Optimal Extensions for p th Power Factorable Operators

O. Delgado and E. A. Sánchez Pérez

Abstract

Let $X(\mu)$ be a function space related to a measure space (Ω, Σ, μ) with $\chi_{\Omega} \in X(\mu)$ and let $T: X(\mu) \rightarrow E$ be a Banach spacevalued operator. It is known that if T is p th power factorable then the largest function space to which T can be extended preserving p th power factorability is given by the space $L^{p}\left(m_{T}\right)$ of p-integrable functions with respect to m_{T}, where $m_{T}: \Sigma \rightarrow E$ is the vector measure associated to T via $m_{T}(A)=T\left(\chi_{A}\right)$. In this paper, we extend this result by removing the restriction $\chi_{\Omega} \in X(\mu)$. In this general case, by considering m_{T} defined on a certain δ-ring, we show that the optimal domain for T is the space $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$. We apply the obtained results to the particular case when T is a map between sequence spaces defined by an infinite matrix.

Mathematics Subject Classification. 46E30, 46G10, 47B38.
Keywords. Integration with respect to a vector measure defined on a δ-ring, optimal extension of an operator, p th power factorable operator, Quasi-Banach function space.

1. Introduction

Although the concept of p th power factorable operator has previously been used as a tool in operator theory, it was introduced explicitly in [19, Sect. 5]. Given a measure space (Ω, Σ, μ) and a Banach function space $X(\mu)$ of (μ-a.e. classes of) Σ-measurable functions such that $\chi_{\Omega} \in X(\mu)$, for $1 \leq p<\infty$, a Banach space-valued operator $T: X(\mu) \rightarrow E$ is p th power factorable if there is a continuous extension of T to the $\frac{1}{p}$ th power space $X(\mu)^{\frac{1}{p}}$ of $X(\mu)$. This is equivalent to the existence of a constant $C>0$ satisfying that

$$
\|T(f)\| \leq C\left\||f|^{\frac{1}{p}}\right\|_{X(\mu)}^{p}=C\|f\|_{X(\mu)^{\frac{1}{p}}}
$$

[^0]for all $f \in X(\mu)$. The main characterization of this class of operators establishes that any of them can be extended to an space L^{p} of a vector measure $m_{T}: \Sigma \rightarrow E$ associated to T via $m_{T}(A)=T\left(\chi_{A}\right)$ and the extension is maximal. Note that the condition $\chi_{\Omega} \in X(\mu)$ is necessary for a correct definition of p th power factorable operator (i.e. $\left.X(\mu) \subset X(\mu)^{\frac{1}{p}}\right)$ and for m_{T} to be well defined.

Several applications are shown also in [19, Sect. 6, 7], mainly in factorization of operators through spaces $L^{q}(\mu)$ (Maurey-Rosenthal type theorems) and in harmonic analysis (Fourier transform and convolution operators). After that p th power factorable operators have turned out to be a useful tool for the study of different problems in mathematical analysis, regarding for example Banach space interpolation theory [6], differential equations [10], description of maximal domains for several classes of operators [12], factorization of kernel operators [13] or adjoint operators [11].

The requirement $\chi_{\Omega} \in X(\mu)$ excludes basic spaces as $L^{q}(0, \infty)$ or ℓ^{q}. Although these spaces can be represented as spaces satisfying the needed requirement (for instance $L^{q}(0, \infty)$ is isometrically isomorphic to $L^{q}\left(e^{-x} \mathrm{~d} x\right)$ via the multiplication operator induced by $e^{\frac{x}{q}}$), to use such a representation provides some kind of factorization for T but not genuine extensions.

The aim of this paper is to extend the results on maximal extensions of p th power factorable operators to quasi-Banach spaces $X(\mu)$ which do not necessarily contain χ_{Ω}. Also we will consider p to be any positive number removing the restriction $p \geq 1$. The first problem is the definition of p th power factorable operator, as in general the containment $X(\mu) \subset X(\mu)^{\frac{1}{p}}$ does not hold. This can be solved by replacing $X(\mu)^{\frac{1}{p}}$ by the sum $X(\mu)^{\frac{1}{p}}+X(\mu)$. The second problem is the definition of the vector measure m_{T} associated to T. The technique to overcome this obstacle consists of considering m_{T} defined on the δ-ring $\Sigma_{X(\mu)}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\}$ instead of the σ-algebra Σ. We will see that actually no topology is needed on $X(\mu)$ to extend $T: X(\mu) \rightarrow E$, it suffices an ideal structure on $X(\mu)$ and a certain property on T which relates the μ-a.e. pointwise order of $X(\mu)$ and the weak topology of E. This property, called order-w continuity, is the minimal condition for m_{T} to be a vector measure.

The paper is organized as follows. Section 2 is devoted to establish the notation and to state the results on ideal function spaces, quasi-Banach function spaces and integration with respect to a vector measure defined on a δ-ring, which will be use along this work. For the aim of completeness, we include the proof of some relevant facts. In Sect. 3 we show that every order-w continuous operator T defined on an ideal function space $X(\mu)$, can be extended to the space $L^{1}\left(m_{T}\right)$ of integrable functions with respect to m_{T} and this space is the largest one to which T can be extended as an order-w continuous operator (Theorem 3.2). Section 4 deals with operators T which are p th power factorable with an order-w continuous extension, that is, there is an order-w continuous extension of T to the space $X(\mu)^{\frac{1}{p}}+X(\mu)$. We prove that the space $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is the optimal domain for T preserving the property of being p th power factorable with an order-w continuous extension
(Theorem 4.2). In Sects. 5 and 6 we endow $X(\mu)$ with a topology (namely $X(\mu)$ will be a σ-order continuous Quasi-Banach function space) and consider T to be continuous. Results on maximal extensions analogous to the ones of the previous sections are obtain for continuity instead of order-w continuity (Theorems 5.1 and 6.2). Finally, as an application of our results, in the last section we study when an infinite matrix of real numbers defines a continuous linear operator from ℓ^{p} into any given sequence space.

2. Preliminaries

2.1. Ideal Function Spaces

Let (Ω, Σ) be a fixed measurable space. For a measure $\mu: \Sigma \rightarrow[0, \infty]$, we denote by $L^{0}(\mu)$ the space of all (μ-a.e. classes of) Σ-measurable real-valued functions on Ω. Given two set functions $\mu, \lambda: \Sigma \rightarrow[0, \infty]$ we will write $\lambda \ll \mu$ if $\mu(A)=0$ implies $\lambda(A)=0$. We will say that μ and λ are equivalent if $\lambda \ll \mu$ and $\mu \ll \lambda$. In the case when μ and λ are two measures with $\lambda \ll \mu$, the map $[i]: L^{0}(\mu) \rightarrow L^{0}(\lambda)$ which takes a μ-a.e. class in $L^{0}(\mu)$ represented by f into the λ-a.e. class represented by the same f, is a well-defined linear map. To simplify notation $[i](f)$ will be denoted again as f. Note that if λ and μ are equivalent then $L^{0}(\mu)=L^{0}(\lambda)$ and $[i]$ is the identity map i.

An ideal function space (briefly, i.f.s.) is a vector space $X(\mu) \subset L^{0}(\mu)$ satisfying that if $f \in X(\mu)$ and $g \in L^{0}(\mu)$ with $|g| \leq|f| \mu$-a.e. then $g \in X(\mu)$. We will say that $X(\mu)$ has the σ-property if there exists $\left(\Omega_{n}\right) \subset \Sigma$ such that $\Omega=\cup \Omega_{n}$ and $\chi_{\Omega_{n}} \in X(\mu)$ for all n. For instance, this happens if there is some $g \in X(\mu)$ with $g>0 \mu$-a.e.

Lemma 2.1. Let $X(\mu)$ be an i.f.s. satisfying the σ-property. For every $\Sigma-$ measurable function $f: \Omega \rightarrow[0, \infty)$ there exists $\left(f_{n}\right) \subset X(\mu)$ such that $0 \leq$ $f_{n} \uparrow f$ pointwise.

Proof. Let $\left(\Omega_{n}\right) \subset \Sigma$ be the sequence given by the σ-property of $X(\mu)$ and let $f: \Omega \rightarrow[0, \infty)$ be a Σ-measurable function. Taking $A_{n}=\cup_{j=1}^{n} \Omega_{j} \cap\{\omega \in$ $\Omega: f(\omega) \leq n\}$, we have that $f_{n}=f \chi_{A_{n}} \in X(\mu)$, as $0 \leq f_{n} \leq n \chi_{\cup_{j=1}^{n} \Omega_{j}}$ pointwise, and that $f_{n} \uparrow f$ pointwise.

The sum of two i.f.s.' $X(\mu)$ and $Y(\mu)$ is the space defined as

$$
X(\mu)+Y(\mu)=\left\{f \in L^{0}(\mu): f=f_{1}+f_{2} \quad \mu \text {-a.e., } f_{1} \in X(\mu), f_{2} \in Y(\mu)\right\} .
$$

Proposition 2.2. The sum $X(\mu)+Y(\mu)$ of two i.f.s.' is an i.f.s.
Proof. Let $f \in X(\mu)+Y(\mu)$ and $g \in L^{0}(\mu)$ be such that $|g| \leq|f| \mu$-a.e. Write $f=f_{1}+f_{2} \mu$-a.e. with $f_{1} \in X(\mu)$ and $f_{2} \in Y(\mu)$ and denote $A=\{\omega \in \Omega$: $\left.|g(\omega)| \leq\left|f_{1}(\omega)\right|\right\}$. Taking $h_{1}=|g| \chi_{A}+\left|f_{1}\right| \chi_{\Omega \backslash A}$ and $h_{2}=\left(|g|-\left|f_{1}\right|\right) \chi_{\Omega \backslash A}$, we have that $|g|=h_{1}+h_{2}$ with $h_{1} \in X(\mu)$ as $0 \leq h_{1} \leq\left|f_{1}\right|$ pointwise and $h_{2} \in Y(\mu)$ as $0 \leq h_{2} \leq\left|f_{2}\right| \mu$-a.e. Now, denote $B=\{\omega \in \Omega: g(\omega) \geq 0\}$ and take $g_{1}=h_{1}\left(\chi_{B}-\chi_{\Omega \backslash B}\right)$ and $g_{2}=h_{2}\left(\chi_{B}-\chi_{\Omega \backslash B}\right)$. Then, $g=g_{1}+g_{2}$ with $g_{1} \in X(\mu)$ as $\left|g_{1}\right|=h_{1}$ and $g_{2} \in Y(\mu)$ as $\left|g_{2}\right|=h_{2}$. So, $g \in X(\mu)+Y(\mu)$.

Let $p \in(0, \infty)$. The p-power of an i.f.s. $X(\mu)$ is the i.f.s. defined as

$$
X(\mu)^{p}=\left\{f \in L^{0}(\mu):|f|^{p} \in X(\mu)\right\} .
$$

Lemma 2.3. Let $X(\mu)$ be an i.f.s. For $s, t \in(0, \infty)$ and $\frac{1}{r}=\frac{1}{s}+\frac{1}{t}$, it follows that if $f \in X(\mu)^{s}$ and $g \in X(\mu)^{t}$ then $f g \in X(\mu)^{r}$. In particular, if $\chi_{\Omega} \in$ $X(\mu)$ then $X(\mu)^{q} \subset X(\mu)^{p}$ for all $0<p<q<\infty$.

Proof. For the first part only note that for every $a, b>0$ it follows

$$
\begin{equation*}
a^{r} b^{r} \leq \frac{r}{s} a^{s}+\frac{r}{t} b^{t} . \tag{2.1}
\end{equation*}
$$

For the second part take $r=p, s=q$ and $t=\frac{p q}{q-p}$. Then, if $f \in X(\mu)^{q}$, since $\chi_{\Omega} \in X(\mu)^{t}$, we have that $f=f \chi_{\Omega} \in X(\mu)^{p}$.

Recall that a quasi-norm on a real vector space X is a non-negative real map $\|\cdot\|_{X}$ on X satisfying
(i) $\|x\|_{X}=0$ if and only if $x=0$,
(ii) $\|\alpha x\|_{X}=|\alpha| \cdot\|x\|_{X}$ for all $\alpha \in \mathbb{R}$ and $x \in X$, and
(iii) There exists a constant $K \geq 1$ such that $\|x+y\|_{X} \leq K\left(\|x\|_{X}+\|y\|_{X}\right)$ for all $x, y \in X$.
A quasi-norm $\|\cdot\|_{X}$ induces a metric topology on X in which a sequence $\left(x_{n}\right)$ converges to x if and only if $\left\|x-x_{n}\right\|_{X} \rightarrow 0$. If X is complete under this topology then it is called a quasi-Banach space (Banach space if $K=1$). A linear map $T: X \rightarrow Y$ between quasi-Banach spaces is continuous if and only if there exists a constant $M>0$ such that $\|T(x)\|_{Y} \leq M\|x\|_{X}$ for all $x \in X$. For issues related to quasi-Banach spaces see [14].

A quasi-Banach function space (quasi-B.f.s. for short) is a i.f.s. $X(\mu)$ which is also a quasi-Banach space with a quasi-norm $\|\cdot\|_{X(\mu)}$ compatible with the μ-a.e. pointwise order, that is, if $f, g \in X(\mu)$ are such that $|f| \leq|g| \mu$-a.e. then $\|f\|_{X(\mu)} \leq\|g\|_{X(\mu)}$. When the quasi-norm is a norm, $X(\mu)$ is called a Banach function space (B.f.s.). Note that every quasi-B.f.s. is a quasiBanach lattice for the μ-a.e. pointwise order satisfying that if $f_{n} \rightarrow f$ in quasi-norm then there exists a subsequence $f_{n_{j}} \rightarrow f \mu$-a.e. Also note that every positive linear operator between quasi-Banach lattices is continuous, see the argument given in [16, p. 2] for Banach lattices which can be adapted for quasi-Banach spaces. Then all "inclusions" of the type $[i]$ between quasiB.f.s.' are continuous.

A quasi-B.f.s. $X(\mu)$ is said to be σ-order continuous if for every $\left(f_{n}\right) \subset$ $X(\mu)$ with $f_{n} \downarrow 0 \mu$-a.e. it follows that $\left\|f_{n}\right\|_{X} \downarrow 0$.

It is routine to check that the intersection $X(\mu) \cap Y(\mu)$ of two quasiB.f.s.' (B.f.s.') $X(\mu)$ and $Y(\mu)$ is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

$$
\|f\|_{X(\mu) \cap Y(\mu)}=\max \left\{\|f\|_{X(\mu)},\|f\|_{Y(\mu)}\right\} .
$$

Moreover, if $X(\mu)$ and $Y(\mu)$ are σ-order continuous then $X(\mu) \cap Y(\mu)$ is σ-order continuous.

Proposition 2.4. The sum $X(\mu)+Y(\mu)$ of two quasi-B.f.s.' (B.f.s.') $X(\mu)$ and $Y(\mu)$ is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

$$
\|f\|_{X(\mu)+Y(\mu)}=\inf \left(\left\|f_{1}\right\|_{X(\mu)}+\left\|f_{2}\right\|_{Y(\mu)}\right)
$$

where the infimum is taken over all possible representations $f=f_{1}+f_{2} \mu$ a.e. with $f_{1} \in X(\mu)$ and $f_{2} \in Y(\mu)$. Moreover, if $X(\mu)$ and $Y(\mu)$ are σ-order continuous then $X(\mu)+Y(\mu)$ is also σ-order continuous.

Proof. From Proposition 2.2 we have that $X(\mu)+Y(\mu)$ is a i.f.s. Even more, looking at the proof we see that for every $f \in X(\mu)+Y(\mu)$ and $g \in L^{0}(\mu)$ with $|g| \leq|f| \mu$-a.e., if $f=f_{1}+f_{2} \mu$-a.e. with $f_{1} \in X(\mu)$ and $f_{2} \in Y(\mu)$ then there exist $g_{1} \in X(\mu)$ and $g_{2} \in Y(\mu)$ such that $\left|g_{i}\right| \leq\left|f_{i}\right| \mu$-a.e. and $g=g_{1}+g_{2}$. Then,

$$
\|g\|_{X(\mu)+Y(\mu)} \leq\left\|g_{1}\right\|_{X(\mu)}+\left\|g_{2}\right\|_{Y(\mu)} \leq\left\|f_{1}\right\|_{X(\mu)}+\left\|f_{2}\right\|_{Y(\mu)}
$$

and so, taking infimum over all possible representations $f=f_{1}+f_{2} \mu$-a.e. with $f_{1} \in X(\mu)$ and $f_{2} \in Y(\mu)$, it follows that $\|g\|_{X(\mu)+Y(\mu)} \leq\|f\|_{X(\mu)+Y(\mu)}$. Hence, $\|\cdot\|_{X(\mu)+Y(\mu)}$ is compatible with the μ-a.e. pointwise order.

The proof of the fact that $\|\cdot\|_{X(\mu)+Y(\mu)}$ is a quasi-norm for which $X(\mu)+Y(\mu)$ is complete is similar to the one given in [1, Sect. 3, Theorem 1.3] for compatible couples of Banach spaces.

Suppose that $X(\mu)$ and $Y(\mu)$ are σ-order continuous. Let $\left(f_{n}\right) \subset X(\mu)+$ $Y(\mu)$ be such that $f_{n} \downarrow 0 \mu$-a.e. Consider $f_{1}=g+h \mu$-a.e. with $g \in X(\mu)$ and $h \in Y(\mu)$. We can rewrite $f_{1}=f_{1}^{1}+f_{1}^{2}$ with $f_{1}^{1} \in X(\mu), f_{1}^{2} \in Y(\mu)$ and $f_{1}^{1}, f_{1}^{2} \geq 0 \mu$-a.e. This can be done by taking $A=\left\{\omega \in \Omega: f_{1}(\omega) \leq|g(\omega)|\right\}$, $f_{1}^{1}=f_{1} \chi_{A}+|g| \chi_{\Omega \backslash A}$ and $f_{1}^{2}=\left(f_{1}-|g|\right) \chi_{\Omega \backslash A}$. Note that $f_{1}^{1} \in X(\mu)$ as $0 \leq f_{1}^{1} \leq|g| \mu$-a.e. and $f_{1}^{2} \in Y(\mu)$ as $0 \leq f_{1}^{2} \leq|h| \mu$-a.e. Since $0 \leq f_{2} \leq f_{1}$ μ-a.e., looking again at the proof of Proposition 2.2 we see that there exist $f_{2}^{1} \in X(\mu)$ and $f_{2}^{2} \in Y(\mu)$ such that $0 \leq f_{2}^{i} \leq f_{1}^{i} \mu$-a.e. and $f_{2}=f_{2}^{1}+f_{2}^{2}$ μ-a.e. By induction we construct two μ-a.e. pointwise decreasing sequences of positive functions $\left(f_{n}^{1}\right) \subset X(\mu)$ and $\left(f_{n}^{2}\right) \subset Y(\mu)$ such that $f_{n}=f_{n}^{1}+f_{n}^{2}$. Note that $f_{n}^{i} \downarrow 0 \mu$-a.e. as $0 \leq f_{n}^{i} \leq f_{n} \mu$-a.e. Then, since $X(\mu)$ and $Y(\mu)$ are σ-order continuous, we have that

$$
\left\|f_{n}\right\|_{X(\mu)+Y(\mu)} \leq\left\|f_{n}^{1}\right\|_{X(\mu)}+\left\|f_{n}^{2}\right\|_{Y(\mu)} \rightarrow 0
$$

Let $p \in(0, \infty)$. The p-power $X(\mu)^{p}$ of a quasi-B.f.s. $X(\mu)$ is a quasiB.f.s. endowed with the quasi-norm

$$
\|f\|_{X(\mu)^{p}}=\left\||f|^{p}\right\|_{X(\mu)}^{\frac{1}{p}} .
$$

Moreover, $X(\mu)^{p}$ is σ-order continuous whenever $X(\mu)$ is so. Note that in the case when $X(\mu)$ is a B.f.s. and $p \geq 1$ it follows that $\|\cdot\|_{X(\mu)^{p}}$ is a norm and so $X(\mu)^{p}$ is a B.f.s. An exhaustive study of the space $X(\mu)^{p}$ can be found in $[19$, Sect. 2.2$]$ for the case when μ is finite and $\chi_{\Omega} \in X(\mu)$. This study can be extended to our general case adapting the arguments with the natural modifications (note that our p-powers here are the $\frac{1}{p}$ th powers there).

2.2. Integration with Respect to a Vector Measure Defined on a δ-Ring

Let \mathcal{R} be a δ-ring of subsets of a set Ω, that is, a ring closed under countable intersections. Measurability will be considered with respect to the σ-algebra $\mathcal{R}^{l o c}$ of all subsets A of Ω such that $A \cap B \in \mathcal{R}$ for all $B \in \mathcal{R}$. Let us write $\mathcal{S}(\mathcal{R})$ for the space of all \mathcal{R}-simple functions, that is, simple functions with support in \mathcal{R}.

A set function $m: \mathcal{R} \rightarrow E$ with values in a Banach space E is said to be a vector measure if $\sum m\left(A_{n}\right)$ converges to $m\left(\cup A_{n}\right)$ in E for every sequence of pairwise disjoint sets $\left(A_{n}\right) \subset \mathcal{R}$ with $\cup A_{n} \in \mathcal{R}$.

Consider first a real measure $\lambda: \mathcal{R} \rightarrow \mathbb{R}$. The variation of λ is the measure $|\lambda|: \mathcal{R}^{l o c} \rightarrow[0, \infty]$ defined as

$$
|\lambda|(A)=\sup \left\{\sum\left|\lambda\left(A_{j}\right)\right|:\left(A_{j}\right) \text { finite disjoint sequence in } \mathcal{R} \cap 2^{A}\right\}
$$

Note that $|\lambda|$ is finite on \mathcal{R}. The space $L^{1}(\lambda)$ of integrable functions with respect to λ is defined as the classical space $L^{1}(|\lambda|)$. The integral with respect to λ of $\varphi=\sum_{j=1}^{n} \alpha_{j} \chi_{A_{j}} \in \mathcal{S}(\mathcal{R})$ over $A \in \mathcal{R}^{l o c}$ is defined in the natural way by $\int_{A} \varphi \mathrm{~d} \lambda=\sum_{j=1}^{n} \alpha_{j} \lambda\left(A_{j} \cap A\right)$. The space $\mathcal{S}(\mathcal{R})$ is dense in $L^{1}(\lambda)$, allowing to define the integral of $f \in L^{1}(\lambda)$ over $A \in \mathcal{R}^{l o c}$ as $\int_{A} f \mathrm{~d} \lambda=\lim \int_{A} \varphi_{n} \mathrm{~d} \lambda$ for any sequence $\left(\varphi_{n}\right) \subset \mathcal{S}(\mathcal{R})$ converging to f in $L^{1}(\lambda)$.

Let now $m: \mathcal{R} \rightarrow E$ be a vector measure. The semivariation of m is the set function $\|m\|: \mathcal{R}^{l o c} \rightarrow[0, \infty]$ defined by

$$
\|m\|(A)=\sup _{x^{*} \in B_{E^{*}}}\left|x^{*} m\right|(A)
$$

Here, $B_{E^{*}}$ is the closed unit ball of the dual space E^{*} of E and $\left|x^{*} m\right|$ is the variation of the real measure $x^{*} m$ given by the composition of m with x^{*}. A set $A \in \mathcal{R}^{l o c}$ is m-null if $\|m\|(A)=0$, or equivalently, if $m(B)=0$ for all $B \in \mathcal{R} \cap 2^{A}$. From [2, Theorem 3.2], there always exists a measure $\eta: \mathcal{R}^{l o c} \rightarrow[0, \infty]$ equivalent to $\|m\|$, that is, m and η have the same null sets. Let us denote $L^{0}(m)=L^{0}(\eta)$.

The space $L^{1}(m)$ of integrable functions with respect to m is defined as the space of functions $f \in L^{0}(m)$ satisfying that
(i) $f \in L^{1}\left(x^{*} m\right)$ for every $x^{*} \in E^{*}$, and
(ii) for each $A \in \mathcal{R}^{l o c}$ there exists $x_{A} \in E$ such that

$$
x^{*}\left(x_{A}\right)=\int_{A} f \mathrm{~d} x^{*} m, \quad \text { for every } x^{*} \in E^{*}
$$

The vector x_{A} is unique and will be denoted by $\int_{A} f \mathrm{~d} m$. The space $L^{1}(m)$ is a σ-order continuous B.f.s. related to the measure space $\left(\Omega, \mathcal{R}^{l o c}, \eta\right)$, with norm

$$
\|f\|_{L^{1}(m)}=\sup _{x^{*} \in B_{E^{*}}} \int_{\Omega}|f| d\left|x^{*} m\right|
$$

Moreover, $\mathcal{S}(\mathcal{R})$ is dense in $L^{1}(m)$. Note that $\int_{A} \varphi \mathrm{~d} m=\sum_{j=1}^{n} \alpha_{j} m\left(A_{j} \cap A\right)$ for every $\varphi=\sum_{j=1}^{n} \alpha_{j} \chi_{A_{j}} \in \mathcal{S}(\mathcal{R})$ and $A \in \mathcal{R}^{l o c}$.

The integration operator $I_{m}: L^{1}(m) \rightarrow E$ defined by $I_{m}(f)=\int_{\Omega} f \mathrm{~d} m$ is a continuous linear operator with $\left\|I_{m}(f)\right\|_{E} \leq\|f\|_{L^{1}(m)}$. Even more,

$$
\begin{equation*}
\frac{1}{2}\|f\|_{L^{1}(m)} \leq \sup _{A \in \mathcal{R}}\left\|I_{m}\left(f \chi_{A}\right)\right\|_{E} \leq\|f\|_{L^{1}(m)} \tag{2.2}
\end{equation*}
$$

for all $f \in L^{1}(m)$.
Let $p \in(0, \infty)$. We denote by $L^{p}(m)$ the p-power of $L^{1}(m)$, that is,

$$
L^{p}(m)=\left\{f \in L^{0}(m):|f|^{p} \in L^{1}(m)\right\} .
$$

Then $L^{p}(m)$ is a quasi-B.f.s. with the quasi-norm $\|f\|_{L^{p}(m)}=\left\||f|^{p}\right\|_{L^{1}(m)}^{1 / p}$. In the case when $p \geq 1$, we have that $\|\cdot\|_{L^{p}(m)}$ is a norm and so $L^{p}(m)$ is a B.f.s.

These and other issues concerning integration with respect to a vector measure defined on a δ-ring can be found in $[3,5,7,15,17,18]$.

3. Optimal Domain for Order-w Continuous Operators on a i.f.s.

Let $X(\mu)$ be a i.f.s. satisfying the σ-property (recall: $\Omega=\cup \Omega_{n}$ with $\chi_{\Omega_{n}} \in$ $X(\mu)$ for all n) and consider the δ-ring

$$
\Sigma_{X(\mu)}=\left\{A \in \Sigma: \chi_{A} \in X(\mu)\right\} .
$$

The σ-property guarantees that $\Sigma_{X(\mu)}^{l o c}=\Sigma$. Given a Banach space-valued linear operator $T: X(\mu) \rightarrow E$, we define the finitely additive set function $m_{T}: \Sigma_{X(\mu)} \rightarrow E$ by $m_{T}(A)=T\left(\chi_{A}\right)$.

We will say that T is order-w continuous if $T\left(f_{n}\right) \rightarrow T(f)$ weakly in E whenever $f_{n}, f \in X(\mu)$ are such that $0 \leq f_{n} \uparrow f \mu$-a.e.

Proposition 3.1. If T is order-w continuous, then m_{T} is a vector measure satisfying that $[i]: X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined and $T=I_{m_{T}} \circ[i]$.

Proof. Let $\left(A_{n}\right) \subset \Sigma_{X(\mu)}$ be a pairwise disjoint sequence with $\cup A_{n} \in \Sigma_{X(\mu)}$. Since T is order-w continuous, for any subsequence $\left(A_{n_{j}}\right)$ we have that

$$
\sum_{j=1}^{N} m_{T}\left(A_{n_{j}}\right)=T\left(\chi_{\cup_{j=1}^{N} A_{n_{j}}}\right) \rightarrow T\left(\chi \cup A_{n_{j}}\right)=m_{T}\left(\cup A_{n_{j}}\right)
$$

weakly in E. From the Orlicz-Pettis theorem (see [9, Corollary I.4.4]), it follows that $\sum m_{T}\left(A_{n}\right)$ is unconditionally convergent in norm to $m_{T}\left(\cup A_{n}\right)$. Thus, m_{T} is a vector measure.

Note that $\left\|m_{T}\right\| \ll \mu$ and so $[i]: L^{0}(\mu) \rightarrow L^{0}\left(m_{T}\right)$ is well defined. In addition, note that for every $\varphi \in \mathcal{S}\left(\Sigma_{X(\mu)}\right)$ we have that $I_{m_{T}}(\varphi)=T(\varphi)$.

Let $f \in X(\mu)$ be such that $f \geq 0 \mu$-a.e. and take a sequence of Σ-simple functions $0 \leq \varphi_{n} \uparrow f \mu$-a.e. For each n we can write $\varphi_{n}=\sum_{j=1}^{m} \alpha_{j} \chi_{A_{j}}$ with $\left(A_{j}\right)_{j=1}^{m} \subset \Sigma$ being a pairwise disjoint sequence and $\alpha_{j}>0$ for all j. Since $\chi_{A_{j}} \leq \alpha_{j}^{-1} \varphi_{n} \leq \alpha_{j}^{-1} f \mu$-a.e., we have that $\chi_{A_{j}} \in X(\mu)$ and so $\varphi_{n} \in \mathcal{S}\left(\Sigma_{X(\mu)}\right)$. Fix $x^{*} \in E^{*}$. For every $A \in \Sigma$ it follows that $x^{*} T\left(\varphi_{n} \chi_{A}\right) \rightarrow$ $x^{*} T\left(f \chi_{A}\right)$ as T is order-w continuous. Note that $x^{*} T\left(\varphi_{n} \chi_{A}\right)=\int_{A} \varphi_{n} \mathrm{~d} x^{*} m_{T}$
and that $0 \leq \varphi_{n} \uparrow f x^{*} m_{T}$-a.e. as $\left|x^{*} m_{T}\right| \ll\left\|m_{T}\right\| \ll \mu$. From [7, Proposition 2.3], we have that $f \in L^{1}\left(x^{*} m_{T}\right)$ and

$$
\int_{A} f \mathrm{~d} x^{*} m_{T}=\lim _{n \rightarrow \infty} \int_{A} \varphi_{n} \mathrm{~d} x^{*} m_{T}=\lim _{n \rightarrow \infty} x^{*} T\left(\varphi_{n} \chi_{A}\right)=x^{*} T\left(f \chi_{A}\right) .
$$

Therefore, $f \in L^{1}\left(m_{T}\right)$ and $I_{m_{T}}(f)=T(f)$.
For a general $f \in X(\mu)$, the result follows by taking the positive and negative parts of f.

For the case when $X(\mu)$ is a B.f.s., Proposition 3.1 and the next Theorem 3.2 can be deduced from [8, Proposition 2.3] and [4, Proposition 4]. The proofs given here are more direct and are valid for general i.f.s.'.

Theorem 3.2. Suppose that T is order-w continuous. Then, T factors as

with $I_{m_{T}}$ being order-w continuous. Moreover, the factorization is optimal in the sense:

If $Z(\xi)$ is a i.f.s. such that $\xi \ll \mu$ and

with S being an order-w continuous linear operator
$\left\{\Rightarrow \begin{array}{l}{[i]: Z(\xi) \rightarrow L^{1}\left(m_{T}\right) \text { is well }} \\ \text { defined and } S=I_{m_{T}} \circ[i] .\end{array}\right.$
Proof. The factorization (3.1) follows from Proposition 3.1. Note that the integration operator $I_{m_{T}}: L^{1}\left(m_{T}\right) \rightarrow E$ is order-w continuous, as it is continuous and $L^{1}\left(m_{T}\right)$ is σ-order continuous.

Let $Z(\xi)$ satisfy (3.3). In particular, $Z(\xi)$ satisfies the σ-property, as if $\chi_{A} \in X(\mu)$ then $\chi_{A} \in Z(\xi)$. From Proposition 3.1 applied to the operator $S: Z(\xi) \rightarrow E$, we have that $[i]: Z(\xi) \rightarrow L^{1}\left(m_{S}\right)$ is well defined and $S=I_{m_{S}} \circ$ $[i]$. Note that $\Sigma_{X(\mu)} \subset \Sigma_{Z(\xi)}$ and $m_{S}(A)=S\left(\chi_{A}\right)=T\left(\chi_{A}\right)=m_{T}(A)$ for all $A \in \Sigma_{X(\mu)}$, that is, m_{T} is the restriction of $m_{S}: \Sigma_{Z(\xi)} \rightarrow E$ to $\Sigma_{X(\mu)}$. Then, from [4, Lemma 3], it follows that $L^{1}\left(m_{S}\right)=L^{1}\left(m_{T}\right)$ and $I_{m_{S}}=I_{m_{T}}$.

We can rewrite Theorem 3.2 in terms of optimal domain.
Corollary 3.3. Suppose that T is order-w continuous. Then $L^{1}\left(m_{T}\right)$ is the largest i.f.s. to which T can be extended as an order-w continuous operator still with values in E. Moreover, the extension of T to $L^{1}\left(m_{T}\right)$ is given by the integration operator $I_{m_{T}}$.

4. Optimal Domain for p th Power Factorable Operators on a i.f.s. with an Order-w Continuous Extension

Let $X(\mu)$ be a i.f.s. satisfying the σ-property and let $T: X(\mu) \rightarrow E$ be a linear operator with values in a Banach space E.

For $p \in(0, \infty)$, we call T pth power factorable with an order-w continuous extension if there is an order-w continuous linear extension of T to $X(\mu)^{\frac{1}{p}}+X(\mu)$, i.e. T factors as

with S being an order-w continuous linear operator.
Note that in the case when $\chi_{\Omega} \in X(\mu)$, from Lemma 2.3, if $1<p$ we have that $X(\mu) \subset X(\mu)^{\frac{1}{p}}$ and so $X(\mu)^{\frac{1}{p}}+X(\mu)=X(\mu)^{\frac{1}{p}}$. Similarly, if $p \leq 1$ then $X(\mu)^{\frac{1}{p}}+X(\mu)=X(\mu)$, but hence to say that T is p th power factorable with an order-w continuous extension is just to say that T is order-w continuous.

Proposition 4.1. The following statements are equivalent:
(a) T is pth power factorable with an order-w continuous extension.
(b) T is order-w continuous and $[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined.
(c) T is order-w continuous and $[i]: X(\mu) \rightarrow L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is well defined.
Moreover, if $(a)-(c)$ holds, the extension of T to $X(\mu)^{\frac{1}{p}}+X(\mu)$ coincides with integration operator $I_{m_{T}} \circ[i]$.

Proof. (a) \Rightarrow (b) Note that T is order-w continuous as it has an order-w continuous extension. Let $S: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow E$ be an order-w continuous linear operator extending T. Then, from Theorem 3.2, it follows that $[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined and $S=I_{m_{T}} \circ[i]$.
(b) \Leftrightarrow (c) Since T is is order-w continuous, by Proposition 3.1 we always have that $[i]: X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined. Suppose that $[i]: X(\mu)^{\frac{1}{p}}+$ $X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined. If $f \in X(\mu)$, since $|f|^{p} \in X(\mu)^{\frac{1}{p}} \subset X(\mu)^{\frac{1}{p}}+$ $X(\mu)$, we have that $|f|^{p} \in L^{1}\left(m_{T}\right)$ and so $f \in L^{p}\left(m_{T}\right)$. Then $f \in L^{p}\left(m_{T}\right) \cap$ $L^{1}\left(m_{T}\right)$. Conversely, suppose that $[i]: X(\mu) \rightarrow L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is well defined. Let $f \in X(\mu)^{\frac{1}{p}}+X(\mu)$ and write $f=f_{1}+f_{2} \mu$-a.e. with $f_{1} \in X(\mu)^{\frac{1}{p}}$ and $f_{2} \in X(\mu)$. Since $\left|f_{1}\right|^{\frac{1}{p}} \in X(\mu)$ we have that $\left|f_{1}\right|^{\frac{1}{p}} \in L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right) \subset$ $L^{p}\left(m_{T}\right)$ and so $f_{1} \in L^{1}\left(m_{T}\right)$. Then, $f \in L^{1}\left(m_{T}\right)$ as $f_{2} \in L^{1}\left(m_{T}\right)$.
$(\mathrm{b}) \Rightarrow$ (a) From Proposition 3.1 and since $[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined, we have that the operator $I_{m_{T}} \circ[i]$ extends T to $X(\mu)^{\frac{1}{p}}+X(\mu)$. Moreover, the extension $I_{m_{T}} \circ[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow E$ is order-w continuous as the integration operator $I_{m_{T}}: L^{1}\left(m_{T}\right) \rightarrow E$ is so.

In the case when $\chi_{\Omega} \in X(\mu)$ and T is order-w continuous, from Proposition 3.1, we have that $\chi_{\Omega} \in L^{1}\left(m_{T}\right)$. So, from Lemma 2.3, if $p>1$ then $L^{p}\left(m_{T}\right) \subset L^{1}\left(m_{T}\right)$ and hence $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)=L^{p}\left(m_{T}\right)$. If $p \leq 1$ then $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)=L^{1}\left(m_{T}\right)$, but hence, as commented before, T being p th power factorable with an order-w continuous extension is just T being order-w continuous.

Theorem 4.2. Suppose that T is pth power factorable with an order-w continuous extension. Then, T factors as

with $I_{m_{T}}$ being pth power factorable with an order-w continuous extension. Moreover, the factorization is optimal in the sense:

If $Z(\xi)$ is a i.f.s. such that $\xi \ll \mu$ and

with S being a pth power factorable
linear operator with an order-w
continuous extension

$$
\Longrightarrow \quad \begin{align*}
& {[i]: Z(\xi) \rightarrow L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)} \tag{4.2}\\
& \text { is well defined and } S=I_{m_{T}} \circ[i] .
\end{align*}
$$

Proof. The factorization (4.1) follows from Propositions 3.1 and 4.1. Note that $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ satisfies the σ-property as $X(\mu)$ does. Let us see that the operator $I_{m_{T}}: L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right) \rightarrow E$ is p th power factorable with an order-w continuous extension by using Proposition 4.1(c). This operator is order-w continuous as the integration operator $I_{m_{T}}: L^{1}\left(m_{T}\right) \rightarrow$ E is so. On other hand, since $\Sigma_{X(\mu)} \subset \Sigma_{L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)}$ and $m_{I_{m_{T}}}(A)=$ $I_{m_{T}}\left(\chi_{A}\right)=T\left(\chi_{A}\right)=m_{T}(A)$ for all $A \in \Sigma_{X(\mu)}$ (i.e. m_{T} is the restriction of $m_{I_{m_{T}}}: \Sigma_{L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)} \rightarrow E$ to $\left.\Sigma_{X(\mu)}\right)$, from [4, Lemma 3], it follows that $L^{1}\left(m_{I_{m_{T}}}\right)=L^{1}\left(m_{T}\right)$. Then,

$$
[i]: L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right) \rightarrow L^{p}\left(m_{I_{m_{T}}}\right) \cap L^{1}\left(m_{I_{m_{T}}}\right)=L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)
$$

is well defined.
Let $Z(\xi)$ satisfy (4.3). In particular, $Z(\xi)$ has the σ-property. Applying Proposition 4.1 to the operator $S: Z(\xi) \rightarrow E$, we have that $[i]: Z(\xi) \rightarrow$ $L^{p}\left(m_{S}\right) \cap L^{1}\left(m_{S}\right)$ is well defined and $S=I_{m_{S}} \circ[i]$. Since $\Sigma_{X(\mu)} \subset \Sigma_{Z(\xi)}$ and $m_{S}(A)=m_{T}(A)$ for all $A \in \Sigma_{X(\mu)}$, from [4, Lemma 3], it follows that $L^{1}\left(m_{S}\right)=L^{1}\left(m_{T}\right)$ and $I_{m_{S}}=I_{m_{T}}$.

Rewriting Theorem 4.2 in terms of optimal domain we obtain the following conclusion.

Corollary 4.3. Suppose that T is pth power factorable with an order-w continuous extension. Then $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is the largest i.f.s. to which T can be
extended as a pth power factorable operator with an order-w continuous extension, still with values in E. Moreover, the extension of T to $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is given by the integration operator $I_{m_{T}}$.

5. Optimal Domain for Continuous Operators on a Quasi-B.f.s.

Let $X(\mu)$ be a quasi-B.f.s. satisfying the σ-property and let $T: X(\mu) \rightarrow E$ be a linear operator with values in a Banach space E.

Theorem 5.1. Suppose that $X(\mu)$ is σ-order continuous and T is continuous. Then, T factors as

$$
\begin{equation*}
X(\mu) \xrightarrow{T} \underset{\substack{[i] \\ L^{1}\left(m_{T}\right)}}{\substack{I_{m_{T}}}}= \tag{5.1}
\end{equation*}
$$

with $I_{m_{T}}$ being continuous. Moreover, the factorization is optimal in the sense:

```
If \(Z(\xi)\) is a \(\sigma\)-order continuous quasi-B.f.s. such
that \(\xi \ll \mu\) and
```


with S being a continuous linear operator
Proof. Since $X(\mu)$ is σ-order continuous and T is continuous, we have that T is order-w continuous and so the factorization (5.1) follows from Theorem 3.2. Recall that $L^{1}\left(m_{T}\right)$ is σ-order continuous and $I_{m_{T}}$ is continuous.

Let $Z(\xi)$ satisfy (5.3). In particular, S is order-w continuous. From Theorem 3.2 we have that $[i]: Z(\xi) \rightarrow L^{1}\left(m_{T}\right)$ is well defined and $S=$ $I_{m_{T}} \circ[i]$.

Corollary 5.2. Suppose that $X(\mu)$ is σ-order continuous and T is continuous. Then $L^{1}\left(m_{T}\right)$ is the largest σ-order continuous quasi-B.f.s. to which T can be extended as a continuous operator still with values in E. Moreover, the extension of T to $L^{1}\left(m_{T}\right)$ is given by the integration operator $I_{m_{T}}$.

6. Optimal Domain for p th Power Factorable Operators on a Quasi-B.f.s. with a Continuous Extension

Let $X(\mu)$ be a quasi-B.f.s. satisfying the σ-property and let $T: X(\mu) \rightarrow E$ be a linear operator with values in a Banach space E.

For $p \in(0, \infty)$, we call T pth power factorable with a continuous extension if there is a continuous linear extension of T to $X(\mu)^{\frac{1}{p}}+X(\mu)$, i.e. T
factors as

with S being a continuous linear operator.
Note that in the case when $\chi_{\Omega} \in X(\mu)$ and $1<p$, from Lemma 2.3, it follows that $X(\mu)^{\frac{1}{p}}+X(\mu)=X(\mu)^{\frac{1}{p}}$. Then our definition of p th power factorable operator with a continuous extension coincides with the one given in [19, Definition 5.1]. If $p \leq 1$, since $X(\mu)^{\frac{1}{p}}+X(\mu)=X(\mu)$, to say that T is p th power factorable with a continuous extension is just to say that T is continuous.

Proposition 6.1. Suppose that $X(\mu)$ is σ-order continuous. Then, the following statements are equivalent:
(a) T is pth power factorable with a continuous extension.
(b) T is pth power factorable with an order-w continuous extension.
(c) T is order-w continuous and $[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is well defined.
(d) T is order-w continuous and $[i]: X(\mu) \rightarrow L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is well defined.
(e) There exists $C>0$ such that $\|T(f)\|_{E} \leq C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}$ for all $f \in$ $X(\mu)$.
Moreover, if $(a)-(e)$ holds, the extension of T to $X(\mu)^{\frac{1}{p}}+X(\mu)$ coincides with the integration operator $I_{m_{T}} \circ[i]$.

Proof. (a) \Rightarrow (b) Let $S: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow E$ be a continuous linear operator extending T. From Proposition 2.4 we have that $X(\mu)^{\frac{1}{p}}+X(\mu)$ is σ-order continuous and so S is order-w continuous. Then, T is p th power factorable with an order-w continuous extension.
(b) $\Leftrightarrow(\mathrm{c}) \Leftrightarrow(\mathrm{d})$ And the fact that the extension of T to $X(\mu)^{\frac{1}{p}}+X(\mu)$ coincides with the integration operator $I_{m_{T}} \circ[i]$ follows from Proposition 4.1.
(c) \Rightarrow (e) The operator $[i]: X(\mu)^{\frac{1}{p}}+X(\mu) \rightarrow L^{1}\left(m_{T}\right)$ is continuous as it is positive. Then, there exists a constant $C>0$ satisfying that

$$
\|f\|_{L^{1}\left(m_{T}\right)} \leq C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}
$$

for all $f \in X(\mu)^{\frac{1}{p}}+X(\mu)$. Since $I_{m_{T}}$ extends T to $L^{1}\left(m_{T}\right)$, it follows that

$$
\|T(f)\|_{E}=\left\|I_{m_{T}}(f)\right\|_{E} \leq\|f\|_{L^{1}\left(m_{T}\right)} \leq C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}
$$

for all $f \in X(\mu)$.
(e) \Rightarrow (a) Let $0 \leq f \in X(\mu)^{\frac{1}{p}}+X(\mu)$. From Lemma 2.1, there exists $\left(f_{n}\right) \subset X(\mu)$ such that $0 \leq f_{n} \uparrow f \mu$-a.e. Since $X(\mu)^{\frac{1}{p}}+X(\mu)$ is σ-order
continuous, it follows that $f_{n} \rightarrow f$ in the quasi-norm of $X(\mu)^{\frac{1}{p}}+X(\mu)$. Then, since

$$
\left\|T\left(f_{n}\right)-T\left(f_{m}\right)\right\|_{E}=\left\|T\left(f_{n}-f_{m}\right)\right\|_{E} \leq C\left\|f_{n}-f_{m}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}
$$

we have that $\left(T\left(f_{n}\right)\right)$ converges to some element $e \in E$. Define $S(f)=e$. Note that if $\left(g_{n}\right) \subset X(\mu)$ is another sequence such that $0 \leq g_{n} \uparrow f \mu$-a.e., then

$$
\begin{aligned}
\left\|T\left(f_{n}\right)-T\left(g_{n}\right)\right\|_{E} & \leq C\left\|f_{n}-g_{n}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)} \\
& \leq C K\left(\left\|f_{n}-f\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}+\left\|f-g_{n}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}\right)
\end{aligned}
$$

where K is the constant satisfying the property (iii) of the quasi-norm \|. $\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}$, and so S is well defined. Also note that

$$
\begin{aligned}
\|S(f)\|_{E} & \leq\left\|S(f)-T\left(f_{n}\right)\right\|_{E}+\left\|T\left(f_{n}\right)\right\|_{E} \\
& \leq\left\|S(f)-T\left(f_{n}\right)\right\|_{E}+C\left\|f_{n}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)} \\
& \leq\left\|S(f)-T\left(f_{n}\right)\right\|_{E}+C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}
\end{aligned}
$$

for all $n \geq 1$, and thus $\|S(f)\|_{E} \leq C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}$.
For a general $f \in X(\mu)^{\frac{1}{p}}+X(\mu)$, define $S(f)=S\left(f^{+}\right)-S\left(f^{-}\right)$where f^{+}and f^{-}are the positive and negative parts of f, respectively. It follows that S is linear and $S(f)=T(f)$ for all $f \in X(\mu)$. Moreover, for every $f \in X(\mu)^{\frac{1}{p}}+X(\mu)$ we have that

$$
\begin{aligned}
\|S(f)\|_{E} & \leq\left\|S\left(f^{+}\right)\right\|_{E}+\left\|S\left(f^{-}\right)\right\|_{E} \\
& \leq C\left\|f^{+}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)}+C\left\|f^{-}\right\|_{X(\mu)^{\frac{1}{p}}+X(\mu)} \\
& \leq 2 C\|f\|_{X(\mu)^{\frac{1}{p}}+X(\mu)} .
\end{aligned}
$$

an so S is continuous. Hence, T is p th power factorable with a continuous extension.

In the case when μ is finite, $\chi_{\Omega} \in X(\mu)$ and $p \geq 1$, the equivalences (a) $\Leftrightarrow(\mathrm{c}) \Leftrightarrow(\mathrm{d}) \Leftrightarrow(\mathrm{e})$ of Proposition 6.1 are proved in [19, Theorem 5.7]. Here, we have included a more detailed proof for the general case.

Theorem 6.2. Suppose that $X(\mu)$ is σ-order continuous and T is pth power factorable with a continuous extension. Then, T factors as

with $I_{m_{T}}$ being pth power factorable with a continuous extension. Moreover, the factorization is optimal in the sense:
If $Z(\xi)$ is a σ-order continuous quasi-B.f.s.
such that $\xi \ll \mu$ and

with S being a pth power factorable linear operator with a continuous extension

$$
\Longrightarrow \quad[i]: Z(\xi) \rightarrow L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)
$$

$$
\begin{equation*}
\text { is well defined and } S=I_{m_{T}} \circ[i] . \tag{6.2}
\end{equation*}
$$

Proof. From Proposition 6.1 we have that T is p th power factorable with an order-w continuous extension. Then, from Theorem 4.2, the factorization (6.1) holds and $I_{m_{T}}: L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right) \rightarrow E$ is p th power factorable with an order-w continuous extension. Noting that the space $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is σ-order continuous (as $L^{1}\left(m_{T}\right)$ is so) and satisfies the σ-property (as $X(\mu)$ does), from Proposition 6.1 it follows that $I_{m_{T}}: L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right) \rightarrow E$ is p th power factorable with a continuous extension.

Let $Z(\xi)$ satisfy (6.3), in particular it satisfies the σ-property. Again Proposition 6.1 gives that S is p th power factorable with an order-w continuous extension. So, from Theorem 4.2, it follows that $[i]: Z(\xi) \rightarrow L^{p}\left(m_{T}\right) \cap$ $L^{1}\left(m_{T}\right)$ is well defined and $S=I_{m_{T}} \circ[i]$.

Corollary 6.3. Suppose that $X(\mu)$ is σ-order continuous and T is pth power factorable with a continuous extension. Then $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is the largest σ-order continuous quasi-B.f.s. to which T can be extended as a pth power factorable operator with a continuous extension, still with values in E. Moreover, the extension of T to $L^{p}\left(m_{T}\right) \cap L^{1}\left(m_{T}\right)$ is given by the integration operator $I_{m_{T}}$.

In the case when μ is finite, $\chi_{\Omega} \in X(\mu)$ and $p \geq 1$, Corollary 6.3 is proved in [19, Theorem 5.11].

7. Application: Extension for Operators Defined on ℓ^{1}

Consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), c)$ where c is the counting measure on \mathbb{N}. Note that a property holds c-a.e. if and only if it holds pointwise and that the space $L^{0}(c)$ coincides with the space ℓ^{0} of all real sequences. Consider the space $\ell^{1}=L^{1}(c)$, which is σ-order continuous and has the σ-property. The δ-ring $\mathcal{P}(\mathbb{N})_{\ell^{1}}$ is just the set $\mathcal{P}_{F}(\mathbb{N})$ of all finite subsets of \mathbb{N}.

Let $T: \ell^{1} \rightarrow E$ be a continuous linear operator with values in a Banach space E. Denote $e_{n}=\chi_{\{n\}}$ and assume that $T\left(e_{n}\right) \neq 0$ for all n. This assumption seems to be natural since if $T\left(e_{n}\right)=0$ then the nth coordinate is not involved in the action of T. Hence, the vector measure $m_{T}: \mathcal{P}_{F}(\mathbb{N}) \rightarrow E$ associated to T by $m_{T}(A)=T\left(\chi_{A}\right)$ is equivalent to c and so $L^{1}\left(m_{T}\right) \subset \ell^{0}$. We will write $\ell^{1}\left(m_{T}\right)=L^{1}\left(m_{T}\right)$.

Remark 7.1. By Theorem 5.1 we have that T can be extended as

and $\ell^{1}\left(m_{T}\right)$ is the largest σ-order continuous quasi-B.f.s. to which T can be extended as a continuous operator.

Let $p>1$. We have that T is $\frac{1}{p}$ th power factorable with a continuous extension if there is an extension S as

with S being a continuous linear operator. Note that $p \leq 1$ is not considered as in this case $\ell^{p} \subset \ell^{1}$ and so the extension of T to the sum $\ell^{p}+\ell^{1}$ is just the same operator T. Applying Proposition 6.1 in the context of this section, we obtain the following result.

Proposition 7.2. The following statements are equivalent:
(a) T is $\frac{1}{p}$ th power factorable with a continuous extension.
(b) $\ell^{p} \subset \ell^{1}\left(m_{T}\right)$.
(c) $\ell^{1} \subset \ell^{\frac{1}{p}}\left(m_{T}\right) \cap \ell^{1}\left(m_{T}\right)$.
(d) There exists $C>0$ such that

$$
\left\|\sum_{j \in M} x_{j} T\left(e_{j}\right)\right\|_{E} \leq C\left(\sum_{j \in M} x_{j}^{p}\right)^{\frac{1}{p}}
$$

for all $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \subset[0, \infty)$.
Proof. From Proposition 6.1, we only have to prove that condition (d) is equivalent to the following condition:
(d') There exists $C>0$ such that $\|T(x)\|_{E} \leq C\|x\|_{\ell^{p}}$ for all $x \in \ell^{1}$.
If (d') holds, we obtain (d) by taking in (d') the element $x=$ $\sum_{j \in M} x_{j} e_{j} \in \ell^{1}$ for every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \subset[0, \infty)$.

Suppose that (d) holds. Let $0 \leq x=\left(x_{n}\right) \in \ell^{1}$ and take $y^{k}=\sum_{j=1}^{k} x_{j} e_{j}$. Since $y^{k} \uparrow x$ pointwise, ℓ^{1} is σ-order continuous and T is continuous, we have that

$$
\|T(x)\|_{E}=\lim \left\|T\left(y^{k}\right)\right\|_{E}=\lim \left\|\sum_{j=1}^{k} x_{j} T\left(e_{j}\right)\right\|_{E} \leq C \lim \left(\sum_{j=1}^{k} x_{j}^{p}\right)^{\frac{1}{p}}=C\|x\|_{\ell p} .
$$

For a general $x \in \ell^{1}$, (d') follows by taking the positive and negative parts of x.

Remark 7.3. Note that if T is $\frac{1}{p}$ th power factorable with a continuous extension then the integration operator $I_{m_{T}}$ extends T to ℓ^{p} and, from Theorem $6.2, T$ factors optimally as

with $I_{m_{T}}$ being $\frac{1}{p}$ th power factorable with a continuous extension.
Now a natural question arises: when $\ell^{\frac{1}{p}}\left(m_{T}\right) \cap \ell^{1}\left(m_{T}\right)$ is equal to $\ell^{\frac{1}{p}}\left(m_{T}\right)$ or $\ell^{1}\left(m_{T}\right)$? For asking this question we introduce the following class of operators.

Let $0<r<\infty$. We say that T is r-power dominated if there exists $C>0$ such that

$$
\left\|\sum_{j \in M} x_{j}^{r} T\left(e_{j}\right)\right\|_{E}^{\frac{1}{r}} \leq C \sup _{N \subset M}\left\|\sum_{j \in N} x_{j} T\left(e_{j}\right)\right\|_{E}
$$

for every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \in[0, \infty)$. Note that in the case when E is a Banach lattice and T is positive we have that

$$
\sup _{N \subset M}\left\|\sum_{j \in N} x_{j} T\left(e_{j}\right)\right\|_{E}=\left\|\sum_{j \in M} x_{j} T\left(e_{j}\right)\right\|_{E} .
$$

Lemma 7.4. The containment $\ell^{1}\left(m_{T}\right) \subset \ell^{r}\left(m_{T}\right)$ holds if and only if T is r-power dominated.

Proof. Suppose that $\ell^{1}\left(m_{T}\right) \subset \ell^{r}\left(m_{T}\right)$. Since the containment is continuous (as it is positive), there exists $C>0$ such that $\|x\|_{\ell^{r}\left(m_{T}\right)} \leq C\|x\|_{\ell^{1}\left(m_{T}\right)}$ for all $x \in \ell^{1}\left(m_{T}\right)$. For every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \in[0, \infty)$, we consider $x=\sum_{j \in M} x_{j} e_{j} \in \ell^{1}$. Noting that $x^{r}=\sum_{j \in M} x_{j}^{r} e_{j} \in \ell^{1}$, it follows that

$$
\begin{aligned}
\left\|\sum_{j \in M} x_{j}^{r} T\left(e_{j}\right)\right\|_{E}^{\frac{1}{r}} & =\left\|T\left(x^{r}\right)\right\|_{E}^{\frac{1}{r}}=\left\|I_{m_{T}}\left(x^{r}\right)\right\|_{E}^{\frac{1}{r}} \leq\left\|x^{r}\right\|_{\ell^{1}\left(m_{T}\right)}^{\frac{1}{r}}=\|x\|_{\ell^{r}\left(m_{T}\right)} \\
& \leq C\|x\|_{\ell^{1}\left(m_{T}\right)} \leq 2 C \sup _{A \in \mathcal{P}_{F}(\mathbb{N})}\left\|I_{m_{T}}\left(x \chi_{A}\right)\right\|_{E},
\end{aligned}
$$

where in the last inequality we have used (2.2). For every $A \in \mathcal{P}_{F}(\mathbb{N})$ we have that $x \chi_{A}=\sum_{j \in A \cap M} x_{j} e_{j} \in \ell^{1}$ and so $I_{m_{T}}\left(x \chi_{A}\right)=T\left(x \chi_{A}\right)=$
$\sum_{j \in A \cap M} x_{j} T\left(e_{j}\right)$. Then,

$$
\begin{gathered}
\left\|\sum_{j \in M} x_{j}^{r} T\left(e_{j}\right)\right\|_{E}^{\frac{1}{r}} \\
\leq 2 C \sup _{A \in \mathcal{P}_{F}(\mathbb{N})}\left\|\sum_{j \in A \cap M} x_{j} T\left(e_{j}\right)\right\|_{E} \\
=2 C \sup _{N \subset M}\left\|\sum_{j \in N} x_{j} T\left(e_{j}\right)\right\|_{E} .
\end{gathered}
$$

Conversely, suppose that T is r-power dominated and let $x=\left(x_{n}\right) \in$ $\ell^{1}\left(m_{T}\right)$. Taking $y^{k}=\sum_{j=1}^{k}\left|x_{j}\right|^{r} e_{j} \in \ell^{1}$, for every $k>\tilde{k}$ and $A \in \mathcal{P}_{F}(\mathbb{N})$, we have that $\left(y^{k}-y^{\tilde{k}}\right) \chi_{A}=\sum_{j \in A \cap\{\tilde{k}+1, \ldots, k\}}\left|x_{j}\right|^{r} e_{j}$ and so

$$
\begin{aligned}
\left\|T\left(\left(y^{k}-y^{\tilde{k}}\right) \chi_{A}\right)\right\|_{E} & =\left\|\sum_{j \in A \cap\{\tilde{k}+1, \ldots, k\}}\left|x_{j}\right|^{r} T\left(e_{j}\right)\right\|_{E} \\
& \leq C^{r} \sup _{N \subset A \cap\{\tilde{k}+1, \ldots, k\}}\left\|\sum_{j \in N}\left|x_{j}\right| T\left(e_{j}\right)\right\|_{E}^{r} \\
& =C^{r} \sup _{N \subset A \cap\{\tilde{k}+1, \ldots, k\}}\left\|I_{m_{T}}\left(\sum_{j \in N}\left|x_{j}\right| e_{j}\right)\right\|_{E}^{r} \\
& \leq C^{r} \sup _{N \subset A \cap\{\tilde{k}+1, \ldots, k\}}\left\|\sum_{j \in N}\left|x_{j}\right| e_{j}\right\|_{\ell^{1}\left(m_{T}\right)}^{r} \\
& \leq C^{r}\left\|\left(y^{k}\right)^{\frac{1}{r}}-\left(y^{\tilde{k}}\right)^{\frac{1}{r}}\right\|_{\ell^{1}\left(m_{T}\right)}^{r} .
\end{aligned}
$$

For the last inequality note that $\left(y^{k}\right)^{\frac{1}{r}}=\sum_{j=1}^{k}\left|x_{j}\right| e_{j}$ and so

$$
\sum_{j \in N}\left|x_{j}\right| e_{j} \leq \sum_{j=\tilde{k}+1}^{k}\left|x_{j}\right| e_{j}=\left(y^{k}\right)^{\frac{1}{r}}-\left(y^{\tilde{k}}\right)^{\frac{1}{r}}
$$

for every $N \subset A \cap\{\tilde{k}+1, \ldots, k\}$. Then, using (2.2), we have that

$$
\begin{aligned}
\left\|y^{k}-y^{\tilde{k}}\right\|_{\ell^{1}\left(m_{T}\right)} & \leq 2 \sup _{A \in \mathcal{P}_{F}(\mathbb{N})}\left\|I_{m_{T}}\left(\left(y^{k}-y^{\tilde{k}}\right) \chi_{A}\right)\right\|_{E} \\
& =2 \sup _{A \in \mathcal{P}_{F}(\mathbb{N})}\left\|T\left(\left(y^{k}-y^{\tilde{k}}\right) \chi_{A}\right)\right\|_{E} \\
& \leq 2 C^{r}\left\|\left(y^{k}\right)^{\frac{1}{r}}-\left(y^{\tilde{k}}\right)^{\frac{1}{r}}\right\|_{\ell^{1}\left(m_{T}\right)}^{r} \rightarrow 0
\end{aligned}
$$

as $k, \tilde{k} \rightarrow \infty$ since $\left(y^{k}\right)^{\frac{1}{r}} \uparrow|x|$ pointwise and $\ell^{1}\left(m_{T}\right)$ is σ-order continuous. Hence, $y^{k} \rightarrow z$ in $\ell^{1}\left(m_{T}\right)$ for some $z \in \ell^{1}\left(m_{T}\right)$. In particular, $y^{k} \rightarrow z$ pointwise and so $|x|^{r}=z \in \ell^{1}\left(m_{T}\right)$ as $y^{k} \uparrow|x|^{r}$ pointwise. Therefore, $x \in \ell^{r}\left(m_{T}\right)$.

Lemma 7.5. Let $p>1$. If T is $\frac{1}{p}$-power dominated then it is $\frac{1}{p}$ th power factorable with a continuous extension.

Proof. Let us use Proposition 7.2(d). Given $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \subset$ $[0, \infty)$, denoting by K the continuity constant of T, we have that

$$
\begin{aligned}
\left\|\sum_{j \in M} x_{j} T\left(e_{j}\right)\right\|_{E} & =\left\|\sum_{j \in M}\left(x_{j}^{p}\right)^{\frac{1}{p}} T\left(e_{j}\right)\right\|_{E} \leq C^{\frac{1}{p}} \sup _{N \subset M}\left\|\sum_{j \in N} x_{j}^{p} T\left(e_{j}\right)\right\|_{E}^{\frac{1}{p}} \\
& =C^{\frac{1}{p}} \sup _{N \subset M}\left\|T\left(\sum_{j \in N} x_{j}^{p} e_{j}\right)\right\|_{E}^{\frac{1}{p}} \leq C^{\frac{1}{p}} K^{\frac{1}{p}} \sup _{N \subset M}\left\|_{j \in N} x_{j}^{p} e_{j}\right\|_{\ell^{1}}^{\frac{1}{p}} \\
& =C^{\frac{1}{p}} K^{\frac{1}{p}} \sup _{N \subset M}\left(\sum_{j \in N} x_{j}^{p}\right)^{\frac{1}{p}} \leq C^{\frac{1}{p}} K^{\frac{1}{p}}\left(\sum_{j \in M} x_{j}^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

As a consequence of Remark 7.3, Lemmas 7.4 and 7.5, we obtain the following conclusion.

Corollary 7.6. For $p>1$ we have that:
(a) If T is p-power dominated and $\frac{1}{p}$ th power factorable with a continuous extension, then T factors optimally as

with $I_{m_{T}}$ being $\frac{1}{p}$ th power factorable with a continuous extension.
(b) If T is $\frac{1}{p}$-power dominated, then T factors optimally as

with $I_{m_{T}}$ being $\frac{1}{p}$ th power factorable with a continuous extension.
Consider now the case when $E=\ell(c)$ is a B.f.s. related to c such that $\ell^{1} \subset \ell(c) \subset \ell^{0}$. Then $\ell(c)$ is a Köthe function space in the sense of Lindenstrauss and Tzafriri, see [16, pp. 28-30]. For instance, $\ell(c)$ could be an ℓ^{q} space with $1 \leq q \leq \infty$, or a Lorentz sequence space $\ell^{q, r}$ with $1 \leq r \leq q \leq \infty$ or an Orlicz sequence space ℓ_{φ} with φ being an Orlicz function.

Let us recall some facts about the Köthe dual of an space $\ell(c)$. Denote the scalar product of two sequences $x=\left(x_{n}\right), y=\left(y_{n}\right) \in \ell^{0}$ by

$$
(x, y)=\sum x_{n} y_{n}
$$

provided the sum exists. The Köthe dual of $\ell(c)$ is given by

$$
\ell(c)^{\prime}=\left\{y \in \ell^{0}:(|x|,|y|)<\infty \quad \text { for all } x \in \ell(c)\right\}
$$

Note that $\chi_{A} \in \ell(c)^{\prime}$ for all $A \in \mathcal{P}_{F}(\mathbb{N})$. The space $\ell(c)^{\prime}$ endowed with the norm

$$
\|y\|_{\ell(c)^{\prime}}=\sup _{x \in B_{\ell(c)}}(|x|,|y|)
$$

is a B.f.s. in the sense of Lindenstrauss and Tzafriri. The map $j: \ell(c)^{\prime} \rightarrow \ell(c)^{*}$ defined by $\langle j(y), x\rangle=(x, y)$ for all $y \in \ell(c)^{\prime}$ and $x \in \ell(c)$, is a linear isometry. In particular, convergence in norm of $\ell(c)$ implies pointwise convergence, as $e_{n} \in \ell(c)^{\prime}$ for all n. Note that $\ell(c) \subset \ell(c)^{\prime \prime}$. The equality $\ell(c)=\ell(c)^{\prime \prime}$ holds with equal norms if and only if $\ell(c)$ has the Fatou property, that is, if $\left(x^{k}\right) \subset \ell(c)$ is such that $0 \leq x^{k} \uparrow x$ pointwise and $\sup \left\|x^{k}\right\|_{\ell(c)}<\infty$ then $x \in \ell(c)$ and $\left\|x^{k}\right\|_{\ell(c)} \uparrow\|x\|_{\ell(c)}$.

Let $M=\left(a_{i j}\right)$ be an infinite matrix of real numbers and denote by C_{j} the j th column of M. Assume $C_{j} \neq 0$ for all j. Note that

$$
M x=\left(\sum_{j} a_{i j} x_{j}\right)_{i}
$$

for any $x \in \ell^{0}$ for which it is meaningful to do so.
Proposition 7.7. Suppose that $\ell(c)$ has the Fatou property. Then, the following statements are equivalent:
(a) M defines a continuous linear operator $M: \ell^{1} \rightarrow \ell(c)$.
(b) $C_{j} \in \ell(c)$ for all j and $\sup _{j}\left\|C_{j}\right\|_{\ell(c)}<\infty$.

Proof. (a) \Rightarrow (b) Let $K>0$ be such that $\|M x\|_{\ell(c)} \leq K\|x\|_{\ell^{1}}$ for all $x \in \ell^{1}$. For every j we have that $C_{j}=M e_{j} \in \ell(c)$. Moreover,

$$
\sup _{j}\left\|C_{j}\right\|_{\ell(c)}=\sup _{j}\left\|M e_{j}\right\|_{\ell(c)} \leq K \sup _{j}\left\|e_{j}\right\|_{\ell^{1}}=K
$$

(b) $\Rightarrow(\mathrm{c})$ Since $\ell(c)$ has the Fatou property then $\ell(c)=\ell(c)^{\prime \prime}$ with equal norms. Let $x \in \ell^{1}$. First note that for every i we have that

$$
\begin{aligned}
\sum_{j}\left|a_{i j} x_{j}\right| & =\sum_{j}\left(\left|C_{j}\right|, e_{i}\right)\left|x_{j}\right| \leq \sum_{j}\left\|C_{j}\right\|_{\ell(c)}\left\|e_{i}\right\|_{\ell(c)^{\prime}}\left|x_{j}\right| \\
& \leq\left\|e_{i}\right\|_{\ell(c)^{\prime}}\|x\|_{\ell^{1}} \sup _{j}\left\|C_{j}\right\|_{\ell(c)}
\end{aligned}
$$

and so $M x \in \ell^{0}$. Given $y \in \ell(c)^{\prime}$ it follows that

$$
\begin{aligned}
(|y|,|M x|) & =\sum_{i}\left|y_{i}\right|\left|\sum_{j} a_{i j} x_{j}\right| \leq \sum_{i} \sum_{j}\left|a_{i j} x_{j} y_{i}\right|=\sum_{j}\left|x_{j}\right| \sum_{i}\left|a_{i j} y_{i}\right| \\
& =\sum_{j}\left|x_{j}\right|\left(\left|C_{j}\right|,|y|\right) \leq \sum_{j}\left|x_{j}\right|\left\|C_{j}\right\|_{\ell(c)}\|y\|_{\ell(c)^{\prime}} \\
& \leq\|y\|_{\ell(c)^{\prime}}\|x\|_{\ell^{1}} \sup _{j}\left\|C_{j}\right\|_{\ell(c)} .
\end{aligned}
$$

Then $M x \in \ell(c)^{\prime \prime}=\ell(c)$ and

$$
\|M x\|_{\ell(c)}=\sup _{y \in B_{\ell(c)^{\prime}}}(|y|,|M x|) \leq\|x\|_{\ell^{1}} \sup _{j}\left\|C_{j}\right\|_{\ell(c)} .
$$

In what follows, assume that $\ell(c)$ has the Fatou property, $C_{j} \in \ell(c)$ for all j and $\sup _{j}\left\|C_{j}\right\|_{\ell(c)}<\infty$. Then, M defines a continuous linear operator $M: \ell^{1} \rightarrow \ell(c)$ and so, by Remark 7.1 we have that M can be extended as

and $\ell^{1}\left(m_{M}\right)$ is the largest σ-order continuous quasi-B.f.s. to which M can be extended as a continuous operator.

Remark 7.8. For every $x \in \ell^{1}\left(m_{M}\right)$ it follows that $I_{m_{M}}(x)=M x$ and so M defines a continuous linear operator $M: \ell^{1}\left(m_{M}\right) \rightarrow \ell(c)$. Indeed, take $0 \leq x=\left(x_{n}\right) \in \ell^{1}\left(m_{M}\right)$ and $x^{k}=\sum_{j=1}^{k} x_{j} e_{j} \in \ell^{1}$. Since $x^{k} \uparrow x$ pointwise and $\ell^{1}\left(m_{M}\right)$ is σ-order continuous it follows that $x^{k} \rightarrow x$ in $\ell^{1}\left(m_{M}\right)$. Then, since $M=I_{m_{M}}$ on ℓ^{1}, we have that $M x^{k}=I_{m_{M}}\left(x^{k}\right) \rightarrow I_{m_{M}}(x)$ in $\ell(c)$ and so pointwise. Hence, the i th coordinate $\sum_{j=1}^{k} a_{i j} x_{j}$ of $M x^{k}$ converges to the i th coordinate of $I_{m_{M}}(x)$ and thus $M x=I_{m_{M}}(x) \in \ell(c)$. For a general $x \in \ell^{1}\left(m_{M}\right)$, we only have to take the positive and negative parts of x.

From Proposition 7.2 applied to $M: \ell^{1} \rightarrow \ell(c)$ and Remark 7.8 we obtain the following conclusion.

Proposition 7.9. The following statements are equivalent:
(a) M defines a continuous linear operator $M: \ell^{p} \rightarrow \ell(c)$.
(b) M is $\frac{1}{p}$ th power factorable with a continuous extension.
(c) $\ell^{p} \subset \ell^{1}\left(m_{M}\right)$.
(d) $\ell^{1} \subset \ell^{\frac{1}{p}}\left(m_{M}\right) \cap \ell^{1}\left(m_{M}\right)$.
(e) There exists $C>0$ such that

$$
\left\|\sum_{j \in M} x_{j} C_{j}\right\|_{\ell(c)} \leq C\left(\sum_{j \in M} x_{j}^{p}\right)^{\frac{1}{p}}
$$

for all $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \subset[0, \infty)$.
Proof. The equivalence among statements (b), (c), (d), (e) is given by Proposition 7.2. The statement (a) implies (b) obviously. From Remark 7.8 we have that M defines a continuous linear operator $M: \ell^{1}\left(m_{M}\right) \rightarrow \ell(c)$, so (c) implies (a).

Let us give two conditions guaranteeing that M defines a continuous linear operator $M: \ell^{p} \rightarrow \ell(c)$:
(I) If p^{\prime} is the conjugate exponent of p and $\sum\left\|C_{j}\right\|_{\ell(c)}^{p^{\prime}}<\infty$, then (e) in Proposition 7.9 holds. Indeed, for every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \subset$ $[0, \infty)$ we have that

$$
\begin{aligned}
\left\|\sum_{j \in M} x_{j} C_{j}\right\|_{\ell(c)} & \leq \sum_{j \in M} x_{j}\left\|C_{j}\right\|_{\ell(c)} \leq\left(\sum_{j \in M} x_{j}^{p}\right)^{\frac{1}{p}}\left(\sum_{j \in M}\left\|C_{j}\right\|_{\ell(c)}^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \\
& \leq\left(\sum\left\|C_{j}\right\|_{\ell(c)}^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}}\left(\sum_{j \in M} x_{j}^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

(II) If M is $\frac{1}{p}$-power dominated, that is, there exists $C>0$ such that

$$
\left\|\sum_{j \in M} x_{j}^{\frac{1}{p}} C_{j}\right\|_{\ell(c)}^{p} \leq C \sup _{N \subset M}\left\|\sum_{j \in N} x_{j} C_{j}\right\|_{\ell(c)}
$$

for every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \in[0, \infty)$, then (b) in Proposition 7.9 holds by Lemma 7.5.
For instance, in the case when $\ell(c)=\ell^{q}$ and $a_{i j} \geq 0$ for all i, j, condition (II) is satisfied if $F_{i} \in \ell^{1}$ for all i and $\sum\left\|F_{i}\right\|_{\ell^{1}}^{q}<\infty$, where F_{i} denotes the i th file of M. Indeed, for every $M \in \mathcal{P}_{F}(\mathbb{N})$ and $\left(x_{j}\right)_{j \in M} \in[0, \infty)$, applying Hölder's inequality twice for p and its conjugate exponent p^{\prime}, we have that

$$
\begin{aligned}
\left\|\sum_{j \in M} x_{j}^{\frac{1}{p}} C_{j}\right\|_{\ell^{q}}^{p} & =\left(\sum_{i}\left(\sum_{j \in M} x_{j}^{\frac{1}{p}} a_{i j}\right)^{q}\right)^{\frac{p}{q}}=\left(\sum_{i}\left(\sum_{j \in M} x_{j}^{\frac{1}{p}} a_{i j}^{\frac{1}{p}} a_{i j}^{1-\frac{1}{p}}\right)^{q}\right)^{\frac{p}{q}} \\
& \leq\left(\sum_{i}\left(\sum_{j \in M} x_{j} a_{i j}\right)^{\frac{q}{p}}\left(\sum_{j \in M} a_{i j}\right)^{\frac{q}{p^{\prime}}}\right)^{\frac{p}{q}} \\
& \leq\left(\sum_{i}\left(\sum_{j \in M} x_{j} a_{i j}\right)^{q}\right)^{\frac{1}{q}} \cdot\left(\sum_{i}\left(\sum_{j \in M} a_{i j}\right)^{q}\right)^{\frac{p}{q p^{\prime}}} \\
& \leq\left\|\sum_{j \in M} x_{j} C_{j}\right\|_{\ell^{q}}\left(\sum_{i}\left\|F_{i}\right\|_{\ell^{1}}^{q}\right)^{\frac{p}{q p^{\prime}}}
\end{aligned}
$$

Note that $\sup _{N \subset M}\left\|\sum_{j \in N} x_{j} C_{j}\right\|_{\ell^{q}}=\left\|\sum_{j \in M} x_{j} C_{j}\right\|_{\ell^{q}}$ as $a_{i j} \geq 0$ for all i, j.

References

[1] Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press, Boston (1988)
[2] Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures, J. Math. Anal. Appl 45, 156-175 (1974)
[3] Calabuig, J.M., Delgado, O., Juan, M.A., Sánchez Pérez, E.A.: On the Banach lattice structure of L_{w}^{1} of a vector measure on a δ-ring. Collect. Math 65, 67-85 (2014)
[4] Calabuig, J.M., Delgado, J.M., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl 364, 88-103 (2010)
[5] Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of p-integrable functions with respect to a vector measure defined on a δ-ring. Operators Matrices 6, 241-262 (2012)
[6] del Campo, R., Fernández, A., Galdames, O., Mayoral, F., Naranjo, F.: Complex interpolation of operators and optimal domains. Integr. Equ. Oper. Theory 80, 229-238 (2014)
[7] Delgado, O.: L^{1}-spaces of vector measures defined on δ-rings. Arch. Math. 84, 432-443 (2005)
[8] Delgado, O.: Optimal domains for kernel operators on $[0, \infty) \times[0, \infty)$. Studia Math. 174, 131-145 (2006)
[9] Diestel, J., Uhl Jr, J.J.: Vector measures. Math. Surveys, vol. 15. American Mathematical Society, Providence (1977)
[10] Galdames Bravo, O.: On the norm with respect to vector measures of the solution of an infinite system of ordinary differential equations. Mediterr. J. Math. 12, 939-956 (2015)
[11] Galdames Bravo, O.: Generalized Köthe p-dual spaces. Bull. Belg. Math. Soc. Simon Stevin 21, 275-289 (2014)
[12] Galdames Bravo, O., Sánchez Pérez, E.A.: Optimal range theorems for operators with p-th power factorable adjoints. Banach J. Math. Anal. 6, 61-73 (2012)
[13] Galdames Bravo, O., Sánchez Pérez, E.A.: Factorizing kernel operators. Integr. Equ. Oper. Theory 75, 13-29 (2013)
[14] Kalton, N.J., Peck, N.T., Roberts, J.W.: An F-space Sampler. London Math. Soc. Lecture Notes, vol. 89. Cambridge University Press, Cambridge (1985)
[15] Lewis, D.R: On integrability and summability in vector spaces. Ill. J. Math. 16, 294-307 (1972)
[16] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces, vol.II. Springer, Berlin (1979)
[17] Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ rings. Adv. Math. 73, 204-241 (1989)
[18] Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121-167 (1989)
[19] Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces. Operator Theory: Adv. Appl., vol. 180. Birkhäuser, Basel (2008)

[^0]: O. Delgado gratefully acknowledges the support of the Ministerio de Economía y Competitividad (Project \#MTM2012-36732-C03-03) and the Junta de Andalucía (Projects FQM-262 and FQM-7276), Spain.
 E. A. Sánchez Pérez acknowledges with thanks the support of the Ministerio de Economía y Competitividad (Project \#MTM2012-36740-C02-02), Spain.

