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Abstract: Prostate cancer (PCa) is the second most frequently diagnosed cancer among men world-
wide, with almost 1.3 million new cases and 360,000 deaths in 2018. As it has been estimated,
its mortality will double by 2040, mostly in countries with limited resources. These numbers suggest
that recent trends in deep learning-based computer-aided diagnosis could play an important role,
serving as screening methods for PCa detection. These algorithms have already been used with
histopathological images in many works, in which authors tend to focus on achieving high accuracy
results for classifying between malignant and normal cases. These results are commonly obtained
by training very deep and complex convolutional neural networks, which require high computing
power and resources not only in this process, but also in the inference step. As the number of
cases rises in regions with limited resources, reducing prediction time becomes more important.
In this work, we measured the performance of current state-of-the-art models for PCa detection
with a novel benchmark and compared the results with PROMETEOQ, a custom architecture that
we proposed. The results of the comprehensive comparison show that using dedicated models for
specific applications could be of great importance in the future.

Keywords: deep learning; convolutional neural networks; artificial intelligence; prostate cancer;
performance evaluation; benchmark

1. Introduction

Prostate cancer (PCa) is the second most common cancer and the fifth leading cause
of cancer death in men (GLOBOCAN [1]). In 2018, almost 1.3 million cases and around
360,000 deaths worldwide were registered due to this malignancy. According to the World
Health Organization (WHO), there will be an increase of prostate cancer (PCa) cases
worldwide, with 1,017,712 new cases being estimated for 2040. Most of these cases will be
registered in Africa, Latin America, the Caribbean and Asia, and appear to be related to an
increased life expectancy [2].

To diagnose PCa, digital rectal examination (DRE) is the primary test for the initial
clinical assessment of the prostate. Then, prostate-specific antigen (PSA) is used in a
screening method for the investigation of an abnormal prostatic nodule found in a digital
rectal examination (DRE). Finally, in the case of abnormal DRE and elevated PSA results,
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trans-rectal ultrasound-guided biopsy is performed to obtain samples of the prostate
tissue [3]. Then, these tissue samples are scanned, resulting on gigapixel-resolution images
called whole-slide images (WSIs), which are then analyzed and diagnosed by pathologists.

Due to the high increment of new cases, and thanks to the impacts of artificial intel-
ligence (Al) in recent years [4,5], several computer-aided diagnosis (CAD) systems have
been developed to speed up the process of PCa diagnosis. A computer-aided diagnosis
(CAD) system is an automatic or semi-automatic algorithm whose purpose is to assist
doctors in the interpretation of medical images in order to provide a second opinion
in the diagnosis. Among the different Al algorithms, deep learning (DL) has become
very popular in recent years, and convolutional neural networks (CNNs) particularly [6].
They have been applied in several fields in medical image analysis, such as in disorder
classification [7], lesion/tumor classification [8], disease recognition [9] and image con-
struction/enhancement [10], among others.

Deep learning (DL) algorithms have also been applied to other medical image analysis
fields such as histopathology, in which whole-slide images (WSIs) are used. Since it is not
possible for a convolutional neural network (CNN) to work with a whole WSI as input
due to its large size, a common approach is to divide this image into small subimages
called patches. This procedure has been widely used in order to develop CAD systems in
this field.

Recently, many researchers have investigated the application of CAD systems to the
diagnosis of PCa in WSIs. Strom et al. [11] developed a deep learning (DL)-based CAD
system to perform a binary classification distinguishing between malignant and normal
tissue. The classification was performed using an ensemble of 30 widely used InceptionV3
models [12] pretrained on ImageNet. They achieved areas under the curve (AUC) of 0.997
and 0.986 on the validation and test subsets, respectively. For areas detected as malignant,
the authors trained another ensemble of 30 InceptionV3 CNNSs in order to discriminate
between different PCa Gleason grading system (GGS) scores, achieving a mean pairwise
kappa of 0.62 at slide level. Campanella et al. [13] presented a CAD system to detect
malignant areas in WSIs. The classification was performed with the well-known ResNet34
model [14] together with a recurrent neural network (RNN) for tumor/normal classification.
achieving an area under curve (AUC) of 0.986 at slide level. In a previous study [15], we
proposed a CAD system, in which we focused on performing a patch-level classification of
histopathological images between normal and malignant tissue. The proposed architecture,
called PROMETEQ, consisted of four convolution stages (convolution, batch normalization,
activation and pooling layers) and three fully connected layers. The network achieved
99.98% accuracy, 99.98% F1 score and 0.999 AUC on a separate test set at patch level after
training the network with a 3-fold cross-validation method.

These previous works achieved competitive results in terms of accuracy, precision
and other commonly-used evaluation metrics. However, to the best of our knowledge,
most state-of-the-art works do not focus on prioritizing the speed of the CAD system as
an important factor. Many of them used very complex, well-known networks to train and
test, without taking into account the computational cost and the time required to perform
the whole process. Since these algorithms are not intended to replace pathologists but to
assist them in their task, in some cases it is better to prioritize the speed of the analysis,
sacrificing some precision so that the expert has a faster and more dynamic response from
the system.

In this paper, a novel benchmark was designed in order to measure the processing and
prediction time of a CNN architecture for a PCa screening task. First, the proposed bench-
mark was run for the PROMETEO architecture on different computing platforms in order
to measure the impacts that their hardware components have on the WSI processing time.
Then, using the personal computer (PC) configuration that achieved the best performance,
the benchmark was run with different state-of-the-art CNN models, comparing them in
terms of average prediction time both at patch level and at slide level, and also reporting
the slowdown when compared to PROMETEO.
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The rest of the paper is structured as follows: Section 2 introduces the materials and
methods used in this work, including the dataset (Section 2.1), the CNN models (Section 2.2)
and the benchmark proposed (Section 2.3). Then, the results obtained are presented in
Section 3, which are divided in two different experiments: first, the performance of a
proposed CNN model is evaluated in different platforms, and then it is compared to state-
of-the-art, widely-known CNN architectures. Sections 4 and 5 present the discussion and
the conclusions of this work, respectively.

2. Materials and Methods
2.1. Dataset

In this work, a dataset with WSIs obtained from three different hospitals was used.
These cases consisted of different Hematoxylin and Eosin-stained slides globally diagnosed
as either normal or malignant.

From Virgen de Valme Hospital (Sevilla, Spain), 27 normal and 70 malignant cases ob-
tained by means of needle core biopsy were digitized into WSIs. Clinic Barcelona Hospital
(Barcelona, Spain) provided 100 normal and 129 malignant WSIs, also obtained by means
of needle core biopsy. Finally, from Puerta del mar Hospital (C4diz, Spain), 65 malignant
(26 obtained from needle core biopsy and 39 from incisional biopsy) and 79 (33 obtained
from needle core biopsy and 46 from incisional biopsy) WSIs were obtained. Table 1 summa-
rizes the WSIs considered in the dataset.

Table 1. Dataset summary.

No. of WSIs
Hospital
Normal Malignant Total
Virgen de Valme Hospital 27 70 97
Clinic Hospital 100 129 229
Puerta del Mar Hospital 79 65 144

2.2. CNN Models

Different CNNs models were considered in this work in order to compare their per-
formance by using the benchmark proposed in Section 2.3. Three different architectures
from state-of-the-art DL-based PCa detection works were compared, along with other well-
known CNN architectures. The first one is the custom CNN model, called PROMETEO,
which we proposed in [15], where we also demonstrated that applying stain-normalization
algorithms to the patches in order to reduce color variability could improve the general-
ization of the model when predicting new unseen images from different hospitals and
scanners. The second CNN architecture that was considered in this work is the well-
known ResNet34 model [14], which was used by Campanella et al. in [13]. The third one is
InceptionV3, introduced in [12], which was used by Strom et al. [11].

Apart from these three CNN models, other widely-known architectures were evalu-
ated with the same benchmark, comparing their performance in terms of execution time
with the rest of the networks for the same task. These were VGG16 and VGG19 [16],
MobileNet [17], DenseNet121 [18], Xception [19] and ResNet101 [14].

2.3. Benchmark

In this work, a novel benchmark was designed in order to measure and compare the
performances of different CNN models and platforms on a PCa screening task. In order to
make the benchmark feasible to be shared with other researchers so that it could be run
in different computers, a reduced set of WSIs were chosen from the dataset presented in
Section 2.1. Since the total amount of WSIs of the dataset represent more than 300 giga-
bytes (GB) hard drive space, only 40 of them were considered, building up a benchmark
of around 50 GB, which is much more shareable. These 40 WSIs were randomly selected,
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considering all the three different hospitals and scanners, and thus representing well the
diversity of the dataset in this benchmark.

The benchmark performs a set of processing steps which are detailed next (see Figure 1).
First, as it was introduced in Section 1, since it is not possible for a CNN to use a whole
WESI as input due to its large size, these images are divided into small subimages called
patches (100 x 100 pixels at 10x magnification in this case), which are read from each
WSI. This process is called "read," and apart from extracting the patches from the input
WSI, those corresponding to background are discarded (identified as D in the figure).
Then, in the scoring step, a score is given to each patch depending on three factors: the
amount of tissue that it contains, the percentage of pixels that are within Hematoxylin
and Eosin’s hue range and the dispersion of the saturation and brightness channels. This
score allows discarding patches corresponding to unwanted areas, such as pen marks,
external agents and patches with small amounts of tissue, among others. In Figure 1,
discarded patches in this step are highlighted in red, while those that pass the scoring
filter are highlighted in green. The third step, called stain normalization, performs a color
normalization of the patch based on Reinhard’s stain-normalization algorithm [20,21] in
order to reduce color variability between samples. In prediction, which is the last step of
the process, each of the patches are used as input to a trained CNN, which classifies them
as either malignant or normal tissue. Deeper insights into these steps are given in [15].
When the execution of the benchmark finishes, it reports both the hardware and system
information of the computer used to run the benchmark, and the results of the execution.
These results consist of the mean execution time and standard deviation for each of the
four processes (read, scoring, stain normalization and prediction) shown in Figure 1 and
presented in [15], both at patch level and at WSI level.

Output

Patches
considered

CNN

L

Figure 1. Block diagram detailing each of the steps considered for processing a whole-slide image (WSI) in the pro-
posed benchmark.

3. Results

The CNN-based PROMETEO architecture described in Section 2.2 was proposed and
evaluated in terms of accuracy and many other evaluation metrics in [15]. In this work,
we evaluated that model in terms of performance and execution time per patch and WSIL

First, the same architecture was tested in different platforms using the benchmark
proposed in Section 2.3. These results allow us to measure and quantify the impacts of
different components in the whole processing and prediction process, which is useful for
designing an edge-computing prostate cancer detection system. Then, the benchmark was
used to evaluate the performances of different state-of-the-art CNN architectures on the
computing platform that achieved the best results on the first experiment.

Fourteen different PC configurations were used to evaluate the performance of the
PROMETEO architecture introduced in Section 2.2. The hardware specifications (central
processing unit (CPU) and graphics processing unit (GPU)) of these computers are listed
in Table Al of Appendix A. In Figure 2, the average patch processing time is shown for
each of the fourteen configurations, where the mean time for the steps performed when
processing a patch (see Section 2.3) is reported. As it can be seen, the step that requires
more time is the prediction in most of the cases, but it is highly reduced in configurations
consisting of a GPU.
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Figure 2. PROMETEO average patch processing time (in seconds) per step for each of the hardware configurations detailed

in Table A1.
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Figure 3 depicts the average and standard deviation of the execution time needed
per WSI when running the benchmark on the fourteen different PC configurations. As in
Figure 2, each of the steps considered in the whole process is shown. As it can be seen,
reading the whole WSI patch by patch is the step that involves the longest amount of
time in most of the devices (mainly in those configurations with no GPU). This might
seem contradictory considering Figure 2, but it is important to mention that, in that step,
all patches from a WSI are read and analyzed, but not all of them are processed in the
following steps. Unwanted areas, such as background regions with no tissue, are discarded
before being scored. Then, only those which are not background and pass the scoring step
are stain normalized and predicted by the CNN.

Average processing time per WSI

|

C N

m\WS|Read ® WSI Score WSI Stain normalization WSI Prediction

Figure 3. PROMETEO average WSI processing time (in seconds) and standard deviation per step for each of the hardware
configurations detailed in Table Al.

3.1. PROMETEO Evaluation

The sum of the average execution time of the four preprocessing steps for each WSI
was computed and it can be seen in Figure 4. The best case (device M) takes 22.56 & 5.67 s
on average to perform the whole process per WSI, where the prediction step only represents
420 £1.73s.



Sensors 2021, 21,1122

6 of 13

140
120
100

80

Time (s)

60

40

L
i

Average processing time per WSI

IIIIIIIIIII
H B B & B E E BN EN

m \WSIRead ™ WSI Score WSI Stain normalization WSI Prediction

Figure 4. PROMETEO average WSI processing time (in seconds) and standard deviation of the hardware configurations

detailed in Table A1.
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The execution times obtained and used for generating the plots presented in this
subsection are detailed in Table A2 of Appendix A.

3.2. Performance Comparison for Different State-of-the-Art Models

After evaluating the PROMETEO architecture using the benchmark designed for this
work with different PCs, the same network was compared to other widely-known architec-
tures. For this purpose, the same computer (device M) was used in order to perform a fair
comparison. The same benchmark that was used in the previous evaluation (see Section 3.1)
was executed in computer M (see Table A1) for each of the CNN architectures mentioned
in Section 2.2. The CNNs considered are PROMETEO [15], ResNet34 and ResNet101 [14],
InceptionV3 [12], VGG16 and VGG19 [16], MobileNet [17], DenseNet121 [18] and Xcep-
tion [19].

The average patch processing time per preprocessing step can be seen in Figure 5 for
each of the architectures mentioned. Since the architecture does not have an effect on the
first three steps (reading the patch from the WSI, scoring it in order to discard unwanted
patches, and normalizing it), the times needed to process them are similar across all the
different cases reported in the figure. This does not happen with the prediction time,
which directly depends on the complexity of the network.

Average processing time per patch

— — — — — — — —
ResNet34 InceptionV3 VGG16 VGG19 MobileNet DenseNet121 Xception ResNet101
M Patch Read W Patch Score Patch Stain normalization Patch Prediction

Figure 5. Average patch processing time (in seconds) per step for each of the CNN architectures using computer M

(see Table Al).

Figure 6 reports the combined processing time that device M takes to compute a WSI
on average, together with its corresponding standard deviation. The same case explained
in Section 3.1, where the WSI reading step takes much longer than the patch reading step in
relation to the rest of the subprocesses, can also be observed in this figure. It is important to
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mention that the model proposed by the authors is faster than the rest in terms of prediction
time, with a total of 22.56 &+ 5.67 s per WSI on average.

Average processing time per WSI

100
90

Ty
i H B o H B B B B

PROMETEO ResNet34 InceptionV3 VGG16 VGG19

Time (s)

MobileNet DenseNet121 Xception ResNet101

B \WS|Read M WSI| Score WSI Stain Normalization WSI Prediction
Figure 6. Average WSI processing time (in seconds) and standard deviation for each of the CNN architectures using

computer M (see Table A1).

Table 2 presents a summary of the results obtained for each architecture, focusing on
the prediction process, which is the only one affected when changing the CNN architecture.
Moreover, the number of trainable parameters and the slowdown are also reported. The lat-
ter is calculated by dividing the average prediction time per WSI of the corresponding
CNN by that obtained with PROMETEO. This way, the improvement in terms of prediction
time between PROMETEO and the rest of the architectures considered can be clearly seen.
The proposed model predicts 2.55x faster than the CNN used in [13] and 11.68x faster
than the one used in [11]. It is also important to mention that, in the latter, the authors did
not use only an InceptionV3 model, but an ensemble of 30 of them. In this case, the figures
and tables only report the execution times for a single network. When compared to other
different widely-known architectures, PROMETEO is between 7.41 x and 12.50x faster.

Table 2. Average patch and WSI prediction time, slowdown and number of trainable parameters for each of the CNN
architectures considered in this work.

Model Avg. Prediction Time (patch) Avg. Prediction Time (WSI) Slowdown * Trainable Parameters
PROMETEO 3.054 + 4.845 ms 4201 +1.739s 1x 1,107,010
ResNet34 8.982 + 10.086 ms 10.712 £ 3.134 s 2.55% 21,800,107
InceptionV3 41.301 + 44.282 ms 49.076 £ 14.353 s 11.68 % 23,851,784
VGGI16 28.664 + 9.241 ms 34.921 +10.160 s 8.31x 138,357,544
VGG19 29.931 £ 9.305 ms 36.250 £ 10.536 s 8.63 143,667,240
MobileNet 25.689 + 10.986 ms 31.110 £9.030 s 741 % 4,253,864
DenseNet121 42.489 + 16.859 ms 51.483 +14.945s 12.25x% 8,062,504
Xception 34.050 + 11.789 ms 41.764 £12.175s 9.94x 22,910,480
ResNet101 43.287 + 14.679 ms 52.517 + 15.266 s 12.50% 44,707,176

* Calculated by using the average prediction time per WSI and taking the PROMETEO architecture as reference. A slowdown of A X means

that model B is A times slower than PROMETEO.

The execution times obtained and used for generating the plots presented in this
subsection are detailed in Table A3 of Appendix B.

4. Discussion

In order to design a fast edge-computing platform for PCa detection, an evaluation
of a proposed CNN was performed. This allowed us to compare different hardware
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components and configurations and measure the impacts of them when processing WSIs.
Apart from the figures presented in Section 3.1, two specific cases are highlighted in
Figure 7. Figure 7a shows the impact that the frequency of the CPU has on the whole process
when using the same computer. As it can be seen, the four processing steps clearly benefit
when a faster CPU is used. On the other hand, Figure 7b compares two cases where
the same configuration is used, except for the GPU, which was removed in one of them.
As expected, the GPU highly accelerated the prediction time (by around three times in this
case). Therefore, in order to build a low-cost edge-computing platform for PCa diagnosis,
this analysis could be useful and should be taken into account in order to prioritize in
which component the funds should be invested. As it was explained, all patches from a
WSI have to be read, but not all of them have to be predicted, since the majority of them
correspond to background and are discarded first. Therefore, the CPU has a higher impact
than the GPU in the whole process.

Same computer (no GPU): Same computer: no GPU vs GPU
Eco (1.2 GHz) vs Boost mode (2.6 GHz) 18

B WSIRead ®WSIScore

Time (s)

. 1 o o
‘II o

D G M

WSI Stain normalization WSI Prediction B WSIRead M WSIScore WS Stain normalization WSI Prediction

(@) (b)

Figure 7. Impacts of the CPU and the GPU in the different WSI processing steps. (a) Same PC, different CPU frequency.
Left: 1.2 GHz; right: 2.6 GHz. (b) Same PC. Left: without using GPU; right: using GPU.

When comparing PROMETEO to other state-of-the-art CNN models, the former
achieved the fastest prediction time, being from 2.55 times up to 12.50 times faster than any
of the rest. Although the results in terms of accuracy and other commonly-used metrics in
DL algorithms cannot be compared since the authors in [11,13,15] used different datasets,
all of them reported state-of-the-art results for PCa detection. In [15], the authors compared
PROMETEO to many of the models used in this work in terms of accuracy when using the
same dataset for training and testing the CNN, showing that similar results were obtained.

The use of transfer learning in CNNs for medical image analysis has become a com-
monplace technique, and most of the current research focuses on using this approach
for avoiding the problem of having to design, train and validate a custom CNN model
for a specific task. This has proved to achieve state-of-the-art results in many different
fields and has also accelerated the process of training a custom CNN from scratch [22].
However, when using this technique, very deep CNNs are commonly considered, which,
as presented in this work, leads to a higher computational cost when predicting an input
image, and therefore, a slower processing time. Some specific tasks could benefit from
designing shallower custom CNN models from scratch, such as DL-based PCa screening,
providing a faster response to the pathologists in order to help them in this laborious
process. With the increases in the number of cases and the mortality produced by PCa,
this factor could become even more relevant in the future.

As an alternative, cloud computing has provided powerful computational resources
to big data processing and machine learning models [23]. Recent works have focused on
accelerating CNN-based medical image processing tasks by using cloud solutions. While it
is true that processing images using GPUs and tensor processing units (TPUs) in the cloud
is faster than in any local edge-computing device, there is an aspect that is not commonly
taken into account when stating this fact: the time required to upload the image to the cloud.
This depends on many factors and it is not easy to predict. Moreover, when digitizing
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histological images, scanners store them in a local hard drive using around 1 GB for each
of them. As an example, with an upload speed of 300 Mbps, it would take more than 27 s
in ideal conditions just for uploading the WSI to the cloud, which is more than the time it
would take to fully process the image on a local platform.

To design a fast, low-cost, edge-computing platform, both the hardware components
considered and the CNN model design have to be taken into account. Optimizing these
two aspects led to achieving a very short WSI processing time when compared to current
DL-based solutions without penalizing the performance of the system in terms of accuracy.
In the next future, the authors would like to build a custom bare-bones approach based on
the evaluations achieved in this work and test it in some of the hospitals that collaborated
with us in this project.

5. Conclusions

In this work, we have presented a comprehensive evaluation of the performance
of PROMETEQO, a previously-proposed DL-based CNN architecture for PCa detection in
histopathological images, which achieved 99.98% accuracy, 99.98% F1 score and 0.999 AUC
on a separate test set at patch level.

Our proposed model outperforms other widely-used state-of-the-art CNN architec-
tures such as ResNet34, InceptionV3, VGG16, VGG19, MobileNet, DenseNet121, Xception
and ResNet101 in terms of prediction time. PROMETEO takes 22.56 s to predict a WSI on
average, including the preprocessing steps needed, using an Intel® Core™ i7-8700K (Intel,
Santa Clara, CA, USA) and an NVIDIA® GeForce™ GTX 1080 Ti (NVIDIA, Santa Clara,
CA, USA). If we focus only on the prediction time, PROMETEO is between 2.55 and 12.50
times faster than any of the other architectures considered.

The promising results obtained suggest that edge-computing platforms and custom
CNN designs could play important roles in the future for Al-based medical image analysis,
being able to aid pathologists in their laborious tasks speed-wise.
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Abbreviations

The following abbreviations are used in this manuscript:

Al
AUC
CAD
CNN
Cru
DL
DRE
GB
GGS
GPU
H&E
PC
PCa
PSA
RNN
TPU
WHO
WSI

Artificial Intelligence

Area Under Curve
Computer-Aided Diagnosis
Convolutional Neural Network
Central Processing Unit
Deep Learning

Digital Rectal Examination
Gigabyte

Gleason Grading System
Graphic Processing Unit
Hematoxylin and Eosin
Personal Computer
Prostate Cancer
Prostate-Specific Antigen
Recurrent Neural Network
Tensor Processing Unit
World Health Organization
Whole-Slide Image

Appendix A. PROMETEO Evaluation

Table A1. Hardware specifications (CPU and GPU) of the different computers used in the PROMETEO evaluation.

Device CPU GPU
A Intel® Core™ i7-8850U @ 1.80 GHz _
4 cores, 8 threads
B Intel® Core™ i9-7900X @ 3.30 GHz )
10 cores, 20 threads
C Intel® Core™ i7-6700HQ @ 1.20 GHz _
4 cores, 8 threads
D Intel® Core™ i7-6700HQ @ 2.60 GHz _
4 cores, 8 threads
E Intel® Core™ i5-6500 @ 3.20 GHz _
4 cores, 4 threads
E Intel® Core™ i7-4770K @ 3.50 GHz _
4 cores, 8 threads
G Intel® Core™ i7-8700K @ 3.70 GHz )
6 cores, 12 threads
H Intel® Core™ i7-4970 @ 3.60 GHz _
4 cores, 8 threads
I Intel® Core™ i9-7900X @ 3.30 GHz NVIDIA® GeForce™ GTX 1080 Ti
10 cores, 20 threads 11 GB GDDR5X
] AMD® Ryzen™ 9 3900X @ 4.20 GHz NVIDIA® GeForce™ GTX 1080 Ti
12 cores, 24 threads 11 GB GDDR5X
K Intel® Core™ i5-6500 @ 3.20 GHz NVIDIA® GeForce™ GT 730
4 cores, 4 threads 2 GB GDDR5
L Intel® Core™ i7-4770K @ 3.50 GHz NVIDIA® GeForce™ GTX 1080 Ti
4 cores, 8 threads 11 GB GDDR5X
M Intel® Core™ i7-8700K @ 3.70 GHz NVIDIA® GeForce™ GTX 1080 Ti
6 cores, 12 threads 11 GB GDDR5X
N Intel® Core™ i7-4970 @ 3.60 GHz NVIDIA® GeForce™ RTX 2060

4 cores, 8 threads

6 GB GDDR6
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Table A2. PROMETEO evaluation results. The average (Avg) and standard deviation (Std) of the execution times (in seconds) are shown for each of the four processes presented in
Section 2.3 (Figure 1), both at patch level and at slide (WSI) level.

Patch WSI
Read Score Stain Normalization Prediction Read Score Stain Normalization Prediction
Device Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

A 0.00120757  0.00311363 0.00585298 0.00502059 0.00512905 0.00418173 0.01730045 0.00850617 25.8035576 4.33829335 7.68691321 2.50054828 6.74114185 2.1823579  22.1192591 6.90573801
B 0.00068973  0.00150109 0.00306787  0.0037015  0.00288733 0.00062438 0.01441587 0.00175146 13.3892811 229629633 3.59321811 1.04956324 3.38756321 0.98944353 16.8213335 4.91918301
C 0.00182337  0.00503892  0.00807697 0.00628436 0.00729532 0.00634226 0.02249318  0.0100416 452693313 8.99897452 12.1239614 3.77223369 10.8517522 3.36864663 31.9982855 9.74059672
D 0.00103901  0.00228084 0.00437608 0.00080403 0.00404258 0.00098854 0.01435914 0.00211298 19.5256697 3.39723828 4.94245166 1.44889791 4.59097219 1.34596044 16.6959336 4.87815493
E 0.00082695 0.00167953 0.00421429 0.00068222 0.00400594 0.00090984 0.01223286 0.00216942 16.0484505 2.76278471 4.94652829  1.4439207 4.70010431 1.37218657 14.3399619  4.1861481
F 0.00083281 0.00172759 0.00413688 0.00075105  0.0038354  0.00094666 0.01479934 0.00293383 15.8376234 2.74964356  4.7714866 1.3976735  4.42655776 1.29581397 16.9997911 4.98414625
G 0.00062777 0.00133961 0.00292148 0.00038463 0.00270451 0.00067159  0.0102172  0.00150291 12.1361434 2.0832663 3.42516114 1.00071198 3.17680098 0.92726679 11.9159923 3.48494303
H 0.00084291 0.00175864 0.00398322 0.00065638  0.0037566  0.00093803 0.03768491 0.00818776 15.8986914 2.81638821 4.5458395 1.34199731 4.29495389 1.26743003 42.2879135 12.595224
I 0.00069517  0.0015282  0.00299673  0.0003936  0.00285997 0.00066557 0.00345098 0.01023957 13.4663605 2.32710305 3.51854302 1.02719857 3.35297541 0.97965636 4.29145549 1.29811287
] 0.00062976 0.00137508 0.00428461 0.00027188 0.00246943 0.00060632 0.00275394 0.00906872 12.3392324 2.12166155  5.039479  1.47022453 2.91945068 0.85082711 3.35472003 1.00963885
K 0.00084153  0.00173514 0.00417708 0.00059019 0.00397734 0.00091936 0.01973523 0.01713999 16.462836 2.81694585 4.89897847  1.430121  4.67706547 1.36512005 23.4278429 6.84671918
L 0.00091354  0.00194007 0.00449805 0.00163909 0.00421455 0.00178876  0.0420623 0.01316229  17.743488 3.08314193 5.29275112 1.55927849 4.97026951 1.46232287 5.16441015 1.56004368

0.0006116  0.00129119 0.00286777 0.00039014 0.00265452 0.00068521  0.0030545 0.03559015 11.8833887 2.0393166  3.36354507 0.98195641 3.11514971 0.90982144 4.20128196  1.7395392
N 0.0008502  0.00498445 0.00405446  0.0007176  0.00375849 0.00097299 0.04150535 0.01602984 16.6332854 2.85486699 4.75020676 1.39576506 4.41236681 1.2946882  49.1934053 14.4530511
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Appendix B. Comparison between Different CNN Architectures

Table A3. Execution time comparison between different architectures. The average (Avg) and standard deviation (Std) of the execution times (in seconds) are shown for each of the four

processes presented in Section 2.3 (Figure 1), both at patch level and at slide (WSI) level.

Patch WSI
Read Score Stain Normalization Prediction Read Score Stain Normalization Prediction
Architecture Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

PROMETEO 0.000612 0.001291 0.002868 0.00039  0.002655 0.000685 0.003054 0.004845 11.88339 2.039317 3.363545 0.981956 3.11515  0.909821 4201282 1.739539
ResNet34 0.000612 0.001279 0.002844 0.000405 0.002676  0.000686  0.008982 0.010086 11.92095 2.045551 3.333316 0.973793 3.148634 0918751 10.71205 3.134596
InceptionV3  0.000621 0.001317 0.002915 0.00041 0.002691 0.001136 0.039772 0.013828 12.10135 2.076446 3.415152 0.997178 3.168544 0.925316  46.72138 13.64997
VGG16 0.000635 0.001341 0.002931 0.000427 0.002785 0.000691 0.028664 0.009241 12.37371 2.140448 3.45475 1.007557 3.280768 0.957531 34.92197 10.16074
VGG19 0.000628 0.001313 0.002931 0.000425 0.00278  0.000682  0.029931 0.009305 12.34846 2.116793 3.44631 1.005834 3.266729  0.953449  36.25006 10.5361
MobileNet  0.000612 0.001278 0.00285  0.00042 0.002688 0.001111  0.025689 0.010986 11.96025 2.044115 3.383497 0.986745 3.208441 0.936362 31.11017 9.030854
DenseNet121 0.000611 0.001284 0.002879 0.000389 0.002687  0.000683  0.042489 0.01686 11.82392 2.035413 3.373127 0.985149 3.148681 0.919557 51.48291 14.94588
Xception 0.0006  0.001261 0.00288 0.000374 0.002758 0.000655  0.03405 0.011789 11.68313 1.987459 3.375536 0.986863 3.235289  0.945187 41.76486 12.17527
ResNet101 0.000607 0.001265 0.002839 0.000398 0.002701 0.00067  0.043287 0.014679 11.84637 2.035472 3.327598 0.971357 3.171104 0.925785 52.51713 15.26661
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