
Building a SoC for industrial applications based on
LEON microprocessor and a GNU/Linux distribution

A.Muñoz, E.Ostúa, M.J.Bellido, A.Millán, J.Juan, D.Guerrero
Grupo de Investigación y Desarrollo Digital (ID2)

Departamento de Tecnología Electrónica - Universidad de Sevilla
 Av. Reina Mercedes, s/n (E. T. S. Ingeniería Informática) - 41012 Sevilla (Spain)

Tel.: +34 954556160 - Fax: +34 954552764

 email: { amrivera; ostua; bellido; amillan; jjchico; guerre; } @ dte.us.es

Abstract- This paper presents the design of a complete RTU
(Remote Terminal Unit) with a System-on-Chip solution based
completely on both open hardware and software platforms, and
developed in conjunction with two industrial companies. The
target implementation of the embedded system is a Spartan family
FPGA from Xilinx. The article presents the main features of the
base system, which consists of the LEON microprocessor and a
Linux operating system distribution (Debian) running on it.
Moreover, it shows a complete example of how to add new
peripherals to the system. The peripheral that has been added is
the UART 16550 compatible peripheral available in OpenCores.
Given that the design has been prepared for the WishBone bus, it
was necessary to adapt it to the APB bus within the LEON core.
Furthermore, it has been adapted to work with the Linux driver
for that UART to get a full coupling of peripheral with the system.
The experimental results confirm the work done.

I. INTRODUCTION

Latest technological researches give rise to the development
of chips for high density integration and as a result it is
possible to include an entire system on a single chip. This is
known as SoC methodology. There are two technology options
for SoC designs: FPGAs and ASICs. Implementing a SoC as
an ASIC has the advantage of a better performance that can be
achieved in terms of speed and power consumption. But from
an industrial point of view the development and manufacture
cost of ASICs is very high and it's only offset by large numbers
of manufacturing. Instead, implementing a SoC on an FPGA,
while it can decrease the performance, has a very similar cost
per unit of the system manufactured. In addition, FPGAs have
the advantage of being reconfigurable in real time, something
that it's not possible with an ASIC, which allows the reuse of
the same device for different tasks when each of those tasks do
not require constant attention. Thus, taking into account that
most of the industrial applications do not require a large
number of units, the FPGA becomes a very appropriate
solution for system implementation in these environments.

Moreover, nearly 100% of the SoC are built around a
microprocessor that acts as the central nucleus of the entire
system. The choice of the microprocessor determines heavily

it's performance. In most industrial applications is not
necessary to achieve a high processing capacity but mainly a
good reliability. This means that the microprocessors that are
used in such systems do not have to be very complex. There
are a number of microprocessors that has been routinely used
in the design of SoC solutions, both commercial cores, namely
those that require the purchase of a license for its use, such as
ARM [1], PowerPC [2], NIOS3 [3], MicroBlaze [4] or others,
as well as free open source cores such as LEON [5] or
OpenRisc [6]. Commercial microprocessors are generally well
tested and optimized, and have integrated tools that facilitate
the application development process. However, for certain
businesses or industries the high cost to acquire the entire
development system can be unfordable. In contrast, open
systems do not have the disadvantage of the cost. However, it
is a widespread idea that it's very complex to work with these
systems.

In our research group we have been working for several
years with open systems both from a hardware and a software
perspective. Currently, we have a development platform for
hardware and software SoC design for FPGAs completely
based on open systems. This enables us to ensure that it is
feasible to use such systems on industrial applications, assuring
that the system have a development time and reliability more
than acceptable on its final implementation.

Thus, in this study we pretend to show the work done on a
project that aims to develop an embedded system to operate as
a remote terminal unit (RTU) for a network of industrials
control application.

This project is supported by the Andalusian Regional
Government and is monitored by companies of our local
environment as Telvent [7] and Guadaltel [8]. Thus, this
platform is being implemented as a RTU part of a
comprehensive system of tracking and positioning, developed
by Guadaltel. The RTU is intended to control the positioning
through a GPS built into the system. For data communication
both GSM and radio are used. Both GPS and communication
systems will communicate with the microprocessor core of the
RTU via a RS-232 port.

The development platform that is used to build this RTU is
based on the LEON microprocessor. On top of this
microprocessor is running a Linux operating system. The
LEON architecture it fully SPARC v8 compatible. This allow
the implementation of a regular Linux distribution, like Debian
[9], on an embedded system based on the LEON core, as
described on some of our previous works [10]. This is a huge
advantage from the point of view of software development
because Debian Linux has a lot of software already developed
and conforms a very easily deployable system.

With this platform basis (LEON microprocessor + Linux-
Debian OS), the development of new peripherals for the system
requires not only to have the hardware design, but also to build
the kernel driver so the OS can actually use the peripheral.
Indeed, during the process of designing this RTU within this
project, there was a need to incorporate a new driver for a
standard RS-232 serial port, because the one that comes with
the own LEON's based Linux kernel is not fully compatible
and can not be used with physical devices for enhanced serial
communications. In order to achieve this, it was decided to port
an open design of the controller RS-232, specifically, one
UART 16550 controller available in from OpenCores[11]. In
order to include this design within our base platform, it was
necessary to perform some work on the adaptation, both
hardware and software, which is discussed in this paper.
Taking this into consideration, the organization of this paper is
as follows: The next section is devoted to presenting the main
features of the development platform based on LEON + Linux-
Debian. The third section shows the design methodology to be

followed in order to adapt the UART 16550 IP core from
OpenCores into our development platform. In the fourth
section, experimental results of the system implemented on the
FPGA are shown. The final section summarizes the main
conclusions of this work.

II. DEVELOPMENT WITH LEON MICROPROCESSOR CORE

LEON is a 32-bit microprocessor core which implements a
RISC architecture conforming to the SPARC v8 definition
[12]. It's a synthesizable core written in VHDL and can be
implemented both on FPGAs and ASICs. It's distributed under
the terms of the GNU GPL license so it is an open hardware
[13] and it is specifically designed for embedded applications.
It was originally developed by the European Space Agency and
nowadays it is maintained by Gaisler Research. Because of the
viral nature of the GPL licensing scheme, Gaisler recently
offers also an option to get a commercial license for LEON3 so
the source code developed within a project with this core
doesn’t have to be distributed.

The LEON3 32-bit core implements the full SPARC v8
standard, it uses big-endian byte ordering, has 32-bit internal
registers, 72 different instructions in 3 different instruction
formats and 3 addressing modes (immediate, displacement and
indexed). It implements signed and unsigned multiply, divide
and MAC operations and has a 7-stage instructions pipeline. It
also implements two separate instruction and data cache
interfaces, known as Harvard Architecture [14].

Figure 1: LEON microprocessor system architecture
(taken from [5])

A typical LEON3 configuration block diagram for a SoC
application is shown in Figure 1. Many of those blocks are
optional and can be removed from the model our concrete
application implements.

The VHDL model is fully synthesizable with most of the
commonly synthesis tools, it is very configurable and it uses
the AMBA-2.0 AHB/APB on-chip buses, which makes it easy
to extend its functionality. All this features makes LEON3 an
ideal microprocessor for System-on-Chip applications.

SPARC v8 processor defines three main units, integer unit,
floating-point unit and a custom co-processor, each one with its
own 32-bit internal registers. The later two units are optional,
not mandatory for the processor to be SPARC complaint.
LEON3 implements the integer unit completely and the
interfaces for the other two units in its core. LEON3 also can
provide a generic interface for a custom user-defined co-
processor which will work in parallel with the main processor
in order to increase performance.

LEON3 uses the AMBA-2.0 AHB [15] bus to connect the
main processor with high-speed controller like cache and
memory ones and other optional units like the onchip RAM or
PCI or Ethernet interfaces.

Another AMBA-2.0 bus is used to access most on-chip
peripherals, the APB bus. It's optimized for simple operation
and low-power consumption and it's connected to the AHB via
the AHB/APB Bridge, which is the master of that bus. This bus
is what we pretend to connect the UART 16550 core with.

LEON3 external memory access is provided by a
programmable memory controller with interfaces to PROM,
SRAM, SSRAM, DDR & SDRAM chips, providing also
memory mapped I/O operation. The controller can decode a
map of up to 2 Gbytes.

Linux is supported in LEON by a particular release of the
SnapGear Embedded Linux distribution, and it can be run two
different kernels, regular Linux 2.6 for cores with Memory
Management Unit (MMU) implemented in hardware, and also
ucLinux 2.0, a modified version targeted for embedded
processors without the MMU. It includes also some usual
libraries and other tools to build embedded systems with Linux.
It has support for the hardware multiplier/divider and also the
hardware floating point unit.

On top of our core system we have implemented an open-
source Debian distribution with a Linux 2.6 kernel, with all the
necessary drivers to interact with each single peripheral for the
microprocessor. Finally, user-space applications running on the
OS will interact with this system through the system calls the
kernel and base libraries it provides.

In order to get a full Linux distribution like Debian running
on top of the FPGA development board, we have interfaced a
Compact Flash card reader to the FPGA and used it via the
standard IDE protocol as a regular hard disk, so the installation
process worked the same as on a PC platform, and after that,
also the regular boot process for everyday use during the
development of the whole application. The complete details for

the process of integration of both Linux and LEON platforms is
described in [10].

On Figure 2 a full system overview is shown, from the
silicon pieces in the lower level up to the user applications on
the top.

III. ADDING AN UART 16550 TO LEON PLATFORM

First of all, after some researching we decided to integrate an
UART 16550 to LEON microprocessor to get a fully capable
UART instead of the single one included in the core, and we
planned to use one of freely available cores on the OpenCores
community. In the first place, it should be necessary to adapt
the UART 16550 from OpenCores to our SoC internal bus.

Most peripherals available on OpenCores implement the
WishBone interconnection architecture, a open hardware bus
solution, created and specified by OpenCores and commonly
used on many embedded systems applications. But LEON
microprocessor, as mention before, uses the AMBA-2.0 AHB
and APB buses internally.

In particular, we pretend to use the AMBA-APB bus for the
new UART 16550, as it is a specific bus for this kind of
relatively slow and simple peripherals. The architecture and
behavior of those buses are quite different in general, being the
most complete and functional the WishBone, but in particular
the writing and reading mechanism of the internal registers are
very similar on AMBA-APB and WishBone. Both buses have a

Figure 2: Hardware and Software global architecture

32-bit address bus and two 32-bit independent data buses
independent for reading and writing operations with the target
peripheral.

In order to create an interface between the buses it is
important to study the single transfer operations to peripherals
on both buses. So, in example, a single read operation is shown
in Figure 3 and Figure 4, for Wishbone and AMBA-APB
respectively.

After a preliminary analysis, it is clear that the main
difference between the two buses architecture lies in the signal
ack_o from the WishBone bus. This signal enables the slave
bus to insert waiting-cycles in the operation, i.e. keep the

master device waiting for the acknowledgement from the slave
peripheral until the operation ends.

However, the AMBA-APB bus does not have this signal
acknowledge, so every operation have always the same
duration. This implies that the master device never have to wait
for the slave peripheral, which must end the operation within
the clock cycles limitation without exception. This difference is
essential when interfacing the communication between the two
buses. Thus, the UART 16550 from OpenCores behaves as a
bus slave peripheral on its operations, with the peculiarity that
makes use of the signal acknowledge readings in the transfers,
i.e. inserting wait states to the master. This UART behaviour
prevents us from doing a simple signal connection between
both buses, only supported by simple combinational logic.
Therefore, in order to fulfil the AMBA-APB bus specifications,
it is necessary to make some major changes in the
implementation of the UART interfacing to Wishbone bus, so
we can remove the need for the insertion of the waiting states
cycles.

Reviewing the implementation of the Wishbone interface
module in the UART core, we noticed that the main cause of
these undesired wait states falls on the sampling of all the
input signals. This sampling and subsequent storage in
intermediate registers, causes a single clock cycle delay at
least. So we have to change this behaviour by eliminating this
sampling, and taking immediately the data received when the
control signals ask the peripheral to do so.

It is also necessary to do a second modification, because of
the disparity between the size of the actual data bus (32-bits)
and the size of the UART control registers (8-bits). So, in our
design the byte address of each word is aligned with the least
significant part of data bus. Thus, addressing for these registers
will be made by transferring 32 bits in each access and so
address for the next registered will be 4 bytes above. Therefore,
on each access to our peripheral registers we have to ignore the
two least significant bits of the address bus that arrives from
the AMBA-APB.
From the standpoint of hardware description language, It is
necessary to modify the peripheral core to include a higher
level wrapper which supply this functionality. This entity will
help us make sense of alignment between the signals of both
buses and to generate information for Plug & Play system that
LEON introduces. The majority of connections are conducted
in a direct way, except for some control signals such as reset
signal to be inverted or the generation of signals stb_i and
cyc_i, which control the transfer cycle and the cycle bus
respectively and will be produced by the device signal
selection apb_psel.

Plug & Play information added to the system will enable the
identification and allocation map directions peripherals
automatically.

Finally we must not forget connecting the interrupt signal of
the UART with a free line of the interrupt controller system.
In the software side, this UART model is supported by the
regular Linux kernel driver called 8250.c. This driver is ready
for various architectures like x86, but not for the SPARC
architecture, implemented by the Leon microprocessor.

Figure 3: WishBone Single-Read operation
(taken from [16])

Figure 4: AMBA-APB Read operation
(taken from [15])

Therefore it is necessary to modify and adapt the driver for an
usable operation.

First, we must modify the building scripts within the kernel
sources to allow the inclusion of this driver in the
configuration. Once that is completed, we have to adapt the
driver source files, starting from the file of register definitions,
called serial_reg.h. We must change de UART register offsets
so it because the AMBA-APB to WishBone address adapter is
routed with 2 bits displacement, as discused above, we have to
update it for this purpose (multiplying each register address by
four).

Moreover, the behaviour of this driver is to try to locate the
UART peripheral by probing the addressing where they are
usually found for each system architecture. This information is
contained in the file serial.h, in the asm directory of the
specific architecture. For example, for x86 it contains four
addresses corresponding to the ports from COM1 to COM4
(called /dev/ttyS0 to S3 in Linux), with map addresses ranging
from 0x3F8 for COM1 to 0x2E8 for COM4.

At this point we should choose between using the search
functions for system devices provided by the Plug & Play
mechanism, or by allocating a lookup table with fixed
addressing for our new UART 16550 peripheral. For simplicity
the second option was implemented, although it would be
relatively simple to use the first option.

The last source file to amend is the main source driver, the
file 8250.c, where, first, we had to change the functions for
reading and writing in the system bus. These C language
functions we are changing are outb and inb, used for writing
(and reading) bytes to (and from) I/O addressing. The changes
are needed to fulfil the writing procedure on the AMBA-APB
bus, built within the Leon core. These functions are called
leon_bypass_load_pa and leon_bypass_store_pa which are
located in the leon.h source file. Its main task is to perform
non-cached 32-bit readings and writings directly on the
AMBA-APB bus.

A remarkable aspect is to modify the parameter that indicates
the clock frequency that govern the UART, as it is typically

fitted with 1.8432 MHz clock (limiting the top speed of the
UART to 115200 bauds), so that the driver assumes that it is

set to that value. In our design it has been modified to 40 MHz,
which is the main clock speed used by the SOC.

Finally, and perhaps the deepest change, was the bypass of
routine for UART type auto detection, which is linked to the
specific input-output addressing. This is done so because the
UART16550 of OpenCores does not include a scratch register
that is used by the driver solely for the purpose of determining
the exact model UART available on the system. Thus, we
forced the driver to detect the UART as a NS16550A
compatible one.

IV.EXPERIMENTAL RESULTS

After a successful compilation and installation, the Linux
kernel have automatically detected and configured the new
device. As shown on Figure 6, where a snapshot of debug
information is included. information relating to the UART
shown by the Linux kernel in.

The results are quite satisfactory, taking all available features
and characteristics of UARTs from desktops, such as flow
control lines and modem interaction.

Sending and receiving is done in a proper manner on the full
range of standard baudrates. On Figure 5 we show a screen
capture from the oscilloscope on the TX signal while a byte

Leon3Debian:~# dmesg | grep "NS16550A" -C 5
grlib apbUART: system frequency: 40000 khz, baud rates: 38400 38400
ttyS0 at MMIO 0x80000100 (irq = 2) is a Leon
ttyS1 at MMIO 0x80000900 (irq = 3) is a Leon
Serial driver 16550 Opencore/APB, by D.T.E/U.S.
Looking for UART 2 as ttyS2: I/O address 0x80000c00
serial8250: ttyS2 at I/O 0x80000c00 (irq = 11) is a NS16550A
Looking for UART 3 as ttyS3: I/O address: 0x80000d00
serial8250: ttyS3 at I/O 0x80000d00 (irq = 13) is a NS16550A
loop: loaded (max 8 devices)
Probing GRETH Ethernet Core at 0x80000b00
10/100 GRETH Ethermac at [0x80000b00] irq 12. Running 100 Mbps full
duplex
PHY: Vendor 4de Device e Revision 2
Uniform Multi-Platform E-IDE driver Revision: 7.00alpha2
Leon3Debian:~#

Figure 6: Debugging information shown on system boot

Figure 5: Tx signal on character transmission through the UART 16550.

was sent by the UART with a 115200 bauds configuration, 8
data bits, no parity and 1 stop bit (that's 115200@8N1).

This speed can indeed be easily increasedby writing a
smaller value in the register divider clock inside the UART.

V. CONCLUSIONS

This paper has presented the development of a hardware
platform implemented on FPGA. The main feature of this
platform is that is based on open designs. Specifically, the
central part of the system is the soft core microprocessor
LEON. On the software level, a Linux kernel it's running with
the typical software installation of a full Debian distribution
system. This adds another great feature to this platform, as you
can get a lot of functional software in a simple way, by using
the complete, but yet very easy to setup, installation procedure
of these types of Linux distributions.

Moreover, it has been shown the method to be followed to
add new peripherals on this platform introducing the example
of the UART 16550. For this UART, we have employed an
open hardware design, and we have presented the changes in
the hardware and software that has been necessary to make it
fully functional, including the operating system interfacing.

The main conclusion to highlight from this work is that,
indeed, it is feasible to use open designs to implement
industrial systems with the advantages that comes from the
standpoint of the cost of development and extended
functionality without prejudice to the performance.

ACKNOWLEDGMENT

This work has been partially supported by the Ministry of
Education and Culture of the Spanish Government through the
TEC2007-61802/MIC (HIPER) project and the Andalusian
Regional Government's EXC-2005-TIC-1023 project.

REFERENCES

[1] Steve Furber: “ARM system-on-chip architecture, 2nd
edition”, Ed. Addison-Wesley 2000.

[2] “IBM PowerPC Quick Reference Guide”, IBM Corp.
2005.

[3] “NIOS 3.0 CPU Data Sheet”, Altera Corporation, 2004.
[4] “Microblaze Processor Reference Guide”, Xilinx Inc.

2005,http://www.xilinx.com/ise/embedded/mb_ref_guide
.pdf

[5] Jiri Gaisler, Sandi Habinc, Edvin Catovic: “GRLIB IP
Library User's Manual”, Gaisler Research, 2006,
http://www.gaisler.com/products/grlib/grlib.pdf

[6] Damjan Lampret: “OpenRISC 1200 IP Core Specification”
, 2001, http://www.OpenCores.org/cvsget.cgi/or1k/or1200/
doc/or1200_spec.pdf

[7] Telvent E.M.A.S.A., http://www.telvent.com/
[8] Guadaltel S.A., http://www.guadaltel.com/
[9] Debian GNU/Linux distribution, http://www.debian.org/

intro/about
[10] A. Muñoz, E. Ostua, etc al.: “Un ejemplo de implantación

de una distribución Linux en un SoC basado en hardware
libre”, III JCRA Workshop on Reconfigurable Computing
and Applications, pp. 85-92, Zaragoza (Spain), 2007.

[11] OpenCores, http://www.OpenCores.org/
[12] “The SPARC Architecture Manual, Version 8”, SPARC

International Inc., 1992.
[13] Graham Seaman: “Free Hardware: Past, Present &

Future”, Erste Oekonux Konferenz, 2002.
[14] John L. Hennessy, David A. Patterson: “Computer

Architecture: A Quantitative Approach”, Morgan
Kaufmann Publishers, Inc., 1990

[15] “AMBATM Specification (Rev 2.0)”. ARM Ltd
corporation,1999. http://www.arm.com/products/
solutions/AMBA_Spec.html

[16] “WISHBONE SoC Architecture Specification, Rev. B.3”
OpenCores Organization, http://www.OpenCores.org

