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1 Introduction

The space of integrable functions with respect to a vector measure finds applications in 
important problems as, for instance, the representation of abstract Banach lattices as spaces 
of functions and the study of the optimal domain of linear operators. Classical vector measures 
ν : � → X are considered to be defined on a σ -algebra and with values in a Banach space. 
The spaces L1(ν) and L1

w(ν) of integrable and weakly integrable functions respectively have 
been studied in depth by many authors and their behavior is well understood, (see [7] and  [25, 
Chapter 3]) and the references therein. However, this framework is not enough, for instance, 
for applications to operators on spaces which do not contain the characteristic functions of 
sets (see [2,10,11]) or Banach lattices without weak unit (see [12]). These cases require ν to 
be defined on a weaker structure than σ -algebra, namely, a δ-ring. Bear in mind the spaces 
�p(�), 1 ≤ p ≤ ∞, for an uncountable set �. So, vector measures defined on a δ-ring 
also play an important role and deserve to be studied together with their spaces of integrable 
functions. The integration theory with respect to these vector measures ν goes back to the 
late sixties (see [14,18,21–24]). In [9], there is an analysis of the space L1(ν) which gives 
evidence of how large the difference can be between the δ-ring and σ -algebra cases. Indeed, 
for the general case, bounded functions may be not integrable and this fact is crucial.

The aim of this paper is the study of the Banach lattice properties of the space L1
w(ν). The 

case when these spaces contain c0 becomes specially relevant. This research is a part of a 
general project of analysis of these abstract integration structures that has already shown to be 
useful in applications. For instance, a general version of Komlós Theorem on the pointwise 
convergence of the Cesàro sums of functions have been recently obtained using spaces of 
vector measure integrable functions on a δ-ring as main tool (see [17]). More applications in 
the setting of the theory of operators on Banach function spaces can be found in [2,3]. The 
relevant case of the Hardy operator has been studied in [11].

More precisely, we study some properties related to order continuity (Sect. 3) and order 
density (Sect. 4), and some Fatou type properties (Sect. 5). We will see that many properties 
satisfied for this space when ν is defined on a σ -algebra remain true in general only in the 
case when ν satisfies certain local σ -finiteness property, which guarantees that every function 
in L1

w(ν) is the ν-a.e. pointwise limit of a sequence of functions in L1(ν). Also we revisit 
the representation theorems for abstract Banach lattices (Sect. 6), and we finish with an 
illustrative example (Sect. 7).

2 Preliminaries

2.1 Banach lattices

Let E be a Banach lattice with norm ‖ · ‖  and order ≤ . A closed subspace F of E is an 
ideal of E if y ∈ E with |y| ≤ |x | for some x ∈ F implies y ∈ F. We say that E is order 
continuous if for every (xτ ) ⊂ E downwards directed system xτ ↓ 0 it follows that ‖xτ ‖ ↓  0 
and E is σ -order continuous if for every (xn) ⊂ E decreasing sequence xn ↓ 0 it follows 
that ‖xn‖ ↓  0. We denote by Ean the order continuous part of E, that is, the largest order 
continuous ideal in E . It can be described as

Ean = {x ∈ E : |x | ≥  xτ ↓ 0 implies ‖xτ ‖ ↓  0}.



Similarly, Ea will denote the σ -order continuous part of E, that is, the largest σ -order
continuous ideal in E, which can be described as

Ea = {x ∈ E : |x | ≥ xn ↓ 0 implies ‖xn‖ ↓ 0}.
The Banach lattice E is Dedekind complete if every non empty subset which is bounded

from above has a supremum and is Dedekind σ -complete if every non empty countable subset
which is bounded from above has a supremum. We say that E has the Fatou property if for
every (xτ ) ⊂ E upwards directed system 0 ≤ xτ ↑ such that sup ‖xτ‖ < ∞ it follows that
there exists x = sup xτ in E and ‖x‖ = sup ‖xτ‖, and E has the σ -Fatou property if for
every (xn) ⊂ E increasing sequence 0 ≤ xn ↑ such that sup ‖xn‖ < ∞ it follows that there
exists x = sup xn in E and ‖x‖ = sup ‖xn‖. An ideal F in E is said to be order dense if for
every 0 ≤ x ∈ E there exists an upwards directed system 0 ≤ xτ ↑ x such that (xτ ) ⊂ F
and is said to be super order dense if for every 0 ≤ x ∈ E there exists an increasing sequence
0 ≤ xn ↑ x such that (xn) ⊂ F. A weak unit of E is an element 0 ≤ e ∈ E such that
x ∧ e = 0 implies x = 0. Every positive linear operator T : E → F between Banach lattices
(i.e. T x ≥ 0 whenever 0 ≤ x ∈ E) is continuous, see [19, p. 2]. An operator T : E → F
between Banach lattices is said to be an order isometry if it is a linear isometry which is also
an order isomorphism, that is, T is linear, one to one, onto, ‖T x‖F = ‖x‖E for all x ∈ E
and T (x ∧ y) = T x ∧ T y for all x, y ∈ E .

Let (	,�,μ) be a measure space (without assumptions of finiteness on μ) and L0(μ) be
the space of all measurable real functions on 	, where functions which are equal μ-a.e. are
identified. Considering the μ-a.e. pointwise order, we have that L0(μ) is an Archimedean
vector lattice. Note that for f, fn ∈ L0(μ), it follows that 0 ≤ fn ↑ f μ-a.e. if and only
if 0 ≤ fn ↑ f in L0(μ), that is, the μ-a.e. pointwise supremum coincides with the lattice
supremum. We will simple write f ≤ g for f ≤ gμ-a.e. By Banach function space (briefly,
B.f.s.) related to μ we mean a Banach space X ⊂ L0(μ) satisfying that if | f | ≤ |g|μ-a.e.
with f ∈ L0(μ) and g ∈ X then f ∈ X and ‖ f ‖X ≤ ‖g‖X . Every B.f.s. is a Banach lattice
with the μ-a.e. pointwise order, in which convergence in norm of a sequence implies μ-a.e.
convergence for some subsequence. Note that for f, fn ∈ X, it follows that 0 ≤ fn ↑ f μ-a.e.
if and only if 0 ≤ fn ↑ f in X.

These and other issues related to Banach lattices can be found in [20] and [26].

2.2 Integration with respect to vector measures on δ-rings.

Let R be a δ-ring of subsets of an abstract set 	, that is, a ring closed under countable
intersections. We write Rloc for the σ -algebra of all subsets A of 	 such that A ∩ B ∈ R
for all B ∈ R. Note that if R is a σ -algebra then Rloc = R. Denote by M(Rloc) the space
of all measurable real functions on (	,Rloc), by S(Rloc) the space of all simple functions
and by S(R) the space of all R-simple functions (i.e. simple functions supported in R).

Let λ : R → R be a countably additive measure, that is,
∑
λ(An) converges to λ(∪An)

whenever (An) is a sequence of pairwise disjoint sets in R with ∪An ∈ R. The variation of
λ is the countably additive measure |λ| : Rloc → [0,∞] given by

|λ|(A) = sup
{∑

|λ(Ai )| : (Ai ) finite disjoint sequence in R ∩ 2A
}
.

For every A ∈ R we have that |λ|(A) < ∞. The space L1(λ) of integrable functions
with respect to λ is defined as the space L1(|λ|) with the usual norm. Every R-simple
function ϕ = ∑n

i=1 αiχAi is in L1(λ) and the integral of ϕ with respect to λ is defined as
usual by

∫
ϕ dλ = ∑n

i=1 αiλ(Ai ). Moreover, the space S(R) is dense in L1(λ). For every



f ∈ L1(λ), the integral of f with respect to λ is defined as
∫

f dλ = lim
∫
ϕn dλ for any

sequence (ϕn) ⊂ S(R) converging to f in L1(λ).

Let ν : R → X be a vector measure with values in a real Banach space X, that is,
∑
ν(An)

converges to ν(∪An) in X whenever (An) is a sequence of pairwise disjoint sets in R with
∪An ∈ R. Denoting by X∗ the topological dual of X and by BX∗ the unit ball of X∗, the
semivariation of ν is the map ‖ν‖: Rloc → [0,∞] given by ‖ν‖(A) = sup{|x∗ν|(A) :
x∗ ∈ BX∗ } for all A ∈ Rloc, where |x∗ν| is the variation of the measure x∗ν : R → R. A
set A ∈ Rloc is ν-null if ‖ν‖(A) = 0, or equivalently, ν(B) = 0 for all B ∈ R ∩ 2A. A
property holds ν-almost everywhere (briefly, ν-a.e.) if it holds except on a ν-null set. For
every Rloc-measurable function f : 	 → R ∪ {±∞} we can define

‖ f ‖ν = sup
x∗∈BX∗

∫

| f | d|x∗ν| ≤ ∞.

Note that if ‖ f ‖ν < ∞ then | f | < ∞ ν-a.e. Let L1
w(ν) denote the space of functions in

M(Rloc) which are integrable with respect to |x∗ν| for all x∗ ∈ X∗, where functions which
are equal ν-a.e. are identified. The space L1

w(ν) is a Banach space with the norm ‖ · ‖ν . A
function f ∈ L1

w(ν) is integrable with respect to ν if for each A ∈ Rloc there exists a vector
denoted by

∫
A f dν ∈ X, such that

x∗
(∫

A
f dν

)

=
∫

A

f dx∗ν for all x∗ ∈ X∗.

Let L1(ν) denote the space of all integrable functions with respect to ν. Then, L1(ν) is a 
closed subspace of L1

w(ν) and so it is a Banach space with the norm ‖ · ‖ν . Moreover, S(R) 
is dense in L1(ν). Note that for every R-simple function ϕ = 

∑
i
n 

1 αi χAi , we have that 
∫ 
ϕ dν = 

∑
i
n
=1 αi ν(Ai ). From [1, Theorem 3.2], there always ex 

=
ists a measure λ : R → [0, ∞] with the same null sets as ν. Then, L1(ν) and L1

w(ν) are B.f.s. related to |λ|. Moreover, 
L1(ν) is order continuous and L1

w(ν) has the σ -Fatou property.
For any measure μ : Rloc → [0, ∞] with the same null sets as ν, since the μ-a.e. pointwise 

order coincides with the ν-a.e. one, we will denote L0(ν) = L0(μ) and say B.f.s. related to 
ν for B.f.s. related to μ.

For these and other issues related to integration with respect to vector measures defined 
on a δ-ring, see [18,21,22,9].

3 Order continuous part of L1
w(ν)

All along in this paper ν : R → X will be a vector measure defined on a δ-ring R of subsets 
of an abstract set 	, with values in a real Banach space X. Recall that measurable functions 
are referred to the σ -algebra Rloc.

Let us begin by noting that the σ -order continuous and the order continuous parts 
of L1

w(ν) coincide. Indeed, L1
w(ν) is Dedekind σ -complete as it has the σ -Fatou prop-

erty (see [26, Theorem 113.1]), and so, since 
(
L1
w(ν)

)
a is an ideal in L1

w(ν), it is also 
Dedekind σ -complete. Then, from [26, Theorem 103.6], 

(
L1
w(ν)

)
a is order continuous and 

thus 
(
L1
w(ν)

)
a = 

(
L1
w(ν)

)
an .

It was noted in [6, p. 192], that in the case when R is a σ -algebra, the order continuous 
part of L1

w(ν) is just L1(ν). This follows from the facts that L1(ν) is order continuous and 
S(Rloc) = S(R) ⊂ L1(ν). In the general case, S(Rloc) may not be in L1(ν), even so, we



will see that
(
L1
w(ν)

)
a = L1(ν) remains true. First, let us characterize when a characteristic

function of a measurable set is in L1(ν).

Lemma 3.1 The following statements are equivalent for any A ∈ Rloc.

(a) χA ∈ L1(ν).

(b) ‖ν‖(An) → 0 for all decreasing sequences (An) ⊂ Rloc ∩ 2A with ∩An ν-null.
(c) ν(An) → 0 for all disjoint sequences (An) ⊂ R ∩ 2A.

Proof Suppose that χA ∈ L1(ν) and let (An) ⊂ Rloc ∩ 2A be a decreasing sequence with
∩An ν-null. Since L1(ν) is order continuous andχA ≥χAn ↓ 0, then ‖ν‖(An)=‖χAn ‖ν → 0.
So, (a) implies (b).

Let (An) ⊂ R ∩ 2A be a disjoint sequence. Taking Bn = ∪ j≥n A j we have a decreasing
sequence (Bn) ⊂ Rloc ∩ 2A with ∩Bn = ∅ and ‖ν(An)‖ ≤ ‖ν‖(Bn). So, (b) implies (c).

Suppose that (c) holds and consider the vector measure νA : R → X defined by νA(B) =
ν(A ∩ B) for all B ∈ R. Noting that |x∗νA|(B) = |x∗ν|(A ∩ B) for every B ∈ Rloc and
x∗ ∈ X∗, it can be checked that

∫ | f | d|x∗νA| = ∫ | f |χA d|x∗ν|. Indeed, this is trivial
for simple functions, and for all measurable functions it is consequence of the monotone
convergence theorem. Thus, ‖ f ‖νA = ‖ f χA‖ν for every f ∈ M(Rloc). Then, f ∈ L1

w(νA)

if and only if f χA ∈ L1
w(ν). Since S(R) is dense in both L1(ν) and L1(νA), it follows that

f ∈ L1(νA) if and only if f χA ∈ L1(ν). By hypothesis νA is strongly additive, so, from
[9, Corollary 3.2.b)], we have that χ	 ∈ L1(νA) and thus χA ∈ L1(ν). ��

Let us prove now the announced result.

Theorem 3.2 The equality
(
L1
w(ν)

)
a = L1(ν) holds.

Proof Obviously L1(ν) ⊂ (
L1
w(ν)

)
a as L1(ν) is order continuous. For the converse inclu-

sion, consider first a set A ∈ Rloc such that χA ∈ (
L1
w(ν)

)
a . For every decreasing

sequence (An) ⊂ Rloc ∩ 2A with ∩An ν-null it follows that χA ≥ χAn ↓ 0 and so
‖ν‖(An) = ‖χAn ‖ν → 0. Then we get χA ∈ L1(ν), from Lemma 3.1.

Consider now ϕ ∈ S(Rloc) such that ϕ ∈ (
L1
w(ν)

)
a . Write ϕ = ∑n

j=1 α jχA j with

(A j ) ⊂ Rloc being a disjoint sequence and α j �= 0. Since χA j ≤ | ϕ
α j

| and
(
L1
w(ν)

)
a is an

ideal, χA j ∈ (L1
w(ν)

)
a . Then, χA j ∈ L1(ν) and so ϕ ∈ L1(ν).

Finally, let f ∈ (L1
w(ν)

)
a and take a sequence (ϕn) ⊂ S(Rloc) satisfying that 0 ≤ ϕn ↑

| f | ν-a.e. Note thatϕn ∈ (L1
w(ν)

)
a asϕn ≤ | f |, and soϕn ∈ L1(ν).Since | f | ≥ | f |−ϕn ↓ 0,

we have that ‖ | f | − ϕn‖ν → 0. Then, as L1(ν) is closed in L1
w(ν), we have that | f |, and so

also f, is in L1(ν). ��

4 Order density of L1(ν) in L1
w(ν)

The topic of this section is trivial for the case when R is a σ -algebra. Indeed, for each
0 ≤ f ∈ L0(ν) there exists (ϕn) ⊂ S(Rloc) such that 0 ≤ ϕn ↑ f ν-a.e. Since, in this case
Rloc = R and S(R) ⊂ L1(ν), obviously we have that L1(ν) is super order dense (and so
order dense) in L0(ν) (and so in L1

w(ν)). However, this argument fails for the general case
as S(Rloc) may not be contained in L1(ν).

Example 4.1 Let � be an uncountable abstract set, R the δ-ring of finite subsets of � and
ν : R → c0(�) the vector measure defined by ν(A) = χA (see [9, Example 2.2]). Then, χ� ∈
L1
w(ν) = �∞(�), but there is no sequence ( fn) ⊂ L1(ν) = c0(�) such that 0 ≤ fn ↑ χ�.

Indeed, in this case, since the only ν-null set is the empty set, � = ∪nsupp( fn) is countable.



Therefore, in general L1(ν) is not super order dense in L1
w(ν), but order dense.

Theorem 4.2 The space L1(ν) is order dense in L1
w(ν).

Proof Since every Banach lattice is Archimedean, by [20, Ch. 3, Theorem 22.3] it is enough
to prove that L1(ν) is quasi order dense in L1

w(ν), i.e. for every 0 �= f ∈ L1
w(ν) there exists

0 �= g ∈ L1(ν) such that |g| ≤ | f |.
Let f ∈ L1

w(ν) with ‖ν‖(supp( f )) > 0. For An = {ω ∈ 	 : | f (ω)| > 1
n }, we have

that An ↑ supp( f ) and so ‖ν‖(supp( f )) = limn ‖ν‖(An) (see [22, Corollary 3.5.(e)]). Take
n large enough such that ‖ν‖(An) > 0. Since ‖ν‖(An) = supB∈R∩2An ‖ν‖(B) (see [22,
Lemma 3.4.(g)]), there exists Bn ∈ R ∩ 2An such that ‖ν‖(Bn) > 0.

On the other hand, take a sequence (ψ j ) j ⊂ S(Rloc) such that 0 ≤ ψ j ↑ | f | ν-a.e. Then,
there exists a ν-null set Z ∈ Rloc such that 0 ≤ ψ j (ω) ↑ f (ω) for all ω ∈ 	\Z . Let us
consider Bn = (∪ j Bn ∩ supp(ψ j )\Z) ∪ (Bn ∩ Z). Since Bn ∩ supp(ψ j )\Z ↑, it follows
that ‖ν‖(Bn) = ‖ν‖(∪ j Bn ∩ supp(ψ j )\Z) = lim j ‖ν‖(Bn ∩ supp(ψ j )\Z). Take jn large
enough such that ‖ν‖(Bn ∩ supp(ψ jn )\Z) > 0 and consider the function g = ψ jnχBn ∈
S(R) ⊂ L1(ν). Then, g �= 0 and 0 ≤ g ≤ | f |. ��
Remark 4.3 Since L0(ν) with the ν-a.e. pointwise order is an Archimedean vector lattice,
actually in Theorem 4.2 we have proved that L1(ν) is order dense in L0(ν).

Now, the natural question is when L1(ν) is super order dense in L1
w(ν). It is easy to

see that this happens if ν is σ -finite, that is, 	 = (∪An) ∪ N with N ∈ Rloc ν-null and
(An) a sequence in R. In this case, if 0 ≤ f ∈ L0(ν) and (ψn) ⊂ S(Rloc) is such that
0 ≤ ψn ↑ f ν-a.e., taking ϕn = ψnχ∪n

j=1 A j ∈ S(R) we have that 0 ≤ ϕn ↑ f ν-a.e. Then,

L1(ν) is super order dense in L0(ν) and so in L1
w(ν). However, L1(ν) being super order

dense in L1
w(ν) does not imply that ν is σ -finite.

Example 4.4 The vector measure ν in Example 4.1 considered with values in �1(�) instead
of c0(�), satisfies that L1(ν) = L1

w(ν) = �1(�). Then, obviously L1(ν) is super order dense
in L1

w(ν) but ν is not σ -finite.

We will characterize the super order density of L1(ν) in L1
w(ν) by a weaker condition on

ν than σ -finiteness. Namely, ν will be said to be locally σ -finite if every set A ∈ Rloc with
‖ν‖(A) < ∞, can be written as A = (∪An)∪ N ,with N ∈ Rloc ν-null and (An) a sequence
in R.
Remark 4.5 If ν is such that L1(ν) = L1

w(ν) (e.g. if X does not contain any copy of c0, see
[18, Theorem 5.1]), then for every A ∈ Rloc with ‖ν‖(A) < ∞,we have that χA ∈ L1

w(ν) =
L1(ν) and so, from [22, Theorem 4.9.(a)], ν is locally σ -finite.

Let us see that there are plenty of locally σ -finite vector measures which are not σ -finite.

Lemma 4.6 Suppose that ν is discrete, that is, for every ω ∈ 	 it follows that {ω} ∈ R and
ν({ω}) �= 0. Then,

(a) N ∈ Rloc is ν-null if and only if N = ∅.
(b) {A ⊂ 	 : A is finite} ⊂ R ⊂ {A ⊂ 	 : A is countable}.
(c) Rloc = 2	.
(d) ν is σ -finite if and only if 	 is countable.

Proof (a) Suppose N ∈ Rloc is ν-null. If γ ∈ N , then {γ } ∈  R ∩ 2N and so ‖ν({γ })‖ ≤  
‖ν‖(N ) = 0 which contradicts ν({γ }) �= 0. Hence, N = ∅. The converse is obvious.



(b) If A ⊂ 	 is finite then A = ∪γ∈A{γ } is a finite union of sets in R, so the first
containment holds. For the second one, consider A ∈ R and the vector measure νA : Rloc →
X defined by νA(B) = ν(A ∩ B) for all B ∈ Rloc. Note that B ∈ Rloc is νA-null if and
only if A ∩ B is ν-null, that is, A ∩ B = ∅. Since νA is defined on a σ -algebra we can take
x∗

A ∈ BX∗ such that |x∗
AνA| has the same null sets as νA (see [13, Theorem IX.2.2]). For

every finite set J ⊂ 	 it follows that
∑

γ∈J

|x∗
AνA|({γ }) = |x∗

AνA|(J ) ≤ ‖νA‖(J ) ≤ ‖νA‖(	) < ∞.

Then, there exists a countable set I ⊂ 	 such that |x∗
AνA|({γ }) = 0 for all γ ∈ 	\I, that

is, A ∩ {γ } = ∅ for all γ ∈ 	\I. So, A ⊂ I is countable.
(c) Note that {A ⊂ 	 : A is countable} ⊂ Rloc, since if A ⊂ 	 is countable then

A = ∪γ∈A{γ } is a countable union of sets in R.Given A ∈ 2	, from (b) we have that A ∩ B
is countable, and so it is in Rloc for every B ∈ R. Hence, A ∩ B = B ∩ (A ∩ B) ∈ R for
every B ∈ R, that is, A ∈ Rloc.

(d) It follows from (a) and (b). ��
From Remark 4.5 and Lemma 4.6, every discrete vector measure on a δ-ring of subsets of

an uncountable set with values in a Banach space without any copy of c0 is locally σ -finite,
but not σ -finite. Also, there are locally σ -finite vector measures which are not σ -finite with
values in a Banach space containing a copy of c0.

Example 4.7 Consider the δ-ring R = {A ⊂ [0,∞) : A is finite} of subsets of [0,∞) and
the vector measure ν : R → c0 defined by ν(A) = ∑

n
�(A∩[n−1,n))

2n en, where (en)n is the
canonical basis of c0 and � denotes the cardinal of a set. Note that ν is discrete, so ν is not
σ -finite. It can be proved that L1

w(ν) is the space of functions f : [0,∞) → R such that

f χ[n−1,n) ∈ �1 ([0,∞)) for all n and sup
n

1

2n

∥
∥| f |χ[n−1,n)

∥
∥
�1([0,∞))

< ∞,

and ‖ f ‖ν = supn
1

2n

∥
∥| f |χ[n−1,n)

∥
∥
�1([0,∞))

for all f ∈ L1
w(ν). Moreover, L1(ν) is the space

of functions f : [0,∞) → R such that

f χ[n−1,n) ∈ �1 ([0,∞)) for all n and lim
n

1

2n

∥
∥| f |χ[n−1,n)

∥
∥
�1([0,∞))

= 0.

Note that every f ∈ L1
w(ν) has countable support as supp( f )∩[n −1, n) is countable for all

n. If B ∈ Rloc is such that ‖ν‖(B) < ∞, that is χB ∈ L1
w(ν), then B is countable. Hence,

ν is locally σ -finite.

Let us prove now that the super order density of L1(ν) in L1
w(ν) is characterized by the

local σ -finiteness of ν.

Theorem 4.8 The space L1(ν) is super order dense in L1
w(ν) if and only if ν is locally

σ -finite.

Proof Suppose that L1(ν) is super order dense in L1
w(ν). Take A ∈ Rloc with ‖ν‖(A) < ∞.

Since 0 ≤ χA ∈ L1
w(ν), there exists a sequence ( fn) ⊂ L1(ν) such that 0 ≤ fn ↑ χA ν-a.e.

Then, there exists Z ∈ Rloc ν-null such that 0 ≤ fn(ω) ↑ χA(ω) for all ω ∈ 	\Z . Thus,
A\Z = ∪nsupp( fn)\Z .

On the other hand, since each fn ∈ L1(ν), from [22, Theorem 4.9.(a)] , there exist
(An

j ) j ⊂ R and a ν-null set Nn ∈ Rloc such that supp( fn) = (∪ j An
j ) ∪ Nn . Then,

A = (∪n ∪ j An
j \Z) ∪ (∪n Nn\Z) ∪ (A ∩ Z)



where An
j \Z ∈ R and (∪n Nn\Z) ∪ (A ∩ Z) is ν-null.

Conversely, suppose that ν is locally σ -finite and let 0 ≤ f ∈ L1
w(ν). There exists

a sequence (ψn) ⊂ S(Rloc) such that 0 ≤ ψn ↑ f ν-a.e. For each n, we can write
ψn = ∑kn

j=1 α
n
jχBn

j
with (Bn

j ) j pairwise disjoint and αn
j > 0. Then, taking βn =

min{αn
1 , ..., α

n
kn

}, it follows

‖ν‖(supp(ψn)) = ‖χsupp(ψn)‖ν ≤ 1

βn
‖ψn‖ν ≤ 1

βn
‖ f ‖ν < ∞.

n

So, there exist (An
j ) j ⊂ R and Zn ν-null such that supp(ψn) = (∪ j An

j ) ∪ Zn . Denote 
ϕn = ψnχ∪i

n=1∪ j=1 A
i
j 

∈ S(R). For ω �∈ ∪n Zn we have that ω ∈ 	\(∪nsupp(ψn)) or

ω ∈ ∪n ∪ j An
j . In any case, ϕn(ω) = ψn(ω) for all n large enough. Then, ϕn ↑ f ν-a.e. ��

We have seen just before Example 4.4 that if ν is σ -finite then L1(ν) is super order dense 
in L0(ν). The converse also holds, indeed taking 	 instead of A in the proof of the local 
σ -finiteness of ν in Theorem 4.8, the same argument works to show 	 = (∪An) ∪ N , with 
N ∈ Rloc ν-null and (An) ⊂ R.

We know from [22, Theorem 4.9.(a)] that for each f ∈ L1(ν) there are (An) ⊂ R and a 
ν-null set N ∈ Rloc such that supp( f ) = (∪An) ∪ N . Does the same hold for functions in 
L1
w(ν)?

Proposition 4.9 For each f ∈ L1
w(ν) there exist N ∈ Rloc ν-null and (An) ⊂ R such that 

supp( f ) = (∪An) ∪ N if and only if ν is locally σ -finite.

Proof Suppose that ν is locally σ -finite and take f ∈ L1
w(ν). From the proof of Theorem 

4.8, there exists a sequence (ϕn) ⊂ S(R) such that 0 ≤ ϕn ↑ | f | ν-a.e. Let Z ∈ Rloc be a 
ν-null set such that 0 ≤ ϕn(ω) ↑ | f (ω)| for all ω ∈ 	\Z . Then,

supp( f ) = (∪ supp(ϕn)\Z) ∪ (supp( f ) ∩ Z)

where supp(ϕn)\Z ∈ R and supp( f ) ∩ Z is ν-null. For the converse only note that if 
B ∈ Rloc is such that ‖ν‖(B) <  ∞, then χB ∈ L1

w(ν). ��
Let {	α : α ∈ �} be a maximal family of non ν-null sets in R with 	α ∩ 	β ν-null for 

α �= β (see the proof of [1, Theorem 3.1] for the existence of such a family). Then, L1(ν) is 
the unconditional direct sum of the spaces L1(να) where να : �α → X is the restriction of ν 
to the σ -algebra �α = {A ∈ R : A ⊂ 	α}. More precisely, for each f ∈ L1(ν) there exists a
countable set I ⊂ � such that f = 

∑
α∈I f χ	α ν-a.e. and the sum converges unconditionally 

in L1(ν), see [9, Theorem 3.6]. Does a similar result hold for the space L1
w(ν)? The ν-a.e. 

pointwise convergence of the sum for functions in L1
w(ν) is again characterized by the local 

σ -finiteness of ν.

Proposition 4.10 For each f ∈ L1
w(ν) there exists a countable I ⊂ � such that

f = 
∑
α∈I f χ	α ν-a.e. pointwise if and only if ν is locally σ -finite.

Proof Suppose that for every f ∈ L1
w(ν) there exists a countable I ⊂ � such that

f = 
∑
α∈I f χ	α ν-a.e. pointwise. Then, given B ∈ Rloc with ‖ν‖(B) <  ∞, since 

χB ∈ L1
w(ν), we can write χB = 

∑
α I χB∩	α pointwise except on a ν-null set Z , for 

some countable I ⊂ �. So, B = (∪α∈I B
∈∩ 	α) ∪ (B ∩ Z), where B ∩ 	α ∈ R and B ∩ Z 

is ν-null.
Conversely, suppose that ν is locally σ -finite and take f ∈ L1

w(ν). From Proposition 4.9, 
there exist (An) ⊂ R and a ν-null set N ∈ Rloc such that supp( f ) = (∪An) ∪ N . Since each



An ∈ R, there exists a countable set In ⊂ � such that An ∩ 	β is ν-null for all β ∈ �\In

(see the proof of [1, Theorem 3.1]). Take I = ∪In and Z = supp( f )\ ∪α∈I 	α. Let us
see that Z is a ν-null set. Given B ∈ R ∩ 2Z , if β ∈ I we have that B ∩ 	β = ∅. On the
other hand, if β /∈ I, since B ∩ 	β ⊂ supp( f ) ∩ 	β = (∪An ∩ 	β) ∪ (N ∩ 	β) where
each An ∩ 	β is ν-null, we have that B ∩ 	β is ν-null. From the maximality of the family
{	α : α ∈ �} it follows that B is ν-null. Then, f = ∑

α∈I f χ	α pointwise except on
Z ∪ (∪β∈I ∪α∈I\{β} 	α ∩	β) which is a ν-null set. ��

Since f χ	α ∈ L1
w(να) for all α ∈ � whenever f ∈ L1

w(ν), in the case of ν being locally
σ -finite, we can say that the space L1

w(ν) is the ν-a.e. pointwise direct sum of the spaces
L1
w(να). We cannot expect that

∑
α∈I f χ	α converges unconditionally to f in L1

w(ν) for a
countable set I ⊂ �. Indeed, unconditional convergence of the sum in L1(ν) is due to the
order continuity of L1(ν). For instance, assume that ν is a discrete vector measure. Note that
the maximal family {{γ } : γ ∈ �} of non ν-null sets in R satisfies that {α} ∩ {β} ν-null for
α �= β.We have that if f ∈ L1

w(ν) is such that
∑

n f χ{γn} converges to f in norm ‖ ·‖ν, then
f ∈ L1(ν). This is due to the fact that

∑n
k=1 f χ{γk } = ∑n

k=1 f (γk)χ{γk } ∈ S(R) ⊂ L1(ν)

and L1(ν) is closed in L1
w(ν).

5 Fatou property for L1
w(ν)

The space L1
w(ν) always has the σ -Fatou property. Indeed, take ( fn) ⊂ L1

w(ν) such that
0 ≤ fn ↑ and sup ‖ fn‖ν < ∞. Then there exists a ν-null set Z ∈ Rloc such that 0 ≤
fn(ω) ↑ for all ω ∈ 	\Z . Taking the measurable function g : 	 → [0,∞] defined by
g(ω) = sup fn(ω) if ω ∈ 	\Z and g(ω) = 0 if ω ∈ Z , we have that 0 ≤ fnχ	\Z ↑ g
pointwise. Hence, the monotone convergence theorem, gives

∫

g d|x∗ν| = lim
n

∫

fnχ	\Z d|x∗ν| ≤ ‖x∗‖ sup ‖ fn‖ν,

for every x∗ ∈ X∗. So, ‖g‖ν ≤ sup ‖ fn‖ν < ∞, and then g < ∞ ν-a.e. (except on a ν-null
set N ). Taking f = gχ	\N we have that f : 	 → [0,∞) and ‖ f ‖ν = ‖g‖ν < ∞, so
f ∈ L1

w(ν). Moreover, 0 ≤ fn ↑ f ν-a.e. with ‖ f ‖ν = sup ‖ fn‖ν, as ‖ fn‖ν ≤ ‖ f ‖ν ≤
sup ‖ fn‖ν for all n. Therefore L1

w(ν) always has the σ -Fatou property.
In the case when ν is defined on a σ -algebra, it was noted in [6, p. 191] that L1

w(ν) is
the σ -Fatou completion of L1(ν), that is, the minimal B.f.s. related to ν with the σ -Fatou
property and containing L1(ν). This fact does not hold for the general case. For instance,
if ν is the vector measure defined in Example 4.1 and �∞0 (�) denotes the Banach lattice
of all real bounded functions on � with countable support, then L1(ν) � �∞0 (�) � L1

w(ν)

where �∞0 (�) has the σ -Fatou property. Note that in this case ν is not locally σ -finite, as
χ� ∈ L1

w(ν). This is the reason for which L1
w(ν) fails to be the σ -Fatou completion of

L1(ν). Let us denote by [L1(ν)]σ−F the σ -Fatou completion of L1(ν). In general we have
that [L1(ν)]σ−F ⊂ L1

w(ν).

Theorem 5.1 The σ -Fatou completion of L1(ν) can be described as

[L1(ν)]σ−F = { f ∈ L1
w(ν) : supp( f ) = (∪An) ∪ N with (An) ⊂ R and N ν-null

}
.

Consequently, the space L1
w(ν) = [L1(ν)]σ−F if and only if ν is locally σ -finite.

Proof Denote by F the space of functions f ∈ L1
w(ν) for which there exist (An) ⊂ R

and a ν-null set N ∈ Rloc such that supp( f ) = (∪An) ∪ N . Let us see that F is a closed



subspace of L1
w(ν). Given f ∈ L1

w(ν) and ( fn) ⊂ F such that ‖ f − fn‖ν → 0, we can
take a subsequence such that fnk → f ν-a.e. That is, there exists a ν-null set Z ∈ Rloc

such that fnk (ω) → f (ω) for all ω ∈ 	\Z . Then, supp( f )\Z ⊂ ∪ksupp( fnk ). On the
other hand, each fnk satisfies that supp( fnk ) = (∪ j Ak

j ) ∪ Nk for some (Ak
j ) j ⊂ R and

Nk ∈ Rloc ν-null. So, supp( f ) = ∪k ∪ j Bk
j ∪ N where Bk

j = Ak
j ∩ supp( f )\Z ∈ R and

N = (∪k Nk ∩ supp( f )\Z)∪ (supp( f )∩ Z) is ν-null, that is, f ∈ F. Note that if | f | ≤ |g|
ν-a.e. with f ∈ L0(ν) and g ∈ F, then f ∈ F since supp( f )\Z = (supp( f )\Z) ∩ supp(g)
for some ν-null set Z . Therefore, F endowed with the norm ‖ · ‖ν, is a B.f.s. related to ν,
which, by [22, Theorem 4.9.(a)], contains L1(ν). Let us see now that F has the σ -Fatou
property. Given ( fn) ⊂ F such that 0 ≤ fn ↑ and sup ‖ fn‖ν < ∞, since L1

w(ν) has the
σ -Fatou property, there exists f = sup fn ∈ L1

w(ν) with ‖ f ‖ν = sup ‖ fn‖ν . Moreover,
since 0 ≤ fn ↑ f ν-a.e., supp( f ) = (∪ supp( fn)\Z) ∪ (supp( f ) ∩ Z) for some ν-null set
Z ∈ Rloc. Then, it follows that f ∈ F, as each fn ∈ F.

Suppose that E is a B.f.s. related to ν, with the σ -Fatou property and containing L1(ν).

Let f ∈ F and take a sequence (An) ⊂ R and a ν-null set N ∈ Rloc such that supp
( f ) = (∪An) ∪ N . On the other hand, take a sequence (ψn) ⊂ S(Rloc) such that 0 ≤ ψn ↑
| f | ν-a.e. Denoting ϕn = ψnχ∪n

j=1 A j ∈ S(R) ⊂ L1(ν) we have that 0 ≤ ϕn ↑ | f | ν-a.e.

Since L1(ν) ⊂ E continuously (bear in mind that the inclusion is a positive operator) we
have that sup ‖ϕn‖E ≤ C sup ‖ϕn‖ν ≤ C‖ f ‖ν < ∞ for some positive constant C. It follows
that there exists g = supϕn ∈ E . Then, since 0 ≤ ϕn ↑ g ν-a.e., we have that | f | = g ∈ E
and so f ∈ E .

The consequence follows from Proposition 4.9. ��
Consider now the Fatou completion [L1(ν)]F of L1(ν), namely, the minimal B.f.s. related

to ν with the Fatou property and containing L1(ν). The σ -Fatou completion [L1(ν)]
σ−F

always exists since L1
w(ν) has always the σ -Fatou property. However, we do not know if in

general L1
w(ν) has the Fatou property, so [L1(ν)]F could not exist.

Remark 5.2 In the case when [L1(ν)]F exists, we have that

L1(ν) ⊂ [L1(ν)]σ−F ⊂ L1
w(ν) ⊂ [L1(ν)]F .

Indeed, given f ∈ L1
w(ν), from Remark 4.3, there exists ( fτ ) ⊂ L1(ν) such that

0 ≤ fτ ↑ | f | in L0(ν). Since L1(ν) ⊂ [L1(ν)]F continuously, it follows that
sup ‖ fτ‖[L1(ν)]F

≤ C sup ‖ fτ‖ν ≤ C‖ f ‖ν < ∞ for some constant C > 0.Then, there exists

g = sup fτ in [L1(ν)]F . Noting that fτ ≤ g ∈ L0(ν) for all τ, we have that | f | ≤ g and so
| f | ∈ [L1(ν)]F .Hence, f ∈ [L1(ν)]F .Note that actually | f | = g, since fτ ≤ | f | ∈ [L1(ν)]F

for all τ and so g ≤ | f |.
Remark 5.3 If L1

w(ν) has the Fatou property, then [L1(ν)]F exists and, from Remark 5.2, we
have that L1

w(ν) = [L1(ν)]F .

In the following result we give conditions under which L1
w(ν) has the Fatou property.

These conditions are satisfied for instance if ν takes values in a Banach space without any
copy of c0.

Proposition 5.4 The following statements are equivalent:

(a) L1(ν) = L1
w(ν).

(b) L1
w(ν) is order continuous.

(c) L1(ν) has the σ -Fatou property.



If (a)–(c) hold, then L1
w(ν) has the Fatou property and

L1(ν) = [L1(ν)]σ−F = L1
w(ν) = [L1(ν)]F .

Proof The equivalence between (a) and (b) follows from Theorem 3.2. Condition (a) implies
(c) as L1

w(ν) always has the σ -Fatou property. Conversely, if L1(ν) has the σ -Fatou property,
from [26, Theorem 113.4], it follows that it actually has the Fatou property. Then, [L1(ν)]F =
L1(ν) and, from Remark 5.2, we have that L1(ν) = L1

w(ν). So, (c) implies (a) and the last
part of the theorem holds. ��

It is an open question if in general L1
w(ν) has the Fatou property. The problem is that for

an upwards directed system 0 ≤ fτ ↑ such that ( fτ ) ⊂ L1
w(ν) with sup ‖ fτ‖ν < ∞ the

pointwise supremum f = sup fτ may not be measurable. Moreover, even if f ∈ L1
w(ν) it

can happen that fτ ↑ f does not hold, that is, f may be not the lattice supremum of ( fτ ).

Remark 5.5 If ν is σ -finite, we can take a measure of the type |x∗
0ν| (with x∗

0 ∈ BX∗ )
having the same null sets as ν, see [9, Remark 3.4]. Then, since L1

w(ν) ⊂ L1(|x∗
0ν|) and

L1(|x∗
0ν|) has the Fatou property, there exists f = sup fτ in L1(|x∗

0ν|). By using the fact
that L1(|x∗

0ν|) is order separable (see [26, Theorem 113.4]), we can take a sequence fτn ↑ f
in L1(|x∗

0ν|) and prove that f ∈ L1
w(ν). Then, L1

w(ν) has the Fatou property, see [12,
Proposition 1]. Moreover, it follows that [L1(ν)]σ−F = L1

w(ν) = [L1(ν)]F from Theorem
5.1 and Remark 5.3.

We will give a more general condition than the σ -finiteness of ν under which L1
w(ν)

has the Fatou property. This new condition is inspired by the particular vector measure ν
constructed in [12, Theorem 9] to prove that a Banach lattice E with the Fatou property and
such that Ea is order dense in E, is order isometric to a L1

w(ν). In this case, L1
w(ν) has the

Fatou property due to a good decomposition property satisfied by ν.

Definition 5.6 A vector measure ν will be said to be R-decomposable if we can write
	 = (∪α∈�	α) ∪ N where N ∈ Rloc is a ν-null set and {	α : α ∈ �} is a family of
pairwise disjoint sets in R satisfying that

(i) if Aα ∈ R ∩ 2	α for all α ∈ �, then ∪α∈�Aα ∈ Rloc, and
(ii) for each x∗ ∈ X∗, if Zα ∈ R ∩ 2	α is |x∗ν|-null for all α ∈ �, then ∪α∈�Zα is

|x∗ν|-null.

Note that condition (ii) implies that if Zα ∈ R ∩ 2	α is ν-null for all α ∈ �, then ∪α∈�Zα
is ν-null. Also note that N can be taken to be disjoint with ∪α∈�	α.

Remark 5.7 There always exists a maximal family {	̃α : α ∈ �} of non ν-null sets in R
with 	̃α ∩ 	̃β ν-null for α �= β (see the proof of [1, Theorem 3.1]). If this family satisfies
(i) and (ii) of Definition 5.6, then by taking 	α = 	̃α\(∪β∈�\{α}	̃β) we obtain a disjoint
decomposition of 	 as in Definition 5.6.

There are plenty of R-decomposable vector measures, for instance σ -finite vector mea-
sures and discrete vector measures are so.

Theorem 5.8 If ν is R-decomposable, then L1
w(ν) has the Fatou property.

Proof Suppose that ν is R-decomposable and take a ν-null set N ∈ Rloc and a family
{	α : α ∈ �} of pairwise disjoint sets in R satisfying conditions (i) and (ii) in Definition
5.6. So we have	 = (∪α∈�	α)∪ N with disjoint union. For every finite set I ⊂ �, consider
	I = ∪α∈I	α ∈ R and the vector measure νI : Rloc → X defined by ν(A ∩ 	I ) for all



A ∈ Rloc. Given f ∈ M(Rloc), by using a similar argument as in the proof of (c) implies
(a) in Lemma 3.1, it follows that f ∈ L1

w(νI ) if and only if f χ	I ∈ L1
w(ν), and in this case

‖ f ‖νI = ‖ f χ	I ‖ν . Note that, if f ∈ L1
w(ν) then f χ	I ∈ L1

w(ν) and so f ∈ L1
w(νI ). Also

note that L1
w(νI ) has the Fatou property as νI is defined on a σ -algebra, see Remark 5.5.

Let ( fτ ) ⊂ L1
w(ν) be such that 0 ≤ fτ ↑ and sup ‖ fτ‖ν < ∞. Since L1

w(ν) ⊂ L1
w(νI )

and every Z ∈ Rloc ν-null is νI -null (as ‖νI ‖(Z) = ‖ν‖(Z ∩ 	I )), then 0 ≤ fτ ↑ in
L1
w(νI ). Moreover, sup ‖ fτ‖νI = sup ‖ fτ χ	I ‖ν ≤ sup ‖ fτ‖ν < ∞. By the Fatou property

of L1
w(νI ), there exists f I = sup fτ in L1

w(νI ) and ‖ f I ‖νI = sup ‖ fτ‖νI .

Now we consider I = {α} for each α ∈ � and construct the function f : 	 → R as
f (ω) = f {α}(ω)when ω ∈ 	α and f (ω) = 0 when ω ∈ N ,which is well defined since	 is
a disjoint union of (	α)α∈� and N .By (i), we have that f −1(B) = ∪α∈�( f {α})−1(B)∩	α ∈
Rloc for every Borel subset B of R such that 0 /∈ B. If 0 ∈ B, we put also in the union the
set N to get f −1(B). So, f ∈ M(Rloc).

Let us see that f ∈ L1
w(ν). First note that for each finite set I ⊂ � and α ∈ I, it

follows that f {α}χ	α ≤ f Iχ	α ν-a.e. Indeed, fτ χ	α ↑ f {α}χ	α in L1
w(ν{α}) as fτ ↑ f {α}

in L1
w(ν{α}). Since fτ χ	α ≤ f Iχ	α νI -a.e. (and so also ν{α}-a.e. and f Iχ	α ∈ L1

w(ν{α}) as
f Iχ	α ≤ f Iχ	I ∈ L1

w(ν)) we have that f {α}χ	α ≤ f Iχ	α ν{α}-a.e. (except on a ν{α}-null
set Z ) and so ν-a.e. (except on the ν-null set Z ∩ 	α). Then, f χ	I = ∑

α∈I f {α}χ	α ≤
f Iχ	I ν-a.e.

Fix x∗ ∈ X∗. For every finite set I ⊂ �, it follows

∑

α∈I

∫

| f |χ	α d|x∗ν| =
∫

| f |χ	I d|x∗ν| ≤
∫

| f I |χ	I d|x∗ν|

≤ ‖x∗‖ · ‖ f Iχ	I ‖ν = ‖x∗‖ · ‖ f I ‖νI

= ‖x∗‖ · sup ‖ fτ‖νI ≤ ‖x∗‖ · sup ‖ fτ‖ν < ∞.

Then, there exists a countable set J ⊂ � such that
∫ | f |χ	α d|x∗ν| = 0 for all α ∈ �\J

and so f χ	α = 0 |x∗ν|-a.e. (except on a |x∗ν|-null set Zα ∈ Rloc which can be taken such
that Z ⊂ 	α) for all α ∈ �\J. Hence, f =∑α∈J f χ	α |x∗ν|-a.e. (except on the |x∗ν|-null
set ∪α∈�\J Zα ∪ N ∈ Rloc). By the monotone convergence theorem we have that

∫

| f | d|x∗ν| =
∑

α∈J

∫

| f |χ	α d|x∗ν| ≤ ‖x∗‖ · sup ‖ fτ‖ν < ∞.

So f ∈ L1
w(ν) and ‖ f ‖ν ≤ sup ‖ fτ ‖ν .

Let us see  now that  fτ ↑ f in L1
w(ν). Fixing τ, for each α ∈ �, there exists a ν{α}-null 

set Zα ∈ Rloc such that fτ (ω) ≤ f {α}(ω) for all ω ∈ 	α\Zα . Then, Z = ∪α∈� Zα ∩ 	α 
is ν-null and fτ (ω) ≤ f (ω) for all ω ∈ 	\(Z ∪ N ), that is, fτ ≤ f ν-a.e. Suppose that 
h ∈ L1

w(ν) is such that fτ ≤ h ν-a.e. (except on a ν-null set Z ∈ Rloc) and so  ν{α}-a.e. (except 
Z which also is ν{α}-null) for each τ. Since h ∈ L1

w(ν{α}), we have that f {α} ≤ h ν{α}-a.e.
(except on a ν{α}-null set Zα ∈ Rloc). Therefore, f ≤ h ν-a.e. (except on the ν-null set 
(∪α∈� Zα ∩ 	α) ∪ N ∈ Rloc). So, fτ ↑ f and ‖ f ‖ν = sup ‖ fτ ‖ν . ��

The converse of Theorem 5.8 does not hold as the next example shows.

Example 5.9 Following [16, p. 12, Definition 211E], a measure space (X, �,μ)  is decom-
posable (or strictly localizable) if there exists a disjoint family {Xα : α ∈ �} of measurable 
sets of finite measure such that X = ∪α∈� Xα and

� = {E ⊂ X : E ∩ Xα ∈ � for all α ∈ �}



withμ(E) =∑α∈� μ(E ∩ Xα) for every E ∈ �. In [16, p. 50, 216E], Fremlin constructs
a measure space which is not decomposable as follows.

Let C be an abstract set of cardinal greater than the cardinal of the continuum, K =
{K ⊂ 2 C : K is countable} and X the set of all functions f : 2 C → {0, 1}. For each
γ ∈ C, write fγ for the function in X defined by fγ (A) = χA(γ ) for all A ∈ 2 C and
Fγ,K = { f ∈ X : f|K = fγ |K } for every K ∈ K. Consider the σ -algebra � = ∩γ∈C�γ ,

where

�γ = {E ⊂ X : ∃K ∈ K with Fγ,K ⊂ E or ∃K ∈ K with Fγ,K ⊂ X\E},
and the measure μ : � → [0,∞] defined by μ(E) = �({γ ∈ C : fγ ∈ E}) for all E ∈ �,
where � denotes the cardinal of a set. Then, (X, �,μ) is not decomposable.

Taking the δ-ring R = {E ∈ � : μ(E) < ∞}, we will show that the measure μ̃ : R →
[0,∞) given by the restriction of μ to R is not R-decomposable. Let us see first that

Rloc = �. (1)

If A ∈ �, then obviously A ∩ E ∈ R for every E ∈ R, that is A ∈ Rloc. Conversely,
suppose that A ∈ Rloc. For a fixed γ ∈ C, the set G{γ } = { f ∈ X : f ({γ }) = 1} is in
� and μ(G{γ }) = �({γ }) = 1 (see [16, 216E.(c)]). So, G{γ } ∈ R and thus A ∩ G{γ } ∈
R ⊂ � ⊂ �γ . If there exists K ∈ K such that Fγ,K ⊂ A ∩ G{γ } ⊂ A, then A ∈ �γ .

If there exists K ∈ K such that Fγ,K ⊂ X\(A ∩ G{γ }), then, since Fγ,K∪{γ } ⊂ Fγ,K and
Fγ,K∪{γ } ⊂ G{γ }, it follows that Fγ,K∪{γ } ⊂ X\A and so A ∈ �γ . Therefore, A ∈ � and
(1) holds. Moreover, for N ∈ Rloc we have that

N is μ̃− null if and only if N is μ− null. (2)

Indeed, if N isμ-null, for every E ∈ R∩2N we have that μ̃(E) = μ(E) ≤ μ(N ) = 0 and
so N is μ̃-null. Conversely, suppose that N is μ̃-null. If μ(N ) > 0, then there exists γ ∈ C
such thatμ(N ∩G{γ }) = 1 (see [16, 216E.(h)]), this is a contradiction as N ∩G{γ } ∈ R∩2N

and so μ(N ∩ G{γ }) = μ̃(N ∩ G{γ }) = 0.
Suppose that μ̃ is R-decomposable, that is, we can write X = (∪α∈�Xα) ∪ N where

{Xα : α ∈ �} is a family of pairwise disjoint sets in R satisfying that

(i) if Aα ∈ R ∩ 2Xα for all α ∈ �, then ∪α∈�Aα ∈ Rloc,

(ii) if Zα ∈ R ∩ 2Xα is μ̃-null for all α ∈ �, then ∪α∈�Zα is μ̃-null,

and N ∈ Rloc is a μ̃-null set disjoint with each Xα. Then, {Xα : α ∈ �} ∪ {N } is a disjoint
family of sets in � with μ(N ), μ(Xα) < ∞. Let us see that

� = {E ⊂ X : E ∩ N ∈ � and E ∩ Xα ∈ � for all α ∈ �}.
If E ∈ �, then obviously E ∩ Xα ∈ � for all α ∈ � and, by (1), E ∩ N ∈ �. Conversely,

if E ⊂ X is such that E ∩ N ∈ � and E ∩ Xα ∈ � for all α ∈ �, since E ∩ Xα ∈ R∩2Xα , by
(i) and (1), we have that ∪α∈�E ∩ Xα ∈ �. So, E = E ∩ X = (∪α∈�E ∩ Xα)∪(E ∩ N ) ∈ �.
Moreover, μ(E) =∑α∈� μ(E ∩ Xα) for every E ∈ �. Indeed, if

∑
α∈� μ(E ∩ Xα) < ∞,

then μ(E ∩ Xα) = 0 for all α ∈ �\� for some countable � ⊂ �. Since, by (ii) and (2),
∪α∈�\�E ∩ Xα is μ-null,

μ(E) = μ(∪α∈�E ∩ Xα) =
∑

α∈�
μ(E ∩ Xα) =

∑

α∈�
μ(E ∩ Xα).

If
∑
α∈� μ(E ∩ Xα) = ∞ then μ(E) = ∞, as supJ⊂�

finite

∑
α∈J μ(E ∩ Xα) ≤ μ(E).

Therefore (X, �,μ) is decomposable which is a contradiction.



So, μ̃ is not R-decomposable. However, since L1(μ̃) = L1
w(μ̃) as μ̃ takes values in R,

we have that L1
w(μ̃) has the Fatou property (see Proposition 5.4).

Now we can say that there is no relation between the main properties used in this paper,
R-decomposability and local σ -finiteness. Indeed, the vector measure given in the exam-
ple above is locally σ -finite (see Remark 4.5) but not R-decomposable. However, the vec-
tor measure given in Example 4.1 is R-decomposable, since it is discrete but not locally
σ -finite.

6 Representation theorems for Banach lattices

It is always interesting to know when a Banach lattice is order isometric to some Banach
function space. This problem has been studied using vector measures by several authors. It
was proved in [5, Theorem 8] that every order continuous Banach lattice with a weak unit
is order isometric to an space L1(ν) for a vector measure ν defined on a σ -algebra. This
result allows to represent any Banach lattice E with the σ -Fatou property with a weak unit
belonging to Ea as an space L1

w(ν)with ν defined on a σ -algebra, since in this case the order
isometry between Ea and L1(ν) can be extended to E and turns out to be an order isometry
between E and L1

w(ν), see [6, Theorem 2.5]. So, we have the following equivalences between
classes of spaces:

{
E order continuous Banach
lattice with a weak unit

}

≡ { L1(ν) with ν on a σ -algebra
}

and

⎧
⎨

⎩

E Banach lattice with the
σ -Fatou property such that
Eahas a weak unit

⎫
⎬

⎭
≡ { L1

w(ν) with ν on a σ -algebra
}
. (3)

For versions with E being p-convex see [15, Proposition 2.4] and [8, Theorem 4]. If we for-
get about the weak unit, it was stated in [4, pp. 22–23] and proved in detail in [12, Theorem 5]
that

{
E order continuous Banach lattice

} ≡ { L1(ν) with ν on a δ-ring
}
.

Moreover, from [12, Theorem 9] and Theorems 3.2, 4.2, 5.8, we have that
{

E Banach lattice with the Fatou property
such that Ea is order dense in E

}

≡
{

L1
w(ν) with ν on a δ-ring

being R − decomposable

}

.

Note that although the converse of Theorem 5.8 does not hold, if L1
w(ν) has the Fatou

property, by Theorems 3.2 and 4.2, there exists an R-decomposable vector measure ν̃ such
that L1

w(ν) is order isometric to L1
w(̃ν).

Now, we add another equivalence:
⎧
⎨

⎩

E Banach lattice with the
σ -Fatou property such that
Ea is super order dense in E

⎫
⎬

⎭
≡ { [L1(ν)]σ−F with ν on a δ-ring

}
. (4)

Indeed, since L1(ν) ⊂ [L1(ν)]σ−F ⊂ L1
w(ν), then 

([L1(ν)]σ−F 

)
a ⊂ 

(
L1
w(ν)

)
a and 

so, from Theorem 3.2, we have that  
([L1(ν)]σ−F 

)
a = L1(ν) which is super order dense



in [L1(ν)]σ−F , see the last part of the proof of Theorem 5.1. Let us prove the converse
containment.

Proposition 6.1 Every Banach lattice E with the σ -Fatou property such that Ea is super
order dense in E is order isometric to [L1(ν)]

σ−F for some vector measure ν defined on a
δ-ring.

Proof Let E be a Banach lattice with the σ -Fatou property such that Ea is super order dense
in E and consider the vector measure ν defined on a δ-ring such that the integration operator
Iν : L1(ν) → Ea given by Iν( f ) = ∫

f dν for all f ∈ L1(ν), is an order isometry, see
[12, Theorem 5]. Let us extend Iν to [L1(ν)]σ−F . First, consider 0 ≤ f ∈ [L1(ν)]σ−F and take
( fn) ⊂ L1(ν) such that 0 ≤ fn ↑ f. This is always possible since L1(ν) is super order dense
in [L1(ν)]σ−F as we have noted above. Since Iν is an order isometry, the sequence (Iν( fn)) ⊂
Ea ⊂ E satisfies that 0 ≤ Iν( fn) ↑ and sup ‖Iν( fn)‖E = sup ‖ fn‖ν ≤ ‖ f ‖ν < ∞. Then,
as E has the σ -Fatou property, there exists e = sup Iν( fn) in E and ‖e‖E = sup ‖Iν( fn)‖E .

We define T ( f ) = e.
A similar argument to the one in [6, Theorem 2.5], shows that T is well defined. To

be precise, take another sequence (gn) ⊂ L1(ν) such that 0 ≤ gn ↑ f and denote z =
sup Iν(gn). Let 0 ≤ x∗ ∈ E∗ be fixed. Then, x∗(e) ≥ x∗ (Iν( fn)) = ∫

fn dx∗ν for all n.
Since 0 ≤ fn ↑ f ν-a.e. and so x∗ν-a.e., by using the monotone convergence theorem, we
have that x∗(e) ≥ ∫ f dx∗ν ≥ x∗ (Iν( fn)) for all n. In a similar way, x∗(z) ≥ ∫ f dx∗ν ≥
x∗ (Iν(gn)) for all n. Thus, it follows that x∗(e) ≥ x∗ (Iν(gn)) and x∗(z) ≥ x∗ (Iν( fn)) for
all n. Since this holds for all 0 ≤ x∗ ∈ E∗, we have that e ≥ Iν(gn) and z ≥ Iν( fn) for all
n. Then, e ≥ z and z ≥ e, and so e = z. So, T is well defined. Moreover,

‖T ( f )‖E = ‖e‖E = sup ‖Iν( fn)‖E = sup ‖ fn‖ν = ‖ f ‖ν,
where in the last equality we have used that [L1(ν)]σ−F has the σ -Fatou property. Let us
see now that T preserves the lattice structure, that is T ( f ∧ g) = T f ∧ T g for every
0 ≤ f, g ∈ [L1(ν)]σ−F . Consider sequences ( fn), (gn) ⊂ L1(ν) satisfying that 0 ≤ fn ↑ f
and 0 ≤ gn ↑ g. Then, T f = sup Iν( fn) and T g = sup Iν(gn). Note that if xn ↑ x and
yn ↑ y in a Banach lattice then xn ∧ yn ↑ x ∧ y, see for instance [20, Theorem 15.3]. Then,
since 0 ≤ fn ∧ gn ↑ f ∧ g with ( fn ∧ gn) ⊂ L1(ν) and Iν is an order isometry, we have that

T ( f ∧ g) = sup Iν( fn ∧ gn) = sup Iν( fn) ∧ Iν(gn) = T f ∧ T g.

For a general f ∈ [L1(ν)]σ−F , we define T f = T f + − T f − where f + and f − are the
positive and negative parts of f respectively. So, T : [L1(ν)]σ−F → E is a positive linear
operator extending Iν . For the linearity, see for instance [20, Theorem 15.2]. Moreover T
is an isometry. Indeed, T f + ∧ T f − = T ( f + ∧ f −) = 0 as f + ∧ f − = 0, and so
|T f | = |T f + − T f −| = T f + + T f − = T | f |, see [20, Theorem 14.4]. Then, ‖T ( f )‖E =
‖T (| f |)‖E = ‖ f ‖ν for all f ∈ [L1(ν)]σ−F .

Let us prove that T is onto. Let 0 ≤ e ∈ E . Since Ea is super order dense in E, there exists
(en) ⊂ Ea such that 0 ≤ en ↑ e. Let ( fn) ⊂ L1(ν) ⊂ [L1(ν)]σ−F be such that en = Iν( fn).

Since I −1
ν is an order isometry, we have that 0 ≤ fn ↑ and sup ‖ fn‖ν = sup ‖en‖E ≤ ‖e‖E <

∞. Then, by the σ -Fatou property of [L1(ν)]σ−F , there exists f = sup fn in [L1(ν)]σ−F .

From the definition of T, we have that T f = sup Iν( fn) = sup en = e. For a general e ∈ E,
consider e+ and e− the positive and negative parts of e. Let g, h ∈ [L1(ν)]σ−F be such that
T g = e+ and T h = e−. Then, taking f = g − h ∈ [L1(ν)]σ−F we have that T f = e. Note
that T −1 is positive. So, T is positive, linear, one to one and onto with inverse being positive,
then T is an order isomorphism (see [19, p. 2]). ��



Note that the class of spaces in (3) is contained in the one in (4). Indeed, take a weak unit
0 ≤ u ∈ Ea . Then 0 ≤ e ∧ n u ↑ e for each 0 ≤ e ∈ E where e ∧ n u ∈ Ea, and so Ea is
super order dense in E . In this case we obtain that [L1(ν)]σ−F = L1

w(ν), since ν is defined
on a σ -algebra.

7 Example

We end by showing that there exist R-decomposable vector measures ν which are not σ -finite
nor discrete.

Let� be an abstract set. For eachγ ∈ �, consider a non null vector measure νγ : �γ → Xγ
defined on a σ -algebra�γ of subsets of a set	γ and with values in a Banach space Xγ . Take
the set	 = ∪γ∈�{γ }×	γ and the δ-ring R of subsets of	 given by the sets ∪γ∈�{γ }× Aγ
with Aγ ∈ �γ for all γ ∈ �, for which there exists a finite set J ⊂ � such that Aγ is νγ -null
for all γ ∈ �\J, see [12, p. 5]. Then,

Rloc = {∪γ∈�{γ } × Aγ : Aγ ∈ �γ for all γ ∈ �} .
Note that a function f : 	 → R is Rloc-measurable if and only if f (γ, ·) : 	γ → R is
�γ -measurable for all γ ∈ �.

Denote by c0
(
�,(Xγ )γ∈�

)
the Banach space of all families (xγ )γ∈� such that xγ ∈ Xγ

for every γ ∈ � and
(
‖xγ ‖Xγ

)

γ∈� ∈ c0(�), endowed with the norm ‖(xγ )γ∈�‖ =
supγ∈� ‖xγ ‖Xγ

. Note that the topological dual c0
(
�, (Xγ )γ∈�

)∗ can be identified with the

Banach space �1
(
�, (X∗

γ )γ∈�
)

of families (x∗
γ )γ∈� such that x∗

γ ∈ X∗
γ for every γ ∈ � and

(
‖x∗
γ ‖

X∗
γ

)

γ∈� ∈ �1(�), endowed with the norm ‖(x∗
γ )γ∈�‖ = ∑

γ∈� ‖x∗
γ ‖Xγ

. The action

of any x∗ = (x∗
γ )γ∈� ∈ �1

(
�, (X∗

γ )γ∈�
)

on x = (xγ )γ∈� ∈ c0
(
�, (Xγ )γ∈�

)
is given by

x∗(x) =∑γ∈� x∗
γ (xγ ).

Consider the vector measure ν : R → c0
(
�, (Xγ )γ∈�

)
given by

ν
(∪γ∈�{γ } × Aγ

) = (νγ (Aγ )
)
γ∈� .

Note that a set A = ∪γ∈�{γ }× Aγ ∈ Rloc is ν-null if and only if Aγ is νγ -null for all γ ∈ �.
Then, it is direct to check that:

(a) ν is R-decomposable.
(b) ν is σ -finite if and only if � is countable.
(c) ν is discrete if and only if νγ is discrete for all γ ∈ �.

Let us prove that L1
w(ν) can be described as the space of functions f ∈ M(Rloc) such

that f (γ, ·) ∈ L1
w(νγ ) for all γ ∈ � with (‖ f (γ, ·)‖νγ )γ∈� ∈ �∞(�), and moreover,

‖ f ‖ν = supγ∈� ‖ f (γ, ·)‖νγ for all f ∈ L1
w(ν), that is,

L1
w(ν) = �∞

(
�, (L1

w(νγ ))γ∈�
)
.

Given x∗ = (x∗
γ )γ∈� ∈ �1

(
�, (X∗

γ )γ∈�
)
, since |x∗ν|(A) = ∑

γ∈� |x∗
γ νγ |(Aγ ) ≤ ∞ for

every A = ∪γ∈�{γ } × Aγ ∈ Rloc, we have that
∫

| f | d|x∗ν| =
∑

γ∈�

∫

| f (γ, ·)| d|x∗
γ νγ | ≤ ∞, for all f ∈ M(Rloc). (5)



Indeed, (5) holds for Rloc-simple functions, and so for a general f by using the monotone
convergence theorem. Let us see that if f ∈ L1(x∗ν), then

∫

A

f dx∗ν =
∑

γ∈�

∫

Aγ

f (γ, ·) dx∗
γ νγ . (6)

In this case, by (5), f (γ, ·) ∈ L1(x∗
γ νγ ) for every γ ∈ � and

∫ | f (γ, ·)| d|x∗
γ νγ | = 0 (and so

f (γ, ·) = 0 except on a x∗
γ νγ -null set Zγ ) for allγ ∈ �\J with J being some countable subset

of �. Then, f χA = f χ∪γ∈J {γ }×Aγ ν-a.e. (except on the ν-null set ∪γ∈�\J {γ } × Aγ ∩ Zγ ).
By using the dominated convergence theorem, we have that

∫

A

f dx∗ν =
∑

γ∈J

∫

{γ }×Aγ

f dx∗ν.

Noting that
∫
{γ }×Aγ

f dx∗ν = ∫Aγ
f (γ, ·) dx∗

γ νγ holds for Rloc-simple functions and so

for any f ∈ L1(x∗ν) by density of the Rloc-simple functions in L1(x∗ν), we conclude that
(6) holds.

Let f ∈ L1
w(ν) and fix β ∈ �. Given x∗

β ∈ X∗
β, define the element x∗ = (x∗

γ )γ∈� in

�1
(
�, (X∗

γ )γ∈�
)

by x∗
γ = x∗

β if γ = β and x∗
γ = 0 in other case. Then, from (5), we have

that
∫ | f (β, ·)| d|x∗

βνβ | = ∫ | f | d|x∗ν| < ∞ and so f (β, ·) ∈ L1
w(νβ) with ‖ f (β, ·)‖νβ ≤

‖ f ‖ν . Thus, (‖ f (γ, ·)‖νγ )γ∈� ∈ �∞(�) and supγ∈� ‖ f (γ, ·)‖νγ ≤ ‖ f ‖ν .
Let now f ∈ M(Rloc) satisfying that f (γ, ·) ∈ L1

w(νγ ) for every γ ∈ � and

(‖ f (γ, ·)‖νγ )γ∈� ∈ �∞(�). Given x∗ = (x∗
γ )γ∈� ∈ �1

(
�, (X∗

γ )γ∈�
)
, from (5), we have

that
∫

| f | d|x∗ν| =
∑

γ∈�

∫

| f (γ, ·)| d|x∗
γ νγ | ≤

∑

γ∈�
‖x∗
γ ‖

X∗
γ
‖ f (γ, ·)‖νγ

≤ sup
γ∈�

‖ f (γ, ·)‖νγ
∑

γ∈�
‖x∗
γ ‖

X∗
γ
< ∞.

Then, f ∈ L1
w(ν) and ‖ f ‖ν ≤ supγ∈� ‖ f (γ, ·)‖νγ .

Moreover, L1(ν) can be described as the space of functions f ∈ M(Rloc) such that
f (γ, ·) ∈ L1(νγ ) for every γ ∈ � with (‖ f (γ, ·)‖νγ )γ∈� ∈ c0(�), that is,

L1(ν) = c0
(
�, (L1

w(νγ ))γ∈�
)
.

Indeed, if f ∈ L1(ν)we can take (ϕn) ⊂ S(R) such that ϕn → f in L1(ν). For each γ ∈ �,
we have that f (γ, ·) ∈ L1

w(νγ ) (as f ∈ L1
w(ν)) and (ϕn(γ, ·)) ⊂ S(�γ ) ⊂ L1(νγ ). Then,

since ‖ f (γ, ·) − ϕn(γ, ·)‖νγ ≤ ‖ f − ϕn‖ν and L1(νγ ) is closed in L1
w(νγ ), it follows that

f (γ, ·) ∈ L1(νγ ). On the other hand, for each n we can write ϕn = ∑m
j=1 α jχA j where

α j ∈ R and A j = ∪γ∈�{γ } × A j
γ . Here, A j

γ ∈ �γ for all γ ∈ � and satisfies that A j
γ is

νγ -null for all γ ∈ �\J j for some finite set J j ⊂ �. Then, ϕn(γ, ·) =∑m
j=1 α jχA j

γ
= 0 νγ -

a.e. for all γ ∈ �\ ∪m
j=1 J j where ∪m

j=1 J j is a finite set, and so (‖ϕn(γ, ·)‖νγ )γ∈� ∈ c0(�).

Since (‖ f (γ, ·)‖νγ )γ∈� ∈ �∞(�) and

sup
γ∈�

∣
∣ ‖ f (γ, ·)‖νγ − ‖ϕn(γ, ·)‖νγ

∣
∣ ≤ sup

γ∈�
‖ f (γ, ·)− ϕn(γ, ·)‖νγ = ‖ f − ϕn‖ν,

it follows that (‖ f (γ, ·)‖νγ )γ∈� ∈ c0(�).



Conversely, suppose that f ∈ M(Rloc) is such that f (γ, ·) ∈ L1(νγ ) for all γ ∈ � and
(‖ f (γ, ·)‖νγ )γ∈� ∈ c0(�). In particular, f ∈ L1

w(ν). Given an element x∗ = (x∗
γ )γ∈� ∈

�1
(
�, (X∗

γ )γ∈�
)

and A = ∪γ∈�{γ } × Aγ ∈ Rloc, we note that
(∫

Aγ
f (γ, ·) dνγ

)

γ∈� ∈
c0
(
�, (Xγ )γ∈�

)
as ‖ ∫Aγ

f (γ, ·) dνγ ‖Xγ ≤ ‖ f (γ, ·)‖νγ for each γ ∈ �. Moreover, by (6),

x∗

⎛

⎜
⎜
⎝

⎛

⎜
⎝

∫

Aγ

f (γ, ·) dνγ

⎞

⎟
⎠

γ∈�

⎞

⎟
⎟
⎠ =

∑

γ∈�
x∗
γ

⎛

⎜
⎝

∫

Aγ

f (γ, ·) dνγ

⎞

⎟
⎠

=
∑

γ∈�

∫

Aγ

f (γ, ·) dx∗
γ νγ =

∫

A

f dx∗ν.

So, f ∈ L1(ν) and
∫

A f dν =
(∫

Aγ
f (γ, ·) dνγ

)

γ∈� .

Note that if ν is locally σ -finite, since h = ∑
γ∈� 1

‖νγ ‖(	γ )χ{γ }×	γ ∈ L1
w(ν) and

supp(h) = 	, from Proposition 4.9, it follows that ν is σ -finite. So, in this case ν is locally
σ -finite if and only if ν is σ -finite if and only if � is countable.

In particular, consider a non atomic measure space (�,�,μ) and an order continuous
B.f.s. X related toμwhich does not contain any copy of c0 and such that χ�∈ X, for instance
X = L p[0, 1] related to the Lebesgue measure for p≥1.Then,η : �→ X given byη(A)=χA

for all A ∈ �, is a non discrete vector measure such that L1
w(ν) = L1(ν) = X. Taking �

uncountable and νγ = η for all γ ∈ �, we obtain an R-decomposable vector measure ν
which is not σ -finite nor discrete. In this case, L1

w(ν) = �∞(�, X) and L1(ν) = c0(�, X).
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