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In this paper, we present new results about the space Lp (ν) for ν being a vector measure 
defined in the Borel σ -algebra of a compact abelian group G and satisfying certain property 
concerning translation of simple functions. Namely, we show that Lp (ν) is a translation 
invariant space which can be endowed with an algebra structure via usual convolution 
product. We apply these results to the optimal domain of the Fourier transform and 
convolution operators.

1. Introduction

Given a compact abelian group G , the space L p(G), where 1 � p < ∞ and the integration is with respect to the Haar
measure m of G , is homogeneous, an L1(G)-module and so a commutative Banach algebra for the convolution product.
These are classical topics in harmonic analysis, see [12]. Our aim is to extend these facts to the setting of vector measures.

Vector measures turn out to be a powerful tool for the study of operators T : E → X between function spaces, for an
overview see [2], [11, Chapter 4]. In fact, the optimal domain of T , that is the larger Banach function space to which T can
be extended still with values in X , can be described as the space L1(ν) of integrable functions with respect to the vector
measure ν canonically associated to T via ν(A) = T (χA). In this way, we obtain important information about the optimal
domain of T , in particular, it is an order continuous Banach lattice with weak order unit. Now, using the results of this
paper, we can obtain more useful information as it is homogeneous and can be endowed with an algebra structure. Note
that L1(ν) is not in general a classical Lebesgue space, indeed every order continuous Banach lattice with weak unit can be
described as a space L1(ν) for some vector measure ν , see [1, Theorem 8].

So, we consider a vector measure ν : B(G) → X , where B(G) is the Borel σ -algebra of G and X is a Banach space. Of
course, as in the case of L p(G) in which the properties of the Haar measure m are crucial, ν will have to satisfy some
special conditions. Namely, ν is absolutely continuous with respect to m and the norms of the integrals with respect to ν of
a simple function ϕ and any of its translations τaϕ coincide. We show that the space L p(ν) of functions whose pth power
is integrable with respect to ν , is homogeneous (Theorem 3.8) and an L1(G)-module (Theorem 4.6). In particular, L p(ν) is
closed for the convolution product and so can be endowed with a Banach algebra structure. Similar results are presented
for the space L p

w(ν) of functions whose pth power is weakly integrable with respect to ν . The proof of these facts relies
on a result, interesting by itself and based on the Markoff–Kakutani fixed point theorem, establishing that actually the Haar
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measure m is a Rybakov control measure with a density h0 belonging to the Köthe dual of L1(ν), i.e. dm = h0 d|x∗
0ν| for

some x∗
0 in the topological dual space of X (Theorem 4.1).

In Section 5 we apply our results to the optimal domain of some classical operators. The first one is the Fourier trans-
form F : L p(G) → �q(Γ ), where 1 � p � 2, 1/p + 1/q = 1 and Γ is the dual group of G . This operator has been recently
investigated in [8] for the case G = T and in [11, Chapter 7.1] for the general case, where different descriptions of its opti-
mal domain (i.e. the optimal domain of the Hausdorff–Young inequality) are given, providing an exact answer to a question
posed by R.E. Edwards in [4] some forty years ago. Also, the authors establish another important facts for classical harmonic
analysis which can be now deduced from our general setting. The second one is any linear continuous operator T : E → E
commuting with the translation operator (i.e. τa T = T τa for all a ∈ G), where E is a translation invariant, order continuous,
Banach function space. In particular, we consider E = L p(G) for 1 � p < ∞ and T f = f ∗ μ for μ any complex regular
measure defined on B(G). This last example has been studied in [9,10] and [11, Chapter 7.3].

2. Preliminaries

Let G be a compact abelian group, that is, an abelian group with a structure of compact Hausdorff topological space
such that the group operations are continuous. Denote by B(G) the Borel σ -algebra of G . There exists a unique translation
invariant regular measure m : B(G) → [0,∞) with m(G) = 1, called the Haar measure of G . Denote by L0(G) the space of
all complex measurable functions defined on G , where functions which are equal m-a.e. are identified. As usual, we denote
by L p(G) (1 � p < ∞) the space of functions in L0(G) whose pth power is m-integrable and by L∞(G) the space of m-a.e.
bounded functions, with standard norms. Note that L∞(G) ⊂ L p(G) ⊂ L1(G) continuously with continuity constant 1. For
each a ∈ G , the translation operator τa is given by τa f (s) = f (s − a) for f ∈ L0(G) and s ∈ G . A Banach space Y ⊂ L1(G) is
homogeneous if

(i) τa f ∈ Y for every f ∈ Y and a ∈ G (i.e. Y is translation invariant) and ‖τa f ‖Y = ‖ f ‖Y ,
(ii) for each f ∈ Y , the map a �→ τa f is continuous from G into Y .

The space Y is an L1(G)-module if for every f ∈ L1(G) and g ∈ Y we have that f ∗ g ∈ Y with ‖ f ∗ g‖Y � ‖ f ‖L1(G)‖g‖Y ,
where f ∗ g denotes the convolution product of f and g , i.e.

f ∗ g(t) =
∫
G

f (s)g(t − s)dm(s), for all t ∈ G.

Let ν : B(G) → X be a vector measure, that is, a countably additive set function, where X is a complex (or real) Banach
space. A set A ∈ B(G) is ν-null if ν(B) = 0 for every B ∈ B(G) with B ⊂ A. The semivariation of ν is the set function
‖ν‖ : B(G) → [0,∞) defined by

‖ν‖(A) = sup
x∗∈B X∗

∣∣x∗ν
∣∣(A), for all A ∈ B(G),

where B X∗ is the closed unit ball of the topological dual space X∗ of X and |x∗ν| is the variation of the complex mea-
sure x∗ν . A set A ∈ B(G) is ν-null if and only if ‖ν‖(A) = 0. The vector measure ν is absolutely continuous with respect to a
positive measure λ on B(G) (written as ν 	 λ) if ‖ν‖(A) → 0 as λ(A) → 0. In the case when λ is a finite measure, ν 	 λ if
and only if every λ-null set is ν-null. A Rybakov control measure for ν is a finite positive measure μ = |x∗

0ν| for some x∗
0 ∈ X∗

such that ν 	 μ. Note that such a measure always exists (see [3, Theorem IX.2.2]) and has the same null sets as ν , since
μ(A) � ‖x∗

0‖X∗‖ν‖(A) for all A ∈ B(G).
A function f ∈ L0(G) is integrable with respect to ν if it satisfies:

(i)
∫

G | f |d|x∗ν| < ∞ for all x∗ ∈ X∗ .
(ii) For each A ∈ B(G), there exists xA ∈ X such that

x∗(xA) =
∫
A

f dx∗ν, for all x∗ ∈ X∗.

The element xA will be written as
∫

A f dν . Denote by L1(ν) the space of integrable functions with respect to ν and by
L1

w(ν) the space of functions satisfying only condition (i), where functions which are equal ν-a.e. (i.e. except on a ν-null
set) are identified. Note that if μ is a Rybakov control measure for ν , the ν-a.e. and μ-a.e. classes of functions coincide. The
spaces L1(ν) and L1

w(ν) are Banach spaces endowed with the norm

‖ f ‖ν = sup
x∗∈B X∗

∫
| f |d

∣∣x∗ν
∣∣, for all f ∈ L1

w(ν).
Ω



The space of all simple functions is dense in L1(ν) and for a simple function ϕ = ∑
α jχA j , we have that

∫
A ϕ dν =∑

α jν(A j ∩ A). Note that L1(ν) is a closed subspace of L1
w(ν). The integration operator Iν : L1(ν) → X defined by

Iν( f ) = ∫
G f dν for all f ∈ L1(ν), is linear and continuous with ‖Iν‖ � 1.

Let μ be a Rybakov control measure for ν . Then L1(ν) and L1
w(ν) are Banach function spaces related to μ, in the sense

of Lindenstrauss and Tzafriri [7, Definition 1.b.17], i.e. a Banach space E with L∞(μ) ⊂ E ⊂ L1(μ) and satisfying that if
f ∈ E , g ∈ L0(μ) and |g| � | f | μ-a.e. then g ∈ E and ‖g‖E � ‖ f ‖E . Moreover, the space L1(ν) is order continuous, i.e. if
f , fn ∈ L1(ν) are such that 0 � fn ↑ f ν-a.e. then fn → f in L1(ν). We will consider the Köthe dual space of L1(ν), i.e.

L1(ν)′ = {
g ∈ L0(μ): f g ∈ L1(μ), for all f ∈ L1(ν)

}
,

which is a Banach function space related to μ, endowed with the norm

‖g‖L1(ν)′ = sup
f ∈BL1(ν)

∫
G

| f g|dμ.

Since L1(ν) is order continuous, then L1(ν)∗ can be identified with L1(ν)′ , more precisely, each x∗ ∈ L1(ν)∗ is identified
with a function g ∈ L1(ν)′ via x∗( f ) = ∫

G f g dμ for all f ∈ L1(ν) (see [7, p. 29]).
For 1 � p < ∞, let L p

w(ν) be the p-power of L1
w(ν), that is, the space of functions f ∈ L0(μ) such that | f |p ∈ L1

w(ν).
Similarly, L p(ν) will denote the p-power of L1(ν). Both spaces are Banach function spaces with norm

‖ f ‖ν,p := ∥∥| f |p
∥∥1/p
ν

, for all f ∈ Lp
w(ν),

and L p(ν) ⊂ L p
w(ν) ⊂ L1(ν), see [5,13]. Note that for p = ∞, the space L∞(ν) of functions which are bounded ν-a.e. coincide

with L∞(μ), so this case will be not considered.
For a complete overview about integration with respect to vector measures we refer to [2], [11, Chapter 3] and the

references therein.

3. Homogeneity for L p of a vector measure

Let G be a compact abelian group, X a Banach space and ν : B(G) → X a non-null vector measure.

Definition 3.1. We say that ν is norm integral translation invariant if∥∥Iν(τaϕ)
∥∥

X �
∥∥Iν(ϕ)

∥∥
X , (1)

for every simple function ϕ and a ∈ G .

Remark 3.2. For every a ∈ G and every simple function ϕ = ∑
α jχA j we have that τaϕ = ∑

α jχA j+a is also a simple
function and so both are integrable with respect to ν . Actually, the inequality in (1) is an equality, since ϕ = τ−a(τaϕ). In
particular, taking ϕ = χA with A ∈ B(G),∥∥ν(A + a)

∥∥
X = ∥∥Iν(τaχA)

∥∥
X = ∥∥Iν(χA)

∥∥
X = ∥∥ν(A)

∥∥
X .

Note that ν translation invariant (i.e. ν(A + a) = ν(A) for all A ∈ B(G) and a ∈ G) implies ν norm integral translation
invariant.

From now and on, the vector measure ν : B(G) → X will always be norm integral translation invariant. Let Xν denote
the subspace of X given by the image of all simple functions by Iν . For every a ∈ G , we consider the correspondence
Sa : Xν → Xν defined by

Sa
(

Iν(ϕ)
) := Iν(τaϕ), for all simple functions ϕ. (2)

Then, (1) is equivalent to Sa being a well-defined linear continuous map with ‖Sa‖ � 1. Note that

Sa
(
ν(A)

) = ν(A + a), for all A ∈ B(G) (3)

(take ϕ = χA in (2)) and so Sa ◦ ν : B(G) → X is a vector measure.

Lemma 3.3. The following claims hold:

(i) {Sa}a∈G is a commutative group under composition of operators.
(ii) Sa is an isometric isomorphism for each a ∈ G, and so ‖Sa‖ = 1.



Proof. Given a,b ∈ G , for every simple function ϕ we have that

Sa ◦ Sb
(

Iν(ϕ)
) = Sa

(
Iν(τbϕ)

) = Iν
(
τa(τbϕ)

) = Iν(τa+bϕ) = Sa+b
(

Iν(ϕ)
)
.

Then Sa ◦ Sb = Sa+b and so the family {Sa}a∈G is commutative and closed under composition of operators. Note that
Sa ◦ S−a = S−a ◦ Sa = S0 where S0 is the identity map. Thus, (i) holds. Moreover, Sa is bijective and, since ‖Sa‖ � 1 for
arbitrary a ∈ G , for every x ∈ Xν it follows that∥∥Sa(x)

∥∥
X � ‖x‖X = ∥∥S−a

(
Sa(x)

)∥∥
X �

∥∥Sa(x)
∥∥

X .

Then, Sa is an isometry and so (ii) holds. �
The group {Sa}a∈G given in Lemma 3.3 is the tool for proving the following technical result, which will be the key for

showing that the spaces L1
w(ν) and L1(ν) are translation invariant.

Lemma 3.4. For every x∗ ∈ X∗ and a ∈ G, there exists x∗
a ∈ X∗ such that ‖x∗

a‖X∗ � ‖x∗‖X∗ and

x∗ν(A + a) = x∗
aν(A), for all A ∈ B(G). (4)

Proof. Fix x∗ ∈ X∗ and a ∈ G . Let Sa be the operator given in (2) and take y∗
a := x∗ ◦ Sa ∈ X∗

ν for which ‖y∗
a‖X∗

ν
� ‖x∗‖X∗ .

Then, from the Hahn Banach extension theorem, there exists x∗
a ∈ X∗ such that x∗

a = y∗
a on Xν and ‖x∗

a‖X∗ = ‖y∗
a‖X∗

ν
. More-

over, from (3) it follows

x∗
aν(A) = y∗

aν(A) = (
x∗ ◦ Sa

)
ν(A) = x∗ν(A + a)

for all A ∈ B(G). �
Proposition 3.5. The spaces L1(ν), L1

w(ν) are translation invariant with

(i) ‖τa f ‖ν = ‖ f ‖ν for every f ∈ L1
w(ν) and a ∈ G,

(ii) ‖Iν(τa f )‖X = ‖Iν( f )‖X for every f ∈ L1(ν) and a ∈ G.

Proof. Let a ∈ G , x∗ ∈ X∗ and consider the element x∗
a ∈ X∗ given in Lemma 3.4. It is direct to check that (4) implies

|x∗ν|(A + a) = |x∗
aν|(A) for all A ∈ B(G). Then, for every simple function ϕ = ∑

α jχA j for which τaϕ = ∑
α jχA j+a , it

follows that∫
G

τaϕ d
∣∣x∗ν

∣∣ =
∑

α j
∣∣x∗ν

∣∣(A j + a) =
∑

α j
∣∣x∗

aν
∣∣(A j) =

∫
G

ϕ d
∣∣x∗

aν
∣∣.

Given f ∈ L0(G) and a sequence (ϕn) of simple functions such that 0 � ϕn ↑ | f | pointwise, since 0 � τaϕn ↑ |τa f | pointwise,
applying the monotone convergence theorem we have that∫

G

|τa f |d
∣∣x∗ν

∣∣ = lim
n

∫
G

τaϕn d
∣∣x∗ν

∣∣ = lim
n

∫
G

ϕn d
∣∣x∗

aν
∣∣ =

∫
G

| f |d
∣∣x∗

aν
∣∣.

So, if f ∈ L1
w(ν) then τa f ∈ L1

w(ν) and, since ‖x∗
a‖X∗ � ‖x∗‖X∗ , we have that ‖τa f ‖ν � ‖ f ‖ν . This is for arbitrary a ∈ G , so

actually we have that ‖τa f ‖ν = ‖ f ‖ν , since f = τ−a(τa f ).
For f ∈ L1(ν), taking a sequence (ϕn) of simple functions converging to f in L1(ν), we have that τa f ∈ L1

w(ν) and

‖τa f − τaϕn‖ν = ∥∥τa( f − ϕn)
∥∥
ν

= ‖ f − ϕn‖ν → 0.

Since L1(ν) is the closure of the simple functions in L1
w(ν) and (τaϕn) is a sequence of simple functions, then τa f ∈ L1(ν).

Moreover, by the continuity of the integration operator Iν and by (1), we have that∥∥Iν(τa f )
∥∥

X = lim
n

∥∥Iν(τaϕn)
∥∥

X = lim
n

∥∥Iν(ϕn)
∥∥

X = ∥∥Iν( f )
∥∥

X . �
Remark 3.6. Applying Proposition 3.5(i) to f = χA with A ∈ B(G) and noting that ‖ν‖(A) = ‖χA‖ν for arbitrary A, it
follows that ‖ν‖(A + a) = ‖ν‖(A) for all a ∈ G . That is, the semivariation of ν is translation invariant. As a consequence
of Proposition 3.5(ii), the operator Sa given in (2) can be extended to Iν(L1(ν)) in the way Sa(Iν( f )) := Iν(τa f ) for all
f ∈ L1(ν) and the extension is an isometric isomorphism from Iν(L1(ν)) into itself.



Consider now the spaces L p(ν) and L p
w(ν) with 1 � p < ∞. Since they are the p-powers of L1(ν) and L1

w(ν) respectively,
which are translation invariant and satisfy Proposition 3.5(i), the following result holds. Note that τa(| f |p) = |τa f |p for all
a ∈ G and f ∈ L0(G).

Corollary 3.7. The spaces L p(ν) and L p
w(ν) are translation invariant with ‖τa f ‖ν,p = ‖ f ‖ν,p for all a ∈ G and f ∈ L p

w(ν).

Due to the density of the simple functions in L p(ν), we get the next theorem whose proof is quite similar to that in [12,
Theorem 1.1.5] for the spaces L p(G). We include it here for completeness.

Theorem 3.8. Assume that ν 	 m. For each fixed f ∈ L p(ν), the map a �→ τa f is uniformly continuous from G into L p(ν). Conse-
quently, L p(ν) is homogeneous.

Proof. Denote by C(G) the space of all continuous complex functions on G . Let ϕ be a simple function and ε > 0. Since
G is compact and m is finite and regular, for every δ > 0, Lusin’s theorem gives a function g ∈ C(G) such that g = ϕ except
on a set S with m(S) < δ and ‖g‖∞ � ‖ϕ‖∞ . Then,

‖ϕ − g‖ν,p � ‖ϕ − g‖∞‖χS‖ν,p � 2‖ϕ‖∞‖ν‖(S)1/p < ε

taking δ small enough, since ν 	 m. From this it follows that C(G) is dense in L p(ν), since the space of simple functions is
so. Given f ∈ L p(ν) and ε > 0, we take g ∈ C(G) such that ‖ f − g‖ν,p < ε/3. Since g is uniformly continuous in G , there
exists a neighborhood V of 0 such that |g(a) − g(b)| < ε(3‖ν‖(G)1/p)−1 for all a,b ∈ G with a − b ∈ V . Then,

‖τa f − τb f ‖ν,p �
∥∥τa( f − g)

∥∥
ν,p + ‖τa g − τb g‖ν,p + ∥∥τb(g − f )

∥∥
ν,p

� 2‖ f − g‖ν,p + ‖τa g − τb g‖∞‖ν‖(G)1/p < ε

for all a,b ∈ G with a − b ∈ V . From this and Corollary 3.7 it follows that L p(ν) is homogeneous. �
Since G is compact, the trigonometric polynomials on G (i.e.

∑n
j=1 α jγ j with γ j ∈ Γ and α j ∈ C) are dense in C(G), see

[12, p. 24]. In the case when ν 	 m, the space C(G) is dense in L p(ν), as proved in Proposition 3.5.

Corollary 3.9. If ν 	 m, then the trigonometric polynomials on G are dense in Lp(ν).

Remark 3.10. The conclusions of Theorem 3.8 and Corollary 3.9 hold if there exists some positive finite regular measure λ

on B(G) such that ν 	 λ.

4. Convolution product in L p(ν)

Let ν : B(G) → X be a norm integral translation invariant vector measure such that ν 	 m. We begin this section by
showing that the Haar measure m is just a Rybakov control measure for ν with a certain density. This fact will be the key
for proving that L1

w(ν) is embedded in L1(G), which will allow us to consider the convolution product of functions in L p(ν)

and L p
w(ν).

Theorem 4.1. Let μ be a Rybakov control measure for ν . Then, there exists 0 � h0 ∈ L1(ν)′ with ‖h0‖L1(ν)′ = ‖ν‖(G)−1 such that
m(A) = ∫

A h0 dμ for all A ∈ B(G).

Proof. Consider the set

K = {
ξ∗ ∈ BL1(ν)∗ : ξ∗(χG) = ‖ν‖(G)

}
.

Note that 0 �= χG ∈ L1(ν), since ‖χG‖ν = ‖ν‖(G) �= 0 as ν is considered non-null. Then, from the Hahn–Banach theorem,
there exists ξ∗

0 ∈ L1(ν)∗ with ‖ξ∗
0 ‖L1(ν)∗ = 1 such that ξ∗

0 (χG) = ‖χG‖ν = ‖ν‖(G). That is, K is non-empty. It can be di-
rectly checked that K is convex. Consider the weak∗ topology in L1(ν)∗ , for which BL1(ν)∗ is compact. Since the functional
f : L1(ν)∗ → C, given by f (ξ∗) = ξ∗(χG) for all ξ ∈ L1(ν)∗ , is continuous and K = f −1({‖ν‖(G)}) ∩ BL1(ν)∗ , we have that
K is closed inside of a compact set. So, K is compact.

For every a ∈ G , we consider the linear operator Ta : L1(ν)∗ → L1(ν)∗ defined by Ta(ξ
∗) = ξ∗ ◦τa for all ξ∗ ∈ L1(ν)∗ . Since

by Proposition 3.5, the translation operator τa : L1(ν) → L1(ν) is an isometric isomorphism and Ta is just the transposed
operator of τa , then Ta is weak∗–weak∗ continuous. Moreover, the family of operators {Ta}a∈G is commuting as {τa}a∈G is
so. For every ξ∗ ∈ K , we have that∥∥Ta

(
ξ∗)∥∥

1 ∗ � ‖Ta‖
∥∥ξ∗∥∥

1 ∗ = ‖τa‖
∥∥ξ∗∥∥

1 ∗ = ∥∥ξ∗∥∥
1 ∗ � 1.
L (ν) L (ν) L (ν) L (ν)



Moreover, noting that τaχG = χG for all a ∈ G , we have that

Ta
(
ξ∗)(χG) = ξ∗(τaχG) = ξ∗(χG) = ‖ν‖(G).

So, Ta(ξ
∗) ∈ K . Therefore, {Ta}a∈G is a commuting family of weak∗–weak∗ continuous affine maps from K into K , where

K is non-empty, convex and weak∗-compact. This is the hypothesis of the Markoff–Kakutani theorem (see for instance [6,
Theorem 3.2]) which ensures the existence of a common fixed point for the family {Ta}a∈G . Namely, there exists ξ∗

0 ∈ K
such that Ta(ξ

∗
0 ) = ξ∗

0 for every a ∈ G . Note that ‖ξ∗
0 ‖L1(ν)∗ = 1, since

1 = 1

‖ν‖(G)
ξ∗

0 (χG) = 1

‖χG‖ν
ξ∗

0 (χG) �
∥∥ξ∗

0

∥∥
L1(ν)∗ � 1.

In particular, ξ∗
0 �= 0. By the identification of L1(ν)∗ with L1(ν)′ (see Preliminaries), there exists g0 ∈ L1(ν)′ such that

‖g0‖L1(ν)′ = ‖ξ0‖L1(ν)∗ = 1 and

ξ∗
0 ( f ) =

∫
G

f g0 dμ, for all f ∈ L1(ν).

Note that g0 ∈ L1(μ), since χG ∈ L1(ν). Let μ0 denote the measure μ with density g0. Then, for all A ∈ B(G) and a ∈ G , it
follows

μ0(A + a) =
∫

A+a

g0 dμ = ξ∗
0 (χA+a) = ξ∗

0 (τaχA) = Ta
(
ξ∗

0

)
(χA) = ξ∗

0 (χA) =
∫
A

g0 dμ = μ0(A).

Hence, μ0 is translation invariant and thus its variation |μ0| is so. Of course, |μ0| is the measure μ with density |g0| and
so is non-null. For all A ∈ B(G),

|μ0|(A) =
∫
A

|g0|dμ � ‖g0‖L1(ν)′ ‖χA‖ν = ‖ν‖(A). (5)

This, together with the fact that ν 	 m, implies that |μ0| 	 m. By using the Radon–Nikodym theorem, it can be checked
that |μ0| is regular as m is so. Then, by uniqueness of the Haar measure, |μ0| = |μ0|(G)m. So, for all A ∈ B(G), we have
that m(A) = ∫

A h0 dμ with 0 � h0 = 1
|μ0|(G)

|g0| ∈ L1(ν)′ . Moreover, since

‖ν‖(G) = ξ∗
0 (χG) =

∣∣∣∣
∫
G

g0 dμ

∣∣∣∣ �
∫
G

|g0|dμ = |μ0|(G),

from (5) it follows that ‖h0‖L1(μ) = |μ0|(G)−1 = ‖ν‖(G)−1. �
As a consequence of Theorem 4.1, we have that actually ν and m are equivalent, that is, have the same null sets. This

condition will be needed for the inclusion of L1
w(ν) in L1(G) to be injective.

Remark 4.2. Again, the conclusion of Theorem 4.1 holds if there exists some positive finite regular measure λ on B(G) such
that ν 	 λ. But in this case it is not guaranteed that ν and m are equivalent. Also, the conclusion holds if μ is any finite
positive measure equivalent to ν .

Remark 4.3. Theorem 4.1 can be improved in the case when ν(G) is a non-null element of X . Namely, in this case m is just
a Rybakov control measure for ν , i.e. m = |x∗

0ν| for some x∗
0 ∈ X∗ . The proof is also based in the Markoff–Kakutani theorem

but using different K and {Ta}a∈G . More precisely, considering the set

K = {
y∗ ∈ B X∗

ν
: y∗ν(G) = ∥∥ν(G)

∥∥
X

}
,

where Xν is the subspace of X given by the image of all simple functions by Iν , and the linear operators Ta : X∗
ν → X∗

ν
defined by Ta(x∗) = x∗ ◦ Sa , where {Sa}a∈G is the family of operators given in (2), we have that there exists y∗

0 ∈ K such
that Ta(y∗

0) = y∗
0 for every a ∈ G . Taking y∗

1 ∈ X∗ such that y∗
1 = y∗

0 on Xν and ‖y∗
1‖X∗ = ‖y∗

0‖X∗
ν

= 1, it can be proved that
|y∗

1ν| is translation invariant and |y∗
1ν| 	 m. Then, |y∗

1ν| = |y∗
1ν|(G)m.

Theorem 4.4. The continuous inclusion

L1
w(ν) ↪→ L1(G)

holds with ‖ f ‖L1(G) � 1 ‖ f ‖ν for all f ∈ L1
w(ν).
‖ν‖(G)



Proof. Let μ be a Rybakov control measure for ν . From Theorem 4.1, there exists 0 � h0 ∈ L1(ν)′ with ‖h0‖L1(ν)′ = 1
‖ν‖(G)

,

such that m is the measure μ with density h0. Let f ∈ L1
w(ν) and (ϕn) a sequence of simple functions such that 0 � ϕn ↑ | f |

pointwise. Then,∫
G

| f |dm =
∫
G

| f |h0 dμ = lim
n

∫
G

ϕnh0 dμ � ‖h0‖L1(ν)′ lim
n

‖ϕn‖ν � 1

‖ν‖(G)
‖ f ‖ν . �

From Theorem 4.4 we deduce the following corollary only by using the definition of the p-power space L p
w(ν) and its

norm.

Corollary 4.5. The continuous inclusions

Lp(ν) ↪→ Lp
w(ν) ↪→ Lp(G) ↪→ L1(G)

hold with ‖ f ‖Lp(G) � 1
‖ν‖(G)1/p ‖ f ‖ν,p for all f ∈ L p

w(ν).

Now, let us show that the spaces L p(ν) and L p
w(ν) are L1(G)-modules.

Theorem 4.6. If f ∈ L1(G) and g ∈ L p
w(ν), then f ∗ g ∈ L p

w(ν) and

‖ f ∗ g‖ν,p � ‖ f ‖L1(G)‖g‖ν,p .

Moreover, if g ∈ L p(ν), then f ∗ g ∈ L p(ν).

Proof. Take f ∈ L1(G) and g ∈ L p
w(ν). From Corollary 4.5, g ∈ L1(G) and so f ∗ g ∈ L1(G). Note that by Corollary 3.7,

τs g ∈ L p
w(ν) and ‖τs g‖ν,p = ‖g‖ν,p for all s ∈ G . Then, by using the Minkowsky inequality, for every x∗ ∈ X∗ with ‖x∗‖X∗ � 1,

it follows that(∫
G

∣∣ f ∗ g(t)
∣∣p

d
∣∣x∗ν

∣∣(t)) 1
p

�
(∫

G

(∫
G

∣∣ f (s)τs g(t)
∣∣dm(s)

)p

d
∣∣x∗ν

∣∣(t)) 1
p

�
∫
G

∣∣ f (s)
∣∣(∫

G

∣∣τs g(t)
∣∣p

d
∣∣x∗ν

∣∣(t)) 1
p

dm(s)

�
∫
G

∣∣ f (s)
∣∣‖τs g‖ν,p dm(s)

= ‖g‖ν,p‖ f ‖L1(G).

Thus, f ∗ g ∈ L p
w(ν) and ‖ f ∗ g‖ν,p � ‖ f ‖L1(G)‖g‖ν,p .

Suppose now that g ∈ L p(ν). We have seen that f ∗ g ∈ L p
w(ν). Consider two sequences (ϕn) and (ψn) of simple functions

converging to f and g in L1(G) and L p(ν) respectively. Note that ϕn ∗ ψn ∈ L p(ν), since ϕn ∗ ψn is bounded. Moreover,

‖ f ∗ g − ϕn ∗ ψn‖ν,p �
∥∥ f ∗ (g − ψn)

∥∥
ν,p + ∥∥( f − ϕn) ∗ ψn

∥∥
ν,p

� ‖ f ‖L1(G)‖g − ψn‖ν,p + ‖ f − ϕn‖L1(G)‖ψn‖ν,p → 0.

Then f ∗ g ∈ L p(ν), since L p(ν) is a closed subspace of L p
w(ν). �

As a consequence of Corollary 4.5 and Theorem 4.6, we deduce that L p
w(ν) and L p(ν) are closed under convolution

product.

Corollary 4.7. If f , g ∈ L p
w(ν), then f ∗ g ∈ L p

w(ν) and

‖ f ∗ g‖ν,p � 1

‖ν‖(G)
1
p

‖ f ‖ν,p‖g‖ν,p .

Moreover, if f , g ∈ L p(ν), then f ∗ g ∈ L p(ν).

Note that if ‖ν‖(G) � 1, then L p(ν) and L p
w(ν) are Banach algebras for the convolution product. Also, as an extension of

Theorem 4.6, we obtain the following result.



Corollary 4.8. Consider 1 � q, p � r < ∞ with 1 + 1
r = 1

p + 1
q . Then, for f ∈ Lq(G) and g ∈ L p

w(ν), we have that f ∗ g ∈ Lr
w(ν) and

‖ f ∗ g‖ν,r � 1

‖ν‖(G)
1
p − 1

r

‖ f ‖Lq(G)‖g‖ν,p .

Moreover, if g ∈ L p(ν), then f ∗ g ∈ Lr(ν).

Proof. Using the Hölder inequality, it can be checked that

‖F G H‖L1(G) � ‖F‖Lα(G)‖G‖Lβ (G)‖H‖Lρ(G)

for all F ∈ Lα(G), G ∈ Lβ(G), H ∈ Lρ(G) with 1 = 1
α + 1

β
+ 1

ρ . Taking α = rq
r−q , β = rp

r−p and ρ = r, we get the inequality

| f ∗ g|(t) �
∫
G

∣∣ f (t − s)
∣∣1− q

r
∣∣g(s)

∣∣1− p
r
∣∣ f (t − s)

∣∣ q
r
∣∣g(s)

∣∣ p
r dm(s) � ‖ f ‖1− q

r
Lq(G)‖g‖1− p

r
L p(G)

(| f |q ∗ |g|p(t)
) 1

r ,

for f ∈ Lq(G) and g ∈ L p
w(ν). Note that by Theorem 4.6, we have that | f |q ∗ |g|p belongs to L1

w(ν) (or L1(ν) if g ∈ L p(ν)),
so f ∗ g ∈ Lr

w(ν) (or Lr(ν) if g ∈ L p(ν)), and

‖ f ∗ g‖ν,r � ‖ f ‖Lq(G)‖g‖1− p
r

L p(G)‖g‖
p
r
ν,p .

Now applying Corollary 4.5 we obtain the desired result. �
5. Applications

In this section, we consider two classical operators, the Fourier transform and the convolution operator. We will see that
each of these operators yields an associated vector measure ν which is included in our general framework, that is, ν is
norm integral translation invariant and ν 	 m. Therefore, all the results of this paper hold for the space L1(ν) and so for
the optimal domain of these classical operators.

5.1. Fourier transform

Let Γ be the dual group of G . The Fourier transform F : L1(G) → �∞(Γ ) is defined by F ( f ) = f̂ for all f ∈ L1(G), where

f̂ (γ ) =
∫
G

f (s)γ (s)dm(s), for all γ ∈ Γ.

For 1 � p � 2 and 1/p + 1/q = 1, the Hausdorff–Young inequality,

‖ f̂ ‖�q(Γ ) � ‖ f ‖L p(G), for all f ∈ Lp(G),

establishes that F : L p(G) → �q(Γ ) is a well-defined continuous operator. Consider its associated vector measure, that is,
ν : B(G) → �q(Γ ) defined by

ν(A) := F (χA),

which obviously satisfies that ν 	 m. Since Iν(ϕ) = ϕ̂ for every simple function ϕ , we have that

Iν(τaϕ) = τ̂aϕ = γ (a)ϕ̂ = γ (a)Iν(ϕ)

and so ‖Iν(τaϕ)‖�q(Γ ) = ‖Iν(ϕ)‖�q(Γ ) . Then, ν is norm integral translation invariant. Note that ν(G) = χ̂G �= 0 and so, by
Remark 4.3, the Haar measure is a Rybakov control measure for ν . Namely, m = x∗

0ν for x∗
0 = (eγ )γ ∈Γ with eγ = 1 if γ = χG

and eγ = 0 in other case.

5.2. Convolution operator

Let E be a Banach function space related to m [7, Definition 1.b.17], which is order continuous, translation invariant and
satisfies that ‖τa f ‖E = ‖ f ‖E for all a ∈ G and f ∈ E . Consider a continuous linear operator T : E → E commuting with the
translation operator (i.e. τa T = T τa for all a ∈ G) and its associated vector measure ν : B(G) → E given by ν(E) := T (χE ) for
all E ∈ B(G). Note that ν 	 m. Moreover, since Iν(ϕ) = T (ϕ) for every simple function ϕ , it follows that

Iν(τaϕ) = T (τaϕ) = τa T (ϕ) = τa Iν(ϕ)

and so ‖Iν(τaϕ)‖E = ‖τa Iν(ϕ)‖E = ‖Iν(ϕ)‖E . Therefore, ν is norm integral translation invariant.



For instance, taking E = L p(G) for 1 � p < ∞ and T f = f ∗μ with μ being a non-null complex regular measure defined
on B(G), where

f ∗ μ(t) =
∫
G

f (t − s)dμ(s), for all t ∈ G,

all the above conditions are satisfied. Hence, the convolution operator T has an associated vector measure ν : B(G) → L p(G),
given by

ν(A) := χA ∗ μ, for all A ∈ B(G),

which is norm integral translation invariant. Since ν(G) = χG ∗ μ �= 0, by Remark 4.3, we have that the Haar measure m is
a Rybakov control measure for ν . Namely, m = |x∗

0ν| for x∗
0 ∈ L p(G)∗ identified with 1

|μ(G)|χG ∈ Lq(G).
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