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Abstract. Let X (u) be a function space related to a measure space
(2,3, u) with xo € X(p) and let T: X(u) — E be a Banach space-
valued operator. It is known that if T is pth power factorable then the
largest function space to which 7" can be extended preserving pth power
factorability is given by the space LP (mr) of p-integrable functions with
respect to mp, where mp: ¥ — E is the vector measure associated to
T viamr(A) = T(xa). In this paper, we extend this result by removing
the restriction xo € X (u). In this general case, by considering mr de-
fined on a certain d-ring, we show that the optimal domain for 7" is the
space LP (mr)NL*(mr). We apply the obtained results to the particular
case when T is a map between sequence spaces defined by an infinite
matrix.
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1. Introduction

Although the concept of pth power factorable operator has previously been
used as a tool in operator theory, it was introduced explicitly in [19, Sect. 5].
Given a measure space (€2, %, 1) and a Banach function space X () of (u-a.e.
classes of) Y-measurable functions such that xq € X(p), for 1 < p < o0, a
Banach space-valued operator T': X (u) — E is pth power factorable if there

is a continuous extension of T to the %th power space X(u)% of X (u). This
is equivalent to the existence of a constant C' > 0 satisfying that
1
T < CND Wy = C I,
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for all f € X(u). The main characterization of this class of operators estab-
lishes that any of them can be extended to an space LP of a vector measure
mp: ¥ — E associated to T via mp(A) = T(xa4) and the extension is maxi-
mal. Note that the condition xo € X (1) is necessary for a correct definition
of pth power factorable operator (i.e. X (u) C X(,u)%) and for mp to be well
defined.

Several applications are shown also in [19, Sect. 6, 7], mainly in factor-
ization of operators through spaces L(u) (Maurey—Rosenthal type theorems)
and in harmonic analysis (Fourier transform and convolution operators). Af-
ter that pth power factorable operators have turned out to be a useful tool
for the study of different problems in mathematical analysis, regarding for
example Banach space interpolation theory [6], differential equations [10],
description of maximal domains for several classes of operators [12], factor-
ization of kernel operators [13] or adjoint operators [11].

The requirement xo € X(u) excludes basic spaces as L9(0,00) or £9.
Although these spaces can be represented as spaces satisfying the needed
requirement (for instance L?(0,00) is isometrically isomorphic to L?(e~*dx)
via the multiplication operator induced by e%), to use such a representation
provides some kind of factorization for T but not genuine extensions.

The aim of this paper is to extend the results on maximal extensions
of pth power factorable operators to quasi-Banach spaces X (p) which do
not necessarily contain xq. Also we will consider p to be any positive number
removing the restriction p > 1. The first problem is the definition of pth power
factorable operator, as in general the containment X () C X (u)% does not
hold. This can be solved by replacing X(u)% by the sum X(,u)% + X (p). The
second problem is the definition of the vector measure my associated to T
The technique to overcome this obstacle consists of considering my defined on
the é-ring X x () = {A EX: xa€ X(,u)} instead of the o-algebra X. We will
see that actually no topology is needed on X (i) to extend T: X () — E,
it suffices an ideal structure on X(u) and a certain property on T which
relates the p-a.e. pointwise order of X (i) and the weak topology of E. This
property, called order-w continuity, is the minimal condition for mr to be a
vector measure.

The paper is organized as follows. Section 2 is devoted to establish
the notation and to state the results on ideal function spaces, quasi-Banach
function spaces and integration with respect to a vector measure defined on
a §-ring, which will be use along this work. For the aim of completeness,
we include the proof of some relevant facts. In Sect. 3 we show that every
order-w continuous operator T defined on an ideal function space X (1), can
be extended to the space L!(mr) of integrable functions with respect to mr
and this space is the largest one to which T' can be extended as an order-w
continuous operator (Theorem 3.2). Section 4 deals with operators T which
are pth power factorable with an order-w continuous extension, that is, there
is an order-w continuous extension of T" to the space X(u)% + X (u). We prove
that the space LP(mz) N L (m7) is the optimal domain for T preserving the
property of being pth power factorable with an order-w continuous extension



(Theorem 4.2). In Sects. 5 and 6 we endow X (u) with a topology (namely
X (p) will be a o-order continuous Quasi-Banach function space) and consider
T to be continuous. Results on maximal extensions analogous to the ones of
the previous sections are obtain for continuity instead of order-w continuity
(Theorems 5.1 and 6.2). Finally, as an application of our results, in the last
section we study when an infinite matrix of real numbers defines a continuous
linear operator from /P into any given sequence space.

2. Preliminaries

2.1. Ideal Function Spaces

Let (£2,X) be a fixed measurable space. For a measure p: ¥ — [0, 00], we
denote by L°(11) the space of all (u-a.e. classes of) S-measurable real-valued
functions on Q. Given two set functions u, A: ¥ — [0, co] we will write A <
if u(A) = 0 implies A(A) = 0. We will say that g and A\ are equivalent if
A< pand p < A In the case when p and A\ are two measures with A < p,
the map [i]: L°(u) — L°(\) which takes a p-a.e. class in L°(u) represented
by f into the A-a.e. class represented by the same f, is a well-defined linear
map. To simplify notation [i](f) will be denoted again as f. Note that if A
and p are equivalent then L°(u) = L°()\) and [i] is the identity map i.

An ideal function space (briefly, i.f.s.) is a vector space X (u) C L°(u)
satisfying that if f € X (u) and g € L°(u) with |g| < |f| p-a.e. then g € X ().
We will say that X (u) has the o-property if there exists (£2,,) C X such that
Q= UQ, and xq, € X(u) for all n. For instance, this happens if there is
some g € X (p) with g > 0 p-a.e.

Lemma 2.1. Let X(u) be an i.f.s. satisfying the o-property. For every X—
measurable function f: Q — [0,00) there exists (fn) C X(u) such that 0 <
fn T [ pointwise.

Proof. Let (2,) C ¥ be the sequence given by the o-property of X (u) and
let f: Q — [0,00) be a ¥-measurable function. Taking A,, = U}_;Q; N {we
Q: flw) < n}, we have that f, = fxa, € X(p), as 0 < f,, < nxur_,Q;
pointwise, and that f, T f pointwise. O

The sum of two i.f.s.” X (p) and Y (i) is the space defined as

X(p) +Y(p) = {f €Lu): f=hH+f2 prae, feX(p), f2€ Y(H)}~
Proposition 2.2. The sum X (u) + Y (p) of two i.f.s.” is an i.f.s.

Proof. Let f € X(u)+Y (p) and g € L°(u) be such that |g| < |f| p-a.e. Write
f=fi+ fa p-a.e. with f; € X(p) and fo € Y(u) and denote A = {w eN:
lg(w)| < [f1(w)]}. Taking by = [g]xa + [f1lxa\a and he = ([g] = [f1])xa\ 45
we have that |g| = hq + hg with hy € X (u) as 0 < hy < |f1| pointwise and
hy € Y (p) as 0 < hy < |f2| p-a.e. Now, denote B = {w € Q: g(w) > 0} and
take g1 = h1(xB — xo\B) and g2 = ha(XxB — xo\5)- Then, g = g1 + g with
91 € X(p) as [g1| = h1 and g2 € Y(11) as |g2| = ha. So, g € X(p) +Y (). O



Let p € (0,00). The p-power of an i.f.s. X(u) is the i.f.s. defined as
X(wP ={feLu:[fIF X}

Lemma 2.3. Let X (1) be an i.f.s. For s,t € (0,00) and 2 =1+ 1 it follows
that if f € X(p)® and g € X(u)t then fg € X(u)". In particular, if xq €
X (p) then X ()9 C X(p)? for all 0 < p < q < oo.

Proof. For the first part only note that for every a,b > 0 it follows
r r
Y < —af 4+ - bt 2.1
a’b" < —a + ; (2.1)

For the second part take r = p, s =qgand t = %. Then, if f € X (u)?, since
Xa € X(u)t, we have that f = fxq € X (u)P. O

Recall that a quasi-norm on a real vector space X is a non-negative real
map || - [|x on X satisfying

(i) |lz|]|x = 0 if and only if 2 = 0,
(ii) ||ox||x = |af - [|z]|x for all @« € R and z € X, and
(iii) There exists a constant K > 1 such that ||z + y||x < K(||z||x + ||yl x)
for all x,y € X.

A quasi-norm || - ||x induces a metric topology on X in which a sequence
() converges to z if and only if ||z — z,||x — 0. If X is complete under
this topology then it is called a quasi-Banach space (Banach space if K = 1).
A linear map T: X — Y between quasi-Banach spaces is continuous if and
only if there exists a constant M > 0 such that ||T'(x)|y < M|z|x for all
x € X. For issues related to quasi-Banach spaces see [14].

A quasi-Banach function space (quasi-B.f.s. for short) is a i.f.s. X (u)
which is also a quasi-Banach space with a quasi-norm ||-|| x ) compatible with
the p-a.e. pointwise order, that is, if f,g € X (u) are such that |f] < |g| p-a.e.
then [|flx) < ll9llx(u)- When the quasi-norm is a norm, X(u) is called
a Banach function space (B.f.s.). Note that every quasi-B.fs. is a quasi-
Banach lattice for the p-a.e. pointwise order satisfying that if f, — f in
quasi-norm then there exists a subsequence f,; — f p-a.e. Also note that
every positive linear operator between quasi-Banach lattices is continuous,
see the argument given in [16, p. 2] for Banach lattices which can be adapted
for quasi-Banach spaces. Then all “inclusions” of the type [i] between quasi-
B.f.s.” are continuous.

A quasi-B.f.s. X () is said to be o-order continuous if for every (f,) C
X (p) with f,, | 0 p-a.e. it follows that || fn|lx | O.

It is routine to check that the intersection X () NY (1) of two quasi-
B.fs. (B.fs.”) X(p) and Y(u) is a quasi-B.f.s. (B.f.s.) endowed with the
quasi-norm (norm)

11l x oy () = max { [l x s 111y ) }-

Moreover, if X(p) and Y () are o-order continuous then X (u) NY(p) is
o-order continuous.



Proposition 2.4. The sum X(u) + Y (u) of two quasi-B.f.s.” (B.f.s.”) X (u)
and Y (1) is a quasi-B.f.s. (B.f.s.) endowed with the quasi-norm (norm)

11 y+v oy = it (1Flx g + 120y ()

where the infimum is taken over all possible representations f = f1 + fo u-
a.e. with f1 € X(u) and fo € Y(u). Moreover, if X(u) and Y (i) are o-order
continuous then X (u) + Y (u) is also o-order continuous.

Proof. From Proposition 2.2 we have that X (u) + Y (u) is a i.f.s. Even more,
looking at the proof we see that for every f € X(u) + Y (u) and g € L°(p)
with |g| < |f] p-a.e., if f = fi + fo prae. with f1 € X(p) and fo € Y ()
then there exist g7 € X (p) and g2 € Y (i) such that |g;| < |fi| p-a.e. and
g9 =61+ g2. Then,

9l x4y < llgillxq + llg2lly i < fillxw) + 1 f2llv

and so, taking infimum over all possible representations f = fi1 + fo p-a.e.
with f1 € X(u) and fz € Y(u), it follows that [|g([x ()+v () < [flx(w+v -
Hence, [ - || x(u)+v(u) is compatible with the y-a.e. pointwise order.

The proof of the fact that || - || x(u)+v (. i a quasi-norm for which
X (p)+Y (1) is complete is similar to the one given in [1, Sect. 3, Theorem 1.3]
for compatible couples of Banach spaces.

Suppose that X (1) and Y (u) are o-order continuous. Let (f,,) C X (u)+
Y (1) be such that f,, | 0 p-a.e. Consider f; = g + h pa.e. with g € X(p)
and h € Y (u). We can rewrite f; = f§ + f% with fl € X(u), f2 € Y(u) and
fi, f? > 0 p-a.e. This can be done by taking A = {w €Q: filw) <|g(w |}
fl = fixa +lglxara and ff = (fi — |g])xa\a- Note that f} 6 X(p) a
0'< 11 2 Jo] oo, and £2 € V() a5 0 £ f2 = ] o, Sinee 0 < fo < fi
p-a.e., looking again at the proof of Proposition 2.2 we see that there exist
f3 € X(u) and f2 € Y(uu) such that 0 < fi < f{ p-ae. and fo = fi + f3
p-a.e. By induction we construct two p-a.e. pointwise decreasing sequences
of positive functions (f}) C X (u) and (f2) C Y (p) such that f, = f} + f2.
Note that f? | 0 p-a.e. as 0 < f! < f,, p-a.e. Then, since X (u) and Y (i) are
o-order continuous, we have that

I follx v ) < 1fallx + 12y — 0.
O

Let p € (0,00). The p-power X (u)P of a quasi-B.f.s. X (p) is a quasi-
B.f.s. endowed with the quasi-norm

1
1 lxe = TP 12 o-

Moreover, X (u)? is o-order continuous whenever X () is so. Note that in the
case when X (p) is a B.f.s. and p > 1 it follows that || - || x(,)» is a norm and
so X (p)?P is a B.f.s. An exhaustive study of the space X (u)? can be found
in [19, Sect. 2.2] for the case when p is finite and xq € X(u). This study
can be extended to our general case adapting the arguments with the natural
modifications (note that our p-powers here are the %th powers there).



2.2. Integration with Respect to a Vector Measure Defined on a §-Ring

Let R be a §-ring of subsets of a set €2, that is, a ring closed under countable
intersections. Measurability will be considered with respect to the o-algebra
RIo¢ of all subsets A of © such that AN B € R for all B € R. Let us write
S(R) for the space of all R-simple functions, that is, simple functions with
support in R.

A set function m: R — E with values in a Banach space F is said to be
a vector measure if Y m(A,) converges to m(UA,,) in E for every sequence
of pairwise disjoint sets (4,,) C R with UA,, € R.

Consider first a real measure A\: R — R. The wvariation of X\ is the
measure |\|: R!°¢ — [0, 0o] defined as

[A|(A) = sup { Z [A(A4;)] : (A,) finite disjoint sequence in R N 2A}.

Note that || is finite on R. The space L'()\) of integrable functions with
respect to \ is defined as the classical space L!(|A]). The integral with respect
to A of o =37 ajxa, € S(R) over A € R!°¢ is defined in the natural way
by [4pdA =", a;A(A;NA). The space S(R) is dense in L'(}), allowing
to define the integral of f € L'(X) over A € RI*¢ as [, fdA =lim [, ¢, dA
for any sequence (¢,) C S(R) converging to f in L1()).

Let now m: R — E be a vector measure. The semivariation of m is the
set function ||m||: R"¢ — [0, oc] defined by

Iml[|(A) = sup |z"m|(A).
x*EBgx*

Here, B~ is the closed unit ball of the dual space E* of E and |z*m]| is
the variation of the real measure z*m given by the composition of m with
r*. A set A € R is m-null if |[m||(A) = 0, or equivalently, if m(B) = 0
for all B € R N 24. From [2, Theorem 3.2], there always exists a measure
n: RY¢ — [0, ] equivalent to ||m/|, that is, m and n have the same null sets.
Let us denote L°(m) = L°(n).

The space L' (m) of integrable functions with respect to m is defined as
the space of functions f € LY(m) satisfying that

(i) f € LY(z*m) for every x* € E*, and
(ii) for each A € R!°° there exists 24 € E such that

¥ (xa) = / fdz*m, for every 2* € E*.
A

The vector z4 is unique and will be denoted by [ 4 Jdm. The space
L*(m) is a o-order continuous B.f.s. related to the measure space (€2, R1°¢, 7),
with norm

1fllermy = sup [ |fldlz"m].
z*E€Bpx JO

Moreover, S(R) is dense in L'(m). Note that [, pdm = 3" aym(A; N A)
for every ¢ = >7_ ajxa; € S(R) and A € R,



The integration operator I,: L'(m) — E defined by I, (f) = [, fdm
is a continuous linear operator with |1, (f)||z < [|f[/z1(m). Even more,

1
I fllzreny < sup [Im(fxa)lle < Ifllzrm) (2.2)
AER

for all f € L*(m).
Let p € (0,00). We denote by LP(m) the p-power of L*(m), that is,

m) = {f e L(m): |fIF e Ll(m)}.

Then LP(m) is a quasi-B.f.s. with the quasi-norm || f|| 1) = || |f]? ||1L/1pm)
In the case when p > 1, we have that || - || s () is @ norm and so LP(m) is a
B.fs.

These and other issues concerning integration with respect to a vector
measure defined on a d-ring can be found in [3,5,7,15,17,18].

3. Optimal Domain for Order-w Continuous Operators
on a i.fis.

Let X (i) be a if.s. satisfying the o-property (recall: Q = UQ,, with xq, €
X (p) for all n) and consider the §-ring

Sxuy ={A€X: xa€X ()}

The o-property guarantees that El)‘gf#) = 3. Given a Banach space-valued
linear operator T: X (u) — FE, we define the finitely additive set function
mr: Yxy — E by mr(A) = T(xa).

We will say that T is order-w continuous if T(f,) — T(f) weakly in E
whenever f,, f € X(u) are such that 0 < f,, T f p-a.e.

Proposition 3.1. If T' is order-w continuous, then mp is a vector measure
satisfying that [i]: X () — L'(mr) is well defined and T = I, o [i].

Proof. Let (An) C ¥x(u) be a pairwise disjoint sequence with UA,, € Xx(,.
Since T is order-w continuous, for any subsequence (4,,) we have that

ZmT w) = T(xuya,,) = Txua,,) = mr(UAn,)

weakly in E. From the Orlicz—Pettis theorem (see [9, Corollary 1.4.4]), it
follows that > my(A4,) is unconditionally convergent in norm to mz(UA,,).
Thus, m7 is a vector measure.

Note that ||mr| < p and so [i]: L°(u) — L°(mq) is well defined. In
addition, note that for every ¢ € S(¥x(,)) we have that I,,,..(¢) = T(¢).

Let f € X(u) be such that f > 0 p-a.e. and take a sequence of Y-simple
functions 0 < ¢, T f p-a.e. For each n we can write ¢, = Z;n 1 QXA
with (4;)7L, C ¥ belng a palrwme disjoint sequence and «; > 0 for all
J. Since xa; < aj Lon < a; Lf p-ace., we have that X4; € X(u) and so
©n € S(Ex () Fix 2* € E*. For every A € ¥ it follows that T (¢nx4) —
*T(fxa) as T is order-w continuous. Note that 2*T(¢nxa) = [, ¢n dz*myp



and that 0 < ¢, T f z*mr-a.e. as |[z*my| < ||mr|| < p. From [7, Proposi-
tion 2.3], we have that f € L'(z*mr) and

/ fdax*mp = lim onde*mr = lm 2T (enxa) = 2" T(fxa)-
A n—oo A n—oo
Therefore, f € L'(mr) and L, (f) = T(f).

For a general f € X(u), the result follows by taking the positive and
negative parts of f. O

For the case when X (1) is a B.f.s., Proposition 3.1 and the next Theorem
3.2 can be deduced from [8, Proposition 2.3] and [4, Proposition 4]. The proofs
given here are more direct and are valid for general i.f.s.”.

Theorem 3.2. Suppose that T is order-w continuous. Then, T factors as

X () d - E

e (3.1)
L

L\ (mr)

m

with I, being order-w continuous. Moreover, the factorization is optimal in
the sense:

If Z(&) is a i.f.s. such that § < p and

X)) — T o g
7
i) : — Lt ;
[i]“ g — [i]: Z(8) L (mr) is w'ell (3.2)
A - defined and S = ]mT o [d].
Z(§)

with S being an order-w continuous linear
operator

Proof. The factorization (3.1) follows from Proposition 3.1. Note that the
integration operator I,,,.: L'(m7) — E is order-w continuous, as it is con-
tinuous and L*(mr) is o-order continuous.

Let Z(&) satisfy (3.3). In particular, Z(€) satisfies the o-property, as if
X4 € X(u) then x4 € Z(€). From Proposition 3.1 applied to the operator
S: Z(&) — E, we have that [i]: Z(£) — L' (mg) is well defined and S = I, o
[i]. Note that ¥ x(,) C Xz(¢) and mg(A) = S(xa) = T(xa) = mr(A) for all
A € ¥x(u), that is, mq is the restriction of mg: ¥z¢) — E to ¥ x(,). Then,
from [4, Lemma 3], it follows that L'(mg) = L*(mr) and I,,s = Ly, O

We can rewrite Theorem 3.2 in terms of optimal domain.

Corollary 3.3. Suppose that T is order-w continuous. Then L'(mr) is the
largest i.f.s. to which T can be extended as an order-w continuous operator
still with values in E. Moreover, the extension of T to L*(mr) is given by
the integration operator I, .



4. Optimal Domain for pth Power Factorable Operators
on a i.f.s. with an Order-w Continuous Extension

Let X(p) be a ifs. satisfying the o-property and let T: X(u) — FE be a
linear operator with values in a Banach space E.

For p € (0,00), we call T pth power factorable with an order-w con-
tinuous extension if there is an order-w continuous linear extension of T' to
X(M)% + X (p), ie. T factors as

X(n) > E

X ()7 + X (p)

with S being an order-w continuous linear operator.

Note that in the case when xq € X (p), from Lemma 2.3, if 1 < p we have
that X (u) C X(u)% and so X(u)% +X(p) = X(,u)%. Similarly, if p < 1 then
X(u)% + X (u) = X (u), but hence to say that T is pth power factorable with
an order-w continuous extension is just to say that T is order-w continuous.

Proposition 4.1. The following statements are equivalent:

(a) T is pth power factorable with an order-w continuous extension.

(b) T is order-w continuous and [i]: X(,u)% + X () — LY(my) is well de-
fined.

(c) T is order-w continuous and [i]: X (u) — LP(mq) N LY(mg) is well
defined.

Moreover, if (a)-(c) holds, the extension of T to X(u)% + X (n) coincides
with integration operator I, o [i].

Proof. (a) = (b) Note that T is order-w continuous as it has an order-w
continuous extension. Let S: X (u)% + X(n) — E be an order-w continu-
ous linear operator extending 7. Then, from Theorem 3.2, it follows that
[i]: X ()7 + X (1) — L' (myz) is well defined and S = I,,,,. o [i].

(b) & (c) Since T is is order-w continuous, by Proposition 3.1 we always
have that [i]: X(u) — L'(mr) is well defined. Suppose that [i]: X(u)% +
X(u) — LY(mg) is well defined. If f € X (u), since |f|P € X(u)% C X(,u)% +
X (u), we have that |f|P € L'(m7) and so f € LP(mr). Then f € LP(mz) N
LY(m7). Conversely, suppose that [i]: X(u) — LP(mg) N L*(mr) is well
defined. Let f € X(u)% + X (u) and write f = f1+ fo pra.e. with f; € X(,u)%
and f» € X (p). Since | f1]7 € X (1) we have that |f,|» € LP(mg)N LY (m7) C
Lp(mT) and so f1 € Ll(mT). Then, f € Ll(mT) as fo € Ll(mT).

(b) = (a) From Proposition 3.1 and since [i]: X(u)% +X () — LY(m7)
is well defined, we have that the operator I,,,,.o[i] extends T to X(,u)% +X ().
Moreover, the extension I, o [i]: X (1)7 + X (1) — E is order-w continuous
as the integration operator I,,,.: L*(mr) — E is so. O



In the case when xq € X(u) and T is order-w continuous, from Propo-
sition 3.1, we have that xq € L'(mr). So, from Lemma 2.3, if p > 1 then
LP(mr) C L*(mr) and hence LP(mg) N LY(my) = LP(mr). If p < 1 then
LP(m7) N L*(mr) = L*(m7r), but hence, as commented before, 7' being pth
power factorable with an order-w continuous extension is just 7" being order-w
continuous.

Theorem 4.2. Suppose that T is pth power factorable with an order-w contin-
uwous extension. Then, T factors as

X(w) - ~F (4.1)

Lp(mT) N Ll(mT)

with Ip,, being pth power factorable with an order-w continuous extension.
Moreover, the factorization is optimal in the sense:
If Z(&) is a i.f.s. such that £ < p and

X () T—: E
”« s . [f]:Zl(le;L:mz);Lll(mT)[l (4.2)

. 18 we ejinea an =1im O (2].
Z(€) T

with S being a pth power factorable
linear operator with an order-w
continuous extension

Proof. The factorization (4.1) follows from Propositions 3.1 and 4.1. Note
that LP(mz) N L'(mr) satisfies the o-property as X(u) does. Let us see
that the operator I,,,: LP(mr) N L*(mr) — E is pth power factorable
with an order-w continuous extension by using Proposition 4.1(c). This op-
erator is order-w continuous as the integration operator I,,,.: L'(mp) —
E is so. On other hand, since ¥x () C Xrr(mp)nLt(my) and mr,,. (4) =
Ly (xa) = T(xa) = mp(A) for all A € ¥x(,) (i.e. my is the restriction of
M1, " SLe(me)nLi(my) — £ 0 Xx (), from [4, Lemma 3], it follows that
Ll(mIMT) = L'(mr). Then,

[i]: LP(mp) N L (mg) — LP(my,, )N L' (my,, ) = LP(mp) N L' (my)

is well defined.

Let Z(¢) satisty (4.3). In particular, Z(¢) has the o-property. Applying
Proposition 4.1 to the operator S: Z({) — E, we have that [i]: Z(§) —
LP(mg) N L*(mg) is well defined and S = I4 o [i]. Since Lx(,) C Bz
and mg(A) = mrp(A) for all A € ¥x(,), from [4, Lemma 3], it follows that
LY(mg) = L' (mr) and Iy = Ly, O

Rewriting Theorem 4.2 in terms of optimal domain we obtain the fol-
lowing conclusion.

Corollary 4.3. Suppose that T is pth power factorable with an order-w contin-
uous extension. Then LP(mry) N LY (mq) is the largest i.f.s. to which T can be



extended as a pth power factorable operator with an order-w continuous exten-
sion, still with values in E. Moreover, the extension of T to LP(mr)NL'(m7)
1s given by the integration operator I, .

5. Optimal Domain for Continuous Operators on a Quasi-B.f.s.

Let X(u) be a quasi-B.f.s. satisfying the o-property and let T: X (u) — E
be a linear operator with values in a Banach space F.

Theorem 5.1. Suppose that X (u) is o-order continuous and T is continuous.
Then, T factors as

X(n) E (5.1)

L' (mr)

with Ip,, being continuous. Moreover, the factorization is optimal in the
sense:

If Z(&) is a o-order continuous quasi-B.f.s. such

that £ < p and
T
X(p) ———— F
( ) 7 [i]: Z(¢) — L (mr) is well
[i]“ g defined and S = I
N -
Z(8)

with S being a continuous linear operator

(5.2)

o [].

Proof. Since X (1) is o-order continuous and 7' is continuous, we have that
T is order-w continuous and so the factorization (5.1) follows from Theorem
3.2. Recall that L!(mr) is o-order continuous and I,,,,. is continuous.

Let Z(&) satisty (5.3). In particular, S is order-w continuous. From
Theorem 3.2 we have that [i]: Z(¢) — L'(mr) is well defined and S =
Iy o [d]. U

Corollary 5.2. Suppose that X (u) is o-order continuous and T is continuous.
Then LY(mr) is the largest o-order continuous quasi-B.f.s. to which T can
be extended as a continuous operator still with values in E. Moreover, the
extension of T to L'(mg) is given by the integration operator I,,..

6. Optimal Domain for pth Power Factorable Operators
on a Quasi-B.f.s. with a Continuous Extension

Let X(u) be a quasi-B.f.s. satisfying the o-property and let T: X (u) — FE
be a linear operator with values in a Banach space F.
For p € (0,00), we call T pth power factorable with a continuous exten-

sion if there is a continuous linear extension of T' to X(,u)% + X(p), ie. T



factors as

X(u)7 + X (p)
with S being a continuous linear operator.

Note that in the case when yq € X(u) and 1 < p, from Lemma 2.3,
it follows that X(ﬂ)% + X(p) = X(u)%. Then our definition of pth power
factorable operator with a continuous extension coincides with the one given
in [19, Definition 5.1]. If p < 1, since X(,u)% + X (p) = X(p), to say that T

is pth power factorable with a continuous extension is just to say that T is
continuous.

Proposition 6.1. Suppose that X (u) is o-order continuous. Then, the follow-
ing statements are equivalent:

(a) T is pth power factorable with a continuous extension.
(b) T is pth power factorable with an order-w continuous extension.

(¢) T is order-w continuous and [i]: X(u)% + X (p) — L*(mr) is well de-

fined.
(d) T is order-w continuous and [i]: X (u) — LP(mz) N L*(mr) is well
defined.
T ] T < 1
(e) Xlze:e exists C > 0 such that | T(f)||lg < C Hf||X(M);+X(H) forall f €
).

Moreover, if (a)—-(e) holds, the extension of T to X(u)% + X (u) coincides
with the integration operator I, o [i].

Proof. (a) = (b) Let S: X(,u)% + X (u) — E be a continuous linear operator
extending T'. From Proposition 2.4 we have that X(,u)% + X(p) is o-order
continuous and so S is order-w continuous. Then, T is pth power factorable
with an order-w continuous extension.

(b) & (¢) & (d) And the fact that the extension of T to X(,u)% + X ()
coincides with the integration operator I,,,,. o[i] follows from Proposition 4.1.

(¢) = (e) The operator [i]: X(,u)% + X (1) — L'(m7) is continuous as
it is positive. Then, there exists a constant C' > 0 satisfying that

<C
Iz mey < CIAN 5L v

for all f € X(p)? + X(p). Since I, extends T to L'(my), it follows that
TNl = Tme (Dl < Wfllzinry < CULL

for all f € X(u).
() = (a) Let 0 < f € X(,u)% + X (u). From Lemma 2.1, there exists
(fu) © X(n) such that 0 < f,, 1 f p-a.e. Since X(u)7 + X (p) is o-order

1) P +X (1)



continuous, it follows that f, — f in the quasi-norm of X (u)% + X(p).
Then, since

X ()P +X ()’

we have that (T'(f,)) converges to some element e € E. Define S(f) = e.
Note that if (g,) C X(u) is another sequence such that 0 < g, T f p-ae.,
then

HT(f'Vl) - T(gn)”E < C an - gnHX(M)%-‘rX(u)

< 0K (150~ Ty = 1= 90l 1)

where K is the constant satisfying the property (iii) of the quasi-norm || -

I 1 , and so S is well defined. Also note that
X ()P +X (1)

ISHIle < IS(F) = T(fo)lle +IT(fo)lle
< |S(5) =T(f)lle + Cllfall

(k)
<|S(f) =T(fu)le +C ||fH ol

1
P4+X (1)
+X (1)

for all n > 1, and thus ||S(f)||z < C ”f”X(u)%+X(u)'

For a general f € X(u)7 + X (u), define S(f) = S(f*) — S(f~) where
fT and f~ are the positive and negative parts of f, respectively. It follows
that S is linear and S(f) = T(f) for all f € X(u). Moreover, for every

f€ X () + X (n) we have that

ISHIe < ISEDe + 1S )lle
<CIT +C

<2001

L 1

)P +X (1) X ()P +X (1)

X ()P +X ()’

an so S is continuous. Hence, T' is pth power factorable with a continuous
extension. 0

In the case when p is finite, xq € X (1) and p > 1, the equivalences (a)
< (c) & (d) < (e) of Proposition 6.1 are proved in [19, Theorem 5.7]. Here,
we have included a more detailed proof for the general case.

Theorem 6.2. Suppose that X () is o-order continuous and T is pth power
factorable with a continuous extension. Then, T factors as

X () —E (6.1)



with I, being pth power factorable with a continuous extension. Moreover,
the factorization is optimal in the sense:
If Z(&) is a o-order continuous quasi-B.f.s.

such that &€ K p and

T
X(u) — > F
) 7 [i): Z(§) = L"(mz) N L*(mr)
[] N s is well defined and S = I,,, o [i].
Z(€)

with S being a pth power factorable linear
operator with a continuous extension

(6.2)

Proof. From Proposition 6.1 we have that T is pth power factorable with
an order-w continuous extension. Then, from Theorem 4.2, the factorization
(6.1) holds and I,,,.: LP(mr) N L*(mr) — E is pth power factorable with
an order-w continuous extension. Noting that the space LP(mz) N L' (mr) is
o-order continuous (as L'(mr) is so) and satisfies the o-property (as X (p)
does), from Proposition 6.1 it follows that I, : L?(mr) N L (mr) — E is
pth power factorable with a continuous extension.

Let Z(&) satisfy (6.3), in particular it satisfies the o-property. Again
Proposition 6.1 gives that S is pth power factorable with an order-w contin-
uous extension. So, from Theorem 4.2, it follows that [i]: Z(§) — LP(mqp) N
LY(mr) is well defined and S = I,,,,. o [i].

Corollary 6.3. Suppose that X (i) is o-order continuous and T is pth power
factorable with a continuous extension. Then LP(mz)N LY (m7) is the largest
o-order continuous quasi-B.f.s. to which T can be extended as a pth power
factorable operator with a continuous extension, still with values in E. More-
over, the extension of T to LP(mg) N L*(mr) is given by the integration
operator L, .

In the case when p is finite, xo € X(u) and p > 1, Corollary 6.3 is
proved in [19, Theorem 5.11].

7. Application: Extension for Operators Defined on £*

Consider the measure space (N, P(N), ¢) where ¢ is the counting measure on
N. Note that a property holds c-a.e. if and only if it holds pointwise and that
the space L%(c) coincides with the space ¢° of all real sequences. Consider the
space /! = L!(c), which is o-order continuous and has the o-property. The
d-ring P(N) is just the set Pp(N) of all finite subsets of N.

Let T: £' — E be a continuous linear operator with values in a Banach
space E. Denote e, = Xy, and assume that T'(e,) # 0 for all n. This
assumption seems to be natural since if T'(e,,) = 0 then the nth coordinate is
not involved in the action of T. Hence, the vector measure mr: Pr(N) — E
associated to T by mr(A) = T(xa) is equivalent to ¢ and so L(my) C £°.
We will write £(mz) = L' (mr).



Remark 7.1. By Theorem 5.1 we have that T' can be extended as

0" T E

- m
N T

¢ (mr)

and ¢!(mr) is the largest o-order continuous quasi-B.f.s. to which 7' can be
extended as a continuous operator.

Let p > 1. We have that T is %th power factorable with a continuous
extension if there is an extension S as

n—"
R4
[P‘

with S being a continuous linear operator. Note that p < 1 is not considered
as in this case /7 C ¢! and so the extension of T to the sum ¢P + ¢* is just the
same operator T'. Applying Proposition 6.1 in the context of this section, we
obtain the following result.

Proposition 7.2. The following statements are equivalent:
(a) T is %th power factorable with a continuous extension.

(b 124 Cﬁl(mT).

(

)
(c) £* C v (mp) N L (my).
d) There exists C > 0 such that

> aTe)|| <C| Y o
JjEM E JjEM

for all M € Pp(N) and (z;)jem C [0,00).

s

Proof. From Proposition 6.1, we only have to prove that condition (d) is
equivalent to the following condition:

(d’) There exists C' > 0 such that |[|T(z)||z < C ||x|¢e for all x € ¢1.

If (d’) holds, we obtain (d) by taking in (d’) the element z =
D jem Tj€j € ¢! for every M € Pp(N) and (z;);enm C [0,00).

Suppose that (d) holds. Let 0 < z = (x,,) € ¢! and take y* = Z?Zl zje;.
Since y* 1 x pointwise, ¢! is o-order continuous and T is continuous, we have
that

IT(2)]| e = lim | T(y*) ]| = lim

1
k P
< C lim (fo) =C ||z||er-

j=1

ijT(ej)

For a general z € (!, (d) follows by taking the positive and negative parts
of z. O

E



Remark 7.3. Note that if T is %th power factorable with a continuous exten-
sion then the integration operator I,,, extends T  to ¢P and, from Theorem
6.2, T factors optimally as

o >~ E

) mp
A

(mz) N 0 (mr)

=

l
with I,,,,. being %th power factorable with a continuous extension.

Now a natural question arises: when v (m7)Ne (me) is equal to v (m7)
or £*(mr)? For asking this question we introduce the following class of oper-
ators.

Let 0 < r < co. We say that T is r-power dominated if there exists
C > 0 such that

S

Z x7T(ej)|| <C sup Z z;T(e;)
jEM 5 NCM \ljen 5
for every M € Ppr(N) and (x;)jem € [0,00). Note that in the case when E
is a Banach lattice and T is positive we have that

sup ijT(ej) = ijT(ej)
NeMljen E JEM 5
Lemma 7.4. The containment ¢*(mg) C €"(mz) holds if and only if T is
r-power dominated.

Proof. Suppose that ¢!(mz) C £"(mr). Since the containment is continuous
(as it is positive), there exists C' > 0 such that ||z||¢rm,) < C||2][o1(my) for
all x € (*(mr). For every M € Pr(N) and (x;);em € [0,00), we consider

T=3 i Tie) € ¢*. Noting that " = djemTiej € %, it follows that

1 1 1
Yo T(ey)|| = ITEE = Hne @)E < 12715 gy = 2 lerene)
jeM

5

E
< Cleleonn <2¢ sup (e (2xa)lle,

EPr

where in the last inequality we have used (2.2). For every A € Pp(N)
we have that axa = > ;caqp Tj€; € ¢t and so Iy, (zxa) = T(xxa) =



ZjeAmM ij(ej)« Then,

3=

ngT(ej) <2C sup Z z;T'(e;)

jeM AePr(N) jeANM

E E

= 2C sup Z z;T(e;)
NCM ||}
JEN B

Conversely, suppose that T is r-power dominated and let z = (x,) €
Y (myr). Taking y* = Z?:l lz;|"e; € €1, for every k > k and A € Pp(N), we

.....

IT((v"* — v )xa)ll = >, lwl'T(e)
jeAN{k+1,....k} E
T
<Cr sup Z || (e;)
NcAN{k+1,...k} || jeN E
T
=C" sup Iy Z |zjle;
NCAN{k+1,...,k} JEN E
T
<Cr sup Z |zjle;
NcAN{k+1,...k} || jeN 0 (m)

< CT”(yk)% - (y];)%H;l(mT)

1
r

For the last inequality note that (y*)* = Zle |z;|e; and so

k
1 Ll
D lwsle; < D lwgle; = (0F) — (F)r

JeN j=k+1
for every N € AN{k+1,...,k}. Then, using (2.2), we have that

k_ b 1 <2 5 I’H’L - k
lv" =", (mr) = A;Ef(N) [T (0" = 5)xa) || 5

—9 T((F — k
A;;ﬁmH (" =" )xa)

<207 (6")7 = ) [ gy — 0

as k,k — oo since (y*)* 1 |z| pointwise and ¢!(my) is o-order continu-
ous. Hence, y* — z in £*(myr) for some z € ¢! (m7). In particular, y* — 2
pointwise and so |z|” = z € ((mr) as y* T |z|” pointwise. Therefore,
x € L™ (mr). O



Lemma 7.5. Let p > 1. If T is %—power dominated then it is %th power
factorable with a continuous extension.

Proof. Let us use Proposition 7.2(d). Given M € Pp(N) and (z;)jem C
[0,00), denoting by K the continuity constant of T', we have that

S =

Z:ro(ej) = Z(x?)%T(ej) <Cv sup prT (e5)

jeM jEM NCM llien s

3|
|

NCM jEN NCM JjEN

=

=Cr sup ||T Z:ce] H <C'PKP sup erj
4

—Cv K7 sup pr gC%K% Zxé’
JEN jeEM
O

As a consequence of Remark 7.3, Lemmas 7.4 and 7.5, we obtain the
following conclusion.

Corollary 7.6. For p > 1 we have that:

(a) If T is p-power dominated and *th power factorable with a continuous
extension, then T factors optimally as

" T E

EN
1

T

o=

(mr)
with I, being I%th power factorable with a continuous extension.

(b) If T is %—power dominated, then T factors optimally as

I T E

¢t (mr)

mg

with Ip,, being %th power factorable with a continuous extension.

Consider now the case when F = {(c) is a B.f.s. related to ¢ such
that (1 C ¢(c) C £°. Then /(c) is a Kéthe function space in the sense of
Lindenstrauss and Tzafriri, see [16, pp. 28-30]. For instance, £(c) could be an
£ space with 1 < g < oo, or a Lorentz sequence space £9" with 1 <r < g < o0
or an Orlicz sequence space £, with ¢ being an Orlicz function.

Let us recall some facts about the Kothe dual of an space ¢(c). Denote
the scalar product of two sequences x = (x,,),y = (y,) € £° by

z y) = anyn



provided the sum exists. The Kdthe dual of £(c) is given by
L) = {y €®: (Jz,ly]) <oo forallze E(c)}.

Note that x4 € ¢(c)’ for all A € Pp(N). The space ¢(c)’ endowed with the
norm
[9lleey = sup (|l |y])
IGB((C)

is a B.f.s. in the sense of Lindenstrauss and Tzafriri. The map j: £(c)’ — £(c)*
defined by (j(y),z) = (1’, y) for all y € £(c)’ and x € £(c), is a linear isometry.
In particular, convergence in norm of ¢(c) implies pointwise convergence,
as e, € {(c)’ for all n. Note that ¢(c) C £(c)”. The equality ¢(c) = £(c)”
holds with equal norms if and only if ¢(¢) has the Fatou property, that is, if
(x%) C £(c) is such that 0 < 2* 1 x pointwise and sup||xk||g(c) < oo then
a € L(c) and [[2*[lece) T [12lee)-

Let M = (a;;) be an infinite matrix of real numbers and denote by C;
the jth column of M. Assume C; # 0 for all j. Note that

E aijxj
J

for any = € Y for which it is meaningful to do so.

i

Proposition 7.7. Suppose that £(c) has the Fatou property. Then, the following
statements are equivalent:

(a) M defines a continuous linear operator M : £* — {(c).
(b) Cj € L(c) for all j and sup; ||Cjllgc) < oo.

Proof. (a) = (b) Let K > 0 be such that | Mz||y) < K||z|/n for all z € ¢*.
For every j we have that C; = Me; € {(c). Moreover,

sup [|Cjllece) = sup [Mejloe) < Ksup [lejlln = K.
J J J

(b) = (c) Since ¢(c) has the Fatou property then £(c) = ¢(c)” with equal
norms. Let z € ¢£*. First note that for every i we have that

Zlau%l = Z(ICI ei)laj] < ZIIC ooy lleillecey |51

< ”ei”Z(c)/H‘r”ll sup HCjHac)
J

and so Mz € (°. Given y € {(c)’ it follows that

|y| |M{L‘| Z|yz Zaljxj < ZZM]%ZM _Z|xj‘2|amyz
= Z 231 (IC5 1 1y1) Z|$J| 1C;llece) 1y llecey

< Hyllg(c)/llxIIp sup HCjHe(c)~
J



Then Mz € {(c)” = {(c) and

[Mz]lgey = sup (Jyl, |Mxl]) < 2]l sup [|Cjllece)-
yGBZ(C)/ J

O

In what follows, assume that ¢(c) has the Fatou property, C; € ¢(c) for
all j and sup; [|Cjll¢) < oo. Then, M defines a continuous linear operator
M: ¢t — ((c) and so, by Remark 7.1 we have that M can be extended as

0 - = ((c)

O (mar)

and ¢!(myy) is the largest o-order continuous quasi-B.f.s. to which M can be
extended as a continuous operator.

Remark 7.8. For every x € ((myy) it follows that I,,,,(z) = Mz and so
M defines a continuous linear operator M: ¢!(my;) — £(c). Indeed, take
0 <= (z,) € ¢*(ma) and 2* = 25:1 zje; € ¢*. Since z* 1 x pointwise
and ¢*(myy) is o-order continuous it follows that z*¥ — z in £*(my;). Then,
since M = I,,,, on ¢}, we have that Maz* = I, (%) — I, (z) in £(c)
and so pointwise. Hence, the ith coordinate Zle ai;x; of M x¥ converges to
the ith coordinate of I,,,,(z) and thus Mz = I,,,,(x) € ¢(c). For a general
x € £*(myr), we only have to take the positive and negative parts of x.

From Proposition 7.2 applied to M: ¢ — ¢(c) and Remark 7.8 we
obtain the following conclusion.

Proposition 7.9. The following statements are equivalent:

(a) M defines a continuous linear operator M : (P — {(c).
(b) M s %th power factorable with a continuous extension.
(c) 7 C (Y (may).

(d) €8 C €v (mag) N L (may).

(e) There exists C > 0 such that

jeM o) jeM

for all M € Pp(N) and (x;)jem C [0,00).

]

Proof. The equivalence among statements (b), (c), (d), (e) is given by Propo-
sition 7.2. The statement (a) implies (b) obviously. From Remark 7.8 we have
that M defines a continuous linear operator M : £*(mys) — £(c), so (c) im-
plies (a).

Let us give two conditions guaranteeing that M defines a continuous
linear operator M : P — £(c):



(I) If p’ is the conjugate exponent of p and ) ||Cj||§(/c) < 00, then (e) in
Proposition 7.9 holds. Indeed, for every M € Pp(N) and (z;)jem C
[0,00) we have that

=

Youc| <Y wlCle < | X2 [ X lck,

jeM te) JEM jeM jeM

< (Tlal,)” (S

JjEM

(I1) If M is %—power dominated, that is, there exists C' > 0 such that

P
1
Z z} Cj < C sup Z z;C;
JeM wo o llew “«©)
for every M € Pr(N) and (z;);em € [0,00), then (b) in Proposition 7.9
holds by Lemma 7.5.
For instance, in the case when ¢(c) = ¢9 and a;; > 0 for all 4, j, condition
(IT) is satisfied if F; € ¢* for all i and Y ||F}||7, < oo, where F; denotes the
ith file of M. Indeed, for every M € Pp(N) and (z;);jem € [0,00), applying
Holder’s inequality twice for p and its conjugate exponent p’, we have that

p a\ g q\ 2
1 1 11 q_1
P . - P .. — P P P
E z; C; = g E z7 aij = g E zlaja;;
jeM va i \jeM i \jeM
b
s b

E xj aij E aij

(]

i \jeM jeEM
a\ = N
< D> wiay A D @
i JEM i jeEM
ap’
. . 19
< § :xj ¢ E ||Fz||¢1 .
jeM o N\

Note that supycar | 22 5en 2iCilles = | 22 e0r 5 Cjillea as ai; > 0 for all 4, 5.
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