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Abstract. The Web of Data, which comprises web sources that pro-
vide their data in RDF, is gaining popularity day after day. Ontological
models over RDF data are shared and developed with the consensus of
one or more communities. In this context, there usually exist more than
one ontological model to understand RDF data; therefore, there might
be a gap between the models and the data, which is not negligible in
practice. In this article, we present a technique to automatically discover
ontological models from raw RDF data. It relies on a set of SPARQL 1.1
structural queries that are generic and independent from the RDF data.
The output of our technique is a model that is derived from these data
and includes the types and properties, subtypes, domains and ranges of
properties and subproperties. Our experiments with millions of triples
prove that our technique is suitable to deal with Big RDF Data. As far
as we know, this is the first technique to discover such ontological models
in the context of RDF data and the Web of Data.
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1 Introduction

The goal of the Semantic Web is to endow the current Web with metadata,
i.e., to evolve it into a Web of Data [24, 31]. Currently, there is an increasing
popularity of the Web of Data, chiefly in the context of Linked Open Data,
which is a successful initiative that consists of a number of principles to publish,
connect, and query data in the Web [4]. Sources that belong to the Web of Data
focus on several domains, such as government, life sciences, geography, media,
libraries, or scholarly publications [16]. These sources offer their data using the
RDF language, and they can be queried using the SPARQL query language [1].

The goal of the Web of Data is to use the Web as a large database to answer
structured queries from users [24]. One of the most important research chal-
lenges is to cope with scalability, i.e., processing data at Web scale, which is
usually referred to as Big Data [6]. Additionally, sources in the Web of Data are
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growing steadily, e.g., in the context of Linked Open Data, there were roughly
12 such sources in 2007 and, as of the time of writing this article, there exist
226 sources [20]. Therefore, the problem of Big Data increases due to this large
amount of sources.

Ontological models are used to model RDF data, and they comprise types,
data properties, and object properties, each of which is identified by a URI [1].
These models are shared and developed with the consensus of one or more com-
munities [29], which define a number of inherent constraints over the models,
such as subtypes, the domains and/or ranges of a property, or subproperties.

In traditional information systems, developers first need to create a data
model according to the user requirements, which is later populated. Contrarily,
in information systems in the Web of Data, data can exist without an explicit
model; even more, several models may exist for the same set of data. There-
fore, in this context, we cannot usually rely on existing ontological models to
understand RDF data since there might be a gap between the models and the
data, i.e., the data and the model are usually devised in isolation, without taking
each other into account [13]. Furthermore, RDF data may not satisfy a partic-
ular ontological model related to these data, which is mandatory to perform a
number of tasks, such as data integration [21], data exchange [30], data ware-
housing [14], or ontology evolution [11]. As a conclusion, current techniques to
perform information integration can leverage from the discovering of conceptual
models [28].

We present two examples that are not negligible in practice of this gap be-
tween ontological models and RDF data (see [3] for additional discussions on
this topic), namely:

– Languages to represent ontological models provide constructs to express user-
defined constraints that are local, i.e., a user or a community can add them
to adapt existing models to local requirements [8]. For instance, the onto-
logical model of DBpedia 3.7 [5], which is a community effort to make the
data stored at Wikipedia accessible using the Linked Open Data principles,
defines a property called almaMater that has type Person as domain, and
type EducationalInstitution as range. It is not difficult to find out that this
property has also types City and Country as ranges in the RDF data. As
a conclusion, there are cases in which RDF data may not be modelled ac-
cording to existing ontological models, i.e., the data may not satisfy the
constraints of the models.

– Some ontological models simply define vocabularies with very few constraints.
Therefore, it is expected that users of these ontological models apply them
in different ways [27]. For instance, the ontological model of DBpedia 3.7
defines a property called similar that has neither domain nor range. In the
RDF data, we observe that this property has two different behaviours: one
in which type Holiday is the domain and range of the property, and another
one in which type Place is the domain and range of the property. As a con-
clusion, different communities may generate a variety of RDF data that rely
on the same ontological models with disparate constraints.
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In this article, we present a technique to automatically discover ontological
models from raw RDF data that aims to solve the gap between the models
and the data. Our technique assumes that the model of a set of RDF data is
not known a priori, which is a common situation in practice in the context of
the Web of Data. To perform this discovery, we rely on a set of SPARQL 1.1
structural queries that are generic and independent from the RDF data, i.e.,
they can be applied to discover an ontological model in any set of RDF data.

The output of our technique is a model that includes the types and properties,
subtypes, domains and ranges of properties and subproperties. Our technique is
suitable to deal with Big RDF Data since our experiments focus on millions of
RDF triples from DBpedia 3.5 to 3.8. To the best of our knowledge, this is the
first technique to discover such ontological models in the context of RDF data
and the Web of Data. In our experimental results, we analyse the quality of the
discovered models by comparing them with the original models that are provided
by the DBpedia website.

We presented a preliminary 10-page version of these results in [26]; in this
version, we present the complete set of SPARQL queries and the algorithm to
discover the models from raw RDF data, which, together with our experimental
results over the different versions of DBpedia, and the analysis of the discovered
models, constitute the major differences.

This article is organised as follows: Section 2 describes the related work; Sec-
tion 3 presents our technique to discover ontological models from RDF data that
relies on a set of SPARQL 1.1 queries; Section 4 describes several experiments
to discover the ontological models behind the RDF data of DBpedia 3.5 to 3.8;
finally, Section 5 recaps on our main conclusions.

2 Related work

Research efforts on the automatic discovery of data models have focused on
the Deep Web, in which web pages are automatically produced by filling web
templates using the data of a back-end database [15]. In the context of the Web
of Data, the most related work to ours is [3], which consists of a framework to
define rules to study whether or not a given RDF dataset conforms to a given
ontological model; the framework includes a formal language to express these
rules. The main difference with respect to our approach is that we are able to
discover a conceptual model without the intervention of the user.

There are a number of proposals in the literature that aim to discover types
from instances, i.e., a particular instance has a particular type. The vast majority
of these proposals discover different types in web sites by clustering web pages
of the same type [7, 12, 18, 22]. Mecca et al. [22] developed an algorithm for
clustering search results of web sites by type that discovers the optimal number
of words to classify a web page. Blanco et al. [7] devised a technique to automate
the clustering of web pages by type in large web sites. The authors do not rely
on the content of web pages, but only on the URLs. Hernández et al. [18] devised
a technique similar in spirit to [7], but using a smaller subset of web pages as
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the training set to automatically cluster the web pages. As a conclusion, these
proposals are only able to discover types and no relationships amongst them, such
as data properties, object properties, or subtypes; furthermore, since the previous
techniques rely on clustering, the types thus discovered are anonymous. Giovanni
et al. [12] aimed to automatically discover the untyped entities that DBpedia
comprises, and they proposed two techniques based on induction and abduction.

There are a few proposals from the field of web information extraction [9, 32,
36] that are able to infer a model from the semi-structured data that is rendered
in a web page. Kayed and Chang [19] presented a technique that compares a
number of web pages in order to find common patterns that delimit the infor-
mation to be extracted; Arasu and Garcia-Molina [2] presented a technique that
is similar in spirit, but differs in the way that the shared patterns are computed;
Crescenzi and Mecca [10] presented a technique that tries to identify similar
subtrees in a DOM tree and then aligns them in order to discover where the
information of interest is and their model; Sleiman and Corchuelo [33] presented
the latest proposal in this field, which is also based on finding shared patterns
as a means to identify the information of interest in a web page. All of the
previous techniques can discover a hierarchical model that basically focuses on
identifying the main class/es in a web page and then their data properties, which
are anonymous since the techniques are totally unsupervised. That is, en expert
must identify the semantics of the classes and data properties thus discovered,
and no subclasses, subproperties, or object properties are identified.

Other proposals allow to discover complex data models that include types,
properties, domains and ranges. These proposals are not fully-automated since
they require the intervention of a user. Tao et al. [35] presented a proposal that
automatically infers a data model by means of a form, and they deal with any
kind of form, not necessarily HTML forms. In this case, the user is responsible
for handcrafting these forms; unfortunately, this approach is not appealing since
integration costs may be increased if the user has to intervene [23]. Furthermore,
this proposal is not able to deal with subtypes.

Hernández et al. [17] devised a proposal that deals with discovering the data
model behind a web site. This proposal takes a set of URL patterns that describe
the types in a web site as input. Its goal is to discover properties amongst the
different types that, in addition to the URL patterns of types, form a data model.
The main drawback of this proposal is that it requires the intervention of the
user: the final data model comprises a number of anonymous properties and the
user is responsible for naming them, which may increase integration costs. In
addition, this proposal is not able to discover data properties or subtypes.

Finally, Su et al. [34] developed a fully-automated proposal that discovers
an ontological model that is based on the HTML forms of a web site, and the
HTML results of issuing queries by means of these forms. In this case, there is no
intervention of a user to discover the final ontological model, which is performed
by means of a number of matchings amongst the HTML results and the HTML
forms. To build the final model, the authors apply nine heuristics, such as “if a
matching is unique, a new attribute is created”, or “if the matching is n:1, n +1
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Prefix URI

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

xsd http://www.w3.org/2001/XMLSchema#

dbpo http://dbpedia.org/ontology/

dbpd http://dbpedia.org/resource/

sch http://schema.org/

foaf http://xmlns.com/foaf/0.1/

Table 1: Prefixes used throughout the article.

attributes are created”. The main drawback of this proposal is that it does not
discover subtypes or the name of the properties, i.e., the final model is more a
nested-relational model than an ontological model. Note that a nested-relational
model is defined by means of a tree that comprises a number of nodes, which
may be nested and have a number of attributes, and it is also possible to specify
referential constraints that relate these attributes [25].

Our survey of the literature reveals that the existing proposals focus on
analysing the conformity of an ontological model using user-defined rules, or
learning these models from web documents. To the best of our knowledge, there
is not a single proposal to learn an ontological model from RDF data.

3 Discovering ontological models

In this section, we describe our proposal. First, we provide a few preliminary
definitions; then, we present the SPARQL 1.1 queries on which it relies; finally, we
describe our algorithm. We use a running example that is based on DBpedia 3.5,
which comprises 16, 114, 546 triples.

Preliminaries RDF data comprise triples of two kinds, namely: types and
properties. A triple comprises three elements: the subject, the predicate, and the
object, respectively. Both subjects and predicates are URIs, and objects may be
URIs or literals. In the rest of this article, we use a number of prefixes that are
presented in Table 1. A type triple relates a URI with a particular type by means
of a type predicate, e.g., (dbpd :Clint_Eastwood , rdf :type, dbpo:Actor) states that
Clint Eastwood is an actor. A data property triple relates a URI with a literal by
means of a specific property, for example, (dbpd :Clint_Eastwood , dbpo:birthDate,
“1930−05−31”ˆ̂ xsd :date) is a triple that states that the birth date of Clint East-
wood is May 31, 1930, which has xsd :date type. An object property triple relates
two URIs by means of a property, for example, (dbpd :Dirty_Harry , dbpo:starring ,
dbpd :Clint_Eastwood) is a triple stating that film Dirty Harry is starred by Clint
Eastwood.
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Discovery queries Initially, our technique discovers the types in the raw RDF
data. These types may be class types, such as dbpo:Person or dbpo:Actor , or
basic data types, such as xsd :date or xsd :integer . To discover the class types, we
issue the following SPARQL query over the data:

Q1:

SELECT DISTINCT ?t

WHERE {

?s rdf:type ?t . }

This query projects the class types of all instances without repetition. Fur-
thermore, to discover the basic data types, we use the following query:

Q2:

SELECT DISTINCT (XSDType(?o) AS ?t)

WHERE {

?s ?p ?o .

FILTER (isLiteral(?o)) }

In this case, we use a custom function devised by us called XSDType that
takes a literal as input and it outputs its basic data type. We also ensure that
object ?o is actually a literal by means of the isLiteral function, which is standard
in SPARQL.

In the second step, our technique discovers properties from the input RDF
data, such as dbpo:birthDate, dbpo:starring , or dbpo:director , by means of a
SPARQL query that projects the predicates that relate all triples without repe-
tition as follows:

Q3:

SELECT DISTINCT ?p

WHERE {

?s ?p ?o . }

In the third step, we discover subtypes amongst the previously discovered
class types. To perform this, we iterate two times over the whole set of class
types, so, for each pair of types t1 and t2, assuming that t1 ̸= t2, we have that
t1 is subtype of t2 if each instance of type t1 is also an instance of type t2.
Note that we do not compute the subtypes of basic data types. An example is
that dbpo:MusicalWork is subtype of dbpo:Work . We use the following SPARQL
query template:

Q4:

ASK {

?s rdf:type t1 .

FILTER NOT EXISTS {

?s rdf:type t2 . } }
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This template takes two parameters that are denoted as t1 and t2. Further-
more, it is important to notice that we use the negation of the previous query
template, i.e., t1 is subtype of t2 if the template returns false.

The fourth step consists of computing the domain and ranges of the proper-
ties. We distinguish between data properties, which have a class type as domain
and a basic data type as range, and object properties, which have two class types
as domain and range. For instance, the domain of dbpo:starring is dbpo:Work
and the range is dbpo:Person; the domain of dbpo:birthDate is dbpo:Person and
the range is xsd :date. To compute the domain and ranges of the data properties
we use the following query:

Q5:

SELECT DISTINCT ?d ?p (XSDType(?o) AS ?r)

WHERE {

?s ?p ?o .

?s rdf:type ?d .

FILTER (isLiteral(?o)) }

This query uses our custom function XSDType to extract the basic data type
from ?o and also ensures that it is a literal. We issue a similar SPARQL query
to discover the domain and ranges of the object properties as follows:

Q6:

SELECT DISTINCT ?d ?p ?r

WHERE {

?s ?p ?o .

?s rdf:type ?d .

?o rdf:type ?r . }

Queries Q5 and Q6 may seem redundant with respect to query Q3, however, it
is important to notice that the latter deals with discovering all of the properties
that are present in the RDF data, whereas queries Q5 and Q6 focus on discovering
domains and ranges. Therefore, if we avoid query Q3, then we cannot discover
properties that do not have an explicit domain and/or range.

In the final step, our technique aims to discover subproperties of the pre-
viously discovered object properties, i.e., for every triple of a given property,
we may find another triple of the corresponding subproperty. We perform sim-
ilar computations as in the template to discover subtypes. An example is that
dbpo:musicalBand is subproperty of dbpo:musicalArtist . We use the following
SPARQL query template in which we use its negation to discover the subprop-
erties, i.e., p1 is subproperty of p2 if the template returns false:

Q7:

ASK {

?s p1 ?o .
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1: algorithm discoverModel
2: input Data: Set of RDF Triples
3: output Types: Set of Type; Properties: Set of Property
4:

5: – Step 1 (types): Discover class and basic data types

6: Types := DiscoverTypes(Data)
7:

8: – Step 2 (properties): Discover data and object properties

9: Properties := DiscoverProperties(Data)
10:

11: – Step 3 (subtypes): Discover sub class types

12: for each t1 ∈ Types
13: if (t1.IsClassType())
14: for each t2 ∈ Types
15: if (t2.IsClassType() ∧ t1 ̸= t2 ∧ IsSubtype(t1, t2))
16: t1.AddSubtype(t2)
17:

18: – Step 4 (domains and ranges): Discover domains and ranges of

properties

19: DiscoverDomainAndRanges(Data,Properties)
20:

21: – Step 5 (subproperties): Discover object sub properties

22: for each p1 ∈ Properties
23: if (p1.IsObjectProperty())
24: for each p2 ∈ Properties
25: if (p2.IsObjectProperty() ∧ p1 ̸= p2 ∧ IsSubproperty(p1, p2))

26: p1.AddSubproperty(p2)

Figure 1: Algorithm to discover ontological models from RDF data.

FILTER NOT EXISTS {

?s p2 ?o . } }

Algorithm Figure 1 presents our algorithm to discover ontological models. It
takes a set of RDF triples as input, and it outputs the types and properties
of the discovered ontological model. A Type is specialised into either a class
and a basic data type. A Property is specialised into either a data or an object
property. Furthermore, we use the following ancillary functions: IsClassType
returns true if the type is a class type; AddSubtype adds a new subtype to the
current type; IsObjectProperty returns true if the property is an object property;
and AddSubproperty adds a new subproperty to the current property.

In the first step, we call algorithm DiscoverTypes that executes queries Q1

and Q2 to discover the class and basic data types in the RDF data. The second
step consists of calling algorithm DiscoverProperties, which executes query Q3

to discover the properties. Note that, at this time, we do not distinguish between
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data and object properties, since this depends on the ranges of the properties,
i.e., whether or not the ranges are basic data types. Additionally, Properties in
this algorithm is an input/output parameter. In the third step, we perform a
cartesian product amongst all of the previously discovered class types and, if the
IsSubtype algorithm returns true by executing query Q4, this entails that t1 is a
subtype of t2.

The fourth step of our algorithm consists of discovering the domain and
ranges of the properties, which is performed by the DiscoverDomainAndRanges
algorithm, which executes queries Q5 and Q6 to compute every domain and range
types of a given property. Finally, the fifth step discovers the subproperties in a
similar way as we have already discovered the subtypes in the RDF data using
query Q7.

4 Experimental results

In this section, we present our experimental results. First, we describe the ex-
perimentation environment; then, we present our results; finally, we evaluate
them.

Environment We implemented our technique using Java 1.6 and OWLIM
Lite 4.2, which comprises an RDF store and a SPARQL query engine. Further-
more, we ran our experiments on a virtual computer that was equipped with a
four-threaded Intel Xeon 3.00 GHz CPU and 16 GB RAM, running on Windows
Server 2008 (64-bits), JRE 1.6.0.

We performed our experiments to discover the ontological models behind the
RDF data of DBpedia 3.5 to 3.8. To give an overall idea of the size of each
RDF dataset, the total number of triples of the different versions of DBpedia
are as follows: DBpedia 3.5 comprises 16,114,546 triples; DBpedia 3.5.1 com-
prises 16,653,097 triples; DBpedia 3.6 comprises 20,169,651 triples; DBpedia 3.7
comprises 26,988,080 triples; and DBpedia 3.8 comprises 34,035,463 triples.

Results Table 2 shows our experimental results, in which the first column of the
table stands for the different steps of our technique (note that there is an initial
step called “Loading” that stands for the time taken to load the corresponding
datasets into OWLIM Lite); the second column deals with the total number of
constraints that the original ontological model of DBpedia comprises; the third
column deals with the total number of constraints that we have discovered;
and the fourth column shows the time in seconds taken by our technique to
compute each step. Furthermore, each row corresponds to one of the steps of
our technique.

Evaluation After discovering these ontological models, it is mandatory to eval-
uate their quality. To perform this, we leverage the ontological models provided
by DBpedia.org, which aim to provide a generic ontological model of the data
that each version of DBpedia comprises. We evaluated that, in general, these
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Step Orig. Constr. Time

Loading – – 255 s.

Types 255 242 51 s.

Properties 1,274 1,079 7 s.

Subtypes 27 608 26 s.

Dom. & ranges 757 44,789 433 s.

Subproperties 0 46 89 s.

(a) DBpedia 3.5.

Step Orig. Constr. Time

Loading – – 224 s.

Types 257 241 54 s.

Properties 1,276 1,088 7 s.

Subtypes 27 604 31 s.

Dom. & ranges 772 45,319 475 s.

Subproperties 0 46 92 s.

(b) DBpedia 3.5.1.

Step Orig. Constr. Time

Loading – – 267 s.

Types 272 251 72 s.

Properties 1,335 1,185 9 s.

Subtypes 27 628 29 s.

Dom. & ranges 856 54,258 1,149 s.

Subproperties 0 42 96 s.

(c) DBpedia 3.6.

Step Orig. Constr. Time

Loading – – 379 s.

Types 319 327 89 s.

Properties 1,643 1,379 13 s.

Subtypes 84 1,308 83 s.

Dom. & ranges 974 141,154 1,119 s.

Subproperties 0 37 142 s.

(d) DBpedia 3.7.

Step Orig. Constr. Time

Loading – – 539 s.

Types 359 349 113 s.

Properties 1,775 1,401 17 s.

Subtypes 22 1,521 123 s.

Dom. & ranges 1,007 170,976 3,346 s.

Subproperties 0 46 156 s.

(e) DBpedia 3.8.

Table 2: Summary of results of discovering ontological models behind RDF data.

original ontological models are contained in our discovered models; however,
there are some differences as Table 2 shows, which are as follows:

1. Types: our technique discovers less types than the original ontological mod-
els since, in our case, we focus just on those types that appear in the raw
RDF data. The original ontological models comprise a number of types
that are not used in the current datasets but are intended to be used in
the future. To mention a few examples of these unused types, we high-
light dbpo:Celebrity , dbpo:VicePrimeMinister , or dbpo:BoxingLeague in DB-
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pedia 3.5, and dbpo:Pope, dbpo:Royalty , or dbpo:VolleyballPlayer in DBpe-
dia 3.7. Furthermore, there are some types that our technique discovers but
belong to external ontological models, since this is consider a good prac-
tice in the context of the Web of Data [4]. For instance, DBpedia 3.5 uses
types from the OpenGIS ontology, whereas DBpedia 3.8 uses types from
the Dublin Core, FOAF, SKOS, GeoRSS, Basic Geo, and BIBO external
ontological models.

2. Subtypes: our technique discovers more subtypes than the original onto-
logical models, which comprise just a few rdfs:subClassOf constraints, e.g.,
DBpedia 3.7 comprises 84 subtype constraints whilst the rest of versions
do not exceed 27 subtype constraints. The number of subtype constraints
discovered by our technique ranges from 604 to 1,521.

3. Properties: as was the case for types, our technique only discovers types that
are currently used in the datasets. Some examples of these unused properties
are dbpo:youthYears, dbpo:throws, or dbpo:accessDate in DBpedia 3.5, and
dbpo:youthYears, dbpo:richestCountry , or dbpo:carNumber in DBpedia 3.7.
Furthermore, our technique discovers additional properties from external
ontological models. For instance, DBpedia 3.5 uses properties from the FOAF
and Basic Geo ontologies, whereas DBpedia 3.8 uses properties from the
Dublin Core, FOAF, SKOS, GeoRSS, and Basic Geo external ontological
models.

4. Domain and ranges: a common feature of the original ontological models of
DBpedia is that they minimise the domains and ranges of the properties.
This is due to the fact that their goal is to provide a general vocabulary
instead of a complete ontological model. This is the reason why our tech-
nique discovers thousands of domains and ranges. For instance, the original
ontological model of DBpedia 3.8 comprises 1,007 domains and ranges whilst
our technique discovers 170,976.

5. Subproperties: without an exception, no original ontological model of DBpe-
dia defines subproperty constraints. Our technique is able to discover them
from the raw RDF data, e.g., DBpedia 3.8 comprises 46 subproperty con-
straints.

To provide an overall idea of the ontological models discovered by our tech-
nique, we present a part of them in Figure 2. To compute them, we focused on a
central type, dbpo:Film, and analysed its supertypes and properties, i.e., when
this type is domain or range of a given property. Since the number of supertypes
and properties may be huge, we used a threshold that consisted of retrieving
just those types and properties that are more frequent in the raw RDF data,
i.e., the number of triples that contain those types and properties must be suffi-
ciently large. Our results also show the evolution that the data in DBpedia has
undergone.

We checked that the discovered ontological models for DBpedia 3.5 and 3.5.1
were the same (see Figure 2a). The resulting model comprises five types as fol-
lows: dbpo:Work , dbpo:Film, dbpo:Person, dbpo:Place, and dbpo:PopulatedPlace;
the following two subtype constraints: dbpo:Film is subtype of types dbpo:Work ,
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(a) DBpedia 3.5 and 3.5.1.

dbpo:Persondbpo:Work

dbpo:starring

dbpo:Film

dbpo:producer

dbpo:PopulatedPlace

dbpo:Place

dbpo:country

dbpo:writer

(b) DBpedia 3.6.

dbpo:Persondbpo:Work

dbpo:starring

dbpo:Film

dbpo:producer

dbpo:PopulatedPlace

dbpo:Place

dbpo:country

dbpo:location

sch:Movie

sch:CreativeWork

sch:Person sch:Place

(c) DBpedia 3.7.

dbpo:Persondbpo:Work

dbpo:starring

dbpo:Film

dbpo:producer

dbpo:PopulatedPlace

dbpo:Place

dbpo:country

dbpo:location

sch:Movie

sch:CreativeWork

sch:Person sch:Placefoaf:Person

dbpo:Agent

(d) DBpedia 3.8.

Figure 2: A part of the ontological models that result from our experiments.

and dbpo:PopulatedPlace is subtype of dbpo:Place. Additionally, we discover the
following five properties, namely: dbpo:starring , dbpo:producer , dbpo:country ,
dbpo:previousWork , and dbpo:subsequentWork . We represent domains and ranges
as arrows, e.g., the domain of dbpo:previousWork is dbpo:Film and its range is
dbpo:Work . In DBpedia 3.6 (see Figure 2b), the number of triples that comprise
properties dbpo:previousWork and dbpo:subsequentWork decrease and, there-
fore, they disappear from our discovered model. Additionally, two new prop-
erties appear, namely: dbpo:writer and dbpo:location. In DBpedia 3.7 (see Fig-
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ure 2c), we discover new types that correspond to external ontological models,
i.e., sch:Movie, sch:creativeWork , sch:Person, and sch:Place, which are equiv-
alent to dbpo:Film, dbpo:Work , dbpo:Person, and dbpo:Place, respectively. Fur-
thermore, property dbpo:writer disappears from the ontological model. Finally,
in DBpedia 3.8 (see Figure 2d), two new types appear, namely: dbpo:Agent and
foaf :Person.

5 Conclusions

In the context of the Web of Data, there exists a gap between existing onto-
logical models and RDF data due to the following reasons: 1) RDF data does
not have to satisfy the constraints in any existing ontological model; 2) different
communities may generate a variety of RDF data that rely on the same onto-
logical models with disparate constraints. This gap is not negligible and may
hinder the practical application of RDF data and ontological models in other
tasks, such as data integration, data exchange, data warehousing, or ontology
evolution. To solve this gap, we present a technique to discover ontological mod-
els from raw RDF data that relies on a set of SPARQL 1.1 structural queries.
The output of our technique is an ontological model that includes types and
properties, subtypes, domains and ranges of properties and subproperties.

According to our evaluation results, our technique is able to discover models
from Big RDF Data, since the evaluated datasets comprise millions of triples.
We have focused on DBpedia to perform our experiments, and our results show
that our discovered ontological models contain the original models provided by
DBpedia.org, which is an assessment of the quality of our models. We also present
a part of some of these ontological models to show the evolution of the RDF data
that DBpedia comprises.

To the best of our knowledge, our technique is the first to appear in the
literature to tackle these problems. Definitely, it will help perform integration
tasks in the context of Big RDF Data because the techniques in this field rely
on the constraints provided by the ontological models to be integrated.
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