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Abstract. Let X(μ) be a function space related to a measure space
(Ω, Σ, μ) with χΩ ∈ X(μ) and let T : X(μ) → E be a Banach space-
valued operator. It is known that if T is pth power factorable then the
largest function space to which T can be extended preserving pth power
factorability is given by the space Lp(mT ) of p-integrable functions with
respect to mT , where mT : Σ → E is the vector measure associated to
T via mT (A) = T (χA). In this paper, we extend this result by removing
the restriction χΩ ∈ X(μ). In this general case, by considering mT de-
fined on a certain δ-ring, we show that the optimal domain for T is the
space Lp(mT )∩L1(mT ). We apply the obtained results to the particular
case when T is a map between sequence spaces defined by an infinite
matrix.
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1. Introduction

Although the concept of pth power factorable operator has previously been
used as a tool in operator theory, it was introduced explicitly in [19, Sect. 5].
Given a measure space (Ω,Σ, μ) and a Banach function space X(μ) of (μ-a.e.
classes of) Σ-measurable functions such that χΩ ∈ X(μ), for 1 ≤ p < ∞, a
Banach space-valued operator T : X(μ) → E is pth power factorable if there
is a continuous extension of T to the 1

p th power space X(μ)
1
p of X(μ). This

is equivalent to the existence of a constant C > 0 satisfying that

‖T (f)‖ ≤ C ‖ |f | 1
p ‖p

X(μ) = C ‖f‖
X(μ)

1
p
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for all f ∈ X(μ). The main characterization of this class of operators estab-
lishes that any of them can be extended to an space Lp of a vector measure
mT : Σ → E associated to T via mT (A) = T (χA) and the extension is maxi-
mal. Note that the condition χΩ ∈ X(μ) is necessary for a correct definition
of pth power factorable operator (i.e. X(μ) ⊂ X(μ)

1
p ) and for mT to be well

defined.
Several applications are shown also in [19, Sect. 6, 7], mainly in factor-

ization of operators through spaces Lq(μ) (Maurey–Rosenthal type theorems)
and in harmonic analysis (Fourier transform and convolution operators). Af-
ter that pth power factorable operators have turned out to be a useful tool
for the study of different problems in mathematical analysis, regarding for
example Banach space interpolation theory [6], differential equations [10],
description of maximal domains for several classes of operators [12], factor-
ization of kernel operators [13] or adjoint operators [11].

The requirement χΩ ∈ X(μ) excludes basic spaces as Lq(0,∞) or �q.
Although these spaces can be represented as spaces satisfying the needed
requirement (for instance Lq(0,∞) is isometrically isomorphic to Lq(e−xdx)
via the multiplication operator induced by e

x
q ), to use such a representation

provides some kind of factorization for T but not genuine extensions.
The aim of this paper is to extend the results on maximal extensions

of pth power factorable operators to quasi-Banach spaces X(μ) which do
not necessarily contain χΩ. Also we will consider p to be any positive number
removing the restriction p ≥ 1. The first problem is the definition of pth power
factorable operator, as in general the containment X(μ) ⊂ X(μ)

1
p does not

hold. This can be solved by replacing X(μ)
1
p by the sum X(μ)

1
p +X(μ). The

second problem is the definition of the vector measure mT associated to T .
The technique to overcome this obstacle consists of considering mT defined on
the δ-ring ΣX(μ) =

{
A ∈ Σ : χA ∈ X(μ)

}
instead of the σ-algebra Σ. We will

see that actually no topology is needed on X(μ) to extend T : X(μ) → E,
it suffices an ideal structure on X(μ) and a certain property on T which
relates the μ-a.e. pointwise order of X(μ) and the weak topology of E. This
property, called order-w continuity, is the minimal condition for mT to be a
vector measure.

The paper is organized as follows. Section 2 is devoted to establish
the notation and to state the results on ideal function spaces, quasi-Banach
function spaces and integration with respect to a vector measure defined on
a δ-ring, which will be use along this work. For the aim of completeness,
we include the proof of some relevant facts. In Sect. 3 we show that every
order-w continuous operator T defined on an ideal function space X(μ), can
be extended to the space L1(mT ) of integrable functions with respect to mT

and this space is the largest one to which T can be extended as an order-w
continuous operator (Theorem 3.2). Section 4 deals with operators T which
are pth power factorable with an order-w continuous extension, that is, there
is an order-w continuous extension of T to the space X(μ)

1
p +X(μ). We prove

that the space Lp(mT ) ∩ L1(mT ) is the optimal domain for T preserving the
property of being pth power factorable with an order-w continuous extension



(Theorem 4.2). In Sects. 5 and 6 we endow X(μ) with a topology (namely
X(μ) will be a σ-order continuous Quasi-Banach function space) and consider
T to be continuous. Results on maximal extensions analogous to the ones of
the previous sections are obtain for continuity instead of order-w continuity
(Theorems 5.1 and 6.2). Finally, as an application of our results, in the last
section we study when an infinite matrix of real numbers defines a continuous
linear operator from �p into any given sequence space.

2. Preliminaries

2.1. Ideal Function Spaces

Let (Ω,Σ) be a fixed measurable space. For a measure μ : Σ → [0,∞], we
denote by L0(μ) the space of all (μ-a.e. classes of) Σ-measurable real-valued
functions on Ω. Given two set functions μ, λ : Σ → [0,∞] we will write λ 
 μ
if μ(A) = 0 implies λ(A) = 0. We will say that μ and λ are equivalent if
λ 
 μ and μ 
 λ. In the case when μ and λ are two measures with λ 
 μ,
the map [i] : L0(μ) → L0(λ) which takes a μ-a.e. class in L0(μ) represented
by f into the λ-a.e. class represented by the same f , is a well-defined linear
map. To simplify notation [i](f) will be denoted again as f . Note that if λ
and μ are equivalent then L0(μ) = L0(λ) and [i] is the identity map i.

An ideal function space (briefly, i.f.s.) is a vector space X(μ) ⊂ L0(μ)
satisfying that if f ∈ X(μ) and g ∈ L0(μ) with |g| ≤ |f | μ-a.e. then g ∈ X(μ).
We will say that X(μ) has the σ-property if there exists (Ωn) ⊂ Σ such that
Ω = ∪Ωn and χΩn

∈ X(μ) for all n. For instance, this happens if there is
some g ∈ X(μ) with g > 0 μ-a.e.

Lemma 2.1. Let X(μ) be an i.f.s. satisfying the σ-property. For every Σ–
measurable function f : Ω → [0,∞) there exists (fn) ⊂ X(μ) such that 0 ≤
fn ↑ f pointwise.

Proof. Let (Ωn) ⊂ Σ be the sequence given by the σ-property of X(μ) and
let f : Ω → [0,∞) be a Σ–measurable function. Taking An = ∪n

j=1Ωj ∩ {
ω ∈

Ω : f(ω) ≤ n
}
, we have that fn = fχAn

∈ X(μ), as 0 ≤ fn ≤ nχ∪n
j=1Ωj

pointwise, and that fn ↑ f pointwise. �

The sum of two i.f.s.’ X(μ) and Y (μ) is the space defined as

X(μ) + Y (μ) =
{
f ∈ L0(μ) : f = f1 + f2 μ-a.e., f1 ∈ X(μ), f2 ∈ Y (μ)

}
.

Proposition 2.2. The sum X(μ) + Y (μ) of two i.f.s.’ is an i.f.s.

Proof. Let f ∈ X(μ)+Y (μ) and g ∈ L0(μ) be such that |g| ≤ |f | μ-a.e. Write
f = f1 + f2 μ-a.e. with f1 ∈ X(μ) and f2 ∈ Y (μ) and denote A =

{
ω ∈ Ω :

|g(ω)| ≤ |f1(ω)|}. Taking h1 = |g|χA + |f1|χΩ\A and h2 = (|g| − |f1|)χΩ\A,
we have that |g| = h1 + h2 with h1 ∈ X(μ) as 0 ≤ h1 ≤ |f1| pointwise and
h2 ∈ Y (μ) as 0 ≤ h2 ≤ |f2| μ-a.e. Now, denote B =

{
ω ∈ Ω : g(ω) ≥ 0

}
and

take g1 = h1

(
χB − χΩ\B) and g2 = h2

(
χB − χΩ\B). Then, g = g1 + g2 with

g1 ∈ X(μ) as |g1| = h1 and g2 ∈ Y (μ) as |g2| = h2. So, g ∈ X(μ) + Y (μ). �



Let p ∈ (0,∞). The p-power of an i.f.s. X(μ) is the i.f.s. defined as

X(μ)p =
{
f ∈ L0(μ) : |f |p ∈ X(μ)

}
.

Lemma 2.3. Let X(μ) be an i.f.s. For s, t ∈ (0,∞) and 1
r = 1

s + 1
t , it follows

that if f ∈ X(μ)s and g ∈ X(μ)t then fg ∈ X(μ)r. In particular, if χΩ ∈
X(μ) then X(μ)q ⊂ X(μ)p for all 0 < p < q < ∞.

Proof. For the first part only note that for every a, b > 0 it follows

arbr ≤ r

s
as +

r

t
bt. (2.1)

For the second part take r = p, s = q and t = pq
q−p . Then, if f ∈ X(μ)q, since

χΩ ∈ X(μ)t, we have that f = fχΩ ∈ X(μ)p. �

Recall that a quasi-norm on a real vector space X is a non-negative real
map ‖ · ‖X on X satisfying

(i) ‖x‖X = 0 if and only if x = 0,
(ii) ‖αx‖X = |α| · ‖x‖X for all α ∈ R and x ∈ X, and
(iii) There exists a constant K ≥ 1 such that ‖x + y‖X ≤ K(‖x‖X + ‖y‖X)

for all x, y ∈ X.

A quasi-norm ‖ · ‖X induces a metric topology on X in which a sequence
(xn) converges to x if and only if ‖x − xn‖X → 0. If X is complete under
this topology then it is called a quasi-Banach space (Banach space if K = 1).
A linear map T : X → Y between quasi-Banach spaces is continuous if and
only if there exists a constant M > 0 such that ‖T (x)‖Y ≤ M‖x‖X for all
x ∈ X. For issues related to quasi-Banach spaces see [14].

A quasi-Banach function space (quasi-B.f.s. for short) is a i.f.s. X(μ)
which is also a quasi-Banach space with a quasi-norm ‖·‖X(μ) compatible with
the μ-a.e. pointwise order, that is, if f, g ∈ X(μ) are such that |f | ≤ |g| μ-a.e.
then ‖f‖X(μ) ≤ ‖g‖X(μ). When the quasi-norm is a norm, X(μ) is called
a Banach function space (B.f.s.). Note that every quasi-B.f.s. is a quasi-
Banach lattice for the μ-a.e. pointwise order satisfying that if fn → f in
quasi-norm then there exists a subsequence fnj

→ f μ-a.e. Also note that
every positive linear operator between quasi-Banach lattices is continuous,
see the argument given in [16, p. 2] for Banach lattices which can be adapted
for quasi-Banach spaces. Then all “ inclusions” of the type [i] between quasi-
B.f.s.’ are continuous.

A quasi-B.f.s. X(μ) is said to be σ-order continuous if for every (fn) ⊂
X(μ) with fn ↓ 0 μ-a.e. it follows that ‖fn‖X ↓ 0.

It is routine to check that the intersection X(μ) ∩ Y (μ) of two quasi-
B.f.s.’ (B.f.s.’) X(μ) and Y (μ) is a quasi-B.f.s. (B.f.s.) endowed with the
quasi-norm (norm)

‖f‖X(μ)∩Y (μ) = max
{‖f‖X(μ), ‖f‖Y (μ)

}
.

Moreover, if X(μ) and Y (μ) are σ-order continuous then X(μ) ∩ Y (μ) is
σ-order continuous.



Proposition 2.4. The sum X(μ) + Y (μ) of two quasi-B.f.s.’ (B.f.s.’) X(μ)
and Y (μ) is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

‖f‖X(μ)+Y (μ) = inf
(‖f1‖X(μ) + ‖f2‖Y (μ)

)
,

where the infimum is taken over all possible representations f = f1 + f2 μ-
a.e. with f1 ∈ X(μ) and f2 ∈ Y (μ). Moreover, if X(μ) and Y (μ) are σ-order
continuous then X(μ) + Y (μ) is also σ-order continuous.

Proof. From Proposition 2.2 we have that X(μ) + Y (μ) is a i.f.s. Even more,
looking at the proof we see that for every f ∈ X(μ) + Y (μ) and g ∈ L0(μ)
with |g| ≤ |f | μ-a.e., if f = f1 + f2 μ-a.e. with f1 ∈ X(μ) and f2 ∈ Y (μ)
then there exist g1 ∈ X(μ) and g2 ∈ Y (μ) such that |gi| ≤ |fi| μ-a.e. and
g = g1 + g2. Then,

‖g‖X(μ)+Y (μ) ≤ ‖g1‖X(μ) + ‖g2‖Y (μ) ≤ ‖f1‖X(μ) + ‖f2‖Y (μ)

and so, taking infimum over all possible representations f = f1 + f2 μ-a.e.
with f1 ∈ X(μ) and f2 ∈ Y (μ), it follows that ‖g‖X(μ)+Y (μ) ≤ ‖f‖X(μ)+Y (μ).
Hence, ‖ · ‖X(μ)+Y (μ) is compatible with the μ-a.e. pointwise order.

The proof of the fact that ‖ · ‖X(μ)+Y (μ) is a quasi-norm for which
X(μ)+Y (μ) is complete is similar to the one given in [1, Sect. 3, Theorem 1.3]
for compatible couples of Banach spaces.

Suppose that X(μ) and Y (μ) are σ-order continuous. Let (fn) ⊂ X(μ)+
Y (μ) be such that fn ↓ 0 μ-a.e. Consider f1 = g + h μ-a.e. with g ∈ X(μ)
and h ∈ Y (μ). We can rewrite f1 = f1

1 + f2
1 with f1

1 ∈ X(μ), f2
1 ∈ Y (μ) and

f1
1 , f2

1 ≥ 0 μ-a.e. This can be done by taking A =
{
ω ∈ Ω : f1(ω) ≤ |g(ω)|},

f1
1 = f1χA + |g|χΩ\A and f2

1 = (f1 − |g|)χΩ\A. Note that f1
1 ∈ X(μ) as

0 ≤ f1
1 ≤ |g| μ-a.e. and f2

1 ∈ Y (μ) as 0 ≤ f2
1 ≤ |h| μ-a.e. Since 0 ≤ f2 ≤ f1

μ-a.e., looking again at the proof of Proposition 2.2 we see that there exist
f1
2 ∈ X(μ) and f2

2 ∈ Y (μ) such that 0 ≤ f i
2 ≤ f i

1 μ-a.e. and f2 = f1
2 + f2

2

μ-a.e. By induction we construct two μ-a.e. pointwise decreasing sequences
of positive functions (f1

n) ⊂ X(μ) and (f2
n) ⊂ Y (μ) such that fn = f1

n + f2
n.

Note that f i
n ↓ 0 μ-a.e. as 0 ≤ f i

n ≤ fn μ-a.e. Then, since X(μ) and Y (μ) are
σ-order continuous, we have that

‖fn‖X(μ)+Y (μ) ≤ ‖f1
n‖X(μ) + ‖f2

n‖Y (μ) → 0.

�

Let p ∈ (0,∞). The p-power X(μ)p of a quasi-B.f.s. X(μ) is a quasi-
B.f.s. endowed with the quasi-norm

‖f‖X(μ)p = ‖ |f |p ‖
1
p

X(μ).

Moreover, X(μ)p is σ-order continuous whenever X(μ) is so. Note that in the
case when X(μ) is a B.f.s. and p ≥ 1 it follows that ‖ · ‖X(μ)p is a norm and
so X(μ)p is a B.f.s. An exhaustive study of the space X(μ)p can be found
in [19, Sect. 2.2] for the case when μ is finite and χΩ ∈ X(μ). This study
can be extended to our general case adapting the arguments with the natural
modifications (note that our p-powers here are the 1

p th powers there).



2.2. Integration with Respect to a Vector Measure Defined on a δ-Ring

Let R be a δ-ring of subsets of a set Ω, that is, a ring closed under countable
intersections. Measurability will be considered with respect to the σ-algebra
Rloc of all subsets A of Ω such that A ∩ B ∈ R for all B ∈ R. Let us write
S(R) for the space of all R-simple functions, that is, simple functions with
support in R.

A set function m : R → E with values in a Banach space E is said to be
a vector measure if

∑
m(An) converges to m(∪An) in E for every sequence

of pairwise disjoint sets (An) ⊂ R with ∪An ∈ R.
Consider first a real measure λ : R → R. The variation of λ is the

measure |λ| : Rloc → [0,∞] defined as

|λ|(A) = sup
{ ∑

|λ(Aj)| : (Aj) finite disjoint sequence in R ∩ 2A
}

.

Note that |λ| is finite on R. The space L1(λ) of integrable functions with
respect to λ is defined as the classical space L1(|λ|). The integral with respect
to λ of ϕ =

∑n
j=1 αjχAj

∈ S(R) over A ∈ Rloc is defined in the natural way
by

∫
A

ϕdλ =
∑n

j=1 αjλ(Aj ∩ A). The space S(R) is dense in L1(λ), allowing
to define the integral of f ∈ L1(λ) over A ∈ Rloc as

∫
A

f dλ = lim
∫

A
ϕn dλ

for any sequence (ϕn) ⊂ S(R) converging to f in L1(λ).
Let now m : R → E be a vector measure. The semivariation of m is the

set function ‖m‖ : Rloc → [0,∞] defined by

‖m‖(A) = sup
x∗∈BE∗

|x∗m|(A).

Here, BE∗ is the closed unit ball of the dual space E∗ of E and |x∗m| is
the variation of the real measure x∗m given by the composition of m with
x∗. A set A ∈ Rloc is m-null if ‖m‖(A) = 0, or equivalently, if m(B) = 0
for all B ∈ R ∩ 2A. From [2, Theorem 3.2], there always exists a measure
η : Rloc → [0,∞] equivalent to ‖m‖, that is, m and η have the same null sets.
Let us denote L0(m) = L0(η).

The space L1(m) of integrable functions with respect to m is defined as
the space of functions f ∈ L0(m) satisfying that

(i) f ∈ L1(x∗m) for every x∗ ∈ E∗, and
(ii) for each A ∈ Rloc there exists xA ∈ E such that

x∗(xA) =
∫

A

f dx∗m, for every x∗ ∈ E∗.

The vector xA is unique and will be denoted by
∫

A
f dm. The space

L1(m) is a σ-order continuous B.f.s. related to the measure space (Ω,Rloc, η),
with norm

‖f‖L1(m) = sup
x∗∈BE∗

∫

Ω

|f | d|x∗m|.

Moreover, S(R) is dense in L1(m). Note that
∫

A
ϕdm =

∑n
j=1 αjm(Aj ∩ A)

for every ϕ =
∑n

j=1 αjχAj
∈ S(R) and A ∈ Rloc.



The integration operator Im : L1(m) → E defined by Im(f) =
∫
Ω

f dm
is a continuous linear operator with ‖Im(f)‖E ≤ ‖f‖L1(m). Even more,

1
2
‖f‖L1(m) ≤ sup

A∈R
‖Im(fχA)‖E ≤ ‖f‖L1(m) (2.2)

for all f ∈ L1(m).
Let p ∈ (0,∞). We denote by Lp(m) the p-power of L1(m), that is,

Lp(m) =
{
f ∈ L0(m) : |f |p ∈ L1(m)

}
.

Then Lp(m) is a quasi-B.f.s. with the quasi-norm ‖f‖Lp(m) = ‖ |f |p ‖1/p
L1(m).

In the case when p ≥ 1, we have that ‖ · ‖Lp(m) is a norm and so Lp(m) is a
B.f.s.

These and other issues concerning integration with respect to a vector
measure defined on a δ-ring can be found in [3,5,7,15,17,18].

3. Optimal Domain for Order-w Continuous Operators
on a i.f.s.

Let X(μ) be a i.f.s. satisfying the σ-property (recall: Ω = ∪Ωn with χΩn
∈

X(μ) for all n) and consider the δ-ring

ΣX(μ) =
{
A ∈ Σ : χA ∈ X(μ)

}
.

The σ-property guarantees that Σloc
X(μ) = Σ. Given a Banach space-valued

linear operator T : X(μ) → E, we define the finitely additive set function
mT : ΣX(μ) → E by mT (A) = T (χA).

We will say that T is order-w continuous if T (fn) → T (f) weakly in E
whenever fn, f ∈ X(μ) are such that 0 ≤ fn ↑ f μ-a.e.

Proposition 3.1. If T is order-w continuous, then mT is a vector measure
satisfying that [i] : X(μ) → L1(mT ) is well defined and T = ImT

◦ [i].

Proof. Let (An) ⊂ ΣX(μ) be a pairwise disjoint sequence with ∪An ∈ ΣX(μ).
Since T is order-w continuous, for any subsequence (Anj

) we have that
N∑

j=1

mT (Anj
) = T (χ∪N

j=1Anj
) → T (χ∪Anj

) = mT (∪Anj
)

weakly in E. From the Orlicz–Pettis theorem (see [9, Corollary I.4.4]), it
follows that

∑
mT (An) is unconditionally convergent in norm to mT (∪An).

Thus, mT is a vector measure.
Note that ‖mT ‖ 
 μ and so [i] : L0(μ) → L0(mT ) is well defined. In

addition, note that for every ϕ ∈ S(ΣX(μ)) we have that ImT
(ϕ) = T (ϕ).

Let f ∈ X(μ) be such that f ≥ 0 μ-a.e. and take a sequence of Σ-simple
functions 0 ≤ ϕn ↑ f μ-a.e. For each n we can write ϕn =

∑m
j=1 αjχAj

with (Aj)m
j=1 ⊂ Σ being a pairwise disjoint sequence and αj > 0 for all

j. Since χAj
≤ α−1

j ϕn ≤ α−1
j f μ-a.e., we have that χAj

∈ X(μ) and so
ϕn ∈ S(ΣX(μ)). Fix x∗ ∈ E∗. For every A ∈ Σ it follows that x∗T (ϕnχA) →
x∗T (fχA) as T is order-w continuous. Note that x∗T (ϕnχA) =

∫
A

ϕn dx∗mT



and that 0 ≤ ϕn ↑ f x∗mT -a.e. as |x∗mT | 
 ‖mT ‖ 
 μ. From [7, Proposi-
tion 2.3], we have that f ∈ L1(x∗mT ) and

∫

A

f dx∗mT = lim
n→∞

∫

A

ϕn dx∗mT = lim
n→∞ x∗T (ϕnχA) = x∗T (fχA).

Therefore, f ∈ L1(mT ) and ImT
(f) = T (f).

For a general f ∈ X(μ), the result follows by taking the positive and
negative parts of f . �

For the case when X(μ) is a B.f.s., Proposition 3.1 and the next Theorem
3.2 can be deduced from [8, Proposition 2.3] and [4, Proposition 4]. The proofs
given here are more direct and are valid for general i.f.s.’.

Theorem 3.2. Suppose that T is order-w continuous. Then, T factors as

X(μ) T ��

[i]
��

E

L1(mT )

ImT

��

(3.1)

with ImT
being order-w continuous. Moreover, the factorization is optimal in

the sense:
If Z(ξ) is a i.f.s. such that ξ � μ and

X(μ)
T ��

[i]
��

E

Z(ξ)

S

��

with S being an order-w continuous linear

operator

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ [i] : Z(ξ) → L1(mT ) is well

defined and S = ImT
◦ [i].

(3.2)

Proof. The factorization (3.1) follows from Proposition 3.1. Note that the
integration operator ImT

: L1(mT ) → E is order-w continuous, as it is con-
tinuous and L1(mT ) is σ-order continuous.

Let Z(ξ) satisfy (3.3). In particular, Z(ξ) satisfies the σ-property, as if
χA ∈ X(μ) then χA ∈ Z(ξ). From Proposition 3.1 applied to the operator
S : Z(ξ) → E, we have that [i] : Z(ξ) → L1(mS) is well defined and S = ImS

◦
[i]. Note that ΣX(μ) ⊂ ΣZ(ξ) and mS(A) = S(χA) = T (χA) = mT (A) for all
A ∈ ΣX(μ), that is, mT is the restriction of mS : ΣZ(ξ) → E to ΣX(μ). Then,
from [4, Lemma 3], it follows that L1(mS) = L1(mT ) and ImS

= ImT
. �

We can rewrite Theorem 3.2 in terms of optimal domain.

Corollary 3.3. Suppose that T is order-w continuous. Then L1(mT ) is the
largest i.f.s. to which T can be extended as an order-w continuous operator
still with values in E. Moreover, the extension of T to L1(mT ) is given by
the integration operator ImT

.



4. Optimal Domain for pth Power Factorable Operators
on a i.f.s. with an Order-w Continuous Extension

Let X(μ) be a i.f.s. satisfying the σ-property and let T : X(μ) → E be a
linear operator with values in a Banach space E.

For p ∈ (0,∞), we call T pth power factorable with an order-w con-
tinuous extension if there is an order-w continuous linear extension of T to
X(μ)

1
p + X(μ), i.e. T factors as

X(μ) T ��

i
��

E

X(μ)
1
p + X(μ)

S

with S being an order-w continuous linear operator.
Note that in the case when χΩ ∈ X(μ), from Lemma 2.3, if 1 < p we have

that X(μ) ⊂ X(μ)
1
p and so X(μ)

1
p + X(μ) = X(μ)

1
p . Similarly, if p ≤ 1 then

X(μ)
1
p +X(μ) = X(μ), but hence to say that T is pth power factorable with

an order-w continuous extension is just to say that T is order-w continuous.

Proposition 4.1. The following statements are equivalent:

(a) T is pth power factorable with an order-w continuous extension.
(b) T is order-w continuous and [i] : X(μ)

1
p + X(μ) → L1(mT ) is well de-

fined.
(c) T is order-w continuous and [i] : X(μ) → Lp(mT ) ∩ L1(mT ) is well

defined.

Moreover, if (a)–(c) holds, the extension of T to X(μ)
1
p + X(μ) coincides

with integration operator ImT
◦ [i].

Proof. (a) ⇒ (b) Note that T is order-w continuous as it has an order-w
continuous extension. Let S : X(μ)

1
p + X(μ) → E be an order-w continu-

ous linear operator extending T . Then, from Theorem 3.2, it follows that
[i] : X(μ)

1
p + X(μ) → L1(mT ) is well defined and S = ImT

◦ [i].
(b) ⇔ (c) Since T is is order-w continuous, by Proposition 3.1 we always

have that [i] : X(μ) → L1(mT ) is well defined. Suppose that [i] : X(μ)
1
p +

X(μ) → L1(mT ) is well defined. If f ∈ X(μ), since |f |p ∈ X(μ)
1
p ⊂ X(μ)

1
p +

X(μ), we have that |f |p ∈ L1(mT ) and so f ∈ Lp(mT ). Then f ∈ Lp(mT ) ∩
L1(mT ). Conversely, suppose that [i] : X(μ) → Lp(mT ) ∩ L1(mT ) is well
defined. Let f ∈ X(μ)

1
p +X(μ) and write f = f1 +f2 μ-a.e. with f1 ∈ X(μ)

1
p

and f2 ∈ X(μ). Since |f1| 1
p ∈ X(μ) we have that |f1| 1

p ∈ Lp(mT )∩L1(mT ) ⊂
Lp(mT ) and so f1 ∈ L1(mT ). Then, f ∈ L1(mT ) as f2 ∈ L1(mT ).

(b) ⇒ (a) From Proposition 3.1 and since [i] : X(μ)
1
p +X(μ) → L1(mT )

is well defined, we have that the operator ImT
◦[i] extends T to X(μ)

1
p +X(μ).

Moreover, the extension ImT
◦ [i] : X(μ)

1
p + X(μ) → E is order-w continuous

as the integration operator ImT
: L1(mT ) → E is so. �



In the case when χΩ ∈ X(μ) and T is order-w continuous, from Propo-
sition 3.1, we have that χΩ ∈ L1(mT ). So, from Lemma 2.3, if p > 1 then
Lp(mT ) ⊂ L1(mT ) and hence Lp(mT ) ∩ L1(mT ) = Lp(mT ). If p ≤ 1 then
Lp(mT ) ∩ L1(mT ) = L1(mT ), but hence, as commented before, T being pth
power factorable with an order-w continuous extension is just T being order-w
continuous.

Theorem 4.2. Suppose that T is pth power factorable with an order-w contin-
uous extension. Then, T factors as

X(μ) T ��

[i]

E

Lp(mT ) ∩ L1(mT )

ImT

(4.1)

with ImT
being pth power factorable with an order-w continuous extension.

Moreover, the factorization is optimal in the sense:
If Z(ξ) is a i.f.s. such that ξ � μ and

X(μ)
T ��

[i]
��

E

Z(ξ)

S

��

with S being a pth power factorable

linear operator with an order-w

continuous extension

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ [i] : Z(ξ) → Lp(mT ) ∩ L1(mT )

is well defined and S = ImT
◦ [i].

(4.2)

Proof. The factorization (4.1) follows from Propositions 3.1 and 4.1. Note
that Lp(mT ) ∩ L1(mT ) satisfies the σ-property as X(μ) does. Let us see
that the operator ImT

: Lp(mT ) ∩ L1(mT ) → E is pth power factorable
with an order-w continuous extension by using Proposition 4.1(c). This op-
erator is order-w continuous as the integration operator ImT

: L1(mT ) →
E is so. On other hand, since ΣX(μ) ⊂ ΣLp(mT )∩L1(mT ) and mImT

(A) =
ImT

(χA) = T (χA) = mT (A) for all A ∈ ΣX(μ) (i.e. mT is the restriction of
mImT

: ΣLp(mT )∩L1(mT ) → E to ΣX(μ)), from [4, Lemma 3], it follows that
L1(mImT

) = L1(mT ). Then,

[i] : Lp(mT ) ∩ L1(mT ) → Lp(mImT
) ∩ L1(mImT

) = Lp(mT ) ∩ L1(mT )

is well defined.
Let Z(ξ) satisfy (4.3). In particular, Z(ξ) has the σ-property. Applying

Proposition 4.1 to the operator S : Z(ξ) → E, we have that [i] : Z(ξ) →
Lp(mS) ∩ L1(mS) is well defined and S = ImS

◦ [i]. Since ΣX(μ) ⊂ ΣZ(ξ)

and mS(A) = mT (A) for all A ∈ ΣX(μ), from [4, Lemma 3], it follows that
L1(mS) = L1(mT ) and ImS

= ImT
. �

Rewriting Theorem 4.2 in terms of optimal domain we obtain the fol-
lowing conclusion.

Corollary 4.3. Suppose that T is pth power factorable with an order-w contin-
uous extension. Then Lp(mT )∩L1(mT ) is the largest i.f.s. to which T can be



extended as a pth power factorable operator with an order-w continuous exten-
sion, still with values in E. Moreover, the extension of T to Lp(mT )∩L1(mT )
is given by the integration operator ImT

.

5. Optimal Domain for Continuous Operators on a Quasi-B.f.s.

Let X(μ) be a quasi-B.f.s. satisfying the σ-property and let T : X(μ) → E
be a linear operator with values in a Banach space E.

Theorem 5.1. Suppose that X(μ) is σ-order continuous and T is continuous.
Then, T factors as

X(μ) T ��

[i]
��

E

L1(mT )

ImT

�� (5.1)

with ImT
being continuous. Moreover, the factorization is optimal in the

sense:
If Z(ξ) is a σ-order continuous quasi-B.f.s. such

that ξ � μ and

X(μ)
T ��

[i]
��

E

Z(ξ)

S

��

with S being a continuous linear operator

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ [i] : Z(ξ) → L1(mT ) is well

defined and S = ImT
◦ [i].

(5.2)

Proof. Since X(μ) is σ-order continuous and T is continuous, we have that
T is order-w continuous and so the factorization (5.1) follows from Theorem
3.2. Recall that L1(mT ) is σ-order continuous and ImT

is continuous.
Let Z(ξ) satisfy (5.3). In particular, S is order-w continuous. From

Theorem 3.2 we have that [i] : Z(ξ) → L1(mT ) is well defined and S =
ImT

◦ [i]. �

Corollary 5.2. Suppose that X(μ) is σ-order continuous and T is continuous.
Then L1(mT ) is the largest σ-order continuous quasi-B.f.s. to which T can
be extended as a continuous operator still with values in E. Moreover, the
extension of T to L1(mT ) is given by the integration operator ImT

.

6. Optimal Domain for pth Power Factorable Operators
on a Quasi-B.f.s. with a Continuous Extension

Let X(μ) be a quasi-B.f.s. satisfying the σ-property and let T : X(μ) → E
be a linear operator with values in a Banach space E.

For p ∈ (0,∞), we call T pth power factorable with a continuous exten-
sion if there is a continuous linear extension of T to X(μ)

1
p + X(μ), i.e. T



factors as

X(μ) T ��

i
��

E

X(μ)
1
p + X(μ)

S

with S being a continuous linear operator.
Note that in the case when χΩ ∈ X(μ) and 1 < p, from Lemma 2.3,

it follows that X(μ)
1
p + X(μ) = X(μ)

1
p . Then our definition of pth power

factorable operator with a continuous extension coincides with the one given
in [19, Definition 5.1]. If p ≤ 1, since X(μ)

1
p + X(μ) = X(μ), to say that T

is pth power factorable with a continuous extension is just to say that T is
continuous.

Proposition 6.1. Suppose that X(μ) is σ-order continuous. Then, the follow-
ing statements are equivalent:

(a) T is pth power factorable with a continuous extension.
(b) T is pth power factorable with an order-w continuous extension.
(c) T is order-w continuous and [i] : X(μ)

1
p + X(μ) → L1(mT ) is well de-

fined.
(d) T is order-w continuous and [i] : X(μ) → Lp(mT ) ∩ L1(mT ) is well

defined.
(e) There exists C > 0 such that ‖T (f)‖E ≤ C ‖f‖

X(μ)
1
p +X(μ)

for all f ∈
X(μ).

Moreover, if (a)–(e) holds, the extension of T to X(μ)
1
p + X(μ) coincides

with the integration operator ImT
◦ [i].

Proof. (a) ⇒ (b) Let S : X(μ)
1
p +X(μ) → E be a continuous linear operator

extending T . From Proposition 2.4 we have that X(μ)
1
p + X(μ) is σ-order

continuous and so S is order-w continuous. Then, T is pth power factorable
with an order-w continuous extension.

(b) ⇔ (c) ⇔ (d) And the fact that the extension of T to X(μ)
1
p +X(μ)

coincides with the integration operator ImT
◦ [i] follows from Proposition 4.1.

(c) ⇒ (e) The operator [i] : X(μ)
1
p + X(μ) → L1(mT ) is continuous as

it is positive. Then, there exists a constant C > 0 satisfying that

‖f‖L1(mT ) ≤ C ‖f‖
X(μ)

1
p +X(μ)

for all f ∈ X(μ)
1
p + X(μ). Since ImT

extends T to L1(mT ), it follows that

‖T (f)‖E = ‖ImT
(f)‖E ≤ ‖f‖L1(mT ) ≤ C ‖f‖

X(μ)
1
p +X(μ)

for all f ∈ X(μ).
(e) ⇒ (a) Let 0 ≤ f ∈ X(μ)

1
p + X(μ). From Lemma 2.1, there exists

(fn) ⊂ X(μ) such that 0 ≤ fn ↑ f μ-a.e. Since X(μ)
1
p + X(μ) is σ-order



continuous, it follows that fn → f in the quasi-norm of X(μ)
1
p + X(μ).

Then, since

‖T (fn) − T (fm)‖E = ‖T (fn − fm)‖E ≤ C ‖fn − fm‖
X(μ)

1
p +X(μ)

,

we have that
(
T (fn)

)
converges to some element e ∈ E. Define S(f) = e.

Note that if (gn) ⊂ X(μ) is another sequence such that 0 ≤ gn ↑ f μ-a.e.,
then

‖T (fn) − T (gn)‖E ≤ C ‖fn − gn‖
X(μ)

1
p +X(μ)

≤ CK

(
‖fn − f‖

X(μ)
1
p +X(μ)

+ ‖f − gn‖
X(μ)

1
p +X(μ)

)
,

where K is the constant satisfying the property (iii) of the quasi-norm ‖ ·
‖

X(μ)
1
p +X(μ)

, and so S is well defined. Also note that

‖S(f)‖E ≤ ‖S(f) − T (fn)‖E + ‖T (fn)‖E

≤ ‖S(f) − T (fn)‖E + C ‖fn‖
X(μ)

1
p +X(μ)

≤ ‖S(f) − T (fn)‖E + C ‖f‖
X(μ)

1
p +X(μ)

for all n ≥ 1, and thus ‖S(f)‖E ≤ C ‖f‖
X(μ)

1
p +X(μ)

.

For a general f ∈ X(μ)
1
p + X(μ), define S(f) = S(f+) − S(f−) where

f+ and f− are the positive and negative parts of f , respectively. It follows
that S is linear and S(f) = T (f) for all f ∈ X(μ). Moreover, for every
f ∈ X(μ)

1
p + X(μ) we have that

‖S(f)‖E ≤ ‖S(f+)‖E + ‖S(f−)‖E

≤ C ‖f+‖
X(μ)

1
p +X(μ)

+ C ‖f−‖
X(μ)

1
p +X(μ)

≤ 2C ‖f‖
X(μ)

1
p +X(μ)

.

an so S is continuous. Hence, T is pth power factorable with a continuous
extension. �

In the case when μ is finite, χΩ ∈ X(μ) and p ≥ 1, the equivalences (a)
⇔ (c) ⇔ (d) ⇔ (e) of Proposition 6.1 are proved in [19, Theorem 5.7]. Here,
we have included a more detailed proof for the general case.

Theorem 6.2. Suppose that X(μ) is σ-order continuous and T is pth power
factorable with a continuous extension. Then, T factors as

X(μ) T ��

[i]

E

Lp(mT ) ∩ L1(mT )

ImT

(6.1)



with ImT
being pth power factorable with a continuous extension. Moreover,

the factorization is optimal in the sense:
If Z(ξ) is a σ-order continuous quasi-B.f.s.

such that ξ � μ and

X(μ)
T ��

[i]

��

E

Z(ξ)

S

��

with S being a pth power factorable linear

operator with a continuous extension

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=⇒ [i] : Z(ξ) → Lp(mT ) ∩ L1(mT )

is well defined and S = ImT
◦ [i].

(6.2)

Proof. From Proposition 6.1 we have that T is pth power factorable with
an order-w continuous extension. Then, from Theorem 4.2, the factorization
(6.1) holds and ImT

: Lp(mT ) ∩ L1(mT ) → E is pth power factorable with
an order-w continuous extension. Noting that the space Lp(mT ) ∩ L1(mT ) is
σ-order continuous (as L1(mT ) is so) and satisfies the σ-property (as X(μ)
does), from Proposition 6.1 it follows that ImT

: Lp(mT ) ∩ L1(mT ) → E is
pth power factorable with a continuous extension.

Let Z(ξ) satisfy (6.3), in particular it satisfies the σ-property. Again
Proposition 6.1 gives that S is pth power factorable with an order-w contin-
uous extension. So, from Theorem 4.2, it follows that [i] : Z(ξ) → Lp(mT ) ∩
L1(mT ) is well defined and S = ImT

◦ [i]. �

Corollary 6.3. Suppose that X(μ) is σ-order continuous and T is pth power
factorable with a continuous extension. Then Lp(mT )∩L1(mT ) is the largest
σ-order continuous quasi-B.f.s. to which T can be extended as a pth power
factorable operator with a continuous extension, still with values in E. More-
over, the extension of T to Lp(mT ) ∩ L1(mT ) is given by the integration
operator ImT

.

In the case when μ is finite, χΩ ∈ X(μ) and p ≥ 1, Corollary 6.3 is
proved in [19, Theorem 5.11].

7. Application: Extension for Operators Defined on �1

Consider the measure space (N,P(N), c) where c is the counting measure on
N. Note that a property holds c-a.e. if and only if it holds pointwise and that
the space L0(c) coincides with the space �0 of all real sequences. Consider the
space �1 = L1(c), which is σ-order continuous and has the σ-property. The
δ-ring P(N)�1 is just the set PF (N) of all finite subsets of N.

Let T : �1 → E be a continuous linear operator with values in a Banach
space E. Denote en = χ{n} and assume that T (en) �= 0 for all n. This
assumption seems to be natural since if T (en) = 0 then the nth coordinate is
not involved in the action of T . Hence, the vector measure mT : PF (N) → E
associated to T by mT (A) = T (χA) is equivalent to c and so L1(mT ) ⊂ �0.
We will write �1(mT ) = L1(mT ).



Remark 7.1. By Theorem 5.1 we have that T can be extended as

�1
T ��

i
��

E

�1(mT )

ImT

��

and �1(mT ) is the largest σ-order continuous quasi-B.f.s. to which T can be
extended as a continuous operator.

Let p > 1. We have that T is 1
p th power factorable with a continuous

extension if there is an extension S as

�1
T ��

i

E

�p

S



with S being a continuous linear operator. Note that p ≤ 1 is not considered
as in this case �p ⊂ �1 and so the extension of T to the sum �p + �1 is just the
same operator T . Applying Proposition 6.1 in the context of this section, we
obtain the following result.

Proposition 7.2. The following statements are equivalent:
(a) T is 1

p th power factorable with a continuous extension.
(b) �p ⊂ �1(mT ).
(c) �1 ⊂ �

1
p (mT ) ∩ �1(mT ).

(d) There exists C > 0 such that
∥
∥
∥
∥
∥
∥

∑

j∈M

xjT (ej)

∥
∥
∥
∥
∥
∥

E

≤ C

⎛

⎝
∑

j∈M

xp
j

⎞

⎠

1
p

for all M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Proof. From Proposition 6.1, we only have to prove that condition (d) is
equivalent to the following condition:
(d’) There exists C > 0 such that ‖T (x)‖E ≤ C ‖x‖�p for all x ∈ �1.

If (d’) holds, we obtain (d) by taking in (d’) the element x =∑
j∈M xjej ∈ �1 for every M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Suppose that (d) holds. Let 0 ≤ x = (xn) ∈ �1 and take yk =
∑k

j=1 xjej .
Since yk ↑ x pointwise, �1 is σ-order continuous and T is continuous, we have
that

‖T (x)‖E = lim ‖T (yk)‖E = lim

∥∥
∥
∥
∥

k∑

j=1

xjT (ej)

∥∥
∥
∥
∥

E

≤ C lim

(
k∑

j=1

xp
j

) 1
p

= C ‖x‖�p .

For a general x ∈ �1, (d’) follows by taking the positive and negative parts
of x. �



Remark 7.3. Note that if T is 1
p th power factorable with a continuous exten-

sion then the integration operator ImT
extends T to �p and, from Theorem

6.2, T factors optimally as

�1
T ��

i

��

E

�
1
p (mT ) ∩ �1(mT )

ImT

with ImT
being 1

p th power factorable with a continuous extension.

Now a natural question arises: when �
1
p (mT )∩�1(mT ) is equal to �

1
p (mT )

or �1(mT )? For asking this question we introduce the following class of oper-
ators.

Let 0 < r < ∞. We say that T is r-power dominated if there exists
C > 0 such that

∥
∥
∥
∥
∥
∥

∑

j∈M

xr
j T (ej)

∥
∥
∥
∥
∥
∥

1
r

E

≤ C sup
N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xjT (ej)

∥
∥
∥
∥
∥
∥

E

for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞). Note that in the case when E
is a Banach lattice and T is positive we have that

sup
N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xjT (ej)

∥
∥
∥
∥
∥
∥

E

=

∥
∥
∥
∥
∥
∥

∑

j∈M

xjT (ej)

∥
∥
∥
∥
∥
∥

E

.

Lemma 7.4. The containment �1(mT ) ⊂ �r(mT ) holds if and only if T is
r-power dominated.

Proof. Suppose that �1(mT ) ⊂ �r(mT ). Since the containment is continuous
(as it is positive), there exists C > 0 such that ‖x‖�r(mT ) ≤ C ‖x‖�1(mT ) for
all x ∈ �1(mT ). For every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), we consider
x =

∑
j∈M xjej ∈ �1. Noting that xr =

∑
j∈M xr

jej ∈ �1, it follows that

∥
∥
∥
∥
∥
∥

∑

j∈M

xr
j T (ej)

∥
∥
∥
∥
∥
∥

1
r

E

= ‖T (xr)‖ 1
r

E = ‖ImT
(xr)‖ 1

r

E ≤ ‖xr‖ 1
r

�1(mT ) = ‖x‖�r(mT )

≤ C ‖x‖�1(mT ) ≤ 2C sup
A∈PF (N)

‖ImT
(xχA)‖E ,

where in the last inequality we have used (2.2). For every A ∈ PF (N)
we have that xχA =

∑
j∈A∩M xjej ∈ �1 and so ImT

(xχA) = T (xχA) =



∑
j∈A∩M xjT (ej ). Then,

∥
∥
∥
∥
∥
∥

∑

j∈M

xr
j T (ej)

∥
∥
∥
∥
∥
∥

1
r

E

≤ 2C sup
A∈PF (N)

∥
∥
∥
∥
∥
∥

∑

j∈A∩M

xjT (ej)

∥
∥
∥
∥
∥
∥

E

= 2C sup
N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xjT (ej)

∥
∥
∥
∥
∥
∥

E

.

Conversely, suppose that T is r-power dominated and let x = (xn) ∈
�1(mT ). Taking yk =

∑k
j=1 |xj |rej ∈ �1, for every k > k̃ and A ∈ PF (N), we

have that (yk − yk̃)χA =
∑

j∈A∩{k̃+1,...,k} |xj |rej and so

∥
∥T

(
(yk − yk̃)χA

)∥∥
E

=

∥
∥
∥
∥
∥
∥

∑

j∈A∩{k̃+1,...,k}
|xj |r T (ej)

∥
∥
∥
∥
∥
∥

E

≤ C r sup
N⊂A∩{k̃+1,...,k}

∥
∥
∥
∥
∥
∥

∑

j∈N

|xj |T (ej)

∥
∥
∥
∥
∥
∥

r

E

= C r sup
N⊂A∩{k̃+1,...,k}

∥
∥
∥
∥
∥
∥

ImT

⎛

⎝
∑

j∈N

|xj |ej

⎞

⎠

∥
∥
∥
∥
∥
∥

r

E

≤ C r sup
N⊂A∩{k̃+1,...,k}

∥
∥
∥
∥
∥
∥

∑

j∈N

|xj |ej

∥
∥
∥
∥
∥
∥

r

�1(mT )

≤ C r
∥
∥(yk)

1
r − (yk̃)

1
r

∥
∥r

�1(mT )
.

For the last inequality note that (yk)
1
r =

∑k
j=1 |xj |ej and so

∑

j∈N

|xj |ej ≤
k∑

j=k̃+1

|xj |ej = (yk)
1
r − (yk̃)

1
r

for every N ⊂ A ∩ {k̃ + 1, . . . , k}. Then, using (2.2), we have that
∥
∥yk − yk̃

∥
∥

�1(mT )
≤ 2 sup

A∈PF (N)

∥
∥ImT

(
(yk − yk̃)χA

)∥∥
E

= 2 sup
A∈PF (N)

∥
∥T

(
(yk − yk̃)χA

)∥∥
E

≤ 2C r
∥
∥(yk)

1
r − (yk̃)

1
r

∥
∥r

�1(mT )
→ 0

as k, k̃ → ∞ since (yk)
1
r ↑ |x| pointwise and �1(mT ) is σ-order continu-

ous. Hence, yk → z in �1(mT ) for some z ∈ �1(mT ). In particular, yk → z
pointwise and so |x|r = z ∈ �1(mT ) as yk ↑ |x|r pointwise. Therefore,
x ∈ �r(mT ). �



Lemma 7.5. Let p > 1. If T is 1
p -power dominated then it is 1

p th power
factorable with a continuous extension.

Proof. Let us use Proposition 7.2(d). Given M ∈ PF (N) and (xj)j∈M ⊂
[0,∞), denoting by K the continuity constant of T , we have that
∥
∥
∥
∥
∥
∥

∑

j∈M

xjT (ej)

∥
∥
∥
∥
∥
∥

E

=

∥
∥
∥
∥
∥
∥

∑

j∈M

(xp
j )

1
p T (ej)

∥
∥
∥
∥
∥
∥

E

≤ C
1
p sup

N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xp
j T (ej)

∥
∥
∥
∥
∥
∥

1
p

E

= C
1
p sup

N⊂M

∥
∥
∥
∥
∥
∥
T

⎛

⎝
∑

j∈N

xp
jej

⎞

⎠

∥
∥
∥
∥
∥
∥

1
p

E

≤ C
1
p K

1
p sup

N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xp
jej

∥
∥
∥
∥
∥
∥

1
p

�1

= C
1
p K

1
p sup

N⊂M

⎛

⎝
∑

j∈N

xp
j

⎞

⎠

1
p

≤ C
1
p K

1
p

⎛

⎝
∑

j∈M

xp
j

⎞

⎠

1
p

.

�
As a consequence of Remark 7.3, Lemmas 7.4 and 7.5, we obtain the

following conclusion.

Corollary 7.6. For p > 1 we have that:
(a) If T is p-power dominated and 1

p th power factorable with a continuous
extension, then T factors optimally as

�1
T ��

i

��

E

�
1
p (mT )

ImT

��

with ImT
being 1

p th power factorable with a continuous extension.
(b) If T is 1

p -power dominated, then T factors optimally as

�1
T ��

i

��

E

�1(mT )

ImT

��

with ImT
being 1

p th power factorable with a continuous extension.

Consider now the case when E = �(c) is a B.f.s. related to c such
that �1 ⊂ �(c) ⊂ �0. Then �(c) is a Köthe function space in the sense of
Lindenstrauss and Tzafriri, see [16, pp. 28–30]. For instance, �(c) could be an
�q space with 1 ≤ q ≤ ∞, or a Lorentz sequence space �q,r with 1 ≤ r ≤ q ≤ ∞
or an Orlicz sequence space �ϕ with ϕ being an Orlicz function.

Let us recall some facts about the Köthe dual of an space �(c). Denote
the scalar product of two sequences x = (xn), y = (yn) ∈ �0 by

(
x, y

)
=

∑
xnyn



provided the sum exists. The Köthe dual of �(c) is given by

�(c)′ =
{

y ∈ �0 :
(|x|, |y|) < ∞ for all x ∈ �(c)

}
.

Note that χA ∈ �(c)′ for all A ∈ PF (N). The space �(c)′ endowed with the
norm

‖y‖�(c)′ = sup
x∈B�(c)

(|x|, |y|)

is a B.f.s. in the sense of Lindenstrauss and Tzafriri. The map j : �(c)′ → �(c)∗

defined by 〈j(y), x〉 =
(
x, y

)
for all y ∈ �(c)′ and x ∈ �(c), is a linear isometry.

In particular, convergence in norm of �(c) implies pointwise convergence,
as en ∈ �(c)′ for all n. Note that �(c) ⊂ �(c)′′. The equality �(c) = �(c)′′

holds with equal norms if and only if �(c) has the Fatou property, that is, if
(xk) ⊂ �(c) is such that 0 ≤ xk ↑ x pointwise and sup ‖xk‖�(c) < ∞ then
x ∈ �(c) and ‖xk‖�(c) ↑ ‖x‖�(c).

Let M = (aij) be an infinite matrix of real numbers and denote by Cj

the jth column of M . Assume Cj �= 0 for all j. Note that

Mx =

⎛

⎝
∑

j

aijxj

⎞

⎠

i

for any x ∈ �0 for which it is meaningful to do so.

Proposition 7.7. Suppose that �(c) has the Fatou property. Then, the following
statements are equivalent:
(a) M defines a continuous linear operator M : �1 → �(c).
(b) Cj ∈ �(c) for all j and supj ‖Cj‖�(c) < ∞.

Proof. (a) ⇒ (b) Let K > 0 be such that ‖Mx‖�(c) ≤ K‖x‖�1 for all x ∈ �1.
For every j we have that Cj = Mej ∈ �(c). Moreover,

sup
j

‖Cj‖�(c) = sup
j

‖Mej‖�(c) ≤ K sup
j

‖ej‖�1 = K.

(b) ⇒ (c) Since �(c) has the Fatou property then �(c) = �(c)′′ with equal
norms. Let x ∈ �1. First note that for every i we have that

∑

j

|aijxj | =
∑

j

(|Cj |, ei

)|xj | ≤
∑

j

‖Cj‖�(c)‖ei‖�(c)′ |xj |

≤ ‖ei‖�(c)′‖x‖�1 sup
j

‖Cj‖�(c)

and so Mx ∈ �0. Given y ∈ �(c)′ it follows that

(|y|, |Mx|) =
∑

i

|yi|
∣
∣
∣
∣
∣
∣

∑

j

aijxj

∣
∣
∣
∣
∣
∣
≤

∑

i

∑

j

|aijxjyi| =
∑

j

|xj |
∑

i

|aijyi|

=
∑

j

|xj |
(|Cj |, |y|) ≤

∑

j

|xj | ‖Cj‖�(c)‖y‖�(c)′

≤ ‖y‖�(c)′‖x‖�1 sup
j

‖Cj‖�(c).



Then Mx ∈ �(c)′′ = �(c) and

‖Mx‖�(c) = sup
y∈B�(c)′

(|y|, |Mx|) ≤ ‖x‖�1 sup
j

‖Cj‖�(c).

�

In what follows, assume that �(c) has the Fatou property, Cj ∈ �(c) for
all j and supj ‖Cj‖�(c) < ∞. Then, M defines a continuous linear operator
M : �1 → �(c) and so, by Remark 7.1 we have that M can be extended as

�1
M ��

i
��

�(c)

�1(mM )

ImM

��

and �1(mM ) is the largest σ-order continuous quasi-B.f.s. to which M can be
extended as a continuous operator.

Remark 7.8. For every x ∈ �1(mM ) it follows that ImM
(x) = Mx and so

M defines a continuous linear operator M : �1(mM ) → �(c). Indeed, take
0 ≤ x = (xn) ∈ �1(mM ) and xk =

∑k
j=1 xjej ∈ �1. Since xk ↑ x pointwise

and �1(mM ) is σ-order continuous it follows that xk → x in �1(mM ). Then,
since M = ImM

on �1, we have that Mxk = ImM
(xk) → ImM

(x) in �(c)
and so pointwise. Hence, the ith coordinate

∑k
j=1 aijxj of Mxk converges to

the ith coordinate of ImM
(x) and thus Mx = ImM

(x) ∈ �(c). For a general
x ∈ �1(mM ), we only have to take the positive and negative parts of x.

From Proposition 7.2 applied to M : �1 → �(c) and Remark 7.8 we
obtain the following conclusion.

Proposition 7.9. The following statements are equivalent:
(a) M defines a continuous linear operator M : �p → �(c).
(b) M is 1

p th power factorable with a continuous extension.
(c) �p ⊂ �1(mM ).
(d) �1 ⊂ �

1
p (mM ) ∩ �1(mM ).

(e) There exists C > 0 such that
∥
∥
∥
∥
∥
∥

∑

j∈M

xjCj

∥
∥
∥
∥
∥
∥

�(c)

≤ C

⎛

⎝
∑

j∈M

xp
j

⎞

⎠

1
p

for all M ∈ PF (N) and (xj)j∈M ⊂ [0,∞).

Proof. The equivalence among statements (b), (c), (d), (e) is given by Propo-
sition 7.2. The statement (a) implies (b) obviously. From Remark 7.8 we have
that M defines a continuous linear operator M : �1(mM ) → �(c), so (c) im-
plies (a). �

Let us give two conditions guaranteeing that M defines a continuous
linear operator M : �p → �(c):



(I) If p′ is the conjugate exponent of p and
∑ ‖Cj‖p′

�(c) < ∞, then (e) in
Proposition 7.9 holds. Indeed, for every M ∈ PF (N) and (xj)j∈M ⊂
[0,∞) we have that

∥
∥
∥
∥
∥
∥

∑

j∈M

xjCj

∥
∥
∥
∥
∥
∥

�(c)

≤
∑

j∈M

xj‖Cj‖�(c) ≤
⎛

⎝
∑

j∈M

xp
j

⎞

⎠

1
p

⎛

⎝
∑

j∈M

‖Cj‖p′

�(c)

⎞

⎠

1
p′

≤
(∑

‖Cj‖p′

�(c)

) 1
p′

⎛

⎝
∑

j∈M

xp
j

⎞

⎠

1
p

.

(II) If M is 1
p -power dominated, that is, there exists C > 0 such that

∥
∥
∥
∥
∥
∥

∑

j∈M

x
1
p

j Cj

∥
∥
∥
∥
∥
∥

p

�(c)

≤ C sup
N⊂M

∥
∥
∥
∥
∥
∥

∑

j∈N

xjCj

∥
∥
∥
∥
∥
∥

�(c)

for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), then (b) in Proposition 7.9
holds by Lemma 7.5.
For instance, in the case when �(c) = �q and aij ≥ 0 for all i, j, condition

(II) is satisfied if Fi ∈ �1 for all i and
∑ ‖Fi‖q

�1 < ∞, where Fi denotes the
ith file of M . Indeed, for every M ∈ PF (N) and (xj)j∈M ∈ [0,∞), applying
Hölder’s inequality twice for p and its conjugate exponent p′, we have that
∥
∥
∥
∥
∥
∥

∑

j∈M

x
1
p

j Cj

∥
∥
∥
∥
∥
∥

p

�q

=

⎛

⎝
∑

i

⎛

⎝
∑

j∈M

x
1
p

j aij

⎞

⎠

q⎞

⎠

p
q

=

⎛

⎝
∑

i

⎛

⎝
∑

j∈M

x
1
p

j a
1
p

ija
1− 1

p

ij

⎞

⎠

q⎞

⎠

p
q

≤

⎛

⎜
⎝

∑

i

⎛

⎝
∑

j∈M

xj aij

⎞

⎠

q
p

⎛

⎝
∑

j∈M

aij

⎞

⎠

q
p′

⎞

⎟
⎠

p
q

≤
⎛

⎝
∑

i

⎛

⎝
∑

j∈M

xj aij

⎞

⎠

q⎞

⎠

1
q

·
⎛

⎝
∑

i

⎛

⎝
∑

j∈M

aij

⎞

⎠

q⎞

⎠

p
qp′

≤
∥
∥
∥
∥
∥
∥

∑

j∈M

xj Cj

∥
∥
∥
∥
∥
∥

�q

(
∑

i

‖Fi‖q
�1

) p
qp′

.

Note that supN⊂M ‖∑
j∈N xjCj‖�q = ‖∑

j∈M xj Cj‖�q as aij ≥ 0 for all i, j.
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vol. 180. Birkhäuser, Basel (2008)


	Optimal Extensions for pth Power Factorable Operators
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Ideal Function Spaces
	2.2. Integration with Respect to a Vector Measure Defined on a δ-Ring

	3. Optimal Domain for Order-w Continuous Operators on a i.f.s.
	4. Optimal Domain for pth Power Factorable Operators on a i.f.s. with an Order-w Continuous Extension
	5. Optimal Domain for Continuous Operators on a Quasi-B.f.s.
	6. Optimal Domain for pth Power Factorable Operators on a Quasi-B.f.s. with a Continuous Extension
	7. Application: Extension for Operators Defined on ell1
	References




