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Abstract. Let ν be a vector measure with values in a Banach space Z. The
integration map Iν : L1(ν) → Z, given by f �→ ∫

f dν for f ∈ L1(ν), always

has a formal extension to its bidual operator I∗∗
ν : L1(ν)∗∗ → Z∗∗. So, we may

consider the “integral” of any element f∗∗ of L1(ν)∗∗ as I∗∗
ν (f∗∗). Our aim

is to identify when these integrals lie in more tractable subspaces Y of Z∗∗.
For Z a Banach function space X, we consider this question when Y is any
one of the subspaces of X∗∗ given by the corresponding identifications of X,
X ′′ (the Köthe bidual of X) and X ′∗ (the topological dual of the Köthe dual
of X). Also, we consider certain kernel operators T and study the extended
operator I∗∗

ν for the particular vector measure ν defined by ν(A) := T (χA).
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Introduction

The general theory of vector measures and integration with respect to them is well
established; see [1,19,20,29], for example. In recent years it has become evident
that many classical operators from various branches of analysis can be viewed as
integration operators with respect to suitable vector measures; see [7–10,14,15,24,
27] and the references therein, for example. Accordingly, such integration operators
are becoming objects of ever finer investigations.

Recall, for a vector measure ν defined on a measurable space (Ω,Σ) and with
values in a Banach space Z, that a measurable function f : Ω → R is scalarly
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ν–integrable whenever
∫

Ω

|f | d|z∗ν| < ∞, z∗ ∈ Z∗;

here Z∗ is the dual Banach space of Z and |z∗ν| denotes the variation of the
scalar-valued measure z∗ν : A �→ 〈z∗, ν(A)〉 for A ∈ Σ. This is the case if and only
if

‖f‖ν := sup
‖z∗‖≤1

∫

Ω

|f | d|z∗ν| < ∞. (1)

Moreover, the space L1
w(ν) of all such scalarly ν–integrable functions (modulo ν–

null functions) is a Banach space for the norm (1), [30]. Actually, for the pointwise
ν–a.e. order on Ω, the space L1

w(ν) is a Banach lattice. Let f ∈ L1
w(ν). If, for each

A ∈ Σ, there exists a vector in Z (denoted by
∫

A
f dν) satisfying

〈

z∗,
∫

A

f dν

〉

=
∫

A

f dz∗ν, z∗ ∈ Z∗, (2)

then f is called ν–integrable. The space of all such ν–integrable functions f is
denoted by L1(ν) and forms a closed ideal in L1

w(ν) which, depending on ν and
Z, may be proper. In this case, given f ∈ L1

w(ν) \ L1(ν), the condition (2) is
meaningless because the integral “

∫
A

f dν” is not available in Z. Of course, via a
typical approximation and uniform boundedness argument it follows from (1) that
there does exist a vector “

∫
A

f dν” ∈ Z∗∗ satisfying
〈

z∗, “
∫

A

f dν”
〉

=
∫

A

f dz∗ν, z∗ ∈ Z∗.

If Iν : L1(ν) → Z denotes the integration operator f �→ ∫
Ω

f dν, then its bidual
operator I∗∗

ν : L1(ν)∗∗ → Z∗∗ satisfies

〈I∗∗
ν (f), z∗〉 =

∫

Ω

f dz∗ν, z∗ ∈ Z∗,

whenever f ∈ L1(ν). However, for f ∈ L1
w(ν) \ L1(ν), what is the connection

(if any) between the vector “
∫
Ω

f dν” ∈ Z∗∗ and the operator I∗∗
ν , that is, does

there exist νf ∈ L1(ν)∗∗ satisfying “
∫
Ω

f dν” = I∗∗
ν (νf ) and if so, is it unique and

what properties does it have? For a finer analysis of the operator Iν such types of
questions become crucial.

In general, the approach via duality alone throws no light on this question. To
make some headway, we first note that both L1

w(ν) and L1(ν) are Banach function
spaces (briefly, B.f.s.), relative to any control measure for ν; this approach was
systematically used and exposed in [3–5] and has been very useful ever since. It
makes available the results, methods and techniques of a rich theory developed
by W. Luxemburg, A. Zaanen and others in the 1960’s and beyond. A second
relevant point occurs more recently and makes the connection between L1(ν) and
L1

w(ν) explicit: the Köthe bidual of the B.f.s. L1(ν), denoted by L1(ν)′′, is precisely
L1

w(ν), [9]. This merges various aspects of the theory of B.f.s.’ with those from the



theory of vector measures and integration, thereby providing a combined approach
for attacking the above problem. This requires some further explanation.

Suppose that the range space Z of ν is a Banach lattice E. Then the dual
Banach lattice E∗ has a decomposition E∗ = E∗

n ⊕ E∗
s , where E∗

n (resp. E∗
s ) is

the band of all order continuous (resp. singular) functionals on E. Passing to the
bidual we have the band decomposition

E∗∗ 
 (E∗
n)∗

n ⊕ (E∗
n)∗

s ⊕ (E∗
s )∗

n ⊕ (E∗
s )∗

s . (3)

More specifically, if E is a B.f.s. X, then X∗
n corresponds to the Köthe dual X ′ of X

via a suitable isometric order isomorphism. Moreover, the Banach lattice dual X ′∗

of the B.f.s. X ′ can be naturally identified with the band [X ′∗ ] 
 (X∗
n)∗

n ⊕ (X∗
n)∗

s

in X∗∗. Similarly, the Köthe bidual X ′′ can be identified in a natural way with the
band [X ′′ ] 
 (X∗

n)∗
n in X∗∗. Finally, there is the standard isometric imbedding jX

of X into X∗∗; its image jX(X) is denoted by [X ]. If Xa denotes the closed ideal
of all order continuous (briefly, o.c.) elements of X and [Xa ] := jX(Xa), then we
have the containments

[Xa ] ⊆ [X ′′ ] ⊆ [X ′∗ ] ⊆ X∗∗.

As noted above, for a vector measure ν : Σ → X both of the spaces L1(ν) and
L1

w(ν) are B.f.s.’. Moreover, L1(ν) is always o.c., that is, L1(ν)a = L1(ν). Recalling
that L1

w(ν) = L1(ν)′′ we see that the previous containments specialize to

[L1(ν) ] ⊆ [L1
w(ν) ] ⊆ [L1(ν)′∗ ] = L1(ν)∗∗,

where the equality is due to the fact that for any B.f.s. X which is o.c., we have
X∗

s = {0} and so (from (3)) it follows that X∗∗ 
 (X∗
n)∗

n⊕(X∗
n)∗

s 
 [X ′∗ ]. The aim
of this paper then becomes clear: where and when, amongst the spaces [Xa ], [X ],
[X ′′ ] and [X ′∗ ], is the image of the spaces [ L1(ν) ] and [L1

w(ν) ] under the bidual
map I∗∗

ν ? Can the restriction of I∗∗
ν to [L1

w(ν) ] be considered as an extension of
the integration map Iν : L1(ν) → X? And, so on.

Special cases already give some clues for ν taking values in a general Banach
space Z. For instance, if L1(ν) is reflexive then, of course, I∗∗

ν (L1(ν)∗∗) ⊆ [Z ].
But, I∗∗

ν can then be considered as being equal to Iν and so, is not an “extension”
of Iν . On the other hand, if Iν is weakly compact, then Gantmacher’s theorem,
[17, Theorem VI.4.2], tells us that again I∗∗

ν (L1(ν)∗∗) ⊆ [Z ]. However, if L1(ν)
is not reflexive, then I∗∗

ν is a genuine extension of Iν still taking all of its values
in [Z ]. Moreover, if Iν is a compact operator, then the variation measure |ν| of ν
is a finite positive measure and L1(ν) = L1(|ν|), [28]. In this case, L1(ν) has the
Fatou property. We extend this observation to a general characterization, namely,
L1(ν) has the Fatou property if and only if I∗∗

ν ([L1
w(ν) ]) ⊆ [Z ]. And, so on.

A particular (but, important) class of vector measures ν is that generated
by certain X–valued kernel operators T via ν(A) := T (χA). Such operators have
associated with them an optimal domain space [T,X ] := {f : T |f | ∈ X} with
the property that T has a continuous X–valued extension to [T,X ] and [T,X ] is
the maximal B.f.s. with this property. It is known that L1(ν) ⊆ [T,X ] ⊆ L1

w(ν),



typically with strict inclusions, and that T (f) = Iν(f) for f ∈ L1(ν), [7,9]. So,
for such ν there is the additional B.f.s. [T,X ] available which has no analogue
for general vector measures. In Section 3 we analyze the relationships between I∗∗

ν

and the operator T : [T,X ] → X and, in particular, the problem of when I∗∗
ν is

an extension of T : [T,X ] → X.

1. Preliminaries

For a vector measure ν, the natural setting for L1(ν) is the class of B.f.s.’. In
this section we introduce B.f.s.’ and the spaces L1(ν). The latter part is devoted
to presenting results (some known) on decompositions of the bidual of a Banach
lattice and of a B.f.s. Due to their importance in the paper, their subtle nature,
and the difficulty of finding clear references, we have decided to present them in
detail. For ease of reading, longer proofs have been transferred to an Appendix.

Recall that a Banach lattice E is order continuous if all order bounded,
increasing sequences are norm convergent. It has the Fatou property if for every
upwards directed system 0 ≤ eα ↑ in E with supα ‖eα‖E < ∞, there exists e ∈ E+

(the positive cone of E) such that eα ↑ e and ‖eα‖E ↑ ‖e‖E .
Let (Ω,Σ, μ) be a σ–finite measure space. Denote by M the space of (classes

of) measurable finite real functions. A Banach function space relative to μ is a
Banach space X contained in M such that if f ∈ M with |f | ≤ |g| μ–a.e. for some
g ∈ X, then f ∈ X and ‖f‖X ≤ ‖g‖X . Note that a B.f.s. is a Banach lattice for
the μ–a.e. pointwise order. A B.f.s. X has the Fatou property if, for every sequence
(fn) ⊆ X+ with supn ‖fn‖X < ∞ that increases μ–a.e. to f , we have that f ∈ X
and ‖fn‖X ↑ ‖f‖X .

Let (Ω,Σ) be a measurable space and Z be a Banach space; its unit ball is
denoted by BZ . A set function ν : Σ → Z is a vector measure if

∑
ν(An) converges

to ν(∪An) in X for every sequence (An) of disjoint sets in Σ. A set A ∈ Σ is ν–null
if ν(B) = 0 for all B ∈ Σ, B ⊆ A. A property holds ν–almost everywhere (ν–a.e.) if
it holds except on a ν–null set. As noted in the Introduction, the spaces L1

w(ν) and
L1(ν) are Banach spaces when equipped with the norm (1). For simplicity,

∫
Ω

f dν

will be denoted by
∫

f dν. The Σ–simple functions are always dense in L1(ν). If
Z does not contain a copy of the sequence space c0, then L1(ν) = L1

w(ν), [20]. By
choosing a Rybakov control measure μ = |z∗

0ν| for ν, for a suitable z∗
0 ∈ Z∗, [16,

Ch. IX, §2], both L1
w(ν) and L1(ν) can be considered as B.f.s.’ relative to μ. The

space L1
w(ν) always has the Fatou property and L1(ν) is always o.c. The integration

operator Iν : L1(ν) → Z, defined by Iν(f) :=
∫

f dν, is linear and continuous with
‖ ∫

f dν‖Z ≤ ‖f‖ν for f ∈ L1(ν). For more detailed information on the spaces
L1(ν) and L1

w(ν) and the integration map Iν we refer to [3–5,9,12,13,25,28,29],
for example.

For the general theory and basic facts about Banach lattices, see the
monographs [21–23,32], for example. The dual space E∗ of a Banach lattice E
is also a Banach lattice for the order defined via e∗ ≥ 0 iff 〈e∗, e〉 ≥ 0 for all



e ∈ E+. As already noted E∗ = E∗
n ⊕ E∗

s , where E∗
n is the space of all order con-

tinuous functionals on E (i.e. those e∗ ∈ E∗ such that infα |〈e∗, eα〉| = 0 whenever
eα ↓ 0 in E) and E∗

s is the space of all singular functionals on E (i.e. those e∗ ∈ E∗

such that |e∗| ∧ |y∗| = 0 for all y∗ ∈ E∗
n).

Given F ⊆ E∗, we write ⊥F = {e ∈ E : 〈e∗, e〉 = 0 for all e∗ ∈ F} and F⊥ =
{e∗∗ ∈ E∗∗ : 〈e∗∗, e∗〉 = 0 for all e∗ ∈ F}. Let Ea denote the ideal consisting of
the elements in E which have o.c. norm (i.e. those e ∈ E such that if |e| ≥ eα ↓ 0
then ‖eα‖E ↓ 0). Then

Ea = ⊥(E∗
s ).

The following conditions are equivalent to E being o.c.:

Ea = E ⇔ E∗
n = E∗ ⇔ E∗

s = {0} ⇔ (E∗
s )⊥ = E∗∗.

The following standard fact is recorded for later use.

Lemma 1.1. Let Z be a Banach space which is the direct sum of two closed
subspaces, i.e. Z = Z1 ⊕ Z2. Then

Z∗ = πZ∗
1
(Z∗

1 ) ⊕ πZ∗
2
(Z∗

2 ),

where πZ∗
i
: Z∗

i → Z∗ is defined by πZ∗
i
(z∗) = z∗ ◦ PZi

for z∗ ∈ Z∗
i , and PZi

is the
projection of Z onto Zi for i = 1, 2.

By applying Lemma 1.1 to E∗ = E∗
n ⊕ E∗

s we get the following result.

Proposition 1.2. Let E be a Banach lattice. Then

E∗∗ = π(E∗
n)∗ ((E∗

n)∗
n) ⊕ π(E∗

n)∗ ((E∗
n)∗

s) ⊕ π(E∗
s )∗ ((E∗

s )∗
n) ⊕ π(E∗

s )∗ ((E∗
s )∗

s) .

Moreover, we also have

(E∗)∗
n = π(E∗

n)∗ ((E∗
n)∗

n) ⊕ π(E∗
s )∗ ((E∗

s )∗
n) ,

(E∗)∗
s = π(E∗

n)∗ ((E∗
n)∗

s) ⊕ π(E∗
s )∗ ((E∗

s )∗
s) ,

π(E∗
n)∗ ((E∗

n)∗
n) = (E∗)∗

n ∩ (E∗
s )⊥.

Less formally, the above decomposition of E∗∗ can be written as (3).
A Banach space Z can be considered as a closed subspace of Z∗∗, namely,

via the isometric imbedding jZ : Z → Z∗∗ where, for every z ∈ Z, we have

〈jZ(z), z∗〉 = 〈z∗, z〉, z∗ ∈ Z∗.

If Z = E is a Banach lattice, then jE is also an order homomorphism and so the
order of E is transferred to the order of E∗∗. Typically jE(E) need not be an ideal
in E∗∗; this is the case if and only if E is o.c., [21, Theorem 1.b.16]. We note, for
any Banach lattice E, that

jE(E) ⊆ (E∗)∗
n

always holds. Indeed, it suffices to show that jE(E+) ⊆ (E∗)∗
n. But, if e ∈ E+ and

e∗
α ↓ 0 in E∗, then 〈jE(e), e∗

α〉 = 〈e∗
α, e〉 ↓ 0.

The following useful result shows the relationship amongst various subspaces
of E∗∗; for the proof we refer to the Appendix.



Proposition 1.3. For a Banach lattice E we have

jE(Ea) ⊆ π(E∗
n)∗ ((E∗

n)∗
n) ⊆ π(E∗

n)∗ ((E∗
n)∗) = (E∗

s )⊥ ⊆ E∗∗. (4)

Moreover, the following assertions hold.
(i) Let ⊥(E∗

n) = {0}. Then the equality jE(Ea) = π(E∗
n)∗ ((E∗

n)∗
n) holds if and

only if E is o.c. and has the Fatou property.
(ii) π(E∗

n)∗ ((E∗
n)∗

n) = (E∗
s )⊥ if and only if E∗

n is o.c.
(iii) jE(E) ∩ (E∗

s )⊥ = jE(Ea).

Standard references for B.f.s.’ are the monographs [21,22], [31, Ch.15]. Let
X be a B.f.s. over (Ω,Σ, μ) in which case X∗ is a Banach lattice but, it may fail to
be a B.f.s. (e.g. X = L∞ ([0, 1])). Recall that the Köthe dual (or associate space)
of X is defined by

X ′ =
{

x′ ∈ M :
∫

|x · x′| dμ < ∞ for all x ∈ X

}

.

We assume that X is saturated, i.e. given A ∈ Σ with μ(A) > 0 there exists B ∈ Σ
with B ⊆ A such that μ(B) > 0 and χB ∈ X, [31, Ch. 15]. In this case, X ′ is also
a B.f.s. relative to μ (with the Fatou property) when it is endowed with the norm

‖x′‖X′ := sup
x∈BX

∣
∣
∣

∫
x · x′ dμ

∣
∣
∣.

The Köthe bidual of X, denoted by X ′′, is the Köthe dual of the B.f.s. X ′ and is
equipped with the norm

‖x′′‖X′′ := sup
x′∈BX′

∣
∣
∣

∫
x′ · x′′ dμ

∣
∣
∣.

Moreover, we have the following Hölder type inequality
∣
∣
∣

∫
x′ · x dμ

∣
∣
∣ ≤ ‖x‖X · ‖x′‖X′ , x ∈ X, x′ ∈ X ′.

In addition, ‖x‖X′′ ≤ ‖x‖X , i.e. X is continuously contained in X ′′ (via the identity
map) and X is an ideal in X ′′. The equality X = X ′′ holds if and only if X has the
Fatou property, in which case the norms coincide. If X ′ ⊆ X∗ is norming, then the
norms of X and X ′′ coincide on X, i.e. X is isometrically isomorphic to a closed
ideal of X ′′.

The associate space X ′ can be identified with the band X∗
n in X∗ via the

linear isometry η
X′ : X ′ → X∗ where, for x′ ∈ X ′,

η
X′ (x′) : x �→ 〈η

X′ (x′), x〉 =
∫

x · x′ dμ, x ∈ X.

That is, η
X′ (X ′) = X∗

n and

‖η
X′ (x′)‖X∗ = ‖x′‖X′ , x′ ∈ X ′.

In particular, η
X′ is injective and hence, is an isomorphism of X ′ onto X∗

n. Even
more, η

X′ is an order isomorphism of X ′ onto X∗
n (i.e. preserves the order), since



it is a positive operator. So, X ′ and X∗
n coincide as Banach lattices. Note that η

X′
is surjective, that is, η

X′ (X ′) = X∗, if and only if X∗
n = X∗ or, equivalently, if and

only if X is o.c.
Analogously, X ′′ can be identified with the band (X ′)∗

n in X ′∗ via the linear
isometry η

X′′ : X ′′ → X ′∗ where, for x′′ ∈ X ′′,

η
X′′ (x′′) : x′ �→ 〈η

X′′ (x′′), x′〉 =
∫

x′ · x′′ dμ, x′ ∈ X ′.

Then, we have
‖η

X′′ (x′′)‖X′∗ = ‖x′′‖X′′ , x′′ ∈ X ′′.
Let us see how X ′∗ (the Banach lattice dual of the B.f.s. X ′) can be identified

with a band in X∗∗. Recall that X∗ = X∗
n ⊕ X∗

s . In this setting, since B.f.s.’ are
always super Dedekind complete, [22, pp. 126–127], o.c. functionals on X can be
defined via sequences (i.e. x∗ ∈ X∗ belongs to X∗

n if infn |x∗(xn)| = 0 whenever
xn ↓ 0 in X), [32, Theorem 84.4(i)]. Let

PX∗
n
: X∗ → X∗

n

denote the band projection of X∗ onto X∗
n; it is also an order homomorphism.

Note that

‖PX∗
n
(x∗)‖X∗ ≤ ‖x∗‖X∗ , x∗ ∈ X∗.

Then, the linear map ΠX′∗ : X ′∗ → X∗∗ defined by

ΠX′∗(z) = z ◦ η−1
X′ ◦ PX∗

n
, z ∈ X ′∗, (5)

gives the required identification.
The proof of the following result is given in the Appendix.

Proposition 1.4. Let X be a B.f.s. The following assertions hold for the map
ΠX′∗ : X ′∗ → X∗∗.
(i) ΠX′∗ is an isometry, i.e.

‖ΠX′∗(z)‖X∗∗ = ‖z‖X′∗ , z ∈ X ′∗,

and hence, ΠX′∗(X ′∗) is a closed subspace of X∗∗.
(ii) The equality

ΠX′∗(X ′∗) = (X∗
s )⊥,

holds. In particular, ΠX′∗(X ′∗) is a band (hence, ideal) in X∗∗.

Observe that X ′′ can also be identified with a closed subspace (actually, a
band) in X∗∗ because the composition (of isometries)

X ′′ ΠX′∗ ◦ η
X′′ � X∗∗

η
X′′
�

�
��

X ′∗ �
�

��
ΠX′∗



is an isometry, that is,

‖ΠX′∗ ◦ η
X′′ (z)‖X∗∗ = ‖z‖X′′ , z ∈ X ′′.

For reasons of clarity, the relevant identifications of each of the above sub-
spaces within X∗∗ is indicated by the following notation:

(I) [X ′∗ ] := ΠX′∗(X ′∗) = (X∗
s )⊥,

(II) [X ′′ ] := ΠX′∗ ◦ η
X′′ (X ′′),

(III) [X ] := jX(X),
(IV) [Xa ] := jX(Xa).

Remark 1.5. Care should be taken on how subspaces of X∗∗ are identified. It can
happen that jX(X) does not coincide with ΠX′∗ ◦ η

X′′ (X). Indeed, the contain-
ments Xa ⊆ X ⊆ X ′′ imply that

ΠX′∗ ◦ η
X′′ (Xa) ⊆ ΠX′∗ ◦ η

X′′ (X) ⊆ ΠX′∗ ◦ η
X′′ (X ′′) = [X ′′ ].

Consider any element x ∈ X. Then, for x∗ = x∗
n + x∗

s ∈ X∗ with x∗
n ∈ X∗

n and
x∗

s ∈ X∗
s , we have

〈ΠX′∗ ◦ η
X′′ (x), x∗〉 = 〈η

X′′ (x) ◦ η−1
X′ ◦ PX∗

n
, x∗〉 = 〈η

X′′ (x), η−1
X′ (x∗

n)〉

=
∫

x · η−1
X′ (x∗

n) dμ = 〈η
X′

(
η−1

X′ (x∗
n)

)
, x〉 = 〈x∗

n, x〉
= 〈PX∗

n
(x∗), x〉 = 〈jX(x), PX∗

n
(x∗)〉 = 〈jX(x) ◦ PX∗

n
, x∗〉,

that is, ΠX′∗ ◦ η
X′′ (x) = jX(x) ◦ PX∗

n
as elements of X∗∗. However, if x ∈ Xa =

⊥(X∗
s ), then ΠX′∗ ◦η

X′′ (x) = jX(x) since 〈jX(x), x∗〉 = 〈jX(x), x∗
n〉+〈jX(x), x∗

s〉 =
〈jX(x) ◦ PX∗

n
, x∗〉 for every x∗ ∈ X∗ (as 〈jX(x), x∗

s〉 = 〈x∗
s, x〉 = 0). Thus,

ΠX′∗ ◦ η
X′′ (Xa) = [Xa ], (6)

and
ΠX′∗ ◦ η

X′′ (X) = {jX(x) ◦ PX∗
n

: x ∈ X}. (7)
So, jX(X) may not equal ΠX′∗ ◦ η

X′′ (X), that is, the image of X in X∗∗ via jX

may not coincide with the image of X in X∗∗ via ΠX′∗ ◦ η
X′′ . Indeed, from (6)

and (7) we have

[X ] ∩ (
ΠX′∗ ◦ η

X′′ (X)
)

= [Xa ].

Hence, jX(X) = ΠX′∗◦η
X′′ (X) if and only if X = Xa, that is, if and only if X is o.c.

Actually, these two spaces can even be “disjoint”, as in the case of X = L∞([0, 1])
for which Xa = {0}.

The spaces [ X ′∗ ] and [X ′′ ] can also be described in terms of the spaces
forming the band decomposition of X∗∗ given in Proposition 1.2. The notation of
the following result is that of Lemma 1.1; for the proof we refer to the Appendix.

Proposition 1.6. For a B.f.s. X the following formulae hold.
(i) [X ′′ ] = π(X∗

n)∗ ((X∗
n)∗

n).
(ii) [X ′∗ ] = [X ′′ ] ⊕ π(X∗

n)∗ ((X∗
n)∗

s).



(iii) X∗∗ = [X ′∗ ] ⊕ π(X∗
s )∗ ((X∗

s )∗).
(iv) X∗∗ = [X ′′ ] ⊕ π(X∗

n)∗ ((X∗
n)∗

s) ⊕ π(X∗
s )∗ ((X∗

s )∗).

Some special cases of Proposition 1.6 are not without interest. For instance,
if the Banach lattice X∗

n is o.c., but X∗
s �= {0} (e.g. X = �∞ or X = L∞([0, 1])),

then (X∗
n)∗

s = {0} and so Proposition 1.6 yields

[X ′∗ ] = [X ′′ ] = π(X∗
n)∗ ((X∗

n)∗
n) and X∗∗ = [X ′′ ] ⊕ π(X∗

n)∗ ((X∗
s )∗) .

The following result follows from Propositions 1.3 and 1.6 together with the
fact that, for a B.f.s. X, we always have ⊥(X∗

n) = {0} (which follows from X ′ 
 X∗
n

and [31, Ch. 15, §69, Theorem 1]).

Proposition 1.7. For a B.f.s. X the following containments hold.

[Xa ] ⊆ [X ′′ ] ⊆ [X ′∗ ] ⊆ X∗∗. (8)

Moreover, we have:
(i) [Xa ] = [X ′′ ] if and only if X is o.c. and has the Fatou property.
(ii) [X ′′ ] = [X ′∗ ] if and only if X ′ is o.c.
(iii) [X ′∗ ] = X∗∗ if and only if X is o.c.
(iv) [X ] ∩ [X ′∗ ] = [Xa ].

Even though always X ⊆ X ′′ ⊆ X ′∗ and [Xa ] ⊆ [X ′∗ ], the space [ X ] may
not be contained in [X ′∗ ]. From Proposition 1.7(iv), this is the case if and only if
[Xa ] = [X ], that is, if and only if Xa = X, i.e. X is o.c.

We now show that various inclusions in (8) can be strict.

Example 1.8. (i) The spaces X = Lp([0, 1]) for 1 < p < ∞ are o.c., have the
Fatou property, and X ′ is o.c. Hence,

[Xa ] = [X ] = [X ′′ ] = [X ′∗ ] = X∗∗.

Of course, for any B.f.s. X the above properties are equivalent to its reflex-
ivity, [31, Ch. 15, §73, Theorem 2].

(ii) The space X = L1([0, 1]) is o.c., has the Fatou property, and X ′ = L∞([0, 1]).
So, we have

[Xa ] = [X ] = [X ′′ ] � [X ′∗ ] = X∗∗.

(iii) For X = L∞([0, 1]), we have X ′ = L1([0, 1]) is o.c. and so

[X ′′ ] = [X ′∗ ] � X∗∗.

Moreover, [Xa ] = {0} and hence, [X ] is “disjoint” with [X ′∗ ]; see
Proposition 1.7(iv).

(iv) Let X = Lp,∞([0, 1]) with 1 < p < ∞. Then X is not o.c. but, X ′ =
Lp′,1[0, 1] (with 1

p + 1
p′ = 1) is o.c. (see [2, §IV.4]), and so

[Xa ] � [X ′′ ] = [X ′∗ ] � X∗∗.

Note that [Xa ] �= {0}, since Xa coincides with the closure of the simple
functions in X, and that [Xa ] � [X ], since X is not o.c.



(v) For 1 < p < ∞, let X = {f ∈ Lp,∞([0, 1]) : limt→+0 t1/pf∗(t) = 0}. Then
X is o.c. (because it is the o.c.–part of the B.f.s. in part (iv), [18, §II.5.3]).
Moreover, X fails the Fatou property and X ′ = Lp′,1([0, 1]) ( 1

p + 1
p′ = 1) is

o.c. Hence,

[Xa ] = [X ] � [X ′′ ] = [X ′∗ ] = X∗∗.

Of course, c0 exhibits the same features.

2. Where are the integrals?

Let Z be a Banach space and ν : Σ → Z be a vector measure. The integration
operator Iν : L1(ν) → Z is extended by its bidual operator I∗∗

ν : L1(ν)∗∗ → Z∗∗ in
the sense of the following factorization diagram:

L1(ν)∗∗ I∗∗
ν � Z∗∗

jL1(ν) �

L1(ν)
Iν � Z

�jZ

So, we may define the generalized integral of z ∈ L1(ν)∗∗ as I∗∗
ν (z). Note, for every

f ∈ L1(ν), that we have

I∗∗
ν

(
jL1(ν)(f)

)
= jZ (Iν(f)) . (9)

Our aim in this section is to locate where the image of various subspaces of
L1(ν)∗∗, under I∗∗

ν , lie within Z∗∗. For example, [L1
w(ν) ] lies between [L1(ν) ] and

L1(ν)∗∗. Where does I∗∗
ν ([L1

w(ν) ]) lie within Z∗∗? When Z is a B.f.s. X, one may
ask: when do the generalized integrals lie in the subspaces [ Xa ], [X ], [X ′′ ], [X ′∗ ]
of X∗∗?

The first relevant observation is that L1
w(ν) = L1(ν)′′, [9], and

[L1(ν)a ] = [L1(ν) ] ⊆ [L1(ν)′′ ] = [L1
w(ν) ] ⊆ [L1(ν)′∗ ] = L1(ν)∗∗, (10)

after recalling that L1(ν) is o.c. and using Proposition 1.7.
It is time to consider the dual operator I∗

ν : Z∗ → L1(ν)∗. For every z∗ ∈ Z∗

the element I∗
ν (z∗) ∈ L1(ν)∗ is given by

〈I∗
ν (z∗), f〉 = 〈z∗, Iν(f)〉 =

∫
f dz∗ν =

∫
f

d(z∗ν)
dμ

dμ (11)

for all f ∈ L1(ν), where d(z∗ν)
dμ is the Radon-Nikodym derivative of the measure z∗ν

with respect to μ (the Rybakov control measure for ν). Note that d(z∗ν)
dμ ∈ L1(ν)′

as
∫

|f |·
∣
∣
∣
d(z∗ν)

dμ

∣
∣
∣ dμ =

∫
|f | d|z∗ν| < ∞, f ∈ L1(ν).



According to (11) we have

〈I∗
ν (z∗), f〉 =

〈

η
L1(ν)′

(
d(z∗ν)

dμ

)

, f

〉

, f ∈ L1(ν),

that is, the dual operator of Iν is precisely given by

I∗
ν (z∗) = η

L1(ν)′

(
d(z∗ν)

dμ

)

, z∗ ∈ Z∗. (12)

The following technical result shows how the generalized integral of an ele-
ment from [L1

w(ν) ] ⊆ L1(ν)∗∗ acts on Z∗.

Lemma 2.1. Let Z be a Banach space and ν : Σ → Z be a vector measure. If
g ∈ L1

w(ν), then

〈I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, z∗〉 =
∫

g dz∗ν, z∗ ∈ Z∗.

Proof. Fix g ∈ L1
w(ν) = L1(ν)′′. Recall from (II) that ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g) ∈
L1(ν)∗∗ with I∗∗

ν (ΠL1(ν)′∗ ◦ η
L1(ν)′′ (g)) ∈ Z∗∗. For z∗ ∈ Z∗,

〈I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, z∗〉 = 〈ΠL1(ν)′∗ ◦ η
L1(ν)′′ (g), I∗

ν (z∗)〉.
Since ΠL1(ν)′∗ ◦η

L1(ν)′′ (g) = η
L1(ν)′′ (g)◦η−1

L1(ν)′ ◦PL1(ν)∗
n

and PL1(ν)∗
n

is the identity
map on L1(ν)∗ (recall L1(ν) is o.c.), it follows from (12) that

〈I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, z∗〉 =
〈

η
L1(ν)′′ (g),

d(z∗ν)
dμ

〉

=
∫

g
d(z∗ν)

dμ
dμ =

∫
g dz∗ν.

�

Let us see what Proposition 1.6 says for the particular B.f.s. X = L1(ν).
Since L1(ν) is o.c., we have L1(ν)∗

s = {0} and so L1(ν)∗
n = L1(ν)∗. Accord-

ingly, π(L1(ν)∗
n)∗ is the identity map on L1(ν)∗∗. Recalling that L1(ν)′′ = L1

w(ν),
Proposition 1.6 and (10) give the decomposition

L1(ν)∗∗ = [L1(ν)′∗ ] = [L1
w(ν) ] ⊕ (L1(ν)∗)∗

s = [L1
w(ν) ] ⊕

(
η

L1(ν)′
(
L1(ν)′)

)∗

s
.

Looking at the generalized integral, with Id denoting the identity map in
L1(ν)∗∗, the situation is as follows:

[L1(ν) ] Id � [L1
w(ν) ] Id � L1(ν)∗∗ = [L1

w(ν) ] ⊕ (L1(ν)∗)∗
s

I∗∗
ν �
[Z ] Z∗∗

� I∗∗
ν�I∗∗

ν

?



So, the generalized integral of an element f + u in L1(ν)∗∗, with f ∈ [L1
w(ν) ] and

u ∈ (L1(ν)∗)∗
s, is the sum I∗∗

ν (f) + I∗∗
ν (u). Where does each member of this sum

lie within Z∗∗? Particularly, we are interested in the first member I∗∗
ν (f).

Proposition 2.2. Let Z be a Banach space and ν : Σ → Z be a vector measure.
Then I∗∗

ν

(
[L1

w(ν) ]
) ⊆ [Z ] if and only if L1(ν) has the Fatou property.

Proof. If L1(ν) has the Fatou property, then Proposition 1.7(i) (with X := L1(ν))
implies that [ L1

w(ν) ] = [L1(ν)′′ ] = [L1(ν) ]. Hence, I∗∗
ν

(
[L1

w(ν)]
) ⊆ [Z ].

Suppose that I∗∗
ν

(
[L1

w(ν) ]
) ⊆ [Z ]. Given g ∈ L1

w(ν) = L1(ν)′′, we have
that gχA ∈ L1(ν)′′, for every A ∈ Σ, and so there exists zA ∈ Z such that
I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (gχA)
)

= jZ(zA). Then by Lemma 2.1, for all z∗ ∈ Z∗ it
follows that

〈z∗, zA〉 = 〈jZ(zA), z∗〉 = 〈I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (gχA)
)

, z∗〉 =
∫

A

g dz∗ν,

that is, g ∈ L1(ν). Hence, L1(ν) = L1(ν)′′ and so L1(ν) has the Fatou property. �
Corollary 2.3. Let Z be a Banach space and ν : Σ → Z be a vector measure such
that Iν : L1(ν) → Z is weakly compact. Then L1(ν) has the Fatou property. In
particular, L1(ν) = L1

w(ν).

Proof. Since I∗∗
ν (L1(ν)∗∗) ⊆ [Z ] (by Gantmacher’s theorem) and [L1

w(ν) ] ⊆
L1(ν)∗∗, we have I∗∗

ν ([L1
w(ν) ]) ⊆ [Z ]. The conclusion follows from Proposition

2.2. �
Remark 2.4. The converse to Corollary 2.3 is not true in general. Let Z = L1([0, 1])
and, for each Borel set A ⊆ [0, 1], define ν(A) ∈ Z by

ν(A) : t �→
∫ t

0

χA(s) ds, t ∈ [0, 1].

Then ν is a vector measure and L1(ν) is the weighted L1–space L1((1 − s)ds),
which clearly has the Fatou property. However, Iν is not weakly compact, [26,
Example 2].

The diagram prior to Proposition 2.2 poses the question of where I∗∗
ν ([L1

w(ν) ])
lies within Z∗∗? It is to be expected that extra properties on ν or Z will
assist. One such result is Proposition 2.2. Furthermore, if Z = E is a Banach
lattice such that E∗ has o.c. norm and ν is E–valued, then E∗∗ = (E∗)∗

n and so
I∗∗
ν (L1(ν)∗∗) ⊆ (E∗)∗

n. In particular, I∗∗
ν ([L1

w(ν) ]) ⊆ (E∗)∗
n. Conditions on ν can

also lead to the same conclusion. Recall that if E is an order separable Banach
lattice (i.e. for any subset D of E there exists an at most countable subset of
D with the same upper bounds as D), then order continuous functionals can be
characterized purely via sequences, i.e. e∗ ∈ E∗

n if and only if for every decreasing
sequence en ↓ 0 in E we have infn |〈e∗, en〉| = 0. Recall that a set A in a Banach
lattice E is L–weakly compact (also known as almost order bounded) if for every
ε > 0 there exists 0 ≤ xε ∈ E such that A ⊆ [−xε, xε] + ε · BE . A linear operator



T : Z → E, with Z a Banach space, is L–weakly compact if T (BZ) is an L-weakly
compact set in E; see [23, Definition 3.6.1 and Proposition 3.6.2].

Theorem 2.5. Let E be a Banach lattice and ν : Σ → E be a vector measure. The
following assertions hold.
(i) If ν is positive, then I∗∗

ν ([L1
w(ν) ]) ⊆ (E∗)∗

n.
(ii) If Iν(BL1(ν)) is order bounded, then I∗∗

ν (L1(ν)∗∗) ⊆ (E∗)∗
n.

(iii) If E∗ is order separable and Iν is L–weakly compact, then I∗∗
ν (L1(ν)∗∗) ⊆

(E∗)∗
n.

Proof. (i) Suppose that ν is positive. Fix u ∈ [L1
w(ν) ] and let e∗

α ↓ 0 in E∗. Let
us show that

inf
α

|〈I∗∗
ν (u), e∗

α〉| = 0, (13)

which implies (by definition) that I∗∗
ν (u) ∈ (E∗)∗

n. Note that |〈I∗∗
ν (u), e∗

α〉| =
|〈u, I∗

ν (e∗
α)〉| with

u ∈ [L1
w(ν) ] = π(L1(ν)∗

n)∗

((
L1(ν)∗

n

)∗
n

)
=

(
L1(ν)∗)∗

n

(see Proposition 1.6(i) and recall that L1(ν) is o.c.) and that

I∗
ν (e∗

α) = η
L1(ν)′

(
d(e∗

αν)
dμ

)

∈ L1(ν)∗;

see (12). If we prove that d(e∗
αν)

dμ ↓ 0 in L1(ν)′ then, as η
L1(ν)′ is an order isomor-

phism, we have η
L1(ν)′

(
d(e∗

αν)
dμ

)
↓ 0 in L1(ν)∗ and so (13) holds.

Since e∗
α is decreasing in E∗ and ν is positive, it follows that d(e∗

αν)
dμ is

decreasing in L1(ν)′. Let h ∈ L1(ν)′ satisfy h ≤ d(e∗
αν)

dμ for all α. Then,
∫

A

h dμ ≤
∫

A

d(e∗
αν)

dμ
dμ = e∗

αν(A) = 〈e∗
α, ν(A)〉,

for all A ∈ Σ and all α, and so
∫

A
h dμ ≤ infα〈e∗

α, ν(A)〉 = 0 for all A ∈ Σ. So,
h ≤ 0 μ–a.e. Hence,

∧
α

d(e∗
αν)

dμ = 0 and therefore (13) holds.
(ii) Fix u ∈ L1(ν)∗∗ and let e∗

α ↓ 0 in E∗. Then

|〈I∗∗
ν (u), e∗

α〉| = |〈u, I∗
ν (e∗

α)〉| ≤ ‖u‖L1(ν)∗∗‖I∗
ν (e∗

α)‖L1(ν)∗ .

Since Iν(BL1(ν)) is order bounded, there exists x ∈ E+ such that |Iν(f)| ≤ x for
all f ∈ BL1(ν). Using (12), we have

‖I∗
ν (e∗

α)‖L1(ν)∗ =
∥
∥
∥η

L1(ν)′

(
d(e∗

αν)
dμ

) ∥
∥
∥

L1(ν)∗
=

∥
∥
∥

d(e∗
αν)

dμ

∥
∥
∥

L1(ν)′

= sup
f∈BL1(ν)

∣
∣
∣

∫
f

d(e∗
αν)

dμ
dμ

∣
∣
∣ = sup

f∈BL1(ν)

∣
∣
∣

∫
f d(e∗

αν)
∣
∣
∣

= sup
f∈BL1(ν)

|〈e∗
α, Iν(f)〉| ≤ 〈e∗

α, x〉,



where the last inequality is due to the fact that |〈e∗
α, Iν(f)〉| ≤ 〈|e∗

α|, |Iν(f)|〉 =
〈e∗

α, |Iν(f)|〉 ≤ 〈e∗
α, x〉. Hence,

inf
α

|〈I∗∗
ν (u), e∗

α〉| ≤ ‖u‖L1(ν)∗∗ inf
α

〈e∗
α, x〉 = 0.

(iii) Let u ∈ L1(ν)∗∗ and e∗
n ↓ 0 in E∗. Then

|〈I∗∗
ν (u), e∗

n〉| = |〈u, I∗
ν (e∗

n)〉| ≤ ‖u‖L1(ν)∗∗‖I∗
ν (e∗

n)‖L1(ν)∗ .

Since Iν(BL1(ν)) is almost order bounded, given any ε > 0 there exists xε ∈ E+

such that Iν(BL1(ν)) ⊆ [−xε, xε] + ε · BE . Then, as in the proof of (ii), we have

‖I∗
ν (e∗

n)‖L1(ν)∗ = sup
f∈BL1(ν)

|〈e∗
n, Iν(f)〉| ≤ 〈e∗

n, xε〉 + ε‖e∗
n‖E∗ ≤ 〈e∗

n, xε〉 + ε‖e∗
1‖E∗ .

The conclusion then follows as in (ii). �

If the B.f.s. X is o.c., then π(X∗
n)∗ is the identity map and so, by Proposition

1.6(i), we have (X∗)∗
n = [X ′′ ]. Moreover, X∗ = η

X′ (X ′) is then order separable
(since X ′ is a B.f.s.). Hence, from Theorem 2.5 we have the following result.

Corollary 2.6. Let X be a B.f.s. which is o.c. and ν : Σ → X be a vector measure.

(i) If ν is positive, then I∗∗
ν ([L1

w(ν) ]) ⊆ [X ′′ ].
(ii) If Iν(BL1(ν)) is order bounded, then I∗∗

ν (L1(ν)∗∗) ⊆ [X ′′ ].
(iii) If Iν is L–weakly compact, then I∗∗

ν (L1(ν)∗∗) ⊆ [X ′′ ].

Concerning Corollary 2.6, note that condition (iii) always implies (ii), since
order bounded sets are necessarily L–weakly compact.

The following result presents criteria for I∗∗
ν to map [L1

w(ν) ] into subspaces
of the bidual other than (E∗)∗

n, such as (E∗
s )⊥, for example.

Theorem 2.7. Let E be a Banach lattice and ν : Σ → E be a vector measure. The
following assertions are equivalent.

(i) e∗ν ≡ 0 for all e∗ ∈ E∗
s .

(ii) ν(Σ) ⊆ Ea.
(iii) I∗∗

ν

(
[L1(ν) ]

) ⊆ jE(Ea).
(iv) I∗∗

ν

(
[L1

w(ν) ]
) ⊆ (E∗

s )⊥.
(v) I∗∗

ν

(
L1(ν)∗∗) ⊆ (E∗

s )⊥.

Proof. (i) ⇔ (ii) is clear from Ea = ⊥(E∗
s ).

(ii) ⇒ (iii) Since Ea is closed in E, we have Iν(f) ∈ Ea for f ∈ L1(ν). From
(9) it then follows that I∗∗

ν (jL1(ν)(f)) = jE(Iν(f)) ∈ jE(Ea).
(iii) ⇒ (v) Let z ∈ L1(ν)∗∗ and e∗ ∈ E∗

s . Fix f ∈ L1(ν). Since jE(Iν(f)) ∈
jE(Ea) and jE is injective, it follows that Iν(f) ∈ Ea = ⊥(E∗

s ). Hence, 〈I∗
ν (e∗), f〉 =

〈e∗, Iν(f)〉 = 0. Thus, I∗
ν (e∗) = 0. Accordingly, 〈I∗∗

ν (z), e∗〉 = 〈z, I∗
ν (e∗)〉 = 0.

(v) ⇒ (iv) is obvious.



(iv) ⇒ (i) Let A ∈ Σ and e∗ ∈ E∗
s . Then I∗∗

ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (χA)
)

∈
(E∗

s )⊥, since χA ∈ L1
w(ν). Lemma 2.1 (with g = χA) yields

e∗ν(A) =
∫

χA d e∗ν = 〈I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (χA)
)

, e∗〉 = 0.

�

Remark 2.8. Let E be a Banach lattice satisfying Ea = {0} (e.g. L∞([0, 1])). It is
clear that no non-zero E–valued vector measure ν can satisfy (ii) of Theorem 2.7.
In particular, neither of the containments (iv), (v) is then valid.

In the case when E is a B.f.s. X, recall that (X∗
s )⊥ = [X ′∗ ]; see (I).

Corollary 2.9. Let X be a B.f.s. and ν : Σ → X be a vector measure. The following
assertions are equivalent.

(i) x∗ν ≡ 0 for all x∗ ∈ X∗
s .

(ii) ν(Σ) ⊆ Xa.
(iii) I∗∗

ν

(
[L1(ν) ]

) ⊆ [Xa ].
(iv) I∗∗

ν

(
[L1

w(ν) ]
) ⊆ [X ′∗ ].

(v) I∗∗
ν

(
L1(ν)∗∗) ⊆ [X ′∗ ].

For a Banach lattice E, the following result is a consequence of Proposition
2.2, Theorems 2.5, 2.7, Gantmacher’s theorem and the facts that [Ea ] = [E ] ∩
(E∗

s )⊥ and π(E∗
n)∗ ((E∗

n)∗
n) = (E∗)∗

n ∩ (E∗
s )⊥.

Corollary 2.10. Let E be a Banach lattice and ν : Σ → E be a vector measure.

(i) I∗∗
ν

(
[L1

w(ν) ]
) ⊆ [Ea ] if and only if L1(ν) has the Fatou property and ν(Σ) ⊆

Ea.
(ii) I∗∗

ν

(
L1(ν)∗∗) ⊆ [Ea ] if and only if Iν is weakly compact and ν(Σ) ⊆ Ea.

(iii) If ν is positive and ν(Σ) ⊆ Ea, then I∗∗
ν ([L1

w(ν) ]) ⊆ π(E∗
n)∗ ((E∗

n)∗
n).

(iv) If Iν(BL1(ν)) is order bounded and ν(Σ) ⊆ Ea, then I∗∗
ν (L1(ν)∗∗) ⊆ π(E∗

n)∗

((E∗
n)∗

n).
(v) If E∗ is order separable, Iν is L–weakly compact and ν(Σ) ⊆ Ea, then

I∗∗
ν (L1(ν)∗∗) ⊆ π(E∗

n)∗ ((E∗
n)∗

n).

We end this section with a relevant example.

Example 2.11. Let K : N× N → [0,∞) satisfy:

sup
n≥1

∞∑

m=1

K(n,m) < ∞. (14)

Then, for every A ⊆ N, the sequence ν(A) := (ν(A)(n))∞
n=1 given by

ν(A)(n) :=
∑

m∈A

K(n,m), n ∈ N,



is finite-valued and the set function ν : A �→ ν(A) ∈ �∞, for A ⊆ N, is well defined
and finitely additive. In order that ν is σ–additive, it is necessary and sufficient
that K satisfies

lim
j→∞

⎧
⎨

⎩
sup
n≥1

∑

m≥j

K(n,m)

⎫
⎬

⎭
= 0. (15)

Of course, ν is then a positive vector measure in �∞. For x∗ ∈ (�∞)∗ and m ∈ N,
we have |x∗ν|({m}) = |x∗ν({m})| = |〈x∗,K(·,m)〉|. Consequently, for A ⊆ N, we
have

|x∗ν|(A) =
∑

m∈A

|〈x∗,K(·,m)〉| .

Given any function f : N → R, we have
∫

|f | d|x∗ν| =
∞∑

m=1

|f(m)|· |〈x∗,K(·,m)〉| ,

and

‖f‖ν = sup
‖x∗‖≤1

∞∑

m=1

|f(m)|· |〈x∗,K(·,m)〉| . (16)

Recall that f ∈ L1
w(ν) precisely when ‖f‖ν < ∞. For a simple function ϕ : N → R,

we have
∫

ϕdν =
∑∞

m=1 ϕ(m)·K(·,m). It follows, via the dominated convergence
theorem for vector measures that, if f ∈ L1(ν), then

∫
f dν =

∞∑

m=1

f(m)·K(·,m) ∈ �∞.

From (10), the general situation regarding the space L1(ν) is that

[L1(ν) ] ⊆ [L1
w(ν) ] ⊆ [L1(ν)′∗ ] = L1(ν)∗∗.

The measure ν takes values in X = �∞ with Xa = c0, X ′ = �1 and so
X ′′ = �∞, X ′∗ = �∞. Then, the following containments hold

[Xa ] � [X ′′ ] = [X ′∗ ] � X∗∗.

As explained in Section 2, the way of viewing these spaces as closed subspaces of
(�∞)∗∗ is precise and given via exact imbeddings. Let, for example, a = (an) be
a bounded sequence. Considering a ∈ X, we have jX(a) ∈ (�∞)∗∗. To see how
jX(a) acts on X∗ = (�∞)∗, let x∗ ∈ (�∞)∗ = X∗

n ⊕X∗
s . Then, x∗ = η

X′ (b)+ ξ with
b = (bn) ∈ X ′ = �1 and ξ ∈ X∗

s . Of course, ξ can be identified with a bounded,
finitely additive measure on N (denoted also by ξ) vanishing on the standard unit
coordinate vectors of �∞. Then

〈jX(a), x∗〉 = 〈η
X′ (b), a〉 + 〈ξ, a〉 =

∞∑

n=1

anbn +
∫

a dξ.



However, if we consider that a ∈ X ′′, then a is interpreted as an element of (�∞)∗∗

via ΠX′∗ ◦ η
X′′ (a). That is, with the same notation for x∗ ∈ X∗ as before, we have

〈ΠX′∗ ◦ η
X′′ (a), x∗〉 = 〈η

X′′ (a), b〉 =
∞∑

n=1

anbn.

Different choices of K (always assumed to satisfy (14) and (15)) give different
properties of the measure ν, of the space L1(ν), and of the integration map Iν .

(i) Suppose that K also satisfies

lim
n→∞ K(n,m) = 0, m ∈ N.

This is the case, for example, for K(n,m) = 1/(n+m2). Then the measure ν takes
its values in Xa = c0. Thus, via Corollary 2.9(iv), we have that

I∗∗
ν (L1(ν)∗∗) ⊆ [X ′∗ ] = [X ′′ ] = ΠX′∗ ◦ η

X′′ (�∞),

with ΠX′∗ ◦ η
X′′ (�∞) a subspace of (�∞)∗∗ (different from j�∞(�∞)) which is iso-

metric to �∞.
(ii) Suppose now that K(·,m) is decreasing on N, for every m ∈ N. In order

to identify L1(ν), we consider the variation measure |ν| of ν. Now, ‖K(·,m)‖∞ =
supn≥1 K(n,m) = K(1,m), for m ∈ N, and so |ν| is a finite measure; see (14).
Moreover, for A ⊆ N, we have |ν|(A) =

∑
m∈A K(1,m). Accordingly, a function

f : N → R belongs to L1(|ν|) if and only if
∫

|f | d|ν| =
∞∑

m=1

|f(m)|·K(1,m) < ∞.

Let e1 = (1, 0, 0, . . . ) ∈ �1 = X ′. Since K(1,m) = 〈η
X′ (e1), ν(m)〉 and |〈x∗, ν(m)〉| ≤

‖K(·,m)‖∞, for x∗ ∈ BX∗ , it follows from (16) that

‖f‖ν =
∫

|f | d|ν|.

This implies (since always L1(|ν|) ⊆ L1(ν), [20]) that L1(|ν|) = L1(ν) = L1
w(ν)

with equal norms and, because L1(ν)′ = L∞(|ν|) is not o.c., that [L1
w(ν) ] �

[L1(ν)′∗ ]; see Proposition 1.7(ii). Hence, in this case, (10) reduces to

[L1(ν) ] = [L1
w(ν) ] � [L1(ν)′∗ ] = L1(ν)∗∗.

This situation can even occur for measures ν (i.e. with K still satisfying (14)
and (15)) such that ν(A) ∈ c0, for every A ⊆ N. Indeed, example (i) above with
K(n,m) = 1/(n + m2) has the desired properties. Of course, the same features
can occur for measures such that ν(A) ∈ �∞ \ c0, for some A ⊆ N; e.g. K(n,m) =
n/(n + m2). In this latter case, Corollary 2.9(v) implies that

I∗∗
ν (L1(ν)∗∗) �⊆ [X ′∗ ] = ΠX′∗ ◦ η

X′′ (�∞).



3. Kernel operators and optimal domains

Let K : [0, 1] × [0, 1] → [0,∞) be a measurable function. The following standing
assumptions on K are assumed throughout this section:
(i) Kx ∈ L1([0, 1]) for all x ∈ [0, 1], where Kx is the function defined by

Kx(y) := K(x, y) for y ∈ [0, 1],
(ii) supx∈[0,1]

∫
K(x, y) dy = supx∈[0,1] ‖Kx‖L1([0,1]) < ∞,

(iii) limλ(A)→0 supx∈[0,1]

∫
A

K(x, y) dy = 0, where λ is Lebesgue measure on [0, 1].
These conditions guarantee, for every set A ∈ B (the Borel σ-algebra of

Ω = [0, 1]), that the function ν(A)(·) =
∫

A
K(·, y) dy is well defined with ν(A) ∈

L∞([0, 1]) and that the so defined set function ν : B → L∞([0, 1]) is a vector
measure, i.e. is σ–additive. Let T be the operator associated to K via the formula

T (f)(x) :=
∫ 1

0

f(y)K(x, y) dy, x ∈ [0, 1], (17)

for any measurable function f for which it is meaningful to do so for λ–a.e. x ∈
[0, 1]. Clearly, T (f) ≥ 0 whenever f ≥ 0 and T (f) is defined. Examples include the
kernels of the Volterra operator and the fractional integral operator, [7], and of
the Sobolev imbedding operator for certain domains in Rn, [8]. Further examples,
arising in classical analysis can be found in [6,7,10,11,15,29].

Throughout this section X will be a B.f.s. over the measure space ([0, 1],B, λ)
for which L∞([0, 1]) ⊆ X ⊆ L1([0, 1]). Under the above conditions on K, we have
T : L∞([0, 1]) → X continuously with T ≥ 0. We denote by [T,X] the maximal
B.f.s. to which T can be extended as a continuous linear operator, still with values
in X. This maximality is to be understood as follows: there exists a continuous
linear extension of T (denoted by T again) T : [T,X] → X and if T has a contin-
uous linear extension T̃ : X̃ → X, where X̃ is a B.f.s. over ([0, 1],B, λ) containing
L∞([0, 1]), then X̃ is continuously imbedded in [T,X]. Then [T,X] is the optimal
(lattice) domain for T . In order to ensure that the definition of [T,X] is meaning-
ful there should not exist any set A ∈ B with λ(A) > 0 for which T (fχA) = 0
λ–a.e. for every function f . This condition corresponds to the requirement that∫ 1

0
Ky(x) dx > 0 for λ–a.e. y ∈ [0, 1], where Ky := K(·, y) for each y ∈ [0, 1]. Under

these conditions, it turns out that

[T,X] = {f : T (|f |) ∈ X},

[7, Proposition 5.2], and that it is a B.f.s. when endowed with the norm

‖f‖[T,X] := ‖T (|f |)‖X , f ∈ [T,X].

Of course, with this notation,

ν(A) = T (χA), A ∈ B. (18)

It is known, with continuous inclusions of norm at most 1, that

L1(ν) ⊆ [T,X] ⊆ [T,X]′′ = L1(ν)′′ = L1
w(ν). (19)

Moreover, if X ′ is a norming subspace of X∗, then



‖f‖L1
w(ν) = ‖f‖[T,X], f ∈ [T,X].

All these facts can be found in [9]. It is important to note that

T (f) = Iν(f) =
∫

f dν, f ∈ L1(ν), (20)

that is, if f ∈ L1(ν), then T (f) exists in the sense of (17) and coincides with
the function

∫
f dν ∈ X. It is instructive to see why this is the case, for which it

suffices to consider f ∈ L1(ν)+. It is clear from (18) that (20) holds for all simple
functions. Now, choose simple functions 0 ≤ ϕn ↑ f . By the monotone convergence
theorem we see that T (ϕn) ↑ g pointwise λ–a.e. where g(x) :=

∫ 1

0
f(y)K(x, y) dy

for a.e. x ∈ [0, 1]. By the dominated convergence theorem for vector measures, [19],
we have T (ϕn) =

∫
ϕn dν → ∫

f dν in X and hence, T (ϕn) → ∫
f dν pointwise

λ–a.e. Accordingly,
∫

f dν ∈ X coincides with the function g := T (f). In par-
ticular, since L∞([0, 1]) ⊆ L1(ν), it follows from (20) that Iν : L1(ν) → X is a
continuous extension of T : L∞([0, 1]) → X. By the optimality property it follows
that L1(ν) ⊆ [T,X].

The question arises of how I∗∗
ν acts in relation to the extended operator

T : [T,X] → X, that is, is the diagram

[T,X] �T
X

ΠL1(ν)′∗ ◦ η
L1(ν)′′

�

[L1
w(ν) ]

I∗∗
ν �

jX

�

X∗∗

commutative? Equivalently, is it the case that

jX ◦ T (g) = I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, g ∈ [T,X]? (21)

The following result characterizes precisely when I∗∗
ν is an “extension” of T

(in the sense of the above diagram commuting).

Proposition 3.1. The operator I∗∗
ν is an extension of T (i.e. (21) holds) if and

only if [T,X] = L1(ν).

Proof. Suppose that (21) holds for every function in [T,X]. Let f ∈ [T,X] ⊆
L1

w(ν). Since [T,X] is an ideal, it follows that fχA ∈ [T,X] for all A ∈ Σ. In
particular, T (fχA) ∈ X and, for every x∗ ∈ X∗, (21) yields

〈x∗, T (fχA)〉 = 〈jX ◦ T (fχA) , x∗〉
= 〈I∗∗

ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (fχA)
)

, x∗〉 =
∫

A

f dx∗ν

(see Lemma 2.1). Accordingly, f ∈ L1(ν). Combining this with (19) gives [T,X] =
L1(ν).



Conversely, if [T,X] = L1(ν), then every g ∈ [T,X] is ν–integrable with∫
g dν = T (g) ∈ X; see (20). So, for x∗ ∈ X∗, we have (using Lemma 2.1 and the

fact in (19) that [T,X] ⊆ L1
w(ν) = L1(ν)′′) that

〈jX ◦ T (g), x∗〉 = 〈x∗, T (g)〉 =
〈

x∗,
∫

g dν

〉

=
∫

g dx∗ν =
〈
I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, x∗
〉

,

and so (21) holds. �
Remark 3.2. (i) If X has o.c. norm, then necessarily L1(ν) = [T,X], [9, The-

orem 3.6(i)]. However, order continuity of X is not necessary for L1(ν) =
[T,X], [9, Example 3.8].

(ii) Of course, (19) shows that L1(ν) = [T,X] also holds whenever L1(ν) =
L1

w(ν). As already noted in Section 1, this is the case whenever X does not
contain a copy of c0 or L1(ν) is weakly sequentially complete, [9], (i.e. L1(ν)
does not contain a copy of c0, [23, Theorem 2.5.6]). The same is true when-
ever Iν : L1(ν) → X is weakly compact; see Corollary 2.3.

Both parts (i) and (ii) give sufficient conditions for L1(ν) = [T,X] whereas
Proposition 3.1 characterizes precisely when this equality holds.

The sufficient conditions listed in Remark 3.2 do not always hold; there exist
classical examples for which L1(ν) �= [T,X], [7, Remark 5.3]. Therefore, in general,
I∗∗
ν is not an extension of T . However, for g ∈ [T,X], the functionals jX ◦ T (g)

and I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

do always coincide over the order continuous part
of X∗.

Proposition 3.3. For each g ∈ [T,X], we have
〈
I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, x∗
〉

= 〈jX ◦ T (g), x∗〉, x∗ ∈ X∗
n.

Proof. Let g ∈ [T,X]. Given x∗ ∈ X∗
n there exists a function h ∈ X ′ such that

x∗ = η
X′ (h). Then, for A ∈ B, we have

x∗ν(A) = 〈x∗, ν(A)〉 = 〈η
X′ (h), ν(A)〉 =

∫
h·ν(A) dλ

=
∫

h(x)
∫

A

K(x, y) dy dx =
∫

A

∫
h(x)K(x, y) dx dy.

It follows from Lemma 2.1 that
〈
I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (g)
)

, x∗
〉

=
∫

g dx∗ν =
∫

g(y)
∫

h(x)K(x, y) dx dy

=
∫

h(x)
∫

g(y)K(x, y) dy dx=
∫

h(x)T (g)(x) dx

= 〈η
X′ (h), T (g)〉 = 〈x∗, T (g)〉 = 〈jX ◦ T (g), x∗〉.

�



Let f ∈ L1
w(ν)+. Fix 0 ≤ h ∈ X ′. Then η

X′ (h) ∈ X∗
n ⊆ X∗. Since η

X′ ≥ 0 we
have η

X′ (h) ≥ 0 in X∗
n. Moreover,

(
η

X′ (h) ◦ ν
)
(A) =

∫

A

∫
h(x)K(x, y) dx dy, A ∈ B. (22)

Consider the non-negative function Φ: x �→ ∫
f(y)K(x, y) dy on [0, 1]. An appli-

cation of Fubini’s theorem yields (via (22))
∫

h(x)Φ(x) dx =
∫

f(y)
∫

h(x)K(x, y) dx dy

=
∫

f(y) d
(
η

X′ (h) ◦ ν
) ≤ ‖f‖L1

w(ν)‖η
X′ (h)‖X∗ .

Hence, Φ ∈ X ′′. In particular, Φ is finite a.e. and, according to (17), we write
Φ = T (f). So, whenever f ∈ L1

w(ν) we have that T (f) exists in the sense of (17)
and T (f) ∈ X ′′; see also [9, Proposition 3.2(iii)].

Given f ∈ L1
w(ν) = L1(ν)′′ (identified with the element ΠL1(ν)′∗ ◦η

L1(ν)′′ (f) of
[L1(ν)′′ ]), in which case T (f) ∈ X ′′ is identified with the element ΠX′∗ ◦η

X′′ (T (f))
of [X ′′ ], one may ask whether

I∗∗
ν

(
ΠL1(ν)′∗ ◦ η

L1(ν)′′ (f)
)

= ΠX′∗ ◦ η
X′′ (T (f))? (23)

That is, does the following diagram commute

L1
w(ν) �T

X ′′

ΠL1(ν)′∗ ◦ η
L1(ν)′′

�

[L1
w(ν) ]

I∗∗
ν �

ΠX′∗ ◦ η
X′′

�

X∗∗

Less formally, is I∗∗
ν : [L1

w(ν)] → X∗∗ an extension of T : L1
w(ν) → X ′′?

In general, the answer is again no! For, if (23) is valid for all f ∈ L1
w(ν),

then it follows that I∗∗
ν ([L1

w(ν) ]) ⊆ [X ′′ ]. This implies, via (8) and Corollary 2.9,
that ν(B) ⊆ Xa. So, whenever ν(B) �⊆ Xa the formula (23) cannot hold for all
f ∈ L1

w(ν). That is, there exist f ∈ L1
w(ν) and x∗ ∈ X∗ (see Lemma 2.1) such that

〈
ΠX′∗ ◦ η

X′′ (T (f)), x∗〉 �=
∫

f dx∗ν.

4. Appendix

Proof of Proposition 1.3. We begin by establishing (4). The first containment in
(4) follows from

jE(Ea) ⊆ {jE(e)|E∗
n

◦ PE∗
n

: e ∈ E} ⊆ π(E∗
n)∗ ((E∗

n)∗
n) . (24)



Here, jE(e)|E∗
n

denotes the restriction of jE(e) to E∗
n and PE∗

n
the projection from

E∗ onto E∗
n. In order to prove the first containment in (24), fix e ∈ Ea. For each

e∗ ∈ E∗ we have that e∗ = e∗
n + e∗

s, with e∗
n ∈ E∗

n and e∗
s ∈ E∗

s . Then, since
Ea = ⊥(E∗

s ), it follows that

〈jE(e)|E∗
n

◦ PE∗
n
, e∗〉 = 〈jE(e)|E∗

n
, PE∗

n
(e∗)〉 = 〈jE(e), e∗

n〉
= 〈e∗

n, e〉 = 〈e∗, e〉 = 〈jE(e), e∗〉.
This implies that jE(e) = jE(e)|E∗

n
◦ PE∗

n
. Concerning the second containment in

(24), fix e ∈ E. Then jE(e)|E∗
n

∈ (E∗
n)∗. However, more is true; in fact jE(e)|E∗

n
∈

(E∗
n)∗

n. In order to verify this, let e∗
α ↓ 0 in E∗

n. Then

inf
α

|〈jE(e)|E∗
n
, e∗

α〉| = inf
α

|〈jE(e), e∗
α〉| = inf

α
|〈e∗

α, e〉| = 0.

The containment is then established by noting that π(E∗
n)∗(jE(e)|E∗

n
) = jE(e)|E∗

n
◦

PE∗
n
. Hence, (24) is proved.
The second containment in (4) follows from (E∗

n)∗
n ⊆ (E∗

n)∗.
Next we establish the equality π(E∗

n)∗ ((E∗
n)∗) = (E∗

s )⊥ in (4). Fix z ∈ (E∗
n)∗.

For each e∗
s ∈ E∗

s we have

〈π(E∗
n)∗(z), e∗

s〉 = 〈z, PE∗
n
(e∗

s)〉 = 0,

that is, π(E∗
n)∗(z) ∈ (E∗

s )⊥. Conversely, fix e∗∗ ∈ (E∗
s )⊥. Note that e∗∗|E∗

n
∈ (E∗

n)∗

and hence, π(E∗
n)∗(e∗∗|E∗

n
) ∈ E∗∗. Let e∗ ∈ E∗. Then e∗ = e∗

n + e∗
s with e∗

n ∈ E∗
n

and e∗
s ∈ E∗

s . Since 〈e∗∗, e∗
s〉 = 0, we have

〈π(E∗
n)∗(e∗∗|E∗

n
), e∗〉 = 〈e∗∗|E∗

n
, PE∗

n
(e∗)〉 = 〈e∗∗, e∗

n〉 = 〈e∗∗, e∗〉.
Hence, e∗∗ = π(E∗

n)∗(e∗∗|E∗
n
) and so e∗∗ ∈ π(E∗

n)∗ ((E∗
n)∗).

The last containment in (4) is clear.
In order to establish (i), we require the map φ : e ∈ E �→ φ(e) := jE(e)|E∗

n
∈

(E∗
n)∗

n. This map has the following properties: it is injective iff ⊥(E∗
n) = {0} (since

⊥(E∗
n) = Ker(φ)) and it is surjective iff E has the weak Fatou property (i.e. if eα ↑

in E+ and supα ‖eα‖ < ∞, then there exists e ∈ E+ such that eα ↑ e). Note that
the Fatou property implies the weak Fatou property and, if E is o.c. and has the
weak Fatou property, then it has the Fatou property.

Under the hypothesis that ⊥(E∗
n) = {0}, it is clear that (i) will follow if we

establish the following two facts: (a) the first containment in (24) is an equality
iff E is o.c.; (b) the second containment in (24) is an equality iff E has the weak
Fatou property.

Concerning (a), let E be o.c. Then Ea = E and E∗
n = E∗ with PE∗

n
reducing

to the identity map. Direct inspection then shows that the first containment in
(24) is indeed an equality. Conversely, if this equality holds, then φ(Ea) = φ(E)
and hence, by injectivity of φ, we have Ea = E, that is, E is o.c.

For statement (b), note that an equality for the second containment in (24)
is precisely equivalent to φ(E) = (E∗

n)∗
n, that is, to φ being surjective or, as noted

above, to E having the weak Fatou property.



To establish (ii), note that π(E∗
n)∗ : (E∗

n)∗ → E∗∗ is injective. We have already
proved the equality in (4), that is, π(E∗

n)∗ ((E∗
n)∗) = (E∗

s )⊥ holds. So, if we assume
that π(E∗

n)∗ ((E∗
n)∗

n) = (E∗
s )⊥, then it follows that π(E∗

n)∗ ((E∗
n)∗

n) = π(E∗
n)∗ ((E∗

n)∗).
So, the injectivity of π(E∗

n)∗ implies that (E∗
n)∗

n = (E∗
n)∗, that is, E∗

n is o.c. The
reverse implication follows from the equality in (4) together with the fact that
(E∗

n)∗
n = (E∗

n)∗ whenever E∗
n is o.c.

For proving (iii), note first that always jE(Ea) ⊆ jE(E) and second that
jE(Ea) ⊆ (E∗

s )⊥; see (4). Hence, we have jE(Ea) ⊆ jE(E) ∩ (E∗
s )⊥. Conversely,

let z∗∗ ∈ jE(E) ∩ (E∗
s )⊥. Then, there exists e ∈ E such that z∗∗ = jE(e) ∈ (E∗

s )⊥.
Let e∗

s ∈ E∗
s . Then 〈e∗

s , e〉 = 〈jE(e), e∗
s〉 = 0 and hence, e ∈ ⊥(E∗

s ). Since always
⊥(E∗

s ) = Ea, it follows that e ∈ Ea. So, z∗∗ = jE(e) ∈ jE(Ea). �

Proof of Proposition 1.4. The map ΠX′∗ is well defined since, for every z ∈ X ′∗,
we have

ΠX′∗(z) : X∗ PX∗
n � X∗

n

η−1
X′ � X ′ z � R .

So, ΠX′∗(z) is a linear functional on X∗. Moreover,

‖ΠX′∗(z)‖X∗∗ = sup
x∗∈BX∗

∣
∣〈ΠX′∗(z) , x∗〉∣∣ = sup

x∗∈BX∗

∣
∣〈z ◦ η−1

X′ ◦ PX∗
n

, x∗〉∣∣

= sup
x∗∈BX∗

∣
∣〈z , η−1

X′ ◦ PX∗
n
(x∗)〉∣∣ ≤ sup

x′∈BX′
|〈z, x′〉| = ‖z‖X′∗ ,

since η−1
X′ ◦ PX∗

n
(x∗) ∈ X ′ for every x∗ ∈ X∗ and, since η

X′ is an isometry,

‖η−1
X′ ◦ PX∗

n
(x∗)‖X′ = ‖η

X′

(
η−1

X′ ◦ PX∗
n
(x∗)

)
‖X∗ = ‖PX∗

n
(x∗)‖X∗ ≤ ‖x∗‖X∗ .

Conversely, the fact that η
X′ is an isometry implies that

η
X′ (x′) ∈ X∗

n ∩ BX∗ , x′ ∈ BX′ . (25)

Then, since PX∗
n

is the identity map on X∗
n, we can conclude that

|〈z, x′〉| =
∣
∣〈z ◦ η−1

X′ ◦ PX∗
n

, η
X′ (x′)〉∣∣ =

∣
∣〈ΠX′∗(z) , η

X′ (x′)〉∣∣.
Accordingly, (25) yields

‖z‖X′∗ = sup
x′∈BX′

|〈z, x′〉| = sup
x′∈BX′

∣
∣〈ΠX′∗(z) , η

X′ (x′)〉∣∣

≤ sup
x∗∈BX∗

∣
∣〈ΠX′∗(z) , x∗〉∣∣ = ‖ΠX′∗(z)‖X∗∗ .

Therefore, ΠX′∗ is an isometry, from which it is immediate that ΠX′∗ is injective
and ΠX′∗(X ′∗) is a closed subspace of X∗∗.

Concerning (ii), given z ∈ X ′∗, for every x∗
s ∈ X∗

s we have

〈ΠX′∗(z) , x∗
s〉 = 〈z ◦ η−1

X′ ◦ PX∗
n

, x∗
s〉 = 0,



since PX∗
n
(x∗

s) = 0. That is, ΠX′∗(z) ∈ (X∗
s )⊥. Conversely, given any z ∈ (X∗

s )⊥,
we have

X ′ η
X′ � X∗

n
J � X∗ z � R ,

that is, z ◦ J ◦ η
X′ ∈ X ′∗, where J : X∗

n → X∗ is the natural inclusion (with
‖J‖ = 1). Then

ΠX′∗(z ◦ J ◦ η
X′ ) = z ◦ J ◦ η

X′ ◦ η−1
X′ ◦ PX∗

n
= z ◦ J ◦ PX∗

n
= z,

where the last equality is due to z vanishing on elements of X∗
s . Then, z ∈

ΠX′∗(X ′∗). So, we can conclude that ΠX′∗(X ′∗) = (X∗
s )⊥, from which it is also

immediate that ΠX′∗(X ′∗) is a band in X∗∗. �

Proof of Proposition 1.6. (ii) Recall that [X ′∗ ] = ΠX′∗(X ′∗) and, for each u ∈
(X∗

n)∗, that π(X∗
n)∗(u) = u ◦ PX∗

n
, as elements of X∗∗. Fix z ∈ X ′∗. Since

X∗
n

η−1
X′ � X ′ z � R,

that is, z ◦ η−1
X′ ∈ (X∗

n)∗, we have by (5) and the definition of π(X∗
n)∗ (c.f. Lemma

1.1) that

ΠX′∗(z) = z ◦ η−1
X′ ◦ PX∗

n
= π(X∗

n)∗(z ◦ η−1
X′ ).

Since z ∈ X ′∗ is arbitrary, it follows that

[X ′∗ ] ⊆ π(X∗
n)∗ ((X∗

n)∗) .

Conversely, fix z ∈ (X∗
n)∗. Since

X ′ η
X′ � X∗

n
z � R,

i.e. z ◦ η
X′ ∈ X ′∗, we have by the definitions of π(X∗

n)∗ and ΠX′∗ that

π(X∗
n)∗(z) = z ◦ PX∗

n
= z ◦ η

X′ ◦ η−1
X′ ◦ PX∗

n
= ΠX′∗(z ◦ η

X′ ).

Since z ∈ (X∗
n)∗ is arbitrary, this implies that

π(X∗
n)∗ ((X∗

n)∗) ⊆ [X ′∗ ].

Accordingly, since (X∗
n)∗ = (X∗

n)∗
n ⊕ (X∗

n)∗
s, we conclude that

[X ′∗ ] = π(X∗
n)∗ ((X∗

n)∗) = π(X∗
n)∗ ((X∗

n)∗
n) ⊕ π(X∗

n)∗ ((X∗
n)∗

s) .

(i) Recall that [X ′′ ] = ΠX′∗ ◦ η
X′′ (X ′′). For every z ∈ X ′′, we have η

X′′ (z) ∈
(X ′)∗

n ⊆ X ′∗, and so



η−1
X′ � X ′ η

X′′ (z) � R,

X

Xn
∗

that is, η
X′′ (z) ◦ η−

′
1 ∈ (X∗

n)∗. Accordingly,

ΠX′∗ ◦ η
X′′ (z) = η

X′′ (z) ◦ η−1
X′ ◦ PX∗

n
= π(X∗

n)∗(η
X′′ (z) ◦ η−1

X′ ).

This shows already that [X ′′ ] ⊆ π(X∗
n)∗((X∗

n)∗). To improve this, let us verify that
actually η

X′′ (z) ◦ η−1
X′ ∈ (X∗

n)∗
n. Let x∗

α ↓ 0 in the order of X∗
n. Since η

X′ (and so
η−1

X′ ) is an order isomorphism, η−1
X′ (x∗

α) ↓ 0 in the order of X ′. Then,

inf
α

|〈η
X′′ (z) ◦ η−1

X′ , x∗
α〉| = inf

α
|〈η

X′′ (z) , η−1
X′ (x∗

α)〉| = 0,

since η
X′′ (z) ∈ (X ′)∗

n. So, we really do have that η
X′′ (z) ◦ η−1

X′ ∈ (X∗
n)∗

n (rather
than just an element of (X∗

n)∗) and hence,

[X ′′ ] ⊆ π(X∗
n)∗ ((X∗

n)∗
n) .

For every z ∈ (X∗
n)∗

n, we have seen in the proof of part (ii) that z ◦ η
X′ ∈ X ′∗

and π(X∗
n)∗(z) = ΠX′∗(z ◦ η

X′ ). Let us now verify that actually z ◦ η
X′ ∈ (X ′)∗

n.
Let x′

α ↓ 0 in the order of X ′. Since η
X′ is an order isomorphism, η

X′ (x′
α) ↓ 0 in

the order of X∗
n. Then,

inf
α

|〈z ◦ η
X′ , x′

α〉| = inf
α

|〈z , η
X′ (x′

α)〉| = 0,

since z ∈ (X∗
n)∗

n. It follows that

π(X∗
n)∗(z) = ΠX′∗(z ◦ η

X′ ) = ΠX′∗ ◦ η
X′′

(
η−1

X′′ (z ◦ η
X′ )

)

with η−1
X′′ (z ◦ η

X′ ) ∈ X ′′. So, by definition of [X ′′ ] in (II), we have

π(X∗
n)∗ ((X∗

n)∗
n) ⊆ [X ′′ ].

Accordingly, (i) holds.
Parts (iii) and (iv) then follow from Proposition 1.2. �
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