
IMPLEMENTATION OF A CONFIGURATION SERVER FOR A HARDWARE SNTP
SYNCHRONIZATION PLATFORM BASED ON FPGA

J. Quiros, J. Viejo, A. Millan, A. Muñoz, J. I. Villar and D. Guerrero

Grupo ID2 (Investigación y Desarrollo Digital)
Departamento de Tecnologı́a Electrónica - Universidad de Sevilla
E. T. S. Ing. Informática, Campus Universitario Reina Mercedes

41012 Sevilla (SPAIN)
Email: jquiros@dte.us.es, julian@dte.us.es, amillan@us.es, amrivera@dte.us.es,

jose@dte.us.es, guerre@dte.us.es

ABSTRACT

This paper presents the implementation of a configuration
server for a SNTP synchronization platform which imple-
ments accurate synchronization solutions for Remote Ter-
minal Units commonly used in industrial control processes.
The configuration server provides settings to others plat-
form devices using the BOOTP protocol and an interface
that allow to administer the system. This environment re-
quires a compact (specific dimensions) and low power and
low cost device. Thus, a general purpose device (e.g. a PC)
is discarded and an embedded one with these features has
been developed. However, in addition to these requirements
it offers a flexibility similar to the PC. Thereby it is able to
update and carry out tasks beyond synchronization platform
easily.

1. INTRODUCTION

The time synchronization is critical in a great wide indus-
trial processes. Depending on the application, a precision of
up to few microseconds can be required. This problem has
been tackled by the industry, which has developed systems
to resolve it. However, these solutions are based on soft-
ware and need complex and expensive hardware to achieve
an acceptable accuracy.

In this sense, a synchronization platform based on the
industry norm IEC 61850 [1], which defines the Simple Net-
work Time Protocol (SNTP) [2] over Ethernet as a standard
way to synchronize a set of substations with a time server,
has been fully developed in hardware, achieving a low cost
and power, compact and accurate platform which provides
synchronization in the range of the microseconds [3, 4].

The SNTP synchronization platform consists of three
types of devices: SNTP server, SNTP client and configu-
ration server (Fig. 1). It can be used in industrial envi-
ronments where there are several Remote Terminal Units

��� ��� ���

����
������

����
������

����
������

���� �����

��� ���

���� ����� ���� �����

���� ����� ����

��� ��� ��� ���

��������������� �����������������
������������� �����������������

�������
��������

�������������
������

Fig. 1. Typical scenario for deploying hardware SNTP
client and servers (synchronization devices and protocols are
marked in gray, and configuration devices and protocols are
marked in black).

(RTUs) which require time synchronization. The SNTP ser-
ver receives accuracy time information from a Global Po-
sitioning System (GPS) device. The SNTP clients in turn
synchronize with the server through Local Area Network
(LAN) using the SNTP protocol, and transmit the time in-
formation to RTUs emulating a GPS device: SNTP clients
generate the GPS signals required, Pulse per second (PPS)
signal and Recommended Minimum Navigation Informa-
tion (RMC) frame [5, 6].

SNTP is a protocol of the Application Layer of the TCP/IP
model. Thereby a correct configuration of the lower layers
(Network Interface, Internet and Transport) is necessary for
a successful communication. Media Access Control (MAC)



address is assigned and stored at bitstream generation time
and the NTP standard port (123 UDP) is used. Thus, Inter-
net Layer configuration is only needed to be configured at
operation time. The configuration required by the commu-
nication between GPS and SNTP server is the default speed
of the serial port used to transmit RMC frame and when the
PPS signal indicates the start of a second: rising or falling
edge. When the SNTP client emulates the GPS, the start of
a second is always indicated by the rising edge of the PPS
signal, so the default speed of the serial port is just needed.

Therefore, it is necessary a method to configure all plat-
form devices. Because all platform devices are connected
throught Ethernet, Bootstrap Protocol (BOOTP) will be the
protocol used for this purpose. This functionality is imple-
mented by the configuration server, which must have the
same features than the platform devices. In this way, the
design can be based on a general purpose device (e.g. a PC)
or on a dedicated one. The first is more expensive and higher
power consumer than a dedicated device, furthermore adapt-
ing it to specific dimensions is more difficult than the last
one. Thereby, an embedded device is the best option, but a
fully hardware implementation is inflexible: it often presents
long development and support time and cost. So that, the
configuration server implementation is based on a System
on Chip (SoC) design which share the best features of the
last two designs mentioned. On the one hand, it presents
a flexibility similar to a PC: reduced development time and
cost, it is easily updated and even of being able to carry out
functionalities beyond the synchronization platform. On the
other hand, it is an embedded device, so it fulfills power con-
sumption and size requeriments. Moreover, the cost can be
reduced if the developed design shares most hardware ele-
ments with other platform devices.

This paper describes the configuration server implemen-
tation and is organized as follows: in section 2 some con-
cepts of BOOTP protocol are presented, section 3 enumer-
ates the device specifications, section 4 gives some design
and implementation details, section 5 includes some results,
and section 6 discusses some conclusions.

2. BASIC CONCEPTS OF BOOTP PROTOCOL

The BOOTP is a network protocol based on the client-server
model, and it is used by a device (client) to obtain its Internet
Protocol (IP) settings [7]. Its detailed operation is described
below (Fig. 2).

When a client needs IP configuration it sends a BOOTP
request with the broadcast address as destination address.
This packet is received and processed by the BOOTP server,
which keeps a pool of settings. If it has an entry for this
client, which is identified with its MAC address, the server
will send a BOOT reply with the client IP settings. Other-
wise, the server will not answer (Fig. 2). This protocol pro-

����� ������ ����� ���
����������� �������� �� ����

�������������
��� ������������

������ ��������� ����

� ����� �����������������

�� ������� ����� �������

���

����� �������

��
��
� �
��
��

����� ������ ����� ������

��

Fig. 2. Operation of the BOOTP Protocol.

vides not only IP settings, the packet format includes other
configuration fields [7, 8] as the boot file name used to boot
through network.

Historically, this protocol has been used by devices at
starting up time to obtain the needed settings to connect
a server and download the Operative System (OS) image
to execute it. Moreover, the BOOTP protocol can be used
to obtain only an IP configuration and the requests can be
sent by a client anytime. In this way, a dynamic IP address
assignment can be implemented sending periodic BOOTP
requests, although the protocol was designed to provide a
static IP address assignment. Nowadays, another protocol
has limited the use of BOOTP: Dynamic Host Configura-
tion Protocol (DHCP) [9]. It offers more functionality than
BOOTP (e.g. dynamic IP address assignment), but its imple-
mentation is more complex. However, DHCP and BOOTP
can be used in the same network because most DHCP servers
are compatible with BOOTP. In our platform, the SNTP
clients and server are fully implemented in hardware, so
the BOOTP is the configuration protocol chosen because it
reduces the complexity and implementation time. Further-
more, it is possible to modify some aspects of the protocol
to transmit more information with minimal changes in the
clients.

3. SYSTEM SPECIFICATION

The objective is to develop a configuration server which
have to establish two processes of communication. On the
one hand, it will configure the other devices of the platform
using the BOOTP protocol through the LAN. On the other
hand, it will allow to administer the system through an user
interface.

Below a more detailed system specification is listed:



• The configuration server hardware must be as similar
as possible to SNTP client/server hardware. In this
sense, the same hardware design, which is based on
a SPARTAN-3E XC3S500E FPGA, has been used.
Therefore, it was just necessary to add a FLASH me-
mory (non-volatile memory) and a SDRAM memory
module in order to achieve a hardware which be able
to run an OS. Thereby a more flexible, cheaper and
easier to assembly hardware is obtained, due to all
hardware design is reused, adding the needed memo-
ries is considered as an assembly option, and any plat-
form device can be implemented on the server hard-
ware, it is only necessary to change the design synthe-
sized on FPGA.

• The SoC will be implemented on FPGA. An OS will
be executed by it to achieve a reduction in the devel-
opment and support time.

• The BOOTP protocol will be used in the communica-
tion with SNTP clients and server. So, the server has
to execute a BOOTP server.

• The device will administer the synchronization plat-
form through a web application. A HTTP server is
required for this purpose.

• The implemented web application must have the fol-
lowing features:

– It will be based on configuration profiles.

– It will check and verify new settings.

– It will store all settings in a non-volatile me-
mory.

• The devices will be identified by its MAC. Therefore,
the server has to remember the MAC of all devices
that send a BOOTP request and has not been config-
ured previously.

• The interconnection between administration interface
(web application), BOOTP server and HTTP server
must be implemented. In that way, the system will be
autonomous.

The developed device conforms with these requeriments
and, in addition, it is possible to add new funcionalities to it.
In the next sections, the development and the results of the
configuration server are showed.

4. SYSTEM DESIGN AND IMPLEMENTATION

The hardware is based on a SPARTAN-3E XC3S500E FPGA.
The SoC synthesized on this device has been designed with
XPS software and it is based on XILINX IP Cores which are

optimized to be implemented on XILINX devices, so Mi-
croBlaze is the system processor. Petalinux has been the
chosen embedded Linux distribution and uClinux [10] the
Linux kernel.

The server functionality is implemented in software whe-
re is divided into three modules which are detailed below
(Fig. 3).

Administration interface makes up the first module. This
communication is based on a web application using the HTTP
protocol. Thus, the configuration information is adminis-
tered through a web browser. Two Common Gateway Inter-
faces (CGIs) have been developed in C: one of them (Load
CGI) starts the process sending the web application and the
current system configuration, and the second one (Apply CGI)
receives, checks and applies the modifications. All the set-
tings are checked in the application (client side) as well.
This last feature is implemented in JavaScript using the jQue-
ry library to achieve a cross-browser code. When the new
configuration is completed, this application sends and sets
it up reducing the amount of FLASH writings (intermediate
settings are not saved). Finally, the thttpd web server has
been the HTTP web server used.

The second module consists of the interface between ser-
ver and others platform devices. The settings provided by
the server depends on the type of device: SNTP server or
client. Internet Layer configuration and default speed serial
of the port are required by them both. In addition to these
settings, SNTP server needs the active edge of the PPS sig-
nal, and the SNTP client needs the SNTP server IP address
and the interval time between SNTP requests. The BOOTP
protocol is used for this purpose. The packet format defined
by this protocol has fields to transmit Internet Layer configu-
ration (IP address, netmask, and default gateway), but it do
not have fields to platform specific information. However,
this settings are send in the boot file name field. The settings
are transmitted as a string of hexadecimal digits codified as
ASCII characters which will be different depending on the
type of device. This method only modifies the semantic of
a field producing valid BOOTP packets. So the server can
operate with standard BOOTP clients. The Internet Systems
Consortium (ISC) DHCP software, which is a DHCP and
BOOTP server, is the BOOTP server used.

Finally, the third module defines the interconnection be-
tween the two interfaces previously described (Fig. 3). In
this sense, web application must be able to read and modify
the current settings, which are used by the BOOTP server to
configure the platform devices. These settings are saved in
the BOOTP server configuration file, which is located on the
non-volatile memory. At starting up time, the server checks
and verifies this file to insure the system operation. The
functionality of showing the current configuration is imple-
mented by the Load CGI, which reads and parses this file.
When the web application sends new settings to be saved



���� ���������������� ������������

���� ����������� �������

�����

��� ������
�������� ����� ���

����� ������

����� ������
������������������

����
�����������

����� �������

��������

�������������

����� �����

���

��

������������� ����� ��� ��������

������ � ������ � ������ �

Fig. 3. Overall diagram of the configuration server operation.

and applied, Apply CGI checks the validity and coherence
of the new configuration and then generates the new BOOTP
server configuration file. Moreover, the server must save all
addresses of platform devices, because the devices are iden-
tified with its MAC address. In this way, the MAC of the
known devices are located in the BOOTP server configura-
tion file. If an unknown device sends a BOOTP request its
address has to be saved. The BOOTP server has been con-
figured to send log information to syslog daemon, which in
turn writes this information to a log file. Load CGI reads and
parses this file to show unknown devices addresses. Further-
more, the system shows the relative and absolute date and
time of the first BOOTP request of each device.

5. RESULTS

In this section, hardware and software implementation re-
sults are described in some detail.

Resource Usage (%)
Slices 4238 (91%)

Slices Flip Flops 4958 (53%)
4 Input LUTs 7444 (79%)
Bonded IOBs 75 (47%)
Block RAMs 19 (95%)

GCLKs 6 (25%)
Maximum operation frequency 75.857 MHz

Table 1. Hardware implementation results on SPARTAN-3E
XC3S500E.

5.1. Hardware results

The SoC design has been implemented on a SPARTAN-3E
XC3S500E FPGA. The Table 1 shows the design results.
The maximum operation frequency (75 MHz) is enough,
due to it is over PCB clock frequency (50 MHz). It is re-
markable that 95% of Block RAMs are used by the design.
Therefore, the Memory Management Unit (MMU) support
in MicroBlaze Processor can not be used, due to the fact



Usage of RAM memory

Total usage of RAM memory

Item Maximum memory usage in KB (%)
Total Memory 28900 (100%)

Wating a BOOTP/HTTP request 11344 (39.25%)
Maximum load (Saving settings) 11628.28 (40.24%)

Usage of RAM memory by processes

Process Maximum memory usage in KB (%)
BOOTP server 578.336 (2.00%)
HTTP server 292.916 (1.01%)
Load CGI 141.492 (0.49%)
Save GCI 271.248 (0.94%)
Total 1283.992 (4.44%)

Usage of FLASH memory

Usage of FLASH memory

Item Memory usage in KB (%)
Total Memory 15625 (100%)
System loader 800 (5.12%)

Operative System 4000 (25.6%)
User Flash partition 8000 (51.2%)

Total 12800 (81.92%)

Table 2. Usage of RAM and FLASH memory.

����
������ �

����
������ �

����
������ �

����
������ �

������

�������������
������

����
������

�������
��������

���

Fig. 4. Environment used to test the configuration server.

that four additional Block RAMs are required for this pur-
pose. For this reason a non-MMU support Linux Kernel
(uClinux) has been used. This is because the server hard-
ware should be as similar as possible to hardware of other
platform devices, and a low cost FPGA is used by them. If
the immediately above device in the Spartan-3E family is
chosen, the MicroBlaze Processor with MMU support may
be synthesized and a full Linux kernel (with MMU support)
may be used. Moreover, the usage of Slices will be below
50% and it would be possible to synthesize other hardware
functionalities on the same device.

5.2. Software results

The environment where the tests took place is showed by
Fig. 4, where all devices were turned on and the settings
were modified along the time to check stability, possible er-
rors and memory usage of the system. Fig. 5 shows the web
interface of the configuration server. The CPU results are
not relevant because the configuration process is not a crit-
ical task, so they are omitted. Regarding to RAM memory
usage (Table 2), it is remarkable that more than 50% of the
available memory is free. This fact allows to add new soft-
ware implemented functionalities to the system. The 82%
of FLASH memory is used by the system (Table 2). How-
ever, the user FLASH partition size can be reduced if more
FLASH memory is required by the OS image. Settings for
a new device require ≈ 99 bytes and for a new configura-
tion profile ≈ 64 bytes. Thereby, if partition size is reduced
by half, the system can continue working, but a fit size can
reduce the FLASH life.

6. CONCLUSION

The design and implementation of a configuration server for
the SNTP synchronization platform has been presented. It
has been based on a SoC synthesized on a FPGA, which exe-
cutes an OS. The functionality is implemented in software to
achieve a flexible, low power and low cost and compact de-
vice that it is not limited to the platform environment being
able to carry out tasks beyond it.



Fig. 5. Web interface of the configuration server.

7. ACKNOWLEDGMENT

This work has been partially supported by the Ministry of
Education and Culture of the Spanish Government through
the TEC2007-61802/MIC (HIPER) project and the PROFIT-
MITC SEPIC TSI-020100-2008-258 project.

8. REFERENCES

[1] H. Dawidczak, “IEC 61850 Communication Networks and
Systems In Substations,” International Electrotechnical Com-
mission and Technical Committee 57, 1995.

[2] D. Mills, “Simple Network Time Protocol (SNTP) Version
4 for IPv4, IPv6 and OSI,” Internet Engineering Task Force
(IETF), RFC 4330 (Informational), Jan. 2006.

[3] J. Viejo, J. Juan, M. J. Bellido, E. Ostua, A. Millan, P. R.
de Clavijo, A. Muñoz, and D. Guerrero, “Design and imple-
mentation of a SNTP client on FPGA,” in Proc. 2008 IEEE
International Symposium on Industrial Electronics (ISIE),
Cambridge (United Kingdom), July 2008.

[4] J. Viejo, J. Juan, E. Ostua, M. J. Bellido, A. Millan,
A. Muñoz, and J. I. Villar, “Accurate and compact implemen-
tation of a hardware SNTP Client,” in Proc. 15th Iberchip
Workshop (IWS), Buenos Aires (Argentina), Mar. 2009.

[5] J. Quiros, J. Viejo, A. Muñoz, A. Millan, E. Ostua, and J. I.
Villar, “Implementación sobre FPGA de un cliente SNTP us-
ando MicroBlaze,” in Proc. 16th Iberchip Workshop (IWS),
Iguazu Falls (Brazil), Feb. 2010.

[6] E. Ostua, M. J. Bellido, J. Viejo, A. Millan, A. Muñoz,
and D. Guerrero, “Aplicación de Picoblaze como Emu-
lador/Receptor de un GPS en el diseño hardware de un
cliente/servidor SNTP,” in 9th Jornadas de Computación Re-
configurable y Aplicaciones (JCRA), Madrid (Spain), Sept.
2009.

[7] W. J. Croft and J. Gilmore, “Bootstrap Protocol,” Internet
Engineering Task Force (IETF), RFC 951 (Draft Standard),
Sept. 1985, updated by RFCs 1395, 1497, 1532, 1542.

[8] R. Droms and S. Alexander, “DHCP Options and BOOTP
Vendor Extensions,” Internet Engineering Task Force (IETF),
RFC 2132 (Standards Track), Mar. 1997.

[9] ——, “Dynamic Host Configuration Protocol,” Internet En-
gineering Task Force (IETF), RFC 2131 (DRAFT STAN-
DARD), Mar. 1997.

[10] R. Klenke, “Experiences using the xilinx microblaze soft-
core processor and uclinux in computer engineering capstone
senior design projects,” in Microelectronic Systems Educa-
tion, 2007. MSE ’07. IEEE International Conference on, June
2007, pp. 123 – 124.


