣

∣

2E

[
∣

∣bM − b̄M
∣

∣

2

|bM |

])

,
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where the last expression follows from Jensen’s inequality. Let us further define
the random variables XM = 1/

(

bM − a2M
)

, and X1,M = XM , X2,M = a2MXM ,
X3,M = aMXM , X4,M = XM , along with the nonrandom coefficients CM =

ā2M/
(

b̄M − ā2M
)2
, and C1,M = 1, C3,M = 2ā3MCM , Ck,M = ākMCM , k = 2, 4.

Then, we similarly have

P

(

ε
(1)
u,M > ǫ

)

≤
√
N

ǫ
|CM |E

[

|aM − āM |2
]

and (notice that
(

a2M − ā2M
)2

=
(

a2M + 2aM āM + ā2M
)

(aM − āM )2)

P

(

ε
(2)
u,M > ǫ

)

≤
√
N

ǫ
E

[

∣

∣

∣

∣

aM
bM − a2M

− āM

b̄M − ā2M

∣

∣

∣

∣

2
∣

∣bM − a2M
∣

∣

]

≤ 2

√
N

ǫ
|CM |E

[

|XM |
∣

∣bM − b̄M
∣

∣

2
]

+4

√
N

ǫ

(

4
∑

k=1

|Ck,M |E
[

|Xk,M | |aM − āM |2
]

)

,

Finally, using the bounds (A.15) - (A.19) in Appendix A to show that

max
1≤k≤4

sup
M≥1

{Ck,M} < +∞,

and
max
1≤k≤4

sup
M≥1

{Xk,M} < +∞

with probability one, together with Jensen’s inequality and Propositions 1 and
2, we conclude that both P (|εs,M | > ǫ) → 0 and P (|εu,M | > ǫ) → 0 as N → ∞.
Hence, from (5.12) and (5.13) along with the fact that εs,M = op (1) and εu,M =
op (1), we conclude that the central limit theorems in Theorem 1 and Theorem
2 follow by Slutsky’s theorem and Theorem 1 with σ2

s,M and σ2
u,M being given

by the quadratic form σ2
ξ,M (AM , BM ), where the coefficients AM and BM are

given by (5.9) and (5.10), respectively.

6. Numerical validation

In this section, we compare the empirical distribution of the output SNR ob-
tained by simulations with the corresponding analytical expressions derived in
this paper. We considered a uniform linear array with elements located half a
wavelength apart. The exploration angle was 0 deg. (desired signal), and the
array received interfering signals from the angles −20, 50 and 55 degrees. All
signals were received at each antenna with power 10dB above the background
noise. In this toy example, the time correlation matrix was fixed to be a symmet-
ric Toeplitz with its nth upper diagonal fixed to e−n, n = 0, . . . , N − 1, and the
diagonal loading parameter was fixed to α = 0.1. In Figure 1 and Figure 2, we
represent the measured histogram (bars) and asymptotic law (solid curves) of
the output SNR for different values of the parametersM,N , for both supervised
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and unsupervised training, respectively. A total number of 10,000 realizations
has been considered to obtain the empirical probability density function. In each
figure, the upper plot corresponds to the case where the number of samples is
lower than the number of antennas, whereas in the lower plot we depict the
opposite situation. Observe that in both cases the asymptotic expressions give
a very accurate description of the fluctuations of the output SNR, even for rel-
atively low values of M,N . We also notice that the mismatch observed for very
low dimensions is readily corrected by slightly increasing M and N .

7. Conclusions

We have shown that the SNR of the diagonally loaded MVDR filters is asymp-
totically Gaussian and have provided a closed-form expression for its variance.
A CLT has been established for the fluctuations of the SNR performance of
both supervised and unsupervised training methods. We resorted to the Nash-
Poincaré inequality and the integration by parts formula for Gaussian func-
tionals to derive variance and bias estimates for the constituents of the SNR
measure. In fact, the same elements describe also the fluctuations of the mean-
square error performance of this filter, which can be written in terms of realized
variance and bias, as well as of other optimal linear filters, such as the Bayesian
linear minimum mean-square error filter. The results hold for Gaussian obser-
vations, but extensions based on a more general integration by parts formula
can be investigated for non-Gaussian observations.

Appendix A: Further definitions and useful bounds

Throughout the appendices, we will use the following definitions, namely

F̃ = T

(

IN +
1

N
E tr [Q]T

)−1

,

and also

F =

(

1

N
tr
[

F̃
]

IM + αR−1

)−1

.

Let A and B denote two arbitrary square complex matrices. The following
will be denoted in the sequel as resolvent identity, namely, A−1 − B−1 =
A−1 (B−A)B−1, where we have tacitly assumed the invertibility of A and
B. In particular, using the previous resolvent identity, we notice that

Q = α−1R− α−1Q
1

N
XTX∗R. (A.1)

Furthermore, we define

χ
(p)
M =

1

N
tr [Qp]− 1

N
E tr [Qp]
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Now, we introduce some inequalities that will be extensively used in our
derivations. First, let X and Y be two scalar and complex-valued random vari-
ables having second-order moment. Then, we have

var (X + Y ) ≤ var (X) + var (Y ) + 2
√

var (X) var (Y ), (A.2)

and also, from the Cauchy-Schwarz inequality,

|E [(X − E [X ])Y ]| = |E [(X − E [X ]) (Y − E [Y ])]|
= |cov (X,Y )| ≤ var1/2 (X) var1/2 (Y ) . (A.3)

Furthermore, we will be using [28, Chapter 3]

|tr [AB]| ≤ ‖AB‖tr ≤ ‖A‖tr ‖B‖ . (A.4)

In particular, if A is Hermitian nonnegative, we can write

|tr (AB)| ≤ ‖B‖ tr (A) . (A.5)

Moreover, we will also repeatedly use

‖AB‖F ≤ ‖A‖ ‖B‖F . (A.6)

We further provide some inequalities involving the notation and elements
defined in Section 3.1. In particular, the following inequality will be used in the
proof of the variance controls given by Lemma 3:

sup
M≥1

‖Q‖p < +∞, a.s. (A.7)

Indeed, using the fact that
(

1
NXTX∗ + αR−1

)

≥ αR−1 a.s.2 (i.e., the random
matrix 1

NXTX∗ is semi-positive definite with probability one, having |M −N |
zero eingevalues), notice that ‖Q‖ ≤ α−1 ‖R‖ ≤ α−1 ‖R‖sup with probability
one.

From the previous inequalities, it also follows that

sup
M≥1

tr
[

ΘMQk
M

]

≤ α−k ‖R‖ksup ‖Θ‖sup < +∞, a.s. (A.8)

The following two lemmas can be derived as in [9].

Lemma 4. The quantities δM , δ̃M accept the following upper and lower bounds:

δinf ≤ δM ≤ csupα
−1 ‖R‖sup ,

δ̃inf ≤ δ̃M ≤ ‖T‖sup ,

where we have defined

δinf =
cinf ‖R‖inf

α+ ‖R‖sup ‖T‖sup
, δ̃inf =

α ‖T‖inf
α+ csup ‖R‖sup ‖T‖sup

.

2almost surely



Rubio, Mestre and Hachem/A CLT on the SNR of the DL beamformer 22

Similarly, observe that,

γM ≤ csupα
−2 ‖R‖2sup , γ̃M ≤ ‖T‖2sup . (A.9)

Additionally, thanks to Jensen’s inequality, the lower bounds on the quantities
δM , δ̃M directly imply that

γM ≥ 1

csup
δ2inf > 0, γ̃M ≥ δ̃2inf > 0. (A.10)

Lemma 5. The quantity 1 − γM γ̃M accepts the following upper and lower
bounds:

1− γM γ̃M ≤ 1− α
‖R‖inf ‖T‖inf

(

α+ ‖R‖sup ‖T‖sup
)(

α+ csup ‖R‖sup ‖T‖sup
) < 1

and

1− γM γ̃M ≥ 1

c2sup

α2

‖R‖2sup
δ2inf .

In general, we have, for any finite k > 0,

sup
M≥1

tr
[

ΘMEk
M

]

≤ α−k ‖R‖ksup ‖Θ‖sup < +∞, (A.11)

sup
N≥1

tr
[

Θ̃N Ẽk
N

]

≤ ‖T‖ksup
∥

∥

∥Θ̃
∥

∥

∥

sup
< +∞, (A.12)

and also

inf
M≥1

tr
[

ΘMEk
M

]

≥ θinfα
k ‖R‖kinf

(

α2 + csup ‖R‖sup ‖R‖inf
)k

> 0, (A.13)

inf
N≥1

tr
[

Θ̃N Ẽk
N

]

≥ θ̃infα
k ‖T‖kinf

(

α+ csup ‖R‖sup ‖T‖sup
)k

> 0. (A.14)

In particular, if ΘM = uMu∗
M , then tr [ΘM ] = ‖uM‖2, and using the fact

that ‖s‖2 = 1, we notice that infM≥1 ‖uM‖2 ≥ ‖R‖−1
sup > 0 and, additionally,

supM≥1 ‖u‖2 ≤ ‖R‖−1
inf < +∞, so that it follows from the above inequalities

that

max sup
M≥1

{aM , bM} < +∞, a.s., (A.15)

max sup
M≥1

{

āM , b̄M
}

< +∞, (A.16)

min inf
M≥1

{

āM , b̄M
}

> 0. (A.17)
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Moreover, observe that for a positive definite matrix A ∈ CM×M the Cauchy-
Schwarz inequality implies that (u∗Au)2 ≤ u∗A2u, for all M , and hence, using
the bounds for 1− γM γ̃M above,

sup
M≥1

1

bM − a2M
< +∞, a.s., (A.18)

sup
M≥1

1

b̄M − ā2M
< +∞. (A.19)

Appendix B: Proof of Lemma 3 (Variance Controls)

We first consider the quantities Φ
(k)
M (X), k ≥ 1. Using the Nash-Poincaré in-

equality in (4.3) and Jensen’s inequality, we get by applying conventional dif-
ferentiation rules for real-valued functions of complex matrix arguments (cf. [9,
Section III]) along with the chain rule and after gathering terms together,

var
(

Φ
(k)
M (X)

)

≤ k

k
∑

r=1

1

N
E tr

[

QrΘQ2(k−r+1)Θ∗QrXT2X∗

N

]

+
1

N
E tr

[

QrΘ∗Q2(k−r+1)ΘQrXT2X∗

N

]

,

where we have used

∂ (X)

∂Xij
= eie

T
j ,

∂ (X∗)

∂Xij

= eje
T
i ,

with ei being the unit norm vector whose ith entry is 1. Then, we further notice
that, for any two constants p, q ≥ 1,

E tr

[

QpΘQ2qΘ∗QpXT2X∗

N

]

≤ E

[∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

tr
[

QpΘQ2qΘ∗Qp
]

]

= E

[∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

∥

∥ΘQp+q
∥

∥

2

F

]

≤ ‖Θ‖2F E

[

‖Q‖2(p+q)

∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

]

≤ K ‖Θ‖2F E

∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

= O
(

‖Θ‖2F
)

where we have used inequalities (A.6), (A.7) and (4.1).

We finally consider the random variables Ψ
(k)
M (X), k ≥ 1. By the Nash-

Poincaré and Jensen’s inequality, and similarly as in the previous case, we can
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write

var
(

Ψ
(k)
M (X)

)

≤ k + 1

N
E tr

[

ΘQ2kΘ∗XZ̃∗Z̃X∗

N

]

+
k + 1

N
E tr

[

QkΘ∗ΘQkXZ̃Z̃∗X∗

N

]

+ (k + 1)

k
∑

r=1

1

N
E tr

[

QrXZ̃X∗

N
ΘQ2(k−r+1)Θ∗XZ̃

∗
X∗

N
QrXT2X∗

N

]

+
1

N
E tr

[

QrΘ∗XZ̃
∗
X∗

N
Q2(k−r+1)XZ̃X∗

N
ΘQrXT2X∗

N

]

.

Then, observe that, for any two constants p, q ≥ 1,

E tr

[

QpXZ̃X∗

N
ΘQ2qΘ∗XZ̃

∗
X∗

N
QpXT2X∗

N

]

≤

≤ E

[

∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

tr

[

QpXZ̃X∗

N
ΘQ2qΘ∗XZ̃

∗
X∗

N
Qp

]]

≤ E





∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

∥

∥

∥

∥

∥

XZ̃X∗

N

∥

∥

∥

∥

∥

2

‖Q‖2p ‖ΘQq‖2F





≤ K ‖Θ‖2F E
1/2

[

∥

∥

∥

∥

XT2X∗

N

∥

∥

∥

∥

2
]

E
1/2





∥

∥

∥

∥

∥

XZ̃X∗

N

∥

∥

∥

∥

∥

4


 = O
(

‖Θ‖2F
)

,

where we have used the Cauchy-Schwarz inequality, along with the inequalities
(A.6), (A.7) and (4.1).

Appendix C: Proof of Propositions 1 to 4 (Expected value
estimates)

Let us start by studying the following quantity, namely

E

[

QkXZ̃X
∗

N

]

ij

=
1

N

N
∑

l=1

[

Z̃
]

l
E
[

Qkxlx
∗
l

]

ij
. (C.1)
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Using the integration by parts formula in (4.4), we find that (tl = [T]l)

E
[

Qkxlx
∗
l

]

ij
=

M
∑

r=1

E
[[

Qk
]

ir
XrlXjl

]

=
E
[

Qk
]

ij

1 + tl
1
NE tr [Q]

− tl

1 + tl
1
NE tr [Q]

E

[

χ
(1)
M

[

Qkxlx
∗
l

]

ij

]

−
k−1
∑

p=1

tl

1 + tl
1
NE tr [Q]

E

[

[Qpxlx
∗
l ]ij

1

N
tr
[

Qk−p+1
]

]

, (C.2)

By plugging (C.2) into (C.1), we obtain

E

[

QkXZ̃X∗

N

]

ij

=
1

N
tr

[

Z̃

(

IN +
1

N
(E tr [Q])T

)−1
]

E
[

Qk
]

ij

−
k−1
∑

p=1

E

[

QpXZ̃F̃X
∗

N

]

ij

1

N
E tr

[

Qk−p+1
]

−
k
∑

q=1

E



χ
(q)
M

[

Qk−q+1XZ̃F̃X
∗

N

]

ij



 .

(C.3)

Furthermore, from the expression in (A.1), we observe that

E
[

Qk
]

ij
= α−1

E
[

Qk−1
]

ij
[R]j − α−1

E

[

QkXTX∗

N

]

ij

[R]j . (C.4)

Then, by using in (C.4) the identity (C.3) with Z̃ = T along with the defini-

tion of the matrix E, i.e., [E]j =

[

(

δ̃MIM + αR−1
)−1

]

j

, after some algebraic

manipulations we get the following expression:

E
[

Qk
]

ij
= E

[

Qk−1E
]

ij
+

(

δ̃M − 1

N
tr
[

F̃
]

)

E
[

QkE
]

ij

+

k−1
∑

p=1

E

[

QpXZ̃F̃X
∗

N
E

]

ij

1

N
E tr

[

Qk−p+1
]

+

k
∑

q=1

E



χ
(q)
M

[

Qk−q+1XZ̃F̃X
∗

N
E

]

ij



 .

(C.5)

In particular, from the expressions in (C.3) and (C.5), we obtain

1

N
E tr

[

Qk
]

=
1

N
E tr

[

EQk−1
]

+

(

δ̃M − 1

N
tr
[

F̃
]

)

1

N
E tr

[

EQk
]

+

k−1
∑

p=1

1

N
E tr

[

EQpXTF̃X
∗

N

]

1

N
E tr

[

Qk−p+1
]

+

k
∑

q=1

X (q)
M , (C.6)
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where we have defined the following error terms (here Θ = 1
N IM , Z = E and

Z̃ = T):

X (q)
M = E

[

χ
(q)
M tr

[

ZΘQk−q+1XZ̃F̃X
∗

N

]]

.

Before proceeding further, notice that (A.3) along with Lemma 3 implies that,
for any q ≥ 1,

X (q)
M = O

(‖Θ‖F
N3/2

)

. (C.7)

We now elaborate on (C.6) in the case k = 1. Specifically, note that we can
write

1

N
E tr [Q]− 1

N
E tr [E] =

(

δ̃M − 1

N
tr
[

F̃
]

)

1

N
E tr [EQ] +O

(

N−2
)

=

(

1

N
E tr [Q]− 1

N
tr [E]

)

tr
[

F̃Ẽ
] 1

N
E tr [EQ] +O

(

N−2
)

,

and so we get
(

1

N
E tr [Q]− 1

N
tr [E]

)(

1− 1

N
tr
[

ẼF̃
] 1

N
E tr [EQ]

)

= O
(

N−2
)

.

Moreover, using (A.5), we observe that, uniformly in M ,
∣

∣

∣

∣

1

N
tr
[

ẼF̃
] 1

N
E tr [EQ]

∣

∣

∣

∣

≤ δ̃M
1

N
E tr [Q]

∥

∥

∥
F̃
∥

∥

∥
‖E‖ < 1,

which follows by Assumption (As2) from the fact that

sup
M≥1

max







∥

∥

∥

∥

(

IM + αδ̃−1
M R−1

)−1
∥

∥

∥

∥

,





(

IN +

(

1

N
E tr [Q]T

)−1
)−1











< 1.

Hence, we have
1

N
E tr [Q] =

1

N
tr [E] +O

(

1

N2

)

.

In particular, noting that

tr
[

Θ
(

Ẽ− F̃
)]

=

(

1

N
E tr [Q]− 1

N
tr [E]

)

tr
[

ΘF̃Ẽ
]

,

together with ‖Θ‖tr ≤
√
M ‖Θ‖F and supM≥1

∥

∥

∥F̃
∥

∥

∥ ≤ ‖T‖sup, the next result

follows straightforwardly.

Lemma 6. With all above definitions, the following approximation rule holds:

tr
[

ΘF̃
]

= tr
[

ΘẼ
]

+O
(‖Θ‖F
N3/2

)

. (C.8)
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The variance control in (C.7) along with (C.8) imply that

1

N
E tr

[

Qk
]

=
1

N
E tr

[

EQk−1
]

+

+

k−1
∑

p=1

1

N
E tr

[

EQpXTF̃X
∗

N

]

1

N
E tr

[

Qk−p+1
]

+O
(

1

N2

)

. (C.9)

Similarly, we can write the following estimates from (C.5) and (C.3), respec-
tively,

E

[

ΘQkXZ̃X∗

N

]

=
1

N
tr

[

Z̃

(

IN +
1

N
(E tr [Q])T

)−1
]

E

[

ΘQk
]

−
k−1
∑

p=1

E

[

ΘQpXZ̃F̃X
∗

N

]

1

N
E tr

[

Qk−p+1
]

+O
(‖Θ‖F
N3/2

)

,

(C.10)

and

E

[

ΘQk
]

= E

[

ΘQk−1E
]

+

+
k−1
∑

p=1

E

[

ΘQpXTF̃X
∗

N
E

]

1

N
E tr

[

Qk−p+1
]

+O
(‖Θ‖F
N3/2

)

. (C.11)

Now, the proof of Propositions 1 to 4 can be now readily completed by han-
dling the estimates (C.9), (C.10) and (C.11), successively, following an iterative
scheme from k = 1 to k = 4.

Appendix D: Proof of Proposition 5

We concentrate first on (5.6). Observing that

E

[

[Q]ij Ψ(ω)
]

= α−1 [R]j E [Ψ (ω)]− α−1
E

[

[

Q
1

N
XTX∗R

]

ij

Ψ(ω)

]

it is sufficient to investigate the term E
[

Q 1
NXTX∗Ψ(ω)

]

ij
. Now, observe that

we can express

E

[

Q
1

N
XTX∗Ψ(ω)

]

ij

=
1

N

N
∑

l=1

tlE [Qxlx
∗
l Ψ(ω)]ij
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and therefore, using the integration by parts formula, we get after some algebraic
manipulations

E

[

[Q]ij Ψ(ω)
]

= [E]j E [Ψ (ω)]

+ iωA
1√
N

E





[

Q2uu∗Q
XTẼX

∗

N
E

]

ij

Ψ(ω)





+ iωB
1√
N

E





[

Q3uu∗Q
XTẼX∗

N
E

]

ij

Ψ(ω)





+ iωB
1√
N

E





[

Q2uu∗Q2XTẼX∗

N
E

]

ij

Ψ(ω)





+ E





(

1

N
tr [Q]− δM

)

[

Q
XTẼX

∗

N
E

]

ij

Ψ(ω)



 . (D.1)

Therefore, we can conclude that

E [(aM − aM )ΨM (ω)] = iωA
1√
N

E

[

u∗Q2uu∗Q
XTẼX∗

N
EuΨ(ω)

]

+ iωB
1√
N

E

[

u∗Q3uu∗Q
XTẼX∗

N
EuΨ(ω)

]

+ iωB
1√
N

E

[

u∗Q2uu∗Q2XTẼX∗

N
EuΨ(ω)

]

+ Y1,M ,

where we have defined

Y1,M = E

[

(

1

N
tr [Q]− δM

)

u∗Q
XTẼX∗

N
EuΨ(ω)

]

.

Hence, after some algebraic manipulations and the application of the variance
controls in Lemma 3, we finally obtain
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and (5.6) follows by Propositions 1 to 3.
We now deal with (5.7). Observing that
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(D.2)
we only need to investigate the quantity
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formula and applying similar algebraic manipulations as in the proof of (5.6).
Then, using the previous estimate in (D.2), we can write
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Consequently, we can finally state that
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In particular, note that (A.3) along with Lemma 3 implies that Y2,M +Y3,M =
O(N−1). On the other hand, we also notice that
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It can be trivially seen that Y4,M = O(N−1). Furthermore, we readily see that
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It can be readily seen that Y5,M = O(N−1). Inserting the above back into the
original expression, we observe that
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and the result follows readily by using Propositions 1 to 4.

Appendix E: Proof of Proposition 6

We will only prove the case BM 6= 0, such that infM≥1 BM = Binf > 0 (the
complementary situation is much easier to handle). Consider first writing
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By inequality (A.11) along with Lemma 5 and the upper and lower bounds of
BM , we have that
(

BMu∗
ME2

MuM/ (1− γγ̃)
2
)2

is bounded uniformly above and away from zero.

We now show that

0 < inf
M≥1

VM (AM , BM ) ≤ sup
M≥1

VM (AM , BM ) < +∞. (E.1)

Indeed, the upper bound in (E.1) follows readily by the triangular inequality
and Lemma 5 along with inequalities (A.9) and (A.11) - (A.13), together with
the uniform upper and lower bounds Asup and Binf of, respectively, AM and
BM .
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In order to prove the lower bound, we first show that SM ≥ T 2
M . Indeed,

observe that we can write
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where the last statement follows by the Cauchy-Schwarz inequality. This shows
that, by completing the squares
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Ẽ3
M

]

2γ̃M (1− γM γ̃M )





2

−

(

γ̃2M
1
N tr

[

E3
M

]

− γM
1
N tr

[

Ẽ3
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Using this in the expression of VM (AM , BM ) and grouping terms, we readily
see that
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The first two terms are positive due to the fact that
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which is a consequence of the Cauchy-Schwarz inequality (and equivalently for
EM instead of ẼM ), and this leads to
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Now, using again the Cauchy-Schwarz inequality we are able to write
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Therefore, we have shown that

VM (AM , BM ) ≥

(

1
N tr

[

E3
M

]

(

1
N tr

[

T−1
N Ẽ3
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and the lower bound in (E.1) finally follows from Lemma 5 together with in-
equalities (A.9), (A.13) and (A.14).
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Fig 1. Numerical evaluation of fitness accuracy of CLT (Supervised Training).
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Fig 2. Numerical evaluation of fitness accuracy of CLT (Unsupervised Training).
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