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 In this paper we give conditions under which a positive order continuous operator 
T defined on a Banach function space can be extended, preserving the order continuity 
in a certain optimal way. The optimal domain for T turns out to be a space of weakly 
integrable functions with respect to a vector measure (defined on a δ-ring) canonically 
associated to T . A similar result is obtained when T is σ -order continuous and we 
want to preserve the σ -order continuity. We apply these results to kernel operators.
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1. Introduction. Let X(μ) be a Banach function space (briefly, B.f.s.) related to 
some measure space (�, �, μ), and T : X(μ) → E, a linear operator satisfying a 
certain property with values in a Banach space E. An interesting question is as follows: 
Is it possible to extend T to a larger domain preserving the same property and the 
values in E, and in this case, is the extension optimal in some sense. This problem has 
been studied attending to the continuity property for classical operators in numerous 
works as in, for instance, [5, 7, 9, 16, 17]. For a general continuous operator T , if 
X(μ) is order continuous and L∞(μ) ⊂ X(μ), we can consider the vector measure νT : � 
→ E given by νT (A) = T(χA). Then the space L1(νT ) of integrable functions with 
respect to νT is the largest order continuous B.f.s. to which T can be extended as a 
continuous operator still with values in E. This result was proved in [6] for μ finite and 
X(μ) being a B.f.s. in the sense of Lindenstrauss and Tzafriri [12], but the proof works 
in our case. The condition L∞(μ) ⊂ X(μ), which is crucial for defining νT on �, 
excludes important spaces as L1[0, ∞). However, we can forget about this condition if 
we consider νT defined in an appropriate δ-ring instead of �. This was done in [4], 
where a similar result is obtained for continuous operators. Another type of property 
for T involving norms, which includes a certain inequality coming from the Pisier’s 
factorization theorem through weighted Lorentz spaces, is also studied in [4]. It is 
proved that T can be optimally extended (preserving this type of property) to a certain 
subspace of L1(νT ), which can be described as a space of multiplication operators.

In this paper, we are interested in properties for T related to the order, namely order 
continuity and σ -order continuity. We deal with positive operators with values in
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a Banach lattice and look for optimal extensions preserving these order properties. The
key will be again the integration with respect to νT , but now further extensions to larger
spaces than L1(νT ) are obtained. More precisely, associated to the vector measure νT

there are two other important spaces, the space L1
w(νT ) of weakly integrable functions

and the σ -Fatou completion [L1(νT )]
σ -F of L1(νT ), for which L1(νT ) ⊂ [L1(νT )]

σ -F ⊂
L1

w(νT ). Taking account that under appropriate conditions the integration operator IνT

extends T to L1(νT ), the idea is to extend IνT
to these larger spaces, and this can be

done by using the order properties of T .
The paper is organized as follows. Some preliminaries on Banach lattices, Banach

functions spaces and integration with respect to a vector measure are given in Section
2. In Section 3 we present some results, which will be used in the proofs of our main
Theorems 4.1 and 5.1. In particular, we give conditions under which the integration
operator of a general vector measure ν can be extended to L1

w(νT ) or [L1(νT )]
σ -F

(Propositions 2.7 and 2.8). Fatou-type properties will play an important role in our
proofs. In Section 4 we will see that, whenever the order continuous part X(μ)a of X(μ)
is super order dense in X(μ), the operator T can be optimally extended preserving
the σ -order continuity to the space [L1(νTa )]

σ -F , where Ta is the restriction of T to
X(μ)a (Theorem 4.1). If we want to preserve the order continuity of T , then we
need that X(μ)a is order dense in L0(μ), in which case the optimal domain for T is
L1

w(νTa ) (Theorem 5.1). Although the line of the proof of this result is the same as
in Theorem 4.1, since the jump from sequences to nets is always delicate, we prefer
to write it with detail in Section 5. Along the paper, we will consider two natural
cases for which our main theorems can be rewritten in a simpler way: the σ -finite
case (i.e. X(μ)a has a weak unit) and the discrete case (i.e. � = 2� and χ{ω} ∈ X(μ)
with T(χ{ω}) �= 0 for all ω ∈ �). Finally in Section 6 we apply our results to kernel
operators.

2. Preliminaries.

2.1. Banach lattices. In general, we follow the notation and terminology of [13]
and [18]. Let E be a real Banach lattice with norm ‖ · ‖ and order ≤. A closed subspace
F of E is an ideal of E if |x| ≤ |y| with x ∈ E, and y ∈ F implies that x ∈ F . An
ideal F is order dense in E if for every 0 ≤ x ∈ E there exists an upwards directed
system (xτ ) ⊂ F such that 0 ≤ xτ ↑ x. If for every 0 ≤ x ∈ E there exists an increasing
sequence (xn) ⊂ F such that 0 ≤ xn ↑ x then F is said to be super order dense in E.
A weak unit of E is an element 0 ≤ e ∈ E such that x ∧ e = 0 implies x = 0. If every
non-empty subset which is bounded from above has a supremum, then E is said to
be Dedekind complete. If the same holds but only for countable subsets then E is
called Dedekind σ -complete. We say that E has the Fatou property if for every (xτ ) ⊂ E
upwards directed system 0 ≤ xτ ↑ such that sup ‖xτ‖ < ∞, it follows that there exists
x = sup xτ in E and ‖x‖ = sup ‖xτ‖, and E has the σ -Fatou property if the same holds
but for increasing sequences. Note that it follows from [13, Theorem 23.2] that if E has
the Fatou (or σ -Fatou) property then it is Dedekind complete (or σ -complete). The
Banach lattice E is order continuous if for every (xτ ) ⊂ E downwards directed system
xτ ↓ 0 it follows ‖xτ‖ ↓ 0. When the same holds for decreasing sequences then E is
called σ -order continuous. We denote by Ean the order continuous part of E, that is, the
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largest order continuous ideal in E. It can be described as

Ean = {x ∈ E : |x| ≥  xτ ↓ 0 implies ‖xτ ‖ ↓  0},
see [18, Theorem 102.8]. The σ -order continuous part of E, denoted by Ea, can  be  
described in a similar way by taking decreasing sequences. Of course, Ean ⊂ Ea. In  
the case where Ea is Dedekind σ -complete, it follows that Ean = Ea, see [18, Theorem 
103.6].

Let T : E → F be a linear operator between Banach lattices. The operator T is 
positive if Te  ≥ 0 for every 0 ≤ e ∈ E, in which case it follows that T is continuous, 
see [18, Theorem 83.12]. If T is positive and Teτ ↑ Te  in F whenever 0 ≤ eτ ↑ e in E 
then T is said to be order continuous (σ -order continuous for sequences). We will say 
that T is σ -order w-continuous if whenever 0 ≤ en ↑ e in E we have Ten → Te  weakly 
in F (valid for F being only a Banach space). This last notion comes from [6, Theorem 
3.1].

LEMMA 2.1. The following statements hold:
(a) If T is continuous and E is σ -order continuous, then T is σ -order w-continuous.
(b) If T is positive and E is σ -order continuous, then T is σ -order continuous.
(c) If T is positive and E is order continuous, then T is order continuous.

Proof. Suppose that E is σ -order continuous and let 0 ≤ en ↑ e in E. Then en → e
in norm of E. If T is continuous then T(en) → T(e) in norm of F and so (a) holds. If
T is positive (in particular, continuous), then 0 ≤ T(en) ↑ in F and so T(en) ↑ T(e) in
F , see [18, Theorem 100.4.(i)]. Therefore, (b) holds.

Now suppose that E is order continuous and let 0 ≤ eτ ↑ e in E. Then we have
that ‖e − eτ‖E ↓ 0. If T is positive then 0 ≤ T(eτ ) ↑ in F and T(eτ ) ≤ T(e) for all
τ . Moreover, since T is continuous, there exists a constant K > 0 such that ‖T(e) −
T(eτ )‖F ≤ K ‖e − eτ‖E for all τ . From all this, it follows that T(eτ ) → T(e) in norm
and so T(eτ ) ↑ T(e), see [18, Theorem 100.8]. Therefore, (c) holds. �

2.2. Banach function spaces. Given a measure space (�,�,μ) without σ -
finiteness assumptions on μ, we denote by L0(μ) the space of all measurable real
functions on �, where functions which are equal μ-a.e. are identified.

By a B.f.s. X(μ) we mean a Banach space contained in L0(μ) with norm ‖ · ‖
satisfying that if g ∈ L0(μ) and f ∈ X(μ) with |g| ≤ |f | μ-a.e., then g ∈ X(μ) and
‖g‖ ≤ ‖f ‖. In particular, X(μ) is a Banach lattice with the μ-a.e. pointwise order. Note
that the convergence in norm of a sequence implies the μ-a.e. pointwise convergence
for some subsequence. Also note that 0 ≤ fn ↑ f in X(μ) if and only if 0 ≤ fn ↑ f μ-a.e.,
that is, the lattice supremum coincides with the μ-a.e. pointwise supremum. In general,
this does not hold for upwards directed systems. From [13, Theorem 23.2.(ii)], it is
direct to check that X(μ) is Dedekind σ -complete. Since X(μ)a is an ideal in X(μ), it
follows that X(μ)a is also a Dedekind σ -complete B.f.s. and so X(μ)an = X(μ)a. Then
a B.f.s. is order continuous if and only if it is σ -order continuous. A weak unit g ∈ X(μ)
is just a function g > 0 μ-a.e. From now and on we will simply write f ≤ g for f ≤ g
μ-a.e.

LEMMA 2.2. Let Y (μ) be an ideal of a B.f.s. X(μ). The following statements are
equivalent:

(a) Y (μ) has a weak unit.
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(b) � = ∪nAn with An ∈ � such that χAn ∈ Y (μ).
(c) X(μ) has a weak unit and Y (μ) is super order dense in X(μ).

Proof. (a) ⇒ (b). Take a weak unit g ∈ Y (μ) and a μ-null set Z such that g(ω) > 0
for all ω ∈ �\Z. Then, for Bn = {ω ∈ � : g(ω) ≥ 1

n }, it follows that � = ∪nBn ∪ Z.
Note that χBn ∈ Y (μ) as χBn ≤ ng ∈ Y (μ) and χZ ∈ Y (μ) as Z is μ-null.

(b) ⇒ (c). The function g = ∑
n

χAn
2n(‖χAn ‖+1) is a weak unit in Y (μ) and so in X(μ). On

the other hand, for 0 ≤ f ∈ X(μ) and Dn = (∪n
j=1Aj) ∩ {ω ∈ � : f (ω) ≤ n}, it follows

that 0 ≤ f χDn ↑ f in X(μ) with f χDn ∈ Y (μ), as 0 ≤ f χDn ≤ nχ∪n
j=1Aj ∈ Y (μ). That is,

Y (μ) is super order dense in X(μ).
(c) ⇒ (a). Take a weak unit g ∈ X(μ) and a μ-null set Z such that g(ω) > 0 for all

ω ∈ �\Z. Since Y (μ) is super order dense in X(μ), there exist (fn) ⊂ Y (μ) and another
μ-null set N such that 0 ≤ fn(ω) ↑ g(ω) for all ω ∈ �\N. Then, for f = ∑

n
fn

2n(‖fn‖+1) ∈
Y (μ), it follows that the set {ω ∈ � : f (ω) ≤ 0} is μ-null as it is contained in N ∪ Z.
Hence, f is a weak unit of Y (μ). �

2.3. Integration with respect to a vector measure defined on a δ-ring. Let � be
an abstract set and R be a δ-ring of subsets of � (i.e. a ring closed under countable
intersections). Denote by Rloc the σ -algebra of all subsets A of � such that A ∩ B ∈ R
for all B ∈ R.

Consider a countably additive measure λ : R → �, that is,
∑

λ(An) converges to
λ(∪An) whenever (An) is a sequence of pairwise disjoint sets in R with ∪An ∈ R. The
variation of λ is the countably additive measure |λ| : Rloc → [0,∞] given by

|λ|(A) = sup
{ ∑

|λ(Ai)| : (Ai) finite disjoint sequence in R ∩ 2A
}
.

The space L1(λ) of integrable functions with respect to λ is defined as the space L1(|λ|)
with the usual norm. Every R-simple function ϕ = ∑n

i=1 αiχAi (with (Ai) ⊂ R and
(αi) ⊂ �) is in L1(λ) and the integral of ϕ with respect to λ is defined by

∫
ϕ dλ =∑n

i=1 αiλ(Ai). The R-simple functions are dense in L1(λ). So the integral of f ∈ L1(λ)
with respect to λ is defined as

∫
f dλ = lim

∫
ϕn dλ for any sequence (ϕn) of R-simple

functions converging to f in L1(λ).
Let E be a real Banach space and ν : R → E a vector measure, that is,

∑
ν(An)

converges to ν(∪An) in E whenever (An) is a sequence of pairwise disjoint sets in R
with ∪An ∈ R. For every e∗ in the topological dual E∗ of E, the composition of ν

with e∗ is a real measure denoted by e∗ν : R → �. The semi-variation of ν is the map
‖ν‖ : Rloc → [0,∞] given by ‖ν‖(A) = sup{|e∗ν|(A) : e∗ ∈ BE∗ }, where BE∗ is the unit
ball of E∗. The semi-variation of ν is finite on R and satisfies

‖ν‖(A)
2

≤ sup
{‖ν(B)‖E : B ∈ R ∩ 2A ≤ ‖ν‖(A)

for all A ∈ Rloc. A set A ∈ Rloc is ν-null if ν(B) = 0 for every B ∈ R ∩ 2A or equivalently
‖ν‖(A) = 0. There always exists a measure λ : Rloc → [0,∞] with the same null sets as
ν, see [2, Theorem 3.2]. We will denote L0(ν) = L0(λ). A function f ∈ L0(ν) is integrable
with respect to ν if

(i) f ∈ L1(e∗ν) for all e∗ ∈ E∗, and
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(ii) for each A ∈ Rloc there exists a vector denoted by
∫

A f dν ∈ E such that

e∗
A

f dν
)

=
A

f de∗ν for all e∗ ∈ E∗.

Let us denote by L1(ν) the space of all integrable functions with respect to ν and by
L1

w(ν) the space of functions satisfying only condition (i). Both spaces are Banach
function spaces related to ν (i.e. related to (�,Rloc, λ)) with the norm

‖f ‖ν = sup
e∗∈BE∗

|f | d|e∗ν|.

Moreover, L1(ν) is order continuous having the R-simple functions as a dense subset
and L1

w(ν) has the σ -Fatou property. Note that it is not known if in general L1
w(ν) has

the Fatou property, see [3, Section 5]. Of course, L1(ν) ⊂ L1
w(ν). The equality holds,

for instance, if E does not contain an isomorphic copy of c0 (see [11, Theorem 5.1]), but
there are plenty of cases where the containment is strict (see, for instance, the example
in [3, Section 7] and also [3, Proposition 5.4]).

The integration operator Iν : L1(ν) → E given by Iν(f ) = ∫
�

f dν is a continuous
linear operator with ‖Iν(f )‖E ≤ ‖f ‖ν for all f ∈ L1(ν).

For these and other issues related to integration with respect to a vector measure
defined on a δ-ring, see [3, 8, 11, 14, 15].

3. First results. In this section we present some results that will be used later to
prove our main theorems in Sections 4 and 5.

3.1. Results on Banach function spaces. Let μ and ξ be two measures on a
measurable space (�,�) such that ξ � μ (i.e. every μ-null set is ξ -null). Then the map
[i] : L0(μ) → L0(ξ ), which takes a μ-a.e. class in L0(μ) represented by f into the ξ -a.e.
class in L0(ξ ) represented by the same f , is well defined. Consider two Banach function
spaces, X(μ) and Z(ξ ). If [i] : X(μ) → Z(ξ ) is well defined then [i] is automatically
continuous as it is positive. Note that [i] is injective only in the case where μ and ξ are
equivalent, that is, they have the same null sets. In this case L0(μ) = L0(ξ ) and [i] is
actually an inclusion, so it will be denoted by i.

LEMMA 3.1. If [i] : X(μ) → Z(ξ ) then [i] : X(μ)a → Z(ξ )a.

Proof. Since [i] : X(μ) → Z(ξ ) is continuous, there exists a constant K > 0 such
that ‖f ‖Z(ξ ) ≤ K‖f ‖X(μ) for all f ∈ X(μ). Let f ∈ X(μ)a. If |f | ≥ fn ↓ 0 in Z(ξ ) or
equivalently ξ -a.e., then there exists A ∈ � such that �\A is ξ -null and |f | ≥ fnχA ↓ 0
pointwise and so in X(μ). Hence, ‖fn‖Z(ξ ) = ‖fnχA‖Z(ξ ) ≤ K‖fnχA‖X(μ) ↓ 0. That is,
f ∈ Z(ξ )a. �

LEMMA 3.2. Suppose that X(μ)a is super order dense in X(μ) and Z(ξ ) has the
σ -Fatou property. Then, if [i] : X(μ)a → Z(ξ ), it follows that [i] : X(μ) → Z(ξ ).

Proof. Let 0 ≤ f ∈ X(μ) and take (fn) ⊂ X(μ)a such that 0 ≤ fn ↑ f in X(μ)
or equivalently μ-a.e. and so ξ -a.e. Then 0 ≤ fn ↑ in Z(ξ ) and sup ‖fn‖Z(ξ ) ≤
K sup ‖fn‖X(μ) ≤ K ‖f ‖X(μ) < ∞ for some K > 0. Since Z(ξ ) has the σ -Fatou property,
there exists g ∈ Z(ξ ) such that fn ↑ g in Z(ξ ) or equivalently ξ -a.e. Then, f = g ξ -a.e.
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and so f ∈ Z(ξ ). For a general f ∈ X(μ), by taking positive and negative parts of f , we
obtain that f ∈ Z(ξ ). �

LEMMA 3.3. Suppose that μ and ξ are equivalent, X(μ)a is order dense in L0(μ), and
Z(ξ ) has the Fatou property. Then if X(μ)a ⊂ Z(ξ ), it follows that X(μ) ⊂ Z(ξ ).

Proof. Let 0 ≤ f ∈ X(μ) and take (fτ ) ⊂ X(μ)a such that 0 ≤ fτ ↑ f in L0(μ).
Then 0 ≤ fτ ↑ in Z(ξ ) and sup ‖fτ‖Z(ξ ) ≤ K sup ‖fτ‖X(μ) ≤ K ‖f ‖X(μ) < ∞ for some
K > 0. Since Z(ξ ) has the Fatou property, there exists g = sup fτ ∈ Z(ξ ). As μ and
ξ are equivalent and so L0(μ) = L0(ξ ), we have that f ≤ g and thus f ∈ Z(ξ ), which,
moreover, implies f = g. �

3.2. Optimal extension for σ -order w-continuous operators. Fix a measurable
space (�,�) to which every B.f.s. will be related. Let X(μ) be a B.f.s., E a Banach
space and T : X(μ) → E a non-null linear operator. Consider the δ-ring

RX(μ) = {
A ∈ � : χA ∈ X(μ)

and the finitely additive set function νT : RX(μ) → E given by νT (A) = T(χA). If T is σ -
order w-continuous, then νT is a vector measure as a consequence of the Orlicz–Pettis
theorem, see, for instance, [10, Corollary I.4.4]. Note that � ⊂ Rloc

X(μ) and νT � μ (i.e.
every μ-null set is νT -null). The following result was proved in [4, Section 3].

THEOREM 3.4. If T is σ -order w-continuous and � = Rloc
X(μ), then the integration

operator IνT
extends T to L1(νT ), i.e.

X(μ) T ��

[i]
��

E.

L1(νT )
IνT

��

Moreover, the extension is optimal in the sense that if Z(ξ ) is a B.f.s. with ξ � μ such
that

X(μ) T ��

[i]
��

E

Z(ξ )
S

��

with S being an σ -order w-continuous linear operator satisfying that for every e∗ ∈ E∗

and A ∈ � with χA ∈ Z(ξ ),

sup
B∈RX(μ)∩ 2A

|e∗S(χB)| = 0 ⇒ e∗S(χA) = 0, (3.1)

then [i] : Z(ξ ) → L1(νT ) is well defined and S(f ) = IνT
(f ) for all f ∈ Z(ξ ).

Note that under conditions of Theorem 3.4, since IνT
is continuous on L1(νT ) which

is σ -order continuous, by Lemma 2.1.(a), IνT
is σ -order w-continuous. Moreover, since

the RX(μ)-simple functions are dense in L1(νT ), it follows that IνT
satisfies (3.1). The
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condition � = Rloc
X(μ) is needed for the optimality to work, see [4, Lemma 2 and

Proposition 4].
Let us consider the σ -finite case (i.e. X(μ) has a weak unit) and the discrete case (i.e.

� = 2� and χ{ω} ∈ X(μ) with T(χ{ω}) �= 0 for all ω ∈ �). In these two cases Theorem
3.4 can be written in a simpler way.

COROLLARY 3.5. In the σ -finite or discrete case, if T is σ -order w-continuous then
L1(νT ) is the largest B.f.s. to which T can be extended as a σ -order w-continuous operator
still with values in E.

Proof. In the σ -finite case, by Lemma 2.2, there exists a sequence (An) ⊂ RX(μ)

such that � = ∪An. Then it is direct to check that � = Rloc
X(μ) and condition (3.1)

always holds for every σ -order w-continuous operator S. Note that, in this case, νT is
a σ -finite vector measure, see [8, Section 3].

In the discrete case, � = Rloc
X(μ) = 2� and νT is a discrete vector measure, see

[3, Lemma 4.6]. In particular, νT is equivalent to μ (the only null set for both is
the empty set). Let us see that condition (3.1) always holds for every σ -order w-
continuous operator S : Z(ξ ) → E extending T . Consider νS : RZ(ξ ) → E given by
νS (A) = S(χA), where RZ(ξ ) = {A ∈ � : χA ∈ Z(ξ )}. Since S is σ -order w-continuous,
νS is a vector measure. Moreover, for every ω ∈ �, since χ{ω} ∈ X(μ) and S extends
T to Z(ξ ), we have that {ω} ∈ RZ(ξ ) and νS ({ω}) = S(χ{ω}) = T(χ{ω}) �= 0. That is,
νS is discrete and so RZ(ξ ) ⊂ {A ⊂ � : A is countable}. Then, given A ∈ RZ(ξ ), we
can write A = ∪n{ωn}. Since χ∪n

j=1{ωj} ↑ χA in Z(ξ ) and S is σ -order w-continuous,
we have that e∗S(χ∪n

j=1{ωj}) → e∗S(χA) for all e∗ ∈ E∗, where ∪n
j=1{ωj} ∈ RX(μ) ∩ 2A.

Hence, (3.1) holds. Note that νT � ξ as [i] : Z(ξ ) → L1(νT ) and so actually ξ and μ are
equivalent. �

Under conditions of Theorem 3.4 we have that T is continuous as it is the
composition of two continuous operators. Since every continuous operator defined
on a σ -order continuous Banach lattice is σ -order w-continuous (Lemma 2.1.(a)),
then Corollary 3.5 gives the following result.

COROLLARY 3.6. In the σ -finite or discrete case, if T is σ -order w-continuous then
L1(νT ) is the largest order continuous B.f.s. to which T can be extended as a continuous
operator still with values in E.

Recall that order continuity and σ -order continuity coincide for Banach function
spaces. Let us remark that Corollaries 3.5 and 3.6 extend [6, Theorem 3.1 and Corollary
3.3] proved for the case where μ is finite and X(μ) is a B.f.s. in the sense of Lindenstrauss
and Tzafriri [12].

3.3. Extension for the integration operator of a positive vector measure. Let R be
a δ-ring, E be a Banach lattice and ν : R → E be a positive vector measure, that is,
ν(A) ≥ 0 for all A ∈ R. Then Iν : L1(ν) → E is a positive linear operator. Moreover,
since L1(ν) is order continuous, by Lemma 2.1.(c) we have that Iν is order continuous.
Note that the positivity of ν implies that ‖f ‖ν = ‖Iν(|f |)‖E for all f ∈ L1(ν).
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PROPOSITION 3.7. If E has the Fatou property, then there exists a positive order
continuous linear operator Iν extending Iν to L1

w(ν), i.e.

L1(ν)
Iν ��

i
��

E.

L1
w(ν)

Iν

��

Proof. Let 0 ≤ f ∈ L1
w(ν). By [3, Theorem 4.2] we have that L1(ν) is order dense

in L1
w(ν), so there exists (fτ ) ⊂ L1(ν) such that 0 ≤ fτ ↑ f in L1

w(ν). Then 0 ≤ Iν(fτ ) ↑
in E, as Iν is positive. Moreover, supτ ‖Iν(fτ )‖E = supτ ‖fτ‖ν ≤ ‖f ‖ν < ∞. So, since
E has the Fatou property, there exists e = supτ Iν(fτ ) ∈ E. We define Iν(f ) := e. Note
that Iν(f ) ≥ 0 and Iν(f ) = Iν(f ) whenever f ∈ L1(ν).

Let us see that Iν is well defined. Suppose that (gσ ) ⊂ L1(ν) is such that 0 ≤
gσ ↑ f in L1

w(ν) and denote z = supσ Iν(gσ ) ∈ E. Then, for a fixed σ , we have that
fτ ∧ gσ ↑τ f ∧ gσ = gσ in L1(ν). Also, for a fixed τ , we have that fτ ∧ gσ ↑σ fτ ∧ f = fτ
in L1(ν). Since Iν is order continuous, it follows that Iν(gσ ) = supτ Iν(fτ ∧ gσ ) and
Iν(fτ ) = supσ Iν(fτ ∧ gσ ). Hence,

Iν(fτ ∧ gσ ) ≤ sup
σ

Iν(fτ ∧ gσ ) = Iν(fτ ) ≤ e

for all τ and σ and so Iν(gσ ) ≤ e for all σ . Then z ≤ e. Similarly, e ≤ z.
It is direct to check that Iν(f + g) = Iν(f ) + Iν(g) for all 0 ≤ f, g ∈ L1

w(ν). Then Iν

has a unique positive linear extension Iν : L1
w(ν) → E, see, for instance, [18, Lemma

83.1]. If f ∈ L1(ν), by taking positive and negative parts of f , we have Iν(f ) = Iν(f ).
Let us see now that Iν is order continuous. Suppose that 0 ≤ fτ ↑ f in L1

w(ν). Then
0 ≤ Iν(fτ ) ↑ in E with Iν(fτ ) ≤ Iν(f ) for all τ . Since E is Dedekind complete (as it has the
Fatou property), there exits supτ Iν(fτ ) ≤ Iν(f ). Take (gσ ) ⊂ L1(ν) such that 0 ≤ gσ ↑ f
in L1

w(ν) and so Iν(f ) = supσ Iν(gσ ). For a fixed σ we have fτ ∧ gσ ↑τ f ∧ gσ = gσ in
L1(ν) and then Iν(gσ ) = supτ Iν(fτ ∧ gσ ). For every τ and σ , since fτ ∧ gσ ≤ fτ , it
follows that

Iν(fτ ∧ gσ ) = Iν(fτ ∧ gσ ) ≤ Iν(fτ ) ≤ sup
τ

Iν(fτ ).

Hence, Iν(gσ ) ≤ supτ Iν(fτ ) for all σ and so Iν(f ) ≤ supτ Iν(fτ ). Therefore, Iν(fτ ) ↑
Iν(f ). �

If we require E to have only the σ -Fatou property, we can still extend Iν but to
a B.f.s. smaller than L1

w(ν) and preserving the σ -order continuity of Iν . Denote by
[L1(ν)]

σ -F the σ -Fatou completion of L1(ν), that is, the minimal B.f.s. (related to ν) with
the σ -Fatou property containing L1(ν). Note that [L1(ν)]

σ -F always exists, as L1
w(ν) has

the σ -Fatou property, and L1(ν) ⊂ [L1(ν)]
σ -F ⊂ L1

w(ν). Moreover, it follows that L1(ν)
is super order dense in [L1(ν)]

σ -F , see [3, p. 16].
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PROPOSITION 3.8. If E has the σ -Fatou property, then there exists a positive σ -order 
continuous linear operator Iν extending Iν to [L1(ν)]

σ -F , i.e.

L1(ν)
Iν ��

i
��

E.

[L1(ν)]
σ -F

Iν

��

Proof. Let 0 ≤ f ∈ [L1(ν)]
σ -F . Since L1(ν) is super order dense in [L1(ν)]

σ -F , there
exists (fn) ⊂ L1(ν) such that 0 ≤ fn ↑ f in [L1(ν)]

σ -F . Then 0 ≤ Iν(fn) ↑ in E and
supn ‖Iν(fn)‖E = supn ‖fn‖ν ≤ ‖f ‖ν < ∞. Since E has the σ -Fatou property, there exists
e = supn Iν(fn) ∈ E. We define Iν(f ) := e. Following the proof of Proposition 3.7 for
sequences instead of nets, we obtain the conclusion. �

4. Optimal extension for positive σ -order continuous operators. Fix a measurable
space (�,�) to which every B.f.s. will be related. Let X(μ) be a B.f.s., E be a Banach
lattice with the σ -Fatou property and T : X(μ) → E be a positive linear operator.
Consider the order continuous part X(μ)a of X(μ), the δ-ring

RX(μ)a = {
A ∈ � : χA ∈ X(μ)a

and the finitely additive set function νTa : RX(μ)a → E given by νTa (A) = T(χA). Since
T : X(μ)a → E is continuous (as it is positive) on an order continuous B.f.s., by Lemma
2.1.(a), it is σ -order w-continuous. Then νTa is a vector measure (see Section 3.2). Note
that � ⊂ Rloc

X(μ)a
and νTa � μ. Since νTa is positive (as T is so) and E has the σ -Fatou

property, we can consider the positive σ -order continuous linear operator IνTa
given in

Proposition 3.8 which extends IνTa
to [L1(νTa )]

σ -F .

THEOREM 4.1. If T is σ -order continuous, � = Rloc
X(μ)a

and X(μ)a is super order
dense in X(μ), then the operator IνTa

extends T to [L1(νTa )]
σ -F , i.e.

X(μ) T ��

[i]
��

E.

[L1(νTa )]
σ -F

IνTa

�� (4.1)

Moreover, the extension is optimal in the sense that if Z(ξ ) is a B.f.s. with ξ � μ such
that Z(ξ )a is super order dense in Z(ξ ) and

X(μ) T ��

[i]
��

E

Z(ξ )
S

�� (4.2)

with S being a positive σ -order continuous linear operator satisfying that for every e∗ ∈ E∗

and A ∈ � with χA ∈ Z(ξ )a,

sup
B∈RX(μ)a ∩ 2A

|e∗S(χB)| = 0 ⇒ e∗S(χA) = 0, (4.3)
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then [i] : Z(ξ ) → [L1(νTa )]
σ -F is well defined and S(f ) = IνTa

(f ) for all f ∈ Z(ξ ).

Proof. Applying Theorem 3.4 to the restriction of T to X(μ)a, we have that

X(μ)a
T ��

[i]
��

E

L1(νTa )
IνTa

�� (4.4)

with the corresponding optimality. On the other hand, from Proposition 3.8,

L1(νTa )
IνTa ��

i
��

E

[L1(νTa )]
σ -F

IνTa

�� .

Then [i] : X(μ)a → [L1(νTa )]
σ -F and so, by Lemma 3.2, [i] : X(μ) → [L1(νTa )]

σ -F .
Moreover, if 0 ≤ f ∈ X(μ), taking (fn) ⊂ X(μ)a such that 0 ≤ fn ↑ f in X(μ), it follows
that 0 ≤ fn ↑ f in [L1(νTa )]

σ -F (see the proof of Lemma 3.2) with (fn) ⊂ L1(νTa ). Since
IνTa

and T are σ -order continuous, we have that

IνTa
(f ) = sup IνTa

(fn) = sup IνTa
(fn) = sup T(fn) = T(f ).

For a general f ∈ X(μ), by taking positive and negative parts of f , we also have that
IνTa

(f ) = T(f ). Therefore, (4.1) holds.
Let us see that the extension in (4.1) is optimal. Suppose Z(ξ ) is a B.f.s. with

ξ � μ such that Z(ξ )a is super order dense in Z(ξ ) and (4.2) holds for a positive
σ -order continuous linear operator S satisfying (4.3). Since [i] : X(μ) → Z(ξ ), from
Lemma 3.1, we have that [i] : X(μ)a → Z(ξ )a. Then,

X(μ)a
T ��

[i]
��

E

Z(ξ )a

S

��

with S : Z(ξ )a → E being σ -order w-continuous (Lemma 2.1.(a)) and satisfying (3.1)
(as (4.3) holds). By the optimality of (4.4), we have that [i] : Z(ξ )a → L1(νTa ) and S(f ) =
IνTa

(f ) for all f ∈ Z(ξ )a. Now, from Lemma 3.2, it follows that [i] : Z(ξ ) → [L1(νTa )]
σ -F

and, since S is σ -order continuous, it can be proved in the same way as for T that
IνTa

(f ) = S(f ) for all f ∈ Z(ξ ). �
Note that for a general vector measure ν, we always have that

(
[L1(ν)]

σ -F

)
a = L1(ν)

is super order dense in [L1(ν)]
σ -F , see [3, p. 16]. Also note that, since the RX(μ)a -simple

functions are dense in L1(νTa ), the operator IνTa
satisfies (4.3). By Theorem 3.4, we

have that IνTa
is σ -order w-continuous only in the case where [L1(νTa )]

σ -F = L1(νTa ).
In the σ -finite case, Theorem 4.1 gives the following result.

COROLLARY 4.2. Suppose that X(μ)a has a weak unit. If T is σ -order continuous, then
L1

w(νTa ) is the largest B.f.s. to which T can be extended as a positive σ -order continuous
operator still with values in E.
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Proof. From Lemma 2.2, we can write � = ∪nAn with (An) ⊂ RX(μ)a . Then it
is direct to check that � = Rloc

X(μ)a
. Moreover, νTa turns out to be σ -finite and so

[L1(νTa )]
σ -F = L1

w(νTa ), see [3, Theorem 5.1]. Also, by Lemma 2.2, we have that X(μ)a

is super order dense in X(μ).
On the other hand, if [i] : X(μ) → Z(ξ ), it follows that Z(ξ )a is super order dense

in Z(ξ ). Indeed, by Lemma 3.1, we have that [i] : X(μ)a → Z(ξ )a and so a weak unit
in X(μ)a is a weak unit in Z(ξ )a. Then the conclusion follows from Lemma 2.2.

Finally, if S is positive on Z(ξ ) and so it is σ -order w-continuous on Z(ξ )a, for every
e∗ ∈ E∗ and A ∈ � such that χA ∈ Z(ξ )a, it follows that e∗S(χA) = limn e∗S(χA∩(∪n

j=1Aj)),
and so (4.3) holds. �

For the discrete case, Theorem 4.1 can also be written in a simpler way.

COROLLARY 4.3. Suppose that � = 2� and χ{ω} ∈ X(μ) with T(χ{ω}) �= 0 for all
ω ∈ �. If T is σ -order continuous and X(μ)a is super order dense in X(μ), then [L1(νTa )]

σ -F

is the largest B.f.s. having its order continuous part as a super order dense subset to which
T can be extended as a positive σ -order continuous operator still with values in E.

Proof. Note that μ({ω}) > 0 for all ω ∈ � and so a set A is μ-null if and only if A =
∅. Let us see that actually χ{ω} ∈ X(μ)a for all ω ∈ �. Suppose that χ{ω} ≥ fn ↓ 0 in X(μ)
or equivalently pointwise. Then, fn = fn(ω)χ{ω} and ‖fn‖X(μ) = |fn(ω)| · ‖χ{ω}‖X(μ) ↓ 0.
Taking a look at the proof of Corollary 3.5 for T : X(μ)a → E, we obtain the following
conclusions. Firstly, � = Rloc

X(μ)a
= 2� and νTa is a discrete vector measure equivalent to

μ. Moreover, for every positive operator S : Z(ξ ) → E extending T , since S : Z(ξ )a →
E is σ -order w-continuous and extends T : X(μ)a → E, we have that S : Z(ξ )a → E
satisfies (3.1), which is just condition (4.3) for S. Also note that ξ is equivalent to μ. �

5. Optimal extension for positive order continuous operators. Consider the same
conditions as in Section 4, but with E having now the Fatou property. Our aim is to
extend order continuous operators preserving the order continuity. The jump to nets
requires extra conditions on the vector measure νTa . Namely, assume that Rloc

X(μ)a
= �,

the measures νTa and μ are equivalent and L1
w(νTa ) has the Fatou property. Let IνTa

be
the positive order continuous linear operator given in Proposition 3.7 which extends
IνTa

to L1
w(νTa ).

THEOREM 5.1. If T is order continuous and X(μ)a is order dense in L0(μ), then the
operator IνTa

extends T to L1
w(νTa ), i.e.

X(μ) T ��

i
��

E

L1
w(νTa )

IνTa

�� . (5.1)

Moreover, the extension is optimal in the sense that if Z(ξ ) is a B.f.s. with ξ � μ such
that Z(ξ )a is order dense in L0(ξ ) and

X(μ) T ��

[i]
��

E

Z(ξ )
S

�� (5.2)
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with S being a positive order continuous linear operator satisfying that for every e∗ ∈ E∗

and A ∈ � with χA ∈ Z(ξ )a,

sup
B∈RX(μ)a ∩ 2A

|e∗S(χB)| = 0 ⇒ e∗S(χA) = 0, (5.3)

then [i] : Z(ξ ) → L1
w(νTa ) is well defined and S(f ) = IνTa

(f ) for all f ∈ Z(ξ ).

Proof. Applying Theorem 3.4 to the restriction of T to X(μ)a, we have

X(μ)a
T ��

[i]
��

E

L1(νTa )
IνTa

�� (5.4)

with the corresponding optimality. Actually, since νTa and μ are equivalent, X(μ)a ⊂
L1(νTa ). On the other hand, by Proposition 3.7,

L1(νTa )
IνTa ��

i
��

E

L1
w(νTa )

IνTa

�� .

Then X(μ)a ⊂ L1
w(νTa ) and so, by Lemma 3.3, X(μ) ⊂ L1

w(νTa ). Moreover, if 0 ≤ f ∈
X(μ), taking (fτ ) ⊂ X(μ)a such that 0 ≤ fτ ↑ f in L0(μ), it follows that 0 ≤ fτ ↑ f in
L1

w(νTa ) (see the proof of Lemma 3.3) with (fτ ) ⊂ L1(νTa ). Since IνTa
and T are order

continuous, we have that

IνTa
(f ) = sup

τ

IνTa
(fτ ) = sup

τ

IνTa
(fτ ) = sup

τ

T(fτ ) = T(f ).

For a general f ∈ X(μ), by taking positive and negative parts, we also have that
IνTa

(f ) = T(f ). So (5.1) holds.
Let us see that extension (5.1) is optimal. Suppose that Z(ξ ) is a B.f.s. with ξ � μ

such that Z(ξ )a is order dense in L0(ξ ) and (5.2) holds for a positive order continuous
linear operator S satisfying (5.3). Since [i] : X(μ) → Z(ξ ), from Lemma 3.1, we have
that [i] : X(μ)a → Z(ξ )a. Then,

X(μ)a
T ��

[i]
��

E

Z(ξ )a

S

�� (5.5)

with S being σ -order w-continuous (Lemma 2.1.(a)) and satisfying (3.1) (as (5.3) holds).
By the optimality of (5.4), we have that [i] : Z(ξ )a → L1(νTa ) and S(f ) = IνTa

(f ) for all
f ∈ Z(ξ )a. Note that actually ξ and νTa are equivalent as νTa � ξ � μ. From Lemma
3.3, it follows that Z(ξ ) ⊂ L1

w(νTa ) and, since S is order continuous, it can be proved in
the same way as for T that IνTa

(f ) = S(f ) for all f ∈ Z(ξ ). �
Note that for a general vector measure ν, we always have L1

w(ν) a = L1(ν) is order
dense in L0(ν), see [3, Theorem 3.2 and Remark 4.3]. Also note that IνTa

satisfies (5.3)
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as the RX(μ)a -simple functions are dense in L1(νTa  ). By Theorem 3.4, we have that IνTa  

is σ -order w-continuous only in the case where L1
w(νTa  ) = L1(νTa  ).

In the σ -finite case (i.e. X(μ)a has a weak unit), we always have that Rloc
X(μ)a

= �,
L1

w(νTa ) has the Fatou property (see [3, Remark 5.5]) and X(μ)a is order dense in L0(μ)
(see the proof of Lemma 2.2). Then, if we rewrite Theorem 5.1 for this case, we obtain
that if T is order continuous, then L1

w(νTa ) is the largest B.f.s. to which T can be extended
as a positive order continuous operator still with values in E. Note that since every order
continuous operator is σ -order continuous, the same conclusion follows directly from
Corollary 4.2 even if E has only the σ -Fatou property and νTa � μ.

For the discrete case, Theorem 5.1 gives the following result.

COROLLARY 5.2. Suppose that � = 2� and χ{ω} ∈ X(μ) with T(χ{ω}) �= 0 for all
ω ∈ �. If T is order continuous, then L1

w(νTa ) is the largest B.f.s. to which T can be
extended as a positive order continuous operator still with values in E.

Proof. Note that � = Rloc
X(μ)a

= 2� and νTa is a discrete vector measure equivalent
to μ (the only null set for both is the empty set), see the proof of Corollary 4.3.
Moreover, L1

w(νTa ) has the Fatou property as νTa is discrete, see [3, Theorem 5.8].
On the other hand, X(μ)a is order dense in L0(μ). Indeed, let 0 ≤ f ∈ L0(μ) and,

for every finite set I ⊂ �, consider f χI = ∑
ω∈I f (ω)χ{ω} ∈ X(μ)a. Then 0 ≤ f χI ↑ f

in L0(μ). From the proof of Corollary 4.3, if S : Z(ξ ) → E is a positive operator
extending T, we have that S satisfies (5.3) and ξ is equivalent to μ. Then, since
X(μ)a ⊂ Z(ξ )a ⊂ L0(ξ ) = L0(μ), it follows that Z(ξ )a is order dense in L0(ξ ). �

6. Optimal extension for kernel operators. Firstly, let us point out some facts that
will be used along this section. Let ν : R → E be a vector measure defined on a δ-ring
R and with values in a Banach space E.

LEMMA 6.1. The following assertions hold:

(a) If (fn) ⊂ L1
w(ν) is such that 0 ≤ fn ↑ f ν-a.e., then f ∈ L1

w(ν) if and only if
supn ‖fn‖ν < ∞.

(b) If (fn) ⊂ L1(ν) is such that 0 ≤ fn ↑ f ν-a.e., then f ∈ L1(ν) if and only if (fn) is
a Cauchy sequence.

(c) If (fn) ⊂ L1(ν) is such that 0 ≤ fn ↑ f ν-a.e. with f ∈ L1
w(ν), then f ∈ L1(ν) if

and only if limn→∞ ‖f − fn‖ν = 0.
(d) If E is an order continuous Banach lattice having the Fatou property, then

L1(ν) = [L1(ν)]
σ -F = L1

w(ν).
(e) [L1(ν)]

σ -F = L1
w(ν) if and only if ν is locally σ -finite, that is, every A ∈ Rloc with

‖ν‖(A) < ∞ can be written as A = (∪An) ∪ N with N ∈ Rloc being ν-null and
(An) ⊂ R.

Proof. (a) Let (fn) ⊂ L1
w(ν) be such that 0 ≤ fn ↑ f ν-a.e. If f ∈ L1

w(ν) then
supn ‖fn‖ν ≤ ‖f ‖ν < ∞. Conversely, if supn ‖fn‖ν < ∞, since L1

w(ν) has the σ -Fatou
property, we have that f ∈ L1

w(ν).
(b) Let (fn) ⊂ L1(ν) be such that 0 ≤ fn ↑ f ν-a.e. If f ∈ L1(ν), since L1(ν) is order

continuous, we have that fn → f in norm and so (fn) is a Cauchy sequence. Conversely, if
(fn) is a Cauchy sequence, there exists g ∈ L1(ν) such that fn → g in norm. Then, as L1(ν)
is a B.f.s., there exists a subsequence (fnk ) such that fnk → g ν-a.e. So f = g ∈ L1(ν).
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(c) Let (fn) ⊂ L1(ν) and f ∈ L1
w(ν) be such that 0 ≤ fn ↑ f ν-a.e. If f ∈ L1(ν), since

L1(ν) is order continuous, we have that fn → f in norm. The converse follows as L1(ν)
is closed in L1

w(ν).
(d) We always have that L1(ν) ⊂ [L1(ν)]

σ -F ⊂ L1
w(ν). If E is an order continuous

Banach lattice having the Fatou property, then it does not contain an isomorphic copy
of c0 (see [1, Theorem 4.60 and Definition 4.58]) and so L1(ν) = L1

w(ν) (see [11, Theorem
5.1]).

(e) This fact is proved in [3, Theorem 5.1]. �
Also, recall that if E is a Banach lattice and ν is positive, then ‖f ‖ν = ‖Iν(|f |)‖E

for all f ∈ L1(ν).

6.1. σ -finite case. Fix the measurable space [0,∞),B[0,∞) , where B[0,∞) is
the σ -algebra of all Borel subsets of [0,∞), and denote by m the Lebesgue measure on
[0,∞). Let K : [0,∞) × [0,∞) → [0,∞) be a measurable function and consider the
kernel operator T defined by K as

Tf (x) =
∞

0
f (y)K(x, y) dy

for any measurable function f, for which the integral exists m-a.e. x.

PROPOSITION 6.2. Let 1 ≤ p, q ≤ ∞ and p′ be the conjugate exponent of p. If

K(x, ·) ∈ Lp′
(m) for all x ≥ 0 and x → ‖K(x, ·)‖p′ ∈ Lq(m), (6.1)

then T : Lp(m) → Lq(m) is well defined, linear, positive, σ -order continuous and

‖Tf ‖q ≤ ‖f ‖p · ∥∥‖K(x, ·)‖p′
∥∥

q for all f ∈ Lp(m).

Proof. Given f ∈ Lp(m), by Hölder’s inequality, we have that

∞

0
|f (y)|K(x, y) dy ≤ ‖f ‖p · ‖K(x, ·)‖p′

and so Tf ∈ Lq(m) with ‖Tf ‖q ≤ ‖f ‖p · ∥∥‖K(x, ·)‖p′
∥∥

q. Hence, T : Lp(m) → Lq(m) is
well defined and obviously linear and positive.

Let us see that T is σ -order continuous. Recall that the lattice supremum of
an increasing sequence in a B.f.s. coincides with the a.e. pointwise supremum. So, if
0 ≤ fn ↑ f in Lp(m), for every x ≥ 0 we have that 0 ≤ fnK(x, ·) ↑ f K(x, ·) m-a.e. and,
by the monotone convergence theorem,

Tf (x) =
∞

0
f (y)K(x, y) dy = lim

n→∞

∞

0
fn(y)K(x, y) dy = lim

n→∞ Tfn(x),

that is Tfn ↑ Tf in Lq(m). �
Assume that K satisfies condition (6.1) and consider T : Lp(m) → Lq(m). Note

that we are in the σ -finite case as Lp(m) has a weak unit. In the cases p < ∞ or p = ∞
and q < ∞, we have that T is σ -order w-continuous. The first case follows as Lp(m)
is order continuous. In the second one, if 0 ≤ fn ↑ f m-a.e., then 0 ≤ Tfn ↑ Tf m-a.e.
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(as T is σ -order continuous) and so Tfn → Tf in norm (as Lq(m) is order continuous). 
Therefore, by Corollaries 3.5 and 3.6, in both cases we have that

� L1(νT ) is the largest B.f.s. to which T can be extended as a σ -order w-
continuous operator still with values in Lq(m),

� L1(νT ) is the largest order continuous B.f.s. to which T can be extended as a
continuous operator still with values in Lq(m),

where νT : RLp(m) → Lq(m) is the vector measure given by νT (A) = T(χA). Note that
RLp(m) = {

A ∈ B[0,∞) : m(A) < ∞}
for p < ∞ and RL∞(m) = B[0,∞). In the case

p = q = ∞, the operator T could not be σ -order w-continuous. For instance, if T is
the Hardy operator given by the kernel K(x, y) = 1

xχ[0,x](y), then T : L∞(m) → L∞(m)
is well defined but is not σ -order w-continuous. Indeed, in other case νT is a vector
measure and so limn→∞

∥∥νT

(
(0, 1

n ]
)∥∥

∞ = 0, but

∥∥νT (0, 1
n ]

∥∥
∞ = ∥∥T χ(0, 1

n ]

∥∥
∞ = sup

x≥0

1
x m [0, x] ∩ (0, 1

n ] = 1.

Note that Corollary 4.2 can be applied only for p < ∞ as L∞(m)a = {0}. In this
case, noting that Lq(m) has the Fatou property, νTa = νT as Lp(m)a = Lp(m) and T is
order continuous by Lemma 2.1.(c), we have that

� L1
w(νT ) is the largest B.f.s. to which T can be extended as a positive σ -order

continuous (and so also as order continuous) operator still with values in
Lq(m).

Consider a particular case where T is the Hardy-type operator defined by the kernel
K(x, y) = 1

φ(x)χ[0,x](y), with φ : [0,∞) → (0,∞) being a measurable function such that

x1/p′
φ(x)−1 ∈ Lq(m). This condition on φ guarantees that (6.1) holds for K and so

T : Lp(m) → Lq(m) looks as

Tf (x) = 1
φ(x)

x

0
f (y) dy

for all f ∈ Lp(m). Different situations concerning the genuineness of the extensions for
T can occur.

(a) If p < ∞, q < ∞ and x φ(x)−1 ∈ Lq(m), then

Lp(m) � L1(νT ) = L1
w(νT ).

(b) If p < ∞, q = ∞, φ is increasing, differentiable with increasing derivative and∑
n≥1 φ(n)−1 < ∞, then

Lp(m) � L1(νT ) � L1
w(νT ).

(c) If p = 1, q = ∞ and φ(x) = 1 for all x ≥ 0 (i.e. T is the Volterra operator),
then

L1(m) = L1(νT ) = L1
w(νT ).
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Under conditions of (a), for all n ≥ 1, since χ[0,n] ∈ Lp(m), we have
∥∥χ[0,n]

∥∥
νT

= ∥∥IνT

(
χ[0,n]

)∥∥
q = ∥∥T χ[0,n]

∥∥
q

=
(∫ ∞

0

1
φ(x)q

(∫ x

0
χ[0,n](y) dy

)q

dx
)1/q

=
(∫ n

0

xq

φ(x)q
dx +

∞

n

nq

φ(x)q
dx

)1/q

≤
(∫ ∞

0

xq

φ(x)q
dx

)1/q

and so supn ‖χ[0,n]‖νT
< ∞. By Lemma 6.1.(a), χ[0,∞) ∈ L1

w(νT )\Lp(m). Moreover, since
Lq(m) is order continuous and has the Fatou property, by Lemma 6.1.(d), L1(νT ) =
L1

w(νT ).
Under conditions of (b), for every n ≥ 1, since φ is increasing, it follows that

∥∥χ[n,n+1)
∥∥

νT
= ∥∥T χ[n,n+1)

∥∥
∞ = sup

x≥0

1
φ(x)

x

0
χ[n,n+1)(y) dy ≤ 1

φ(n)

and so ‖χ[n,m)‖νT
≤ ∑m−1

j=n ‖χ[j,j+1)‖νT
≤ ∑m−1

j=n φ(j)−1. Then (χ[0,n)) is a Cauchy
sequence in L1(νT ) and by Lemma 6.1.(b), χ[0,∞) ∈ L1(νT )\Lp(m). On the other hand,
noting that 0 ≤ φ′(y)χ[0,n](y) ≤ φ′(n)χ[0,n](y) for all y ≥ 0, and so φ′χ[0,n] ∈ Lp(m), we
have

∥∥φ′χ[0,n]
∥∥

νT
= ∥∥T φ′χ[0,n]

∥∥
∞ = sup

x≥0

1
φ(x)

x

0
φ′(y)χ[0,n](y) dy

≤ sup
x≥0

1
φ(x)

x

0
φ′(y) dy = sup

x≥0

1
φ(x)

φ(x) − φ(0) ≤ 1.

Then supn ‖φ′χ[0,n]‖νT
< ∞ and so, by Lemma 6.1.(a), φ′ ∈ L1

w(νT ). Moreover,

∥∥φ′ − φ′χ[0,n]
∥∥

νT
≥ ∥∥φ′χ(n,m)

∥∥
νT

= sup
x≥0

1
φ(x)

x

0
φ′(y)χ(n,m)(y) dy

≥ sup
n<x≤m

1 − φ(n)
φ(x)

)
= 1 − φ(n)

φ(m)

)

for all m > n and noting that limm→∞ φ(m)−1 = 0 (as
∑

n≥1 φ(n)−1 < ∞), we have
‖φ′ − φ′χ[0,n]‖νT

≥ 1 for all n. By Lemma 6.1.(c), φ′ /∈ L1(νT ).
Under conditions of (c), given f ∈ L1

w(νT ) and a sequence of simple functions (ϕn)
such that 0 ≤ ϕn ↑ |f |, noting that

k

0
ϕn(y) dy = ∥∥T ϕnχ[0,k]

∥∥
∞ = ∥∥ϕnχ[0,k]

∥∥
νT

≤ ‖f ‖νT
,

by the monotone convergence theorem, we have

∞

0
|f (y)| dy = lim

n→∞ lim
k→∞

k

0
ϕn(y) dy ≤ ‖f ‖νT

and so f ∈ L1(m).
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REMARK 6.3. For instance, if φ(x) = ex or φ(x) = (x + 1)2+α with α > 0, then (a) 
and (b) hold.

6.2. Discrete case. Fix the measurable space (�, 2�), where � is an uncountable 
set and denote by μ the counting measure on �. Given a map K : � × � → [0, ∞), we 
consider the kernel operator T defined by K as

Tx =
∑
γ∈�

xγ K(σ, γ )
)

σ∈�

for any family of real numbers x = (xγ )γ∈�, for which it is meaningful to do so.

PROPOSITION 6.4. Let 1 ≤ p, q ≤ ∞ and p′ be the conjugate exponent of p. If

K(σ, ·) ∈ �p′
(�) for all σ ∈ � and σ → ‖K(σ, ·)‖p′ ∈ �q(�), (6.2)

then T : �p(�) → �q(�) is well defined, linear, positive, order continuous and

‖Tx‖q ≤ ‖x‖p · ∥∥‖K(σ, ·)‖p′
∥∥

q for all x ∈ �p(�).

Moreover, we are in the discrete case whenever

K(·, γ ) �= 0 for all γ ∈ �. (6.3)

Proof. Given x = (xγ )γ∈� ∈ �p(�), by the Hölder inequality, we have

∑
γ∈�

|xγ |K(σ, γ ) ≤ ‖x‖p · ‖K(σ, ·)‖p′

and so Tx ∈ �q(�) with ‖Tx‖q ≤ ‖x‖p · ∥∥‖K(σ, ·)‖p′
∥∥

q. Hence, T : �p(�) → �q(�) is
well defined and obviously linear and positive.

Let us see that T is order continuous. Firstly, note that the lattice supremmum in
�p(�) of an upwards directed system coincides with the pointwise supremmum. So, if
0 ≤ xτ ↑ x in �p(�), it follows that 0 ≤ xτ K(σ, ·) ↑ xK(σ, ·) in �1(�) for every σ ∈ �.
Since �1(�) has the Fatou property, we have that

Txτ (σ ) = ‖xτ K(σ, ·)‖1 ↑ ‖xK(σ, ·)‖1 = Tx(σ )

for every σ ∈ � and so Txτ ↑ Tx in �q(�).
Finally, note that K(·, γ ) �= 0 is just T(χ{γ }) �= 0 for all γ ∈ �, which defines the

discrete case. �
Assume that K satisfies conditions (6.2) and (6.3) in Proposition 6.4 and consider

T : �p(�) → �q(�). In the cases p < ∞ or p = ∞ and q < ∞, we have that T is σ -order
w-continuous. The first case follows as �p(�) is order continuous. In the second case,
if 0 ≤ xn ↑ x in �∞(�), then 0 ≤ Txn ↑ Tx in �q(�) (as T is order continuous) and so
Txn → Tx in norm (as �q(�) is order continuous). Therefore, by Corollaries 3.5 and
3.6, in both cases we have that

� L1(νT ) is the largest B.f.s. to which T can be extended as a σ -order w-
continuous operator still with values in �q(�),
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� L1(νT ) is the largest order continuous B.f.s. to which T can be extended as a
continuous operator still with values in �q(�),

where νT : R�p(�) → �q(�) is the vector measure given by νT (A) = T(χA). Note that
R�p(�) = {A ⊂ � : A is finite} for p < ∞ and R�∞(�) = 2�. In the case where p = ∞
and q = ∞, the operator T could not be σ -order w-continuous as we will see later.

In all cases T is order continuous and �q(�) has the Fatou property, but �p(�)a is
super order dense in �p(�) only for p < ∞, in which case �p(�)a = �p(�) and νTa = νT .
Note that �∞(�)a = c0(�) is order dense but not super order dense in �∞(�). Then, by
Corollary 4.3, for p < ∞ we have that

� [L1(νT )]
σ -F is the largest B.f.s. having its order continuous part as a super order

dense subset, to which T can be extended as a positive σ -order continuous
operator still with values in �q(�).

Corollary 5.2 can be applied in all cases to obtain that
� L1

w(νTa ) is the largest B.f.s. to which T can be extended as a positive order
continuous operator still with values in �q(�),

where νTa is just νT for p < ∞ and the restriction of νT to R�∞(�)a = Rc0(�) = {A ⊂ � :
A is finite} for p = ∞.

Let us show that, as in the σ -finite case, the extensions can be or not genuine
depending on the kernel.

Take � = [0,∞) and consider the Hardy-type operator T defined by the kernel
K(σ, γ ) = φ(σ )χ[0,σ ](γ ) with φ : [0,∞) → [0,∞) satisfying that for every γ ≥ 0 there
exists σ ≥ γ such that φ(σ ) > 0 (i.e. (6.3) holds for K). Assume p = 1 and φ ∈ �q(�)
(the only way for (6.2) to hold) and so T : �1(�) → �q(�) looks as

Tx =
(
φ(σ )

∑
0≤γ≤σ

xγ

)
σ≥0

for all x = (xγ )γ≥0 ∈ �1(�). Note that if q < ∞, since �q(�) is order continuous and
has the Fatou property, by Lemma 6.1.(d), L1(νT ) = [L1(νT )]

σ -F = L1
w(νT ). Let us see

that the second equality remains valid for q = ∞. We will write �(A) for the cardinal of
set A. Suppose that there exist A ⊂ [0,∞) and a > 0 such that �(A ∩ [0, a]) = ∞ and
consider {γn}n≥1 ⊂ A ∩ [0, a]. Then, for all n ≥ 1, we have

‖νT ‖(A) ≥ ∥∥νT ∪n
j=1 {γj}

∥∥
∞ = ∥∥T(χ∪n

j=1{γj})
∥∥

∞
= sup

σ≥0
φ(σ )� [0, σ ] ∩ (∪n

j=1{γj}) ≥ n · sup
σ≥a

φ(σ ) ≥ n · φ(b),

where b ≥ a is such that φ(b) > 0, and so ‖νT ‖(A) = ∞. Hence, every A ⊂ [0,∞) with
‖νT ‖(A) < ∞ can be written as A = ∪n≥1A ∩ [0, n] with A ∩ [0, n] finite, that is, νT is
locally σ -finite, and so by Lemma 6.1.(e) [L1(νT )]

σ -F = L1
w(νT ).

Let us show different situations:
(d) If q < ∞ and σφ(σ )

σ≥0 ∈ �q(�), then

�1(�) � L1(νT ) = [L1(νT )]
σ -F = L1

w(νT ).

(e) If q = ∞, φ is decreasing and
∑

j≥1 φ(j) < ∞, then

�1(�) � L1(νT ) � [L1(νT )]
σ -F = L1

w(νT ).
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(f) If q = ∞ and φ(σ ) = 1 for all σ ≥ 0, then

�1(�) = L1(νT ) = [L1(νT )]
σ -F = L1

w(νT ).

Under conditions of (d), for all n ≥ 1, we have
∥∥χ∪n

j=1{j}
∥∥

νT
= ∥∥IνT

(
χ∪n

j=1{j}
∥∥

q = ∥∥T χ∪n
j=1{j}

∥∥
q

=
∑
σ≥0

φ(σ )q� ∪n
j=1 {j} ∩ [0, σ ]

q
)1/q

≤
∑
σ≥0

φ(σ )qσ q
)1/q

and so supn≥1 ‖χ∪n
j=1{j}‖νT

< ∞. By Lemma 6.1.(a), χ� ∈ L1
w(νT )\�1(�).

Under conditions of (e), since
∥∥χ{j}

∥∥
νT

= ∥∥T χ{j}
∥∥

∞ = sup
σ≥j

φ(σ ) = φ(j),

we have ‖χ∪m
j=n{j}‖νT

≤ ∑m
j=n φ(j) and so (χ∪n

j=1{j}) is a Cauchy sequence in L1(νT ). By
Lemma 6.1.(b), χ� ∈ L1(νT )\�1(�). On the other hand, let h = (hγ )γ≥0 with hγ =

1
φ(γ ) − 1

φ(γ−1) χ�(γ ). Since

∥∥h χ∪n
j=1{j}

∥∥
νT

= ∥∥T h χ∪n
j=1{j}

∥∥
∞ = sup

σ≥0
φ(σ )

n∑
j=1
j≤σ

hj

≤ sup
σ≥0

φ(σ )
1

φ(σ )
− 1

φ(0)

)
≤ 1

and so supn≥1 ‖h χ∪n
j=1{j}‖νT

< ∞, by Lemma 6.1.(a), h ∈ L1
w(νT ). Moreover,

∥∥h − h χ∪n−1
j=1 {j}

∥∥
νT

≥ ∥∥h χ∪m
j=n{j}

∥∥
νT

= ∥∥T h χ∪m
j=n{j}

∥∥
∞ = sup

σ≥0
φ(σ )

m∑
j=n
j≤σ

hj

≥ sup
σ∈[n,m]∩ �

φ(σ )
1

φ(σ )
− 1

φ(n − 1)

)
= 1 − φ(m)

φ(n − 1)

for all m > n. Then, since limm→∞ φ(m) = 0 as
∑

j≥1 φ(j) < ∞, we have that
∥∥h −

h χ∪n−1
j=1 {j}

∥∥
νT

≥ 1 for all n and so, by Lemma 6.1.(c), h /∈ L1(νT ).

Under conditions of (f), if f ∈ [L1(νT )]
σ -F = L1

w(νT ), from [3, Theorem 5.1], it
follows that supp(f ) = {γj}j≥1. Moreover,

n∑
j=1

|f (γj)| = sup
σ≥0

n∑
j=1

γj≤σ

|f (γj)| = ∥∥T |f |χ∪n
j=1{γj}

∥∥
∞ = ∥∥f χ∪n

j=1{γj}
∥∥

νT
≤ ‖f ‖νT

and so f ∈ �1(�).

REMARK 6.5. For instance, (d) holds if φ(σ ) = e−σχ�(σ ) or φ(σ ) = 1
σ r χ�(σ ) with

r > 1 + 1
q , and (e) holds if φ(σ ) = e−σ or φ(σ ) = 1

(σ+1)r with r > 1.

Now consider the multiplier operator T defined by K(σ, γ ) = φ(σ )χ{σ }(γ ) with
φ : [0,∞) → (0,∞). Note that (6.3) holds for K as φ(σ ) > 0 for all σ ≥ 0. Assume
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φ ∈ �q(�) (i.e. (6.2) holds) and so T : �p(�) → �q(�) looks as

Tx = φ(σ ) xσ σ≥0

for all x = (xγ )γ≥0 ∈ �p(�).
(g) If p < ∞, q = ∞ and limn→∞ φ(n) = 0, then

�p(�) � L1(νT ) � [L1(νT )]
σ -F � L1

w(νT ).

(h) If p = ∞, q = ∞ and σφ(σ )
σ≥0 ∈ �∞(�), then

�∞(�) � L1
w(νTa ).

Under conditions of (g), since
∥∥χ∪m

j=n{j}
∥∥

νT
= ∥∥T χ∪m

j=n{j}
∥∥

∞ = sup
σ∈[n,m]∩ �

φ(σ ),

we have that (χ∪n
j=1{j}) is a Cauchy sequence in L1(νT ) and so, by Lemma 6.1.(b),

χ� ∈ L1(νT )\�p(�). On the other hand, taking h = 1
φ
χ�, we have

∥∥h χ∪n
j=1{j}

∥∥
νT

= ∥∥T h χ∪n
j=1{j}

∥∥
∞ = sup

σ∈[1,n]∩ �

φ(σ )h(σ ) = 1

and so, by Lemma 6.1.(a), h ∈ L1
w(νT ). Since the support of h is countable, it follows

that f ∈ [L1(νT )]
σ -F (see [3, Theorem 5.1]). Moreover,

∥∥h χ∪m
j=n{j}

∥∥
νT

= ∥∥T h χ∪m
j=n{j}

∥∥
∞ = sup

σ∈[n,m]∩ �

φ(σ )h(σ ) = 1

and so, by Lemma 6.1.(b), h /∈ L1(νT ). Finally, since

‖νT (A)‖∞ = ∥∥T χA
)∥∥

∞ = sup
σ∈A

φ(σ ) ≤ ‖φ‖∞

for every A ⊂ [0,∞) finite, we have that

‖χ[0,∞)‖νT
= ‖νT ‖([0,∞) ≤ 2 sup{‖νT (A)‖∞ : A ⊂ [0,∞) finite} ≤ 2 ‖φ‖∞ < ∞

and so χ[0,∞) ∈ L1
w(νT ). Note that χ[0,∞) /∈ [L1(νT )]

σ -F as [0,∞) is not countable.
Under conditions of (h), taking h = γχ�(γ )

γ≥0, since

∥∥h χ∪n
j=1{j}

∥∥
νTa

= ∥∥T h χ∪n
j=1{j}

∥∥
∞ = sup

σ∈[1,n]∩ �

σφ(σ ) ≤ sup
σ≥0

σφ(σ ),

we have that h ∈ L1
w(νTa )\�∞(�).

REMARK 6.6. For instance, (g) and (h) hold if φ(σ ) = e−σ or φ(σ ) = 1
σ+1 . For

these two functions, T : �∞(�) → �∞(�) is not σ -order w-continuous. In the other
case, νT : 2� → �∞(�) is a vector measure and so limn→∞ ‖νT (∪j≥n{ 1

j })‖∞ = 0, but

∥∥νT ∪j≥n { 1
j }

∥∥
∞ = ∥∥T χ∪j≥n{ 1

j }
∥∥

∞ = sup
j≥n

φ 1
j = 1.
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