PYTHON AS A HARDWARE DESCRIPTION LANGUAGE: A CASE STUDY

J.1L Villar, J. Juan, M.J. Bellido, J. Viejo, D. Guerrero

ID2 Group / Department of Electronic Technology

University of Seville
E.T.S. de Ingenieria Informatica

email: {jose, jjchico, bellido, julian, guerre} @dte.us.es

ABSTRACT

Many people may see the development of software and hard-
ware like different disciplines. However, there are great
similarities between them that have been shown due to the
appearance of extensions for general purpose programming
languages for its use as hardware description languages. In
this contribution, the approach proposed by the MyHDL
package to use Python as an HDL is analyzed by making
a comparative study. This study is based on the indepen-
dent application of Verilog and Python based flows to the
development of a real peripheral. The use of MyHDL has re-
vealed to be a powerful and promising tool, not only because
of the surprising results, but also because it opens new hori-
zons towards the development of new techniques for model-
ing and verification, using the full power of one of the most
versatile programming languages nowadays.

1. INTRODUCTION

The design of digital electronic systems, since its inception,
was marked by a parallel and steady increase of both the
complexity of tackled designs and the performance and in-
tegration level of implementation technologies.

For decades, this fact showed that low level design tech-
niques would not be viable in the long term and therefore
the development and adoption of new and efficient method-
ologies at a higher abstraction level would be required.
These techniques should allow designers to tackle the
increasing complexity of the modeling, testing and imple-
mentation tasks. In response to these needs new modeling
languages [1] emerged inspired by software programming
languages. These languages, called HDLs (hardware de-
scription languages), can be seen as programming languages
with special abilities to describe the concurrent nature of the
digital logic and electronics. HDLs model the structure and
behaviour of hardware on the dimensions of time and space.

HDL descriptions are used to generate and specify the
behaviour and structure of hardware. These specifications
have a dual purpose: simulation of the description’s be-
haviour and synthesis of lower level descriptions such as
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layouts or bitfiles, that can be finally implemented as phys-
ical devices. When used for simulation, HDL compilers
generate pieces of “executable code” that together with a
simulation framework are able to emulate the behaviour
of the described design so that designers can verify its
correctness. These pieces of “executable code” are the
main responsibles for the fact that HDLs can be seen as a
special kind of programming language. On the other hand,
synthesys tools take HDL descriptions to infer structures
that can be implemented in real hardware, thereby generat-
ing lower-level descriptions so that after a series of steps,
a design that can be implemented on a physical device is
reached. The fact that not all elements of an HDL can
be extrapolated to hardware, makes HDLs have a greater
expressive power for simulation than for synthesis, so it is
necessary to define a synthesizable subset clearly stated [2].

In practice, there are two main standard HDLs: VHDL
[3] and Verilog [4]. Nowadays their ubiquitous support from
manufacturers and the lack of final arguments on each other,
make both constitute the bridge that any design must pass to
reach the synthesis and implementation technology, regard-
less of which was its original HDL. This means that any pro-
gramming language that would have capacity of HDL, just
being able to generate Verilog or VHDL code from its syn-
thesizable subset could be abstracted from the lower-level
stages and tools.

Moreover, both Verilog and VHDL simulators imple-
ment procedural interfaces (VPI [4] in Verilog and VHPI [5]
in VHDL), through which, external software processes, de-
veloped in any programming language that have the required
bindings, could connect to the simulator and govern the be-
havior of some signals according to the observed state. This
is the fact on which underlies the ability to simulate the be-
havior of a hardware system using only software routines.
They could be implemented in any programming language
and would be connected to the simulator through VPI or
VHPL

Based on the above two points, it seems feasible to trans-
form a very high level software programming language in an
HDL [6] [7] [8] following a similar scheme to that shown in
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Fig. 1. Proposed adaptation scheme to use a generic interpreted programming language as an HDL

figure 1. This way it would be valid for both, physical im-
plementation and simulation. Synthesis and implementation
would use VHDL or Verilog as an intermediate language in-
dependent of the underlying technology. On the other hand,
in order to use the programming language under adaptation
as an HVL (Hardware Verification Language), it should be
able to perform cosimulation together with other modules
written in VHDL and Verilog, providing all its expressive
power: high-level constructs, object orientation, third party
libraries, etc...

This article presents a particular application of the
Python language [9], based on the MyHDL package, [8] to
make it a viable alternative for hardware development. To
characterize this feasibility a study comparing the several
aspects has been performed by designing a real peripheral
using independently Verilog and MyHDL flows. Thus, it
aims to reach a gut feeling about the power of Python as a
hardware modeling tool as well as being able to evaluate its
expressive power and the quality of automatically generated
designs. We should note that, although in some aspects
there may be similarities between MyHDL and other so-
lutions such as System C or System Verilog, there is one
feature which differentiates them unequivocally: whereas
these other solutions are languages whose specific purpose
is the description of hardware at system level, Python is
a language whose development has been totally oblivious
to the specific requirements of HDLs and that through an
external library/framework has been given the ability to
model hardware designs at RTL level.

This article is organized as follows: in section two the
operation of MyHDL is analyzed highlighting its main fea-
tures, advantages and disadvantages. Section three presents
the design of the peripherals on which the comparison has
been made. Section four details the comparison methodol-
ogy used and the parameters on which both solutions were
compared. Section five presents and analyzes the obtained
results. Finally section six presents the most relevant con-
clusions derived from this experience.

2. PYTHON AS AN HDL: MYHDL

The development of HDLs based on general-purpose pro-
gramming languages involves a series of design decisions

concerning the way in which the differentiating character-
istics of hardware, such as concurrency between operations
will be modeled. In this regard, the particular characteristics
of the programming language under study play a key role.
They will have a great impact on such important issues as the
different modeling techniques or code generation. Another
key aspect of the language to use, is whether it is compiled
or interpreted. Interpreted languages provide great flexibil-
ity due to their ability to self-analysis and runtime modifica-
tion using introspection techniques [10]. These techniques,
as discussed in the following sections, will be useful for
this purpose. The Python language is, by his own philos-
ophy, in a unique position to be used as an HDL. Through-
out its development it has evolved in response to major de-
sign philosophies, becoming the language in which different
paradigms: imperative, functional, object oriented, etc... are
reconciled to thus have one of the most eclectic developer
communities nowadays.

Since this versatility and ability to cope with almost any
design philosophy is the distinguishing mark of Python, it is
not surprising that it has finally approached to hardware de-
sign. A set of libraries called MyHDL have made this possi-
ble. The purpose of MyHDL, as defined by its creators is “to
provide hardware designers with the simplicity and elegance
of the Python language® [8]. To map the elements of a hard-
ware design flow, we will discuss separately the three main
issues: the Python hardware modeling techniques; simula-
tion and verification; and finally the generation of VHDL or
Verilog code using introspective techniques.

2.1. Hardware Modeling

The main idea behind MyHDL is the use of generators [11]
and decorators [12] [13] to model concurrency. Generators
are a special type of function. Their main difference with
common functions is that generators remember the execu-
tion point at which they return to continue at the same point
on subsequent calls.

Hardware modules are modeled as Python functions
with wrapping decorators that return sets of generators.
Thus, the semantics and structure of Python functions are
used to support features such as arbitrary hierarchies of
components, named port association, etc... Besides the
above, MyHDL defines new classes to model hardware
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Fig. 2. VHDL and Verilog code generation scheme used by
MyHDL

elements that can not be found in the core of Python such
as signals (which are used to establish communication
between generators), enumerated types with configurable
encoding (for generating sets of states for FSMs) or new
classes to work with signed or unsigned numbers at bit level
transparently.

2.2. Simulation and Verification

While Python can be a useful tool for implementation, sim-
ulation and verification are the areas where it provides a fur-
ther increase in benefits over VHDL or Verilog.

In the traditional hardware development cycle, the costs
associated with testing and verification tasks vary between
30% and 80% [14], this means that improvements in this
area have a great impact on the total cost of a project.
Python, being a general purpose programming language
especially designed for rapid application development [15],
provides all its power and efficiency to make the testing
phase a economic task in time and cost.

Moreover the simulation does not have any restriction
inherent to the synthesizable subset, so an overwhelming
amount of Python functions and extensions can be used.
This opens the door to new hardware testing methodologies
inspired in software engineering [16], such as unit testing;
testsbenchs with the ability to interact with network ele-
ments; generation and analysis of data by using packages
for scientific computation as SciPy [17], etc ...

MyHDL implements an embedded simulator that can
generate visualizations of waveforms using the VCD stan-
dard [4]. It can also be used as a HVL [8] (hardware ver-
ification language) along with external simulators to verify
designs through the use of its cosimulation features.

2.3. Verilog and VHDL Code Generation

As in other hardware description languages, the generation
of synthesizable code in MyHDL has several limitations.
Since the converter generates Verilog or VHDL code, the

limit of the expressive power of MyHDL is limited to the el-
ements that are common to the synthesizable subset of both
languages. However, this expressive power is sufficient to
define a convertible subset considerably more extensive than
the standard synthesizable subset. This is possible because a
design elaboration process is done prior to the code conver-
sion stage. In this elaboration phase, the converter automat-
ically performs tasks such as signal direction analysis (in,
out or inout), transparent handling of signed and unsigned
arithmetic or size and type inference among others.

The converter operation follows the scheme depicted in
figure 2. In a first step it performs an elaboration of the
design, where no convertibility limitations are applied, to
obtain a hierarchy of Python generators. In a later stage, the
code generator will analyze this hierarchy using the Python
introspection api and will translate it into VHDL or Verilog.
Thus the limitations of the synthesizable subset are solely
applied to the internal parts of the generators allowing the
full power of Python outside of them. This approach to code
generation enables hardware modeling using elements such
as lists of instances, conditional instantiation, etc ...

3. DESIGN UNDER STUDY

To make a comparison of two design flows with significa-
tive results, the development on which the two flows will be
contrasted should be representative of most hardware devel-
opments and therefore it should include the most common
elements: combinational and sequential blocks, memory el-
ements, finite state machines, etc...

To choose the design on which the comparison was car-
ried out, several applications have been assessed in different
ranges of complexity. One of the most attractive designs
for this purpose was a driver for LCD character displays
compatible with the Sitronix ST7066U [18], Samsung
S6A0069X or KS0066U, Hitachi HD44780 and SMOS
SED1278. This controller is ideal because there are two
communication modes between the controller and the chip:
one based on eight data lines and a more complex one based
only on four. The four-line communication protocol has
been chosen to raise the complexity of the design and justify
the inclusion of nested FSMs. Moreover, these chips require
a pre-initialization and configuration stage that has also
been implemented as another nested FSM. Thus, the core
of the design consists of a main state machine that relies on
two inner FSMs: one for managing the data transmission
protocol and another one for the initialization process.

To expand the focus of the comparison, two solutions
have been implemented at the protocol level, and two more
at the storage level. Respecting to the protocol, we have
implemented two approaches: one connecting the controller
directly to a memory bus and one wrapping the controller
to provide an interface compliant with the Wishbone stan-



dard [19]. Regarding the character storage we have also
implemented two approaches: one storing them in an inter-
nal RAM so that transactions take a single clock cycle, and
one storing them in the external memory of the LCD chip,
that has a latency of the order of microseconds. These two
storage methods, which we will call RAM and RAMless re-
spectively, in combination with the two communication pro-
tocols result in a set of four different designs on which we
will compare results.

4. DEVELOPMENT AND COMPARISON
METHODOLOGY

To perform the comparison, we have previously established
a methodology for both, the development of the designs to
compare and for the extraction of the parameters to be mea-
sured.

The specifications of the lcd driver chip have been taken
as the starting point to develope a first functional design,
coded in Verilog and using the internal RAM storage ap-
proach without any kind of optimization. This design has
been iteratively optimized till a point of quiescence where
if no protocol changes were added we could not reach any
further improvements. This optimized Verilog design was
used to get an equivalent Python design by making a di-
rect translation. From this point we have worked with both
flows independently. Using the Python design, an iterative
optimization process was started again, as it was previosusly
done with the Verilog core, until we could not achieve any
futher improvements.

After obtaining optimum designs in Verilog and Python
for the cores using FPGA integrated RAM, the necessary
modifications were made to store characters on the external
LCD display memory, thus eliminating the need for memory
inside our designs. With this RAMless approach, a new in-
dependent optimization process for each design was started
to reach a new stalemate point in the parameters measured.

Another studied aspect was the impact of adding a wrap-
ping layer to modify the core interface. A wrapper was de-
veloped to implement a Wishbone interface in both, Verilog
and Python. All measures have been taken using both the
core controller with the memory mapped interface and with
the Wishbone interface. The main aim is to be able to eval-
uate how wrapping layers affect the final design.

For each design, functional equivalence with respect to
the rest of designs has been checked by simulating and con-
trasting the generated VCD waveforms.

Within the three dimensions in which designs are classi-
cally compared: occupation, speed and power consumption,
we have focused mainly on the resource occupation as an in-
direct measure of the expressive power of Python as an HDL
since performance and maximum frequency achievable met
requirements by a safe margin and had almost no diferences

on both development flows. XST has been used as synthe-
sis tool with enabled area optimization directives and effort
level two. Designs have been generated for a Spartan 3E 500
FPGA. From each of the tests we have measured the usage
of: LUTs, FFs and BRAMs.

This methodology is intended to compare both design
flows by applying them to a real problem. They are com-
pared from the perspective of the ability to optimize resource
usage (as an indirect measure) by using different modeling
techniques and expressive power offered by each language.
This way our aim is to evaluate the quality of MyHDL auto-
generated code and the ability to make optimizations in the
Python level have a direct impact on the final design. They
have also been evaluated the expressive power of Python as a
modeling language and the code quality from the standpoint
of readability, code size productivity (SLOCs) and potential
benefits in contrast with non-automatic generated code.

5. APLICATION AND RESULT

To apply the described methodology, we obtained a first
functional design implementing internal RAM in Verilog.
This first design was developed without applying any kind
of optimization, in the clearest and modular manner possible
as described by the specifications of the device. This design
was then improved over several iterations. Among the im-
provements, we applied techniques such as resource sharing,
FSM unification, output values dependent on the status reg-
ister bits, etc... This optimization process produced resource
savings of around 50% of both FFs and LUTs reducing the
initial design occupation from 435 to 211 LUTs and from
212 to 118 FFs. An item on which there were no savings
during this process was the use of a single BRAM block, in-
ferred by XST to implement the internal character memory.

To check whether the series of optimizations which had
been applied using Verilog were also applicable to a design
made in Python, a first version was developed using My-
HDL modeling techniques. This first version was a transla-
tion from the core in Verilog, which tried to respect as far as
possible the structure and philosophy of the original core.

The results obtained by the synthesis tool from this first
Python version, as we can see in figure 3, were surprising,
not only because they were not worse than those obtained
by the conscientious application of optimization techniques,
but because the synthesis tool did not infer elements in the
same way. The Python version reduced by 27% the usage of
FFs and increased by 13% the usage of LUTs with respect
to the optimal Verilog core. This increase of LUTs can be
explained because they were used to implement the inter-
nal RAM instead of using a BRAM block, thus saving on
BRAM blocks in this case was 100%. With this first Python
design, any further optimization was achieved leading to an
improvement in overall occupancy.
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Fig. 3. Occupation comparison of the best obtained results
using RAM and RAMLESS approaches for Verilog (top)
and MyHDL (bottom) flows

At this point, there were no improvements in any of the
two flows without removing the memory. To continue the
optimization process, the two cores were modified to elim-
inate the need of an internal memory, replacing it by the
external chip’s memory at the cost of a higher latency. This
change resulted in dramatic improvements regarding to re-
source usage. In the case of the Verilog design, the BRAM
block wasn’t used anymore and the reduction in the use of
LUTs and FFs was respectively of 40% and 16%. In the case
of the Python design, there was a reduction of 53% of LUTs
and 12% of FFs.

Although further global usage savings were not
achieved, since FPGAs have a fixed proportion between
logic and storage elements, such as the Spartan 3E on which
the comparison was made, we tried to balance the use of
LUTs and FFs to prevent an increase in overall occupation
if we use slices or CLBs as measure unit. Based on the
optimum designs achieved in the previous stage, in the case
of Verilog, it did not get any improvements in the balance
of the two types of elements without increasing the overall
occupancy. In the case of the Python design, the optimal
balance was achieved using 108 LUTs and 108 FFs.

Another evaluated area was the impact of adding wrap-
per modules to the core to adapt its interface. In this case an
interface based on the Wishbone standard was developed,
mainly due to its widespread use in the world of System-on-
Chip [20]. The specific way that MyHDL uses to generate
code, flattening the hierarchy of generators in a single mod-
ule, provides certain advantages as we can infer from the

obtained results. We have measured occupation of all de-
signs using both the native memory mapped interface and
the wishbone wrapper. In all cases the Verilog design in-
creased slightly its occupation, becoming minimal in the last
iteration with an overload of only 3 LUTs. In the case of the
MyHDL based flow, the addition of this interface not only
has not brought an extra usage, but has saved in the best
case 4 LUTs and 3 FFs with respect to the memory mapped
one. This result is possible because the entire hierarchy is
flattened within a single module so the synthesis tool has
been able to simplify those elements that are no longer use-
ful when everything is perceived as a single system. With
this proof of concept, we must not forget that we are not
trying to demonstrate the advantage of self-generated code
against Verilog code, but the expressiveness of Python with
the ability to generate functionally equivalent results in the
same range of benefits to those obtained manually. Proba-
bly, savings on the same range would have been obtained
in Verilog if the synthesis tool had used hierarchy flattening
directives.

Another important aspect that we have been able to
assess is tightly related to development productivity and
quality. Over all designs we have measured the number of
SLOCS (source lines of code) by adapting an Open Source
software called SlocCount to support VHDL and Verilog.
This kind of measure is interesting from the perspective of
development time, cost and quality. Languages that require
less SLOCS are more time and cost productive and in adit-
tion designs with less SLOCs are likely to be less bug prone.
As we can see in figure 4, we have compared the SLOCs of
hand coded Python and Verilog together with atomatically
generated Verilog and VHDL for each of the four designs.
There is a high correlation along the four designs so if we
analyze these results, on average, we can see that Hand
coded MyHDL designs are 281 SLOCs long against Hand
coded Verilog designs that are 419 SLOCs long what means
that an increase of around 50%. Automatically generated
Verilog and VHDL designs are not directly comparable
since their hierarchies are flattened in a single component.

6. CONCLUSION

With this contribution, the results of a comparison between
a high level Pyton based flow and a low level traditional de-
velopment flow is being presented for the first time. We have
been able to obtain an initial evaluation of MyHDL as an al-
ternative to traditional development flows by its application
to a real development. Although the results have been ob-
tained using a small sample, they have been good enough
(in some cases better than those obtained with hand coded
Verilog) to justify further research.

The main explanation about what makes Python a good
HDL and the mechanisms that make it so effective is that
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high level descriptions gives MyHDL better information
than what it can be understood from low level descriptions.
Although it’s not a behavioral-synthesis tool, it is more in-
telligent than just a translator. This way it is able to choose
better and more optimal elements automatically. As design
complexity increases, low level descriptions become expo-
nentially more complex. This is equivalent to what happens
in software where automatic optimization techniques have
become increasingly more productive and successfull than
human optimizations.

The fact that both Python and MyHDL are Free Soft-
ware [21] makes them a useful hardware design tool for
HDL research because of its possibility to be modified and
adapted to new scenarios. With MyHDL, new ideas and
methodologies within the field of HDLs can be developed
and applied to real designs.

All generated cores discussed in this contribution are
availaible for public review as a Free Hardware project
hosted at Opencores [22].
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