
DIGITAL DATA PROCESSING PERIPHERAL DESIGN FOR AN EMBEDDED
APPLICATION BASED ON THE MICROBLAZE SOFT CORE

E. Ostua, J Viejo, M.JBellido, A.Millan, J Juan & A.Munoz

Grupo de Investigacion y Desarrollo Digital (ID2)
Departamento de Tecnologia Electronica - Universidad de Sevilla

Av. Reina Mercedes, s/n (E. T. S. Ingenieria Informatica) - 41012 Sevilla (Spain)
Tel.: +34 954556160 - Fax: +34 954552764

email: { ostua; julian; bellido; amillan; guerre; jjchico; paulino } @ dte.us.es

ABSTRACT

In this paper we present a design of a peripheral for
MicroBlaze soft core processor as part of a R+D project
carried out in cooperation with three different companies.
The objective of the project consisted in the development of
an embedded system with a SoC implemented on a FPGA
custom-designed board. This work addresses the design of a
Digital Data Processing peripheral included as a part of the
target SoC application, that process digital signals via the
digital inputs on a proposed board. Peripheral functionality
is configurable for each digital signal independently and is
configured from the software running on the MicroBlaze
processor core.

1. INTRODUCTION

The continuous development of the integrated circuit
technology is leading to an increasing integration density
besides an improvement of the operation speed of
electronic systems. In digital systems, it allows for huge
performance improvements while the system size shrinks
more and more. However, design methodologies are also
increasing in complexity, and new challenges are to be
faced by designers. Two fundamental problems appear: on
one hand, the increment in speed (switching activity) and
device density translates in greater power consumption and
power and thermal density that may induce system failure
unless effective cooling mechanisms are included; on the
other hand, as integration density increases, the total
number of devices included in the chip increases (up to
several million devices these days). Then, it becomes
necessary to define good design and verification
methodologies in all the levels of abstraction in order to
handle effectively the complexity of the whole problem.

One of the more extended methodologies in this sense is
the so-called System-on-Chip methodology or, more
simply, SoC design. The basic idea under this methodology
is to use the current integration possibilities not to design
more complex specific systems, like Intel or AMD

processors, but to implement whole systems made out of
several individual building blocks on a single chip. This
way, systems currently implemented out of several chips on
a PCB (Printed Circuit Board) are being integrated in a
single chip while maintaining the overall structure of the
system. This methodology provides many advantages
without the need to completely re-define the way electronic
designers work. Among these advantages are power
consumption reduction, increased performance and much
more miniaturization, making the SoC design a strong
methodology for embedded and ubiquitous applications.

Almost 100% of the SoC's are digital systems built
around a microprocessors that acts as a controlling unit. The
selected microprocessor will strongly condition the
performance and overall characteristics of the system, and
the cost of the SoC. It is important to note that most
embedded applications do not require high computation
capabilities, but usually demand high reliability and low
power consumption.

There are a several processor cores that are commonly
used in SoC applications, both privative cores that requires
the acquisition of a license of use, like ARM [1], PowerPC
[2], NIOS3 [3], MicroBlaze [4], and many others; and free
or open cores that may be used without the need to acquire
a license, like LEON3 [5] and OpenRisc [6]. The main
advantage of privative processors are that they are usually
well tested and optimized for a specific target hardware and
provide a complete set of CAD tools to make the SoC
design an easier process. For example, MicroBlaze from
Xilinx is well integrated with the development platform
from the same foundry, which leads to highly optimized
designs at the cost of being bound to a particular technology
(Xilinx Spartan and Virtex FPGA families [7]) and a
concrete set of tools (Xilinx ISE and EDK [8]).

This paper is the consequence of latest developments of
the author's research team in the SoC design area. A
detailed view of the design and implementation of the
digital data processing function for industrial applications is
presented.

978-1-4244-1992-0/08/$25.00 C2008 IEEE. 197

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 15,2020 at 18:24:58 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Digital Data Processing Peripheral functional diagram

The peripheral is part of the OpenRTU project, a
company effort to implement a System-on-Chip application
leaded by a MicroBlaze processor core that will run on a
Spartan-3 FPGA from Xilinx, on top of a custom-designed
board. The main functionality of the SoC system is the
digital signal (DSP) and digital data processing. That is
accomplished with two different peripherals implemented
as IP cores on SoC and so embedded on the same FPGA as
the MicroBlaze. The digital data processing peripheral is
the object of this study.

The rest of the paper is organized as follows: in the next
section we provide a brief introduction to the peripheral by
discussing the specifications. Section 3 describes the design
and implementation methodology including the software
and hardware design process and application integration.
Section 4 presents the main results obtained in this project.
Finally, some conclusions are derived in section 5.

2. PERIPHERAL SPECIFICATIONS

The objective peripheral specifications are to process digital
signals, acquired directly via digital inputs on the board,
through a group of different functions. On Fig. 1 a diagram
of the peripheral main components is shown, with a module
for each processing function.

Peripheral functionality is configurable for each digital
signal independently in several parameters, which includes
disabling a signal passing through some of the processing
functions, timing configuration on filters and memories,
input signals grouping configuration, status registers on the
inputs and others.

Operation on the digital peripheral is configured from
the software running on the MicroBlaze processor core.
This goal is committed in the Peripheral Control box, where
a series of global configuration registers are available to be
read and written with a pre-designed interface to the SoC

OPB bus, where MicroBlaze communicates with others IPs
in the design including this peripheral. There is also some
configurable interrupt handling done in this core, in order to
let MicroBlaze know when a concrete process is completed.
Also a polling of the information is possible from any OPB
peripheral. The results of each instant process are done
available to the MicroBlaze processor who then captures
the data, archives it in the RAM memory and finally the
software running process a large number of information.

As described above, each of the digital inputs can pass
through several function modules in a chain, where a
different task is committed on each signal independently or
on grouped signals in each case.

The first module in the chain is a digital inverter where
each signal is configured to be inverted or not, depending
on the digital input work conditions to the DSP board.

Then the signal is passed through the filter, where the
digital signal pulses with a width less than configurable
parameter in milliseconds will be ignored.

Next module is the changes memory, so after every
change in the signal, it will remain unaltered for a
configurable period of time in milliseconds.

The last signal processing module is the allocator, with
a quite complex functionality. It first reorders the signals
according to the programmable configuration in order to
describe each signals real life functionality, so each digital
input can be a single signal, a double signal (grouped with
another input), or a part of a group of signals in order to
collect misc digital data, like counters or numeric values.
Next, each group of signals obtained is treated to identify
the nature of the values it concerns, again a configured
behavior, activating some error flags if necessary and
finally the results are stored on the corresponding output
registers. These tasks are accomplished together with the
counters, numeric value and results memory modules from
the peripheral.

198

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 15,2020 at 18:24:58 UTC from IEEE Xplore. Restrictions apply.

Core Peripheral Design MicroBlaze Interface

Fig. 2. SoC design methodology

So, in the counters module, each pulse on the input is
used to increment a predefined counter associated to that
digital signal.

The numeric value module is used to convert a
configurable group of inputs to a numeric value as the
resulting 8-bit word, in one of the following output formats:
2 BCD values, 1-of-8 word or regular binary.

The results memory module goal is to store the main
results of the processing modules so they can be available
in time when MicroBlaze requests them.

3. PERIPHERAL DESIGN AND
IMPLEMENTATION

In this section the more important concerns in the design
and implementation of the peripheral are described in
detail.

After the analysis of the peripheral and complete project
specifications, it was taken into consideration the design
methodology to be used and so what the flow of the design
process will be. As the complexity of the design is not too
high and the functionality is pretty well defined and divided
in several modules, the decision was to design the core of
the peripheral in synthesizable VHDL, using the Xilinx ISE
Foundation IDE tool in order to synthesize the model and
implement it to the target FPGA family. The simulator used
was Modelsim, by Mentor. Also in order to design the
interface of the peripheral to MicroBlaze via the OPB Bus

the tool Embedded Development Kit (EDK) by Xilinx was
used. Fig.2 illustrates the SoC design methodology used in
this project.

Each functional module was written in VHDL,
simulated and synthesized individually and then a latest
module was designed to glue all the logic, including
configuration and output registers and also interconnect the
peripheral as a slave of the OPB bus so it can communicate
with MicroBlaze.

In order to model each functional module of the
peripheral, each one was designed as a canonical finite state
machine written completely in VHDL. Once each block
ends its processing it activates a signal that initiates the next
one in the chain. After the last step has finished main results
are archived and are available to MicroBlaze, which can
read them anytime before the next set of digital inputs are
processed. Also it's possible to send an interrupt message to
the SoC interrupt controller when new results are available.

All the elements in the peripheral work with a single
clock signal, at a maximum frequency of 90 NM4hz, as shown
on the results chapter, a value over the specifications. As
the timing specifications were not so restrictive and area
consumption was important, also big effort was spent on
area optimization by reutilization of the complex functions
for each signal and doing a serial processing when possible.

The peripheral initialization is done in hardware with a
pulse of a single reset line and it can also be done in
software by the program running on the MicroBlaze core.

199

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 15,2020 at 18:24:58 UTC from IEEE Xplore. Restrictions apply.

Ioroc sioples5roc do les ~proc v ores Z pro..Z p st proc vali a valor fnal
3 3 3 3 p ocs =IDa

01 010 _

44) 0000 ..L1D.(=0= 4310440 i j 044
4 41 0 0 0 0 X _4 4_
O00000 00.00... 0000 000000 J00000000 000000 0000001 1
00000
00000
00011 000000 0 io .00001 0
01000 000000 Z N 0001 1 =_e

T

__I_ _oo_o_oooooooiooo 00000[

Fig. 3. Simulation of the peripheral

4. RESULTS

Main simulation and implementation results are discussed
in the chapter.

Simulation was completed for each functional module
independently in the peripheral and later on the complete
core. The interface to MicroBlaze was then added to the
design and evaluated and synthesized with Xilinx EDK
tool. It was finally included in the completed design for an
on-chip verification, including others peripherals and IP
cores developed for this SoC application. A screen capture
of the simulation process on the complete peripheral is
shown in Fig. 3.

The synthesis and implementation of the peripheral was
done with Xilinx ISE and ED}
this process are shown in Tablc

Table 1. Implementation I

peripheral core

peripheral & microblaze
max operational freq.

5. CONCI

T-n fhP tntPr uplhil[P t

6. ACKNOWLEDGMENTS

This work has been partially supported by the Ministry of
Education and Culture of the Spanish Government through
the TEC2007-6 1802/MIC (HIPER) project and the
Andalusian Regional Government's EXC-2005-TIC-1023
project.

7. REFERENCES

[1] Steve Furber: "ARM system-on-chip architecture, 2nd
edition", Ed. Addison-Wesley 2000.

[2] "IBM PowerPC Quick Reference Guide", IBM Corp. 2005.

(i toolkits and main results of [3] "NIOS 3.0 CPU Data Sheet", Altera Corporation, 2004,
e1 for the target architecture. http:Hwww.altera.com/literature/ds/ds_nios_cpu.pdf

[4] "Microblaze Processor Reference Guide", Xilinx Inc. 2005,
Results for a Spartan-3 1500 http:Hwww.xilinx.com/ise/embedded/mb_ref guide.pdf
slices total % [5] Jiri Gaisler, Sandi Habinc, Edvin Catovic: "GRLIB IP

397 133 12 2 Library User's Manual", Gaisler Research, 2006,
397 13312 2 http:Hwww.gaisler.com/products/grlib/grlib.pdf
98413312 ...7

92 Mhz [6] Damjan Lampret: "OpenRISC 1200 IP Core Specification",
2001,http:Hwww. opencores. org/cvsget. cgi/or I k/or 1200/doc/
orl200_spec.pdf

[7] "Xilinx FPGA Silicon Devices", Xilinx Inc. 2006,

LUSIONS http://xilinx.com/products/silicon_solutions/fpgas/
[8] "Xilinx Logic Design and Embedded Design Tools", 2006,

nrpcpAtptl flip AAcian nnrl http://xilinx.com/products/design resources/design tool
HI LIIP1UPCpU WC IUlVUpPI-CSIILC LIIC dUCSIg1 UIIU

implementation of a digital data processing peripheral for
Microblaze as part of the SoC of a embedded system. We
used a methodology based on direct VHDL codification,
including an interface to the microprocess core provided in
part by the partner tools, which results in a very good
performance for the designed peripheral. Effectively,
results shows that the design occupies less than 2% over a
1500 Spartan-3 and the speed operation is higher than
90Mhz.

200

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on December 15,2020 at 18:24:58 UTC from IEEE Xplore. Restrictions apply.

