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Resumen

Los procesos de fractura en materiales compuestos de matriz polimérica suelen ser significa-
tivamente diferentes con respecto a materiales tradicionalmente empleados en aplicaciones
ingenieriles (metales y aleaciones metálicas, principalment) presentando características propias
que los hacen notablemente complejos.
En este contexto, con referencia a las evidencias experimentales, existen varios tipos de

mecanismos de fractura en estos materiales, los cuales pueden desarrollarse durante el tiempo de
servicio de las estructuras correspondientes. Cada uno de estos mecanismos puede iniciarse y
propagarse independientemente. Sin embargo, en la práctica, actúan sinérgicamente y pueden
potencialmente aparecer de forma simultánea. Las dificultades para comprender y predecir
cómo estos diferentes mecanismos de fractura pueden propagarse y coalescer, dando lugar al
fallo estructural del componente, obligan el uso de factores de seguridad significativamente
elevados, necesitando también un alto número de resultados experimentales para llevar a cabo
las certificaciones requeridas por las autoridades competentes.

Teniendo en cuenta que las investigaciones experimentales relativas a los materiales compuestos
de matriz de base polimérica pueden ser limitadas, muy costosas y dilatadas en el tiempo, el
objetivo de esta investigación es desarrollar modelos fenomenológicos a nivel macroscópico para
modelizar los procesos de fractura en estos materiales según la metodología denominada Phase-
Field (PF). En primer lugar, se desarrolla unmodelo de PF trasversalmente isótropo para la fractura
dúctil de materiales compuestos poliméricos reforzados con fibras corta (SFRPs). Posteriormente,
se propone un modelo de múltiples PF con el fin de capturar la fractura intra-laminar basado en la
teoría de fallo de Puck para materiales compuestos poliméricos reforzados con fibra larga (LFRPs).
En esta tesis se presentan la formulación teórica, el tratamiento algorítmico correspondiente y
los detalles numéricos de implementación de los modelos propuestos. El rendimiento de los
modelos se evalúa mediante un conjunto de simulaciones numéricas estándar que demuestran su
aplicabilidad y robustez.
Además de los aspectos fundamentales de estos modelos propuestos, se analiza con especial

profundidad el uso del modelo multi PF para la simulación numérica de la migración de delami-
nación en LFRP laminados. Para este propósito, se propone un procedimiento de modelado FE
consistente que integra el modelo de campo de múltiples fases para fractura intra-laminar con un
Modelo de Zona Cohesiva (CZM) para inter-laminar.
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Abstract

The damage and fracture behavior of Fiber Reinforced Polymers (FRPs) is quite complex and is
different than the failure behavior of the traditionally employed metals. There are various types
of failure mechanisms that can develop during the service life of composite structures. Each
of these mechanisms can initiate and propagate independently. However, in practice, they act
synergistically and appear simultaneously. The difficulties that engineers face to understand and
predict how these different failure mechanisms result in a structural failure enforce them to use
high design safety factors and also increases the number of certification tests needed.

Considering that the experimental investigations of composites can be limited, very expensive,
and time-consuming, it is the aim of this research to develop sophisticated phenomenological
material models based on the Phase-Field (PF) approach to fracture for the virtual assessment of
damage and fracture of FRPs. First, an anisotropic PF model for ductile fracture of Short Fiber
Reinforced Polymers (SFRPs) is developed. Then, a multi PF model based on the Puck theory of
failure is proposed for Long Fiber Reinforced Polymers (LFRPs). The theoretical formulation,
corresponding algorithmic treatment, and numerical implementation details of the proposed
models are presented. The performance of the models is assessed via a set of standard numerical
simulations demonstrating their applicability and robustness.

Focusing on complex practical applications, the newly developed multi PF model is employed
for the numerical simulation of delamination migration in laminated LFRPs. For this purpose,
a consistent FE modeling procedure is proposed integrating the multi phase-field model for
intra-laminar fracture with a Cohesive Zone Model (CZM) for inter-laminar.
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1 Introduction

1.1 Rationale and Motivation

Modern industry demands the advent and development of materials and structures with improved
environmentally-friendly capacities that allow reducing carbon footprint, and in conjunction
with major safety performances with higher strengths and resistance to fatigue response, among
many other attributes. The achievement of such conditions will contribute to the decrease in
operational costs by virtue of the reduction of the required inspection and repair requirements
during service conditions. Within this context, recent advances in composites materials, more
specifically Fiber Reinforced Polymers (FRPs), are helping to replace traditional materials across
a host of engineering applications because of their versatility, enhanced durability and resistance
to fatigue and corrosion, high strength-to-weight ratio, and lower maintenance and life-cycle
costs [1]. Nevertheless, the full load-bearing capacity ability of composites has not yet been
completely exploited so far.

With the continuously evolving trend of shifting to composites materials, there exists a recurrent
need for a better understanding of their complex anisotropic, inhomogeneous, and inelastic
behavior. The extensive understanding of damage and fracture events in FRPs is a matter of
significant importance in many practical applications, with a strong interest in the wind turbine,
automotive, aerospace, and aeronautical industries. There are various types of damage and
fracture mechanisms that can develop during the service life of loaded composites structures.
Although each of these failure mechanisms can initiate and evolve independently, in practice they
act synergistically and appear simultaneously. The complexity in understanding and predicting
how the failure mechanisms lead to a structural failure enforces the use of high design safety
factors and increases the number of required certification tests, see [2].

The fact that experimental investigations of composites can be limited, especially due to very
high economical costs and time-consuming operations, has promoted the development of advanced
and robust numerical modeling and simulation techniques to fully exploit the advantages of these
materials under different loading conditions. The rapid growth of computational capacities
motivates the development of a range of different sophisticated predictive models, which allow
the simulation of a wide variety of complex engineering problems.

However, the conventional theories of local ContinuumMechanics (CM), which are extensively
used to trigger stiffness deterioration in FRPs, suffer from notable pathologies in the correspond-
ing numerical implementation schemes in conjunction with the fact that they present notable
limitations for capturing well-known size effects. The alleviation of such drawbacks has been

1
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1.2 Damage and Fracture of Fiber Reinforced Composites 2

a matter of intensive research in the last two decades, as is the case of non-local Continuum
Damage Mechanics (CDM) theories which inherently incorporate a characteristic length scale
into the corresponding formulation, see [3–6].

Alternative routes for triggering fracture events are the strong discontinuity methodologies for
fracture mechanics in solids, which incorporate an enriched kinematic description to model the
material breakage upon loading, see [7–10]. Despite recent developments in these methodologies,
the numerical modelling of complex fracture problems remains a challenging issue, particularly
in three-dimensional applications [11].
In the last decades, a potential methodology that can overcome the fundamental limitations

with respect to other methodologies aforementioned is the so-called Phase-Field (PF) method to
fracture, see [12–15]. With strong roots in the energetic Griffith’s vision of Fracture Mechanics
(FM), PF methods endow the regularization of sharp crack discontinuities. However, this tech-
nique preserves the continuity of the displacement field, being especially suitable for triggering
complex crack patterns.

Despite the relevant development of PF methods within the last decade, a careful revisitation
of the State of the Art shreds of evidence that these numerical techniques have been developed for
their application for a limited type of engineeringmaterials, withmajor attention for brittle fracture.
However, PF methods possess an enormous potential for the inclusion of phenomenological
or physically-motivated failure criteria for brittle, quasi-brittle and ductile failure in a modular
form, which can widen its range of application. Within this context, this research aims to develop
sophisticated phenomenological material models based on the PF approach to fracture that can be
employed into Finite Element Analysis (FEA) packages for virtual testing of damage and fracture
in FRPs. A central aspect of this investigation is the development of a comprehensive theoretical
and numerical study of PF methods for polymeric-based fiber reinforced composites, namely
Short Fiber Reinforced Polymers (SFRPs) and Long Fiber Reinforced Polymers (LFRPs), within
the infinitesimal deformation setting.
In the forthcoming sections, a brief overview of the damage and fracture morphology of

SFRPs and LFRPs is presented. Furthermore, careful attention is devoted to the discussion of
the different numerical techniques to model fracture events in such materials in conjunction with
the overview of the fundamental concepts fracture mechanics and the phase-field approach to
fracture.

1.2 Damage and Fracture of Fiber Reinforced Composites

Composites are made up of two or more materials (constituents) with different mechanical
properties, which are combined to exhibit unique characteristics. Nowadays, in many practical
applications in different engineering fields, composites are replacing materials that have been
traditionally employed (namely metals and metal alloys) due to their enhanced properties such
as low weight, high strength and stiffness, temperature, and corrosion resistance, etc. In most
industrial applications, especially in aeronautical, automotive, and renewable energy sectors,
Fiber Reinforced Polymers (FRPs) are being gradually incorporated [16]. Specifically, FRPs are
composites made of fibers bound together by a polymer matrix and can be generally classified into
two major categories: Short Fiber Reinforced Polymers (SFRPs) and Long (endless, continuous,
or unidirectional) Fiber Reinforced Polymers (LFRPs) based on the length of the fibers used.

Numerous natural and engineered materials can be used as fibers to produce FRPs’ parts and
coupons. However, in most industrial applications, carbon, aramid (kevlar), or glass fibers are
typically used. Based on the chemical structure and the degree of cross-linking between the
macro-molecules, the matrix phase of FRPs is often divided into three main groups: thermosets,
elastomers, and thermoplastics. Depending on the fiber/matrix combination, the specific material
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1.2 Damage and Fracture of Fiber Reinforced Composites 3

behavior is improved over the corresponding unreinforced matrix in terms of strength, hardness,
stiffness, and thermal expansion. Generally, the resultant behavior is influenced by the individual
materials and their adhesion, as well as by the employed manufacturing process. While the fibers
principally withstand the external loading, the matrix plays many various roles in FRPs. For
instance, it holds the fibers in the desired arrangement and keeps them at a distance. Thus, the
matrix constituent also bonds the fibers one to another, and so transmits the forces to the individual
fibers and between them. Furthermore, the matrix primarily withstands the loading actions when
composites are loaded transversely with respect to the preferential fiber direction [17].
The comprehensive understanding of fracture events in FRPs is a matter of significant im-

portance in many applications, with a strong interest in industries whereby the optimization of
carrying loading capacity with significant weight savings is of central interest. However, under
in-service conditions, cracking events generally lead to a drastic reduction of the load-bearing
capacity of structural components and the posterior achievement of the corresponding collapsing
point. In the following, the damage and fracture mechanisms of both, SFRPs and LFRPs, are
briefly outlined.

1.2.1 Short Fiber Reinforced Polymers

In industrial applications, SFRPs parts are mostly manufactured employing the injection-molding
process that allow high production rates to be achieved. Furthermore, this manufacturing tech-
nique permits the generation and fabrication of complex geometries with minimal post-molding
operations [18]. However, such production processes usually result in a very complex fiber
arrangement (orientation) over finished parts, which leads to a high degree of anisotropy and
inhomogeneity.

In addition to the previous aspects, such anisotropic character has direct consequences on the
correspondingmechanical performance. Thus, when SFRPs parts are subjected to static and cyclic
loads, vibrations, and temperature variations according to their application, different damage and
fracture mechanisms (modes) can develop. Generally, damage and fracture can be assessed in
different scales i.e. micro-, meso-, and macro-scale [19]. However, in SFRPs, the corresponding
failure mechanisms are usually studied in the micro-scale where the material constituents (fiber,
matrix, and fiber/matrix interface) are considered as different phases, accounting for the combined
interaction between such phases [20]. At this scale, four main mechanisms are primarily observed,
which correspond to: (i) matrix fracture, (ii) fiber breakage, (iii) fiber pullout, and (iv) fiber/matrix
interface debonding, see Figure 1.1a. Due to the difference of the micro-structure, each failure
mechanism tends to initiate and propagate for a particular state of loading [20].

fiber

marix

fiber/matrix 
interface debonding

fiber breakage

fiber pullout

marix fracture

0°    lamina

90° lamina

0°    lamina

inter-laminar nterface debonding

matrix cracking fiber rupture
a b

Figure 1.1 Damage and fracture mechanisms in loaded FRPs: (a) failure mechanisms in SFRPs
at micro-scale and (b) failure mechanisms in LFRPs meso-scale.
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1.3 Fundamentals of Continuum Solid Mechanics 4

1.2.2 Long Fiber Reinforced Polymers

The second family of fiber reinforced composites under consideration in the present research
corresponds to LFRPs. In these materials, the length-to-diameter ratio is very high in comparison
to that corresponding to SFRPs. The basic structural element of parts made from LFRPs is
denominated as lamina (ply), whereby one geometric dimension (out-of-plane, i.e the lamina
thickness) is significantly smaller in comparison to the in-plane dimensions. The lamina may
consist of unidirectional fiber alignment which has the highest strength and stiffness parallel to
the fiber direction. Hence, the fiber orientation plays a crucial role in the mechanical response of
LFRPs. The so-called lamination process is usually employed to produce LFRPs parts (laminates)
in the desired stacking sequence. Nevertheless, this process results in inter-laminar (between
the laminas) regions known as interfaces that correspond to the weaker areas in the resulting
laminates, especially in bending-dominated applications. Hence, the failure of LFRPs laminates
can take place either in the inter-laminar or intra-laminar (within the laminas) region, leading to
the differentiation between the corresponding failure mechanisms.
From a modeling perspective, the assessment of damage and fracture in LFRPs can also be

carried out at different scales. However, failure mechanisms in LFRPs are generally studied in the
meso-scale, with the specific differentiation between the laminas disposals and accounting for the
laminate constituents (lamina and interface) and the corresponding interaction [21]. At the meso-
cale, relying on experimental evidence, four main mechanisms are identified: (i) matrix cracking,
(ii) fiber rupture, (ii) fiber kinking, and (iv) inter-laminar interface debonding, see Figure 1.1b.
Similarly, crack initiation and propagation associated with each of the failure mechanism depends
strongly on the loading condition [19, 21]. In practice, the failure mechanisms act synergistically
and appear simultaneously at different locations of the loaded structures.

1.3 Fundamentals of Continuum Solid Mechanics

This section brifely regards the fundamental aspects of Continuum Solid Mechanics (CSM) that
set the foundation of the computational problem under consideration based on the lecture notes
by Meschke [22]. Note that, for the sake of brevity, the formulation presented subsequently
is restricted to infinitesimal deformation, quasi-static, elasto-mechanics analysis, though the
consistent extension to the omitted applications can be conducted.

1.3.1 Kinematics

Consider an arbitrary body whose domain is denoted by B ∈ Rndim (ndim = 1,2,3 is the number
of spatial dimensions). The delimiting boundary of B is identified by ∂B ∈Rndim−1. Continuum
kinematics describes the motion of the body B and its deformation during the motion. The
reference placement of the arbitrary body B is completely defined by the position vector of
material points X and its change of position at deformation under arbitrary internal or external
influence. This motion of the material points from the undeformed to the deformed state is
described by means of the displacement vector u as a function of the position of the material
point. The current position of the material point under consideration at time t is given by the
position vector:

x(X,t) = X+u(X,t) . (1.1)

The Lagrangian approach is to be observed clearly here in the context of the dependence of
the current position on the initial position and on time t. Note that, in the quasi-static case, time
is transformed into pseudo-time, which only serves to characterize the state of deformation.
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1.3 Fundamentals of Continuum Solid Mechanics 5

The infinitesimal strain measure εεε is defined by the symmetric part of the displacement gradient
∇

symu as follows:

εεε := ∇
symu =

1
2

[
∇u+∇

T u
]
. (1.2)

1.3.2 Kinetics

Kinetics describes the relation between external and internal forces acting on a material body.
According to the stress principle of Cauchy, in the current configuration, a symmetric second-order
tensor σσσ of stresses exists in any material point as a consequence of the external forces. Together
with the static loads acting throughout the volume, these stresses form the local balance of
momentum or the equilibrium of forces. The balance of momentum must be satisfied throughout
the deformed configuration.

Cauchy’s theorem is based upon the postulate of a stress vector t on an arbitrary cross-section of
a material body. The Cauchy’s stress theorem postulates the linear dependency between Cauchy
traction vector t and the normal of the surface n (which the traction vector acting on) through the
symmetric Cauchy (true) stress tensor:

t = σσσ ·n. (1.3)

The balance equation of the linear momentum describes the equilibrium of the internal forces
and the stresses. The local balance of momentum can be derived in accordance with continuum
mechanics, based on the integral balance of momentum and under consideration of Cauchy’s
theorem, quasi-static analysis assumption (by neglecting transient effects), and somemathematical
simplifications as follows:

divσσσ + fv = 0, (1.4)

where div[•] is the divergence operator and fv denotes the deformation-independent, volume-
specific loads.

1.3.3 Boundary Conditions

The basic equations of kinematics and kinetics derived in the previous sections are valid inside
B at an arbitrary point in time t. This system of equations has to be supplemented with boundary
conditions concerning the characteristic kinematic and kinetic size of the body’s surface or the
domain boundary ∂B.

The domain’s boundary ∂B is divided into the non-overlapping Dirichlet boundary ∂Bu and
Neumann boundary ∂Bt :

∂Bt ∪∂Bu = ∂B and ∂Bu∩∂Bt = �0. (1.5)

Here, as a rule, the primary variable is prescribed on the Dirichlet boundary and dependent
quantities are prescribed on the Neumann boundary. In the context of elasto-mechanics, these
are the displacements u and the stress vector t, respectively.
Continuum kinematics is supplemented by the essential, geometrical or Dirichlet boundary

conditions. Dirichlet boundary conditions are prescribed displacements at a given time

u(X,t) = ū(X,t) ∀X ∈ ∂Bu. (1.6)
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1.3 Fundamentals of Continuum Solid Mechanics 6

The static, natural or Neumann boundary conditions can be written in a compact form in
tensorial notation in the form of the Cauchy equation:

σσσ (X,t) ·n = t̄(X,t) ∀X ∈ ∂Bt . (1.7)

1.3.4 Constitutive Laws

In the previous sections, stresses and strains were defined based on the momentum balance and
the displacement field, respectively. Hence, both the stress tensor and the displacement vector
are variables which are needed for the unambiguous description of the continuum’s state of
motion. This number of variables can be reduced by the postulate of a constitutive relationship
which relates the stresses on the one hand, and the strains on the other. As a consequence of this
postulate, the stresses become dependent on the displacement vector.
A generalized material law contains a number of material models for the description of

nonlinear material behavior, taking into account micro-structural damage, residual plastic strains,
and time-dependent effects. If, however, the attention is focused on the modeling of reversible,
time-independent, elastic processes, the stress state can be defined only based on the strain state,
with the stress tensor turning into a null tensor in the undeformed configuration:

σσσ = σσσ (εεε) . (1.8)

the fundamental concept of the Theory of Elasticity means that the stress state only depends
on the instantaneous strain state and not on the stress path. The desired path-independence is
only guaranteed, if the stress tensor can be derived by differentiation of an elastic scalar-valued
potential function W (εεε) with respect to the strain tensor:

σσσ :=
∂W (εεε)

∂εεε
. (1.9)

Consequently, if the deformation is independent of the path, the corresponding material laws
can be denominated as hyper-elastic (where the so-called Kirchhoff-Saint-Venant material model
that is characterized by the linear relation σσσ − εεε is a particular case). The consistent derivation
of the stress tensor with respect to the strain tensor yields the tangential modulus of elasticity,
constitutive tensor or material tensor C. On the other hand, the material tensor represents the
linear mapping of the strain tensor onto the stress tensor:

C :=
∂σσσ (εεε)

∂εεε
=

∂W (εεε)

∂εεε⊗∂εεε
and σσσ = C : εεε. (1.10)

As a consequence of the symmetry of the stress and strain tensors, the fourth-order constitutive
tensor is symmetric.

Recalling the previous discussion, a material model relying on the assumption stating that the
material tensor C is independent of the strains, a linear relationship can be postulated between
stresses and strains and leading to a standard linear elastic constitutive law. All other material
models are characterized correspondingly by the attributes physically or material non-linear.
Note that, in order to establish physically acceptable constitutive models, there exist several

universal principles (based on physical observation) to be satisfied. Some of the most important
principles are the principle of determinism, material frame indifference (objectivity), consistency
(thermodynamics considerations), material symmetry, and causality. These principles enforce
restrictions on constitutive models and therefore simplify and specify general constitutive relations.
There exist in literature numerous inequalities for constitutive models been proposed in order to
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1.3 Fundamentals of Continuum Solid Mechanics 7

assure physically reasonable material behavior, e.g. Becker-Erickson inequality, Coleman-Noll
inequality, among many others [23].

1.3.5 Boundary Value Problem

The summary of the fundamental equations of continuum, presented in the previous sections,
forms the Boundary Value Problem (BVP) of quasi-static elasto-mechanics. In detail, these
are the description of deformation in the context of kinematics, the formulation of the force
equilibrium based on kinetic considerations, the constitutive equation as well as the boundary
conditions.

The essential components of the description of small, linear elastic deformations make for the
formulation of the relationship between displacement and strain field, the equilibrium of forces
and the constitutive equation relating the stresses and strains. All three components together form
the second-order partial differential equation of linear elasto-mechanics with the displacement
field as the solution variable:

εεε = ∇
symu, 0 = divσσσ + fv, and σσσ = C : εεε. (1.11)

Hence, the resulting differential equation is given by:

0 = div(C : ∇
symu)+ fv. (1.12)

For the solution of the above governing differential equation, the Dirichlet and Neumann
boundary conditions should to be added.

1.3.6 Weak Form of the Boundary Value Problem

The local behavior of the elastic body B was fully described in the previous sections by means
of the boundary value problem. In most cases, the solution of this governing differential equation
is not possible to be determined analytically. Therefore, approximation methods, in particular,
the Finite Element Method (FEM), are used in order to find an approximate solution (that can be
plausible from an engineering standpoint due to the corresponding accuracy with well-known
benchmark problems). This method actually does not solve the so-called strong form of the
partial differential equation. It merely solves its integral over the domain, the so-called weak
(relaxed) form of the governing differential equation. This weak formulation forms the basic
prerequisite for the application of FEM.
Integral principles of mechanics are; the principle of virtual displacements or principle of

virtual work, the principle of virtual forces, and the principle of the minimum of total potential
or its generalization for transient considerations, the Hamilton’s principle of a continuum.
For the generation of the principle of the minimum of total potential, an energy functional

Π(u) governing the conservation of linear momentum is formulated:

Π(u) = Πint(u)+Πext(u), (1.13)

where Πint(u) and Πext(u) denote the internal and external contributions to the total energy
which are defined respectively as:

Πint(u) =
∫
B

W (εεε (u))dΩ, (1.14)

Πext(u) =−
∫
B

u · fvdΩ−
∫

∂Bt

u · t̄∂dΩ. (1.15)
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1.4 Computational Modeling of Damage and Fracture 8

Following the standard Bubnov-Galerkin method of weighted residual, the trial solution of
the unknown filed u with Uu =

{
u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
, is introduced with

the corresponding test functions δu with Vu =
{

δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

where H1 denotes the Sobolev space. There accordingly:

δΠ(u,δu) = δΠint(u,δu)+δΠext(u,δu), (1.16)

with:

δΠint(u,δu) =
∫
B

∂W (εεε(u))
∂εεε

: εεε(δu)dΩ =
∫
B

σσσ : εεε(δu)dΩ, (1.17)

δΠext(u,δu) =−
∫
B

δu · fvdΩ−
∫

∂Bt

δu · t̄d∂Ω, (1.18)

The weak form of the quasi-static elasto-mechanics problem regarding the conservation of
linear momentum consists of finding the displacement field u ∈Uu at each time (pseudo-time) t
such that for all δu ∈ V :

δΠ(u,δu) = 0, (1.19)

subjected to the prescribed traction t̄ on ∂Bt .
The weak form of the aforementioned equations can be subsequently discretized using FEM in

which the infinite-dimensional function spaces Uu and Vu are approximated by finite-dimensional
subspaces U h

u and V h
u , respectively, imposing the same conditions on the boundaries.

1.4 Computational Modeling of Damage and Fracture

The complexity of potential failure mechanisms from different signatures in fiber reinforced
composites has promoted the development of a range of different numerical predictive models,
especially within the context of FEM due to its versatility and potential for its application at
different scales of observation. In the subsequent section, a brief outline of the most popular
methods for tracking failure and fracture events in solids is presented.

It is worth mentioning that despite the wide variety of computational methods to fracture, in the
current investigation, these models are arranged into two major groups based on the qualitative
modeling of the cracking processes, i.e. discrete and continuous models.

1.4.1 Discrete Modeling Approach

The first group of computational models for triggering fracture herewith discussed is the so-
called discrete modeling approach to fracture. This computational methodology has a direct
connection with the evidence in the sense that it accounts for a discontinuous displacement field
as a representation of the fracture process. Following this vision, the displacement field (and also
the strain field) is discontinuous across the fracture surfaces causing a displacement jump [11].
The most notable theories behind the discrete approach recall the Linear Elastic Fracture

Mechanics (LEFM) and Cohesive Zone Model (CZM) [11,24–26]. However, both methodologies
present notable limitations. On the one hand, LEFM-based methods require the existence of
an initial crack due to its inability for capturing crack nucleations processes and the need for
additional criteria to provide information about crack initiation, propagation, and path. Moreover,
LEFM presents a notable inaccuracy for very short cracks, which requires the use of alternative

C
ód

ig
o 

se
gu

ro
 d

e 
V

er
ifi

ca
ci

ón
 : 

G
E

IS
E

R
-a

a3
4-

5f
08

-a
66

9-
4b

6e
-9

25
8-

ed
2f

-d
00

9-
e7

f3
 | 

P
ue

de
 v

er
ifi

ca
r 

la
 in

te
gr

id
ad

 d
e 

es
te

 d
oc

um
en

to
 e

n 
la

 s
ig

ui
en

te
 d

ire
cc

ió
n 

: h
ttp

s:
//s

ed
e.

ad
m

in
is

tr
ac

io
ne

sp
ub

lic
as

.g
ob

.e
s/

va
lid

a

ÁMBITO- PREFIJO CSV FECHA Y HORA DEL DOCUMENTO

GEISER GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3 19/06/2020 12:08:12 Horario peninsular

Nº registro DIRECCIÓN DE VALIDACIÓN

O00008744e2000024753 https://sede.administracionespublicas.gob.es/valida

GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3

https://sede.administracionespublicas.gob.es/valida


1.4 Computational Modeling of Damage and Fracture 9

methods such that denominated Coupled Criteria (CC) or Finite Fracture Mechanics (FFM),
see [27, 28].

With respect to CZMs, which implicitly accounts for the so-called fracture process zone (FPZ)
concept, these methods allow the accurate modeling of very short and large cracks evolutions
due to the inherent account for the energetic and stress-based criteria. Nevertheless, cohesive
methods usually need either remeshing techniques for the insertion of interface-like elements or
the introduction of such elements prior to running the simulation, limiting the corresponding
crack paths to the edges of the elements. Examples of both techniques are Interface Element
Methods (IEM), and eXtended Finite Element Method (XFEM), among many others. The last
methodology resolves the discontinuities at the intra-element level while the first two act at the
inter-element level, see [7, 11, 29].

1.4.2 Continuous Modeling Approach

An alternativemodeling approach to fracture events in solids is the co-called ContinuousModeling
Approach (CDM) where the discontinuous character of the displacement field is smeared over a
certain region within the domain. Hence, the stresses are gradually degraded in order to model
the fracture process. The most well-known theory behind the continuous approach is the so-called
Continuum Damage Mechanics (CDM) [30]. Classical fracture mechanics is inappropriate to
predict crack-initiation while crack-propagation can only be described when the crack-path is
known beforehand. Continuum damage mechanics offers principally more extended possibilities
for crack analyses.
In CDM, nucleation and propagation of cracks are modeled phenomenologically by making

assumptions about their morphology and how it influences the material properties. For example,
the understanding of the progressive degradation of the material before rupture as the loss of active
area due to the nucleation of micro-cracks across the Fracture Process Zone (FPZ). According to
CDM, the material deterioration process (damage) is governed by the thermodynamics state of
the material through a set of internal state variables, the so-called damage variables, see [31].
This allows modeling fracture through the stress-strain law, and as mentioned above, leading to a
smeared representation of cracks.

The employment of the classical CDM theory to model strain-softening in its local version (i.e.
at the integration point level within the corresponding Fe formulation) suffers from pathological
mesh dependence due to the lack of internal length scale in the formulation. For example,
the energy dissipated when employing a numerical model based on the classical CDM theory
decreases after mesh refinement and tends to extremely low values [11]. Mathematically, the
mesh dependency is attributed to the loss of positive definiteness of the so-called material acoustic
tensor. Hence, the governing differential equations lose ellipticity and become ill-posed at the
onset of strain localization, as a consequence of material instability. This fact motivated the
development of regularisation theories (based on generalized continuum theories) that incorporate
a characteristic length scale to enforce a certain minimum width of the numerically resolved
Process Zone (PZ) and prevent localization of strain into an arbitrarily small volume. An example
of such regularisation theories is the non-local continuum damage theory. In a broad sense,
most of the non-local damage models are classified into groups of differential and integral types.
In contrast to the classical CDM theory, in the non-local formulations, the material damage
process is not only governed by the thermodynamics state of the associated material point but
also the state of the surrounding points [32]. The differential type incorporates spatial gradients
of the internal state variables to consider the interaction between the material points of the body,
while the integral type regards the interaction through weighted spatial averages of the state
variables [33].
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1.5 Phase-Field Approach to Fracture 10

As was previously introduced in the present document, in the last years, a new class of non-local
continuum damage models has been established in literature known as a phase-field approach
to fracture. The phase-field approach is mightily associated with the variational approach to
fracture in which the sharp crack topology is regularized by a diffusive crack representation
within a region band [13, 34]. Similarly, the phase-field formulation incorporates a length scale
parameter associated with the width of the localization band. In contrast to the discrete crack
modeling approaches, in the phase-field approach, the crack paths are automatically determined
as part of the solution due to the account for the evolution equation of the phase-field crack
variable as the primary unknown of the corresponding system. Since the PF method is the central
numerical method to fracture developed in this thesis, in Section 1.5, the fundamental aspects of
the variational formulation of this numerical methodology are briefly revisited.

1.5 Phase-Field Approach to Fracture

This section concerns the fundamental aspects of the phase-field approach to fracture. At first,
the fundamentals of fracture mechanics are briefly introduced, then the variational formalism of
the phase-field approach to fracture is presented. Note that, for conciseness reasons and in line
with previous derivations, the formulation presented subsequently is restricted to infinitesimal
deformation analysis, quasi-static, brittle fracture, though the consistent extension to the omitted
applications can be conducted following the variational forms proposed in [35–40].

1.5.1 Basic Principles of Fracture Mechanics

Fracture Mechanics (FM) basically deals with the mechanics of solids that involve cracks and their
initiation and propagation. Consider an arbitrary body whose domain is denoted by B ∈ Rndim

(ndim = 1,2,3 is the number of spatial dimensions). From the macroscopic perspective, a crack
in a three-dimensional body B ∈ R3 is viewed as a cut through the body yielding two opposite
surfaces, called crack surfaces that intersect in the crack front. However, in a two-dimensional
body B ∈ R2, a crack results in two opposite crack edges that meet in the so-called crack tip.

Depending on the relative displacement between the crack surfaces, the crack opening can be
classified as: (i) Mode-I, (ii) Mode-II, and (iii) Mode-III fracture, see Figure 1.2. In general, each
crack in the body can be described as the superposition of the three different fracture modes.

a b c

Figure 1.2 Fracture modes: (a) Mode-I (opening mode), (b) Mode-II (shearing mode), and
Mode-III (tearing mode).

In linear elastic fracture mechanics (LEFM), the crack mechanism is determined by the singular
stress field with intensity KI in the vicinity of the crack front. Hence, the crack starts to propagate
when the stress intensity factor KI induced by corresponding external loading, reaches the material
resistance against crack evolution which is characterized by the so-called fracture toughness KIc,
see [15, 25].
Recalling alternative concepts, Griffith proposed the concept of the energy release rate for

brittle fracture [24]. Following the first principle of the thermodynamics and considering an
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1.5 Phase-Field Approach to Fracture 11

isothermal, quasi-static problem of a body subjected to external mechanical loading, the rate of
change of total energy is equal to the mechanical power P:

Ė + Ḋ = P, (1.20)

where E denotes the internal energy and D is the energy dissipated in the crack formation which
is related to the crack surface A and the material parameter ς as:

D = 2ςA. (1.21)

Assuming a body with elastic material behavior subjected to external mechanical conservative
loads, Eq.(1.20) can be written as:

Π̇int + Ḋ =−Π̇ext, (1.22)

where Πint and Πext denote the internal and external potential, respectively.
For a crack growth ∆A between an initial crack Ai at ti and the propagated crack Ai+1 at ti+1

Eq.(1.22) yields:

−∆Π

∆A
= 2ς , (1.23)

where the left-hand side of the equation represents the so-called energy release rate G which
describes the availability of energy for crack formation and the right-hand side refers to the
energy required for the crack growth ∆A which is known as the critical energy release rate Gc.
There accordingly, in a conservative system, the crack propagates when the energy release rate
G reaches the critical value Gc. The critical rate is considered to be a material property and in
contrast to the aforementioned stress intensity factor, it is independent of the body geometry.

1.5.2 Variational Formulation of the Phase-Field Approach

This section concerns the fundamental aspects of the variational formalism of the phase-field
approach to fracture.
For the application of the PF method within a multi-dimensional framework, let to consider

an arbitrary body whose domain is denoted by B ∈ Rndim (ndim = 1,2,3 is the number of spatial
dimensions). The delimiting boundary of B is identified by ∂B ∈ Rndim−1.

In line with previous concepts, throughout the deformation process, the body is kinematically
identified by the displacement field vector u : B→ Rndim and the infinitesimal strain field tensor
defined as εεε := ∇

symu with εεε : B→ Rndim×ndim . Prescribed displacement conditions are given
by u = u on ∂Bu, whereas prescribed tractions conditions on the corresponding portion of the
boundary are denoted as t = σσσ ·n on ∂Bt with σσσ identifying the Cauchy stress tensor and n the
external outer normal vector to the body. Kinematic and static boundary conditions satisfy the
standard requirements: ∂Bt ∪∂Bu = ∂B and ∂Bt ∩∂Bu = /0.
The key concept for the phase-field approach to fracture comprises the regularization of a

sharp crack topology Γc by a diffusive crack within a diffusive crack zone of width l, Figure
1.3. This approximation is based on the definition of the so-called crack phase-field variable
d : B× [0,t]→ [0,1], which is a smooth function within the domain, characterizing for d = 0
and d= 1 the intact and the cracked states, respectively. This variable is defined within the body
under consideration B and its evolution is ruled by a suitable temporal expression within the time
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1.5 Phase-Field Approach to Fracture 12

interval [0,t] along the deformation process. Based on this and recalling mathematical arguments
in the spirit of the Γ-convergence concept [41], the fracture energy can be approximated by:∫

Γc

GcdΓc ≈
∫
B

Gcγ(d,∇d)dΩ, (1.24)

where Gc is the bulk critical energy release rate and γ(d,∇d) is the so-called crack surface density
functional.

Figure 1.3 Phase-field method for diffusive crack modelling in solids: (a) sharp crack representa-
tion and (b) regularized crack topology.

Different authors assumed the quadratic form of the crack surface density functional, which
has been successfully applied to isotropic materials [41–43]:

γ(d,∇d) =
1
2l
d2 +

l
2
|∇d|2 . (1.25)

Note, that the expression above is also governed by the length scale parameter l which can be
related to the apparent material strength [44]:

l =
27
256

EGc
σ2

s
, (1.26)

where E denotes the Young modulus and σs is the material strength.
In a general form, according to [45,46], the phase-field method of fracture can resemble a class

of gradient-damage approach. This allows the postulation of the total pseudo-energy density W
per unit volume for solids:

W (εεε,d,∇d) = Ψ(εεε,d)+Wfrac(d,∇d), (1.27)

where Ψ(εεε,d) is the bulk free-energy per unit volume andWfrac(d,∇d) corresponds to the fracture
counterpart.
The free-energy is assumed to comply with the simple form:

Ψ(εεε,d) = g(d)Ψe(εεε), (1.28)
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1.5 Phase-Field Approach to Fracture 13

where Ψ
e(εεε) is the effective elastic strain energy for undamaged material. The degradation

function can be expressed by the simple form g(d) = (1− d)2, satisfying Ψ(εεε,0) = Ψ
e(εεε),

Ψ(εεε,1) = 0, and ∂dΨ(εεε,d)< 0 in order to ensure the thermodynamics consistency.
With respect to the fracture term in Eq.(1.27), in [45, 46], it is stated that a simple criterion for

brittle fracture without threshold (for damage activation) can be expressed via the exploitation of
the crack density functional in the spirit of Griffith’s theory as follows:

Wfrac(d,∇d) = Gc γ(d,∇d) = Gc

[
1
2l
d2 +

l
2
|∇d|2

]
. (1.29)

Through the insertion of Eq.(1.29) into Eq(1.27), and the assessment of the loading criterion
via the computation −∂dW (εεε,d,∇d), it is possible to observe that the corresponding driving
force of fracture accounts for the ratio of the total effective elastic work with respect to Gc, but
it predicts damage progression even at low levels of elastic and plastic deformation (i.e. right
from the beginning of the computations). In this regard, an alternative expression for the crack
driving force H is proposed in [47], which has been subsequently exploited in [44]. Following a
similar approach to that given in [44, 47] but including a phenomenological failure criterion, the
following form of the crack driving force can be postulated:

H = ξ

〈 max
τ∈[0,t]

Ψ
e(τ)

Ψe
init

−1〉+

 . (1.30)

Note that H ensures the positive evolution of the phase-field variable, i.e. ḋ≥ 0, Ψ
e is the

maximum ever reached effective elastic energy, Ψ
e
init is the effective elastic energy for damage

initiation, and ξ is a dimensionless parameter that triggers the activation of damage due to the
elastic contribution but also governs the post-peak behavior. Eq.(1.30) represents a generic form
of a crack driving force. Notwithstanding that the current formulation allows the incorporation
of phenomenologically-based failure criteria to control the activation and evolution of the phase-
field. It is worth noting that it also allows accommodating any other definition of a crack driving
force or initiation criteria.
Correspondingly, the phase-field problem can be solved using the following expression:

2(1−d)PH = Gcδdγ(d,∇d) in B and ∇d ·n = 0 on ∂B. (1.31)

Here, P is an activation flag for the crack driving force which is activated if and only if its
respective failure criterion is met.
Based on the previous definitions, the functional that postulates the phase-field method to

fracture is given by:

Π(u,d) = Πint(u,d)+Πext(u), (1.32)

where Πint(u,d) and Πext(u) are the internal and external contribution to the energy functional,
respectively:

Πint(u,d) =
∫
B

W (εεε,d,∇d)dΩ =
∫
B

Ψ(εεε (u) ,d)dΩ+
∫
B

Gcγ(d,∇d)dΩ, (1.33)

Πext(u) =−
∫
B

fvdΩ−
∫

∂Bt

t̄d∂Ω, (1.34)

where fv is the prescribed body actions.
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1.6 Objectives and Outlines 14

Following the standard Bubnov-Galerkin method, the trial solutions of the two primary fields
with:

u ∈Uu :=
{

u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
,

d ∈Ud :=
{
d ∈ H1(B)|d(x) ∈ [0,1], ḋ≥ 0, ∀x ∈B

}
,

are extended by the corresponding test functions:

δu ∈ Vu :=
{

δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

δd ∈ Vd :=
{

δd ∈ H1(B)|δd≥ 0, ∀x ∈B
}
,

where H1 denotes the Sobolev space. There accordingly, the weak form of the fracture problem
is constructed as follows:

δΠ(u,d,δu,δd) = δΠint(u,d,δu,δd)+δΠext(u,δu) = 0. (1.35)

After simple algebraic manipulations, the strong form of the field equations is reached:

divσσσ + fv = 0 in B and σσσ ·n = t̄ on ∂Bt , (1.36)

2(1−d)PH = Gcδdγ(d,∇d) in B and ∇d ·n = 0 on ∂B. (1.37)

Owing to the regularity of the energetic functions, first-order optimality condition is sufficient
to ensure stability and energy balance leading to the following Karush-Kuhn-Tucker (KKT)
conditions:

ḋ≥ 0, (1.38)

2(1−d)PH −Gcδdγ(d,∇d)≤ 0, (1.39)

(2(1−d)PH −Gcδdγ(d,∇d)) ḋ= 0. (1.40)

The solution of the aforementioned coupled displacement-crack phase-field is obtained after
discretizing the space using the finite element method. This means, the continuous domain
of the body B is approximated by a discrete domain Bh that is formed by a finite number of
disjoints elements Be. There accordingly, the infinite-dimensional function spaces U and V
are approximated by the corresponding finite-dimensional subspaces U h and V h, imposing the
same conditions on the boundaries.

1.6 Objectives and Outlines

In view of the State of the Art, this work represents a novel contribution to the computational
modeling of anisotropic fracture of fiber reinforced polymers. In particular, the comprehensive
extension of the phase-field approach to fracture for its application to such materials is conducted
in a comprehensive and detailed scheme.
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1.6 Objectives and Outlines 15

The general objective of the present thesis concerns the achievement of a new modeling vision
for triggering fracture events in SFRPs and LFRPs within the spirit of the phase-field methods
using non-linear FEM methodologies. The particular target of the present work is threefold:

• The development of an anisotropic phase-field model for ductile fracture of short fiber
reinforced polymers.

• The development of amulti phase-fieldmodel based on Puck theory of failure for anisotropic
fracture of long fiber reinforced polymers.

• The employment of the newly developed multi phase-field model together with a cohesive
zone model into the modeling and simulation of delamination migration in multi-layered
long fiber reinforced polymers.

This thesis is divided into five chapters. The arrangement of the remaining Chapters of the
present document is as follows:

• Subsequent to this introductory chapter, a novel phenomenological phase-field model to
predict the anisotropic ductile fracture of SFRPs is presented in Chapter 2. In particular, an
invariant-based elasto-plastic model is consistently coupled with the phase-field approach
to model the anisotropic ductile fracture response of SFRPs. The employed elasto-plastic
model adopts a pressure-dependent yield surface and non-associative plastic evolution.
The constructed energy-consistent variational formulation exploits a modular format with
a consistent generalization of the crack driving function in which the elastic and plastic
contribution of the energy are concomitantly considered. A phenomenological asymmetric
failure criterion is employed to control the activation and evolution of the phase-field.
However, the proposed generic form of the crack driving function allows the incorporation
of any failure criterion. The presented formulation is implemented into the Finite Element
(FE) code ABAQUS adopting a staggered solution scheme. Hence, for this purpose, the
user-defined capabilities UMAT and UEL are utilized. The model is calibrated on the basis of
experiments conducted on injection-molded SFRPs sheets. Different numerical examples
are presented to demonstrate the predictive capabilities of the proposed formulation.

• In Chapter 3, a new multi phase-field model is proposed for predicting intra-laminar
fracture of FRPs. The formulation incorporates two independent phase-field variables
and length scales to differentiate between fiber and inter-fiber (matrix-dominated) failure
mechanisms. For matrix-dominated loading states, the proposed formulation considers the
plastic effects via an invariant-based pressure-dependent plasticity model. The physically
motivated failure criterion of Puck is employed to control the activation and evolution of
the fiber and inter-fiber phase-field. The corresponding governing equations in terms of
variational formulation is implemented into the FE code ABAQUS utilizing the user-defined
subroutines UMAT and UEL. Several representative applications are presented and discussed
to pinpoint the applicability of the proposed computational tool.

• Focusing on complex practical applications, in Chapter 4, the numerical simulation of
delamination migration in FRPs is presented. For this purpose, a FE modeling procedure is
employed in ABAQUS (via the user-defined capabilities UMAT and UEL) integrating the newly
developed multi phase-field model for intra-laminar fracture with a cohesive zone model for
inter-laminar decohesion failure. The employed cohesive zone model endowing a bi-linear
traction separation law in the interface. Special emphasis is made on thermodynamics
consistency and variational formalism of the coupled fracture fields. The built model is
applied to predict delamination migration in fiber reinforced laminates and the numerical
results are compared against experimental data to assess the competence of the model.
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1.6 Objectives and Outlines 16

• Chapter 5 summarizes the main results and draws the conclusions of this thesis. Finally,
some propositions for future research are provided.
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2 A Phase-Field Model for Ductile
Fracture of Short Fiber Reinforced
Polymers

This chapter presents a paper which proposes a novel phase-field model that accounts for the
anisotropic ductile fracture response of short fiber reinforced polymers. The paper is published
in Theoretical and Applied Fracture Mechanics, Volume 106, April 2020, Paper 102495.

C
ód

ig
o 

se
gu

ro
 d

e 
V

er
ifi

ca
ci

ón
 : 

G
E

IS
E

R
-a

a3
4-

5f
08

-a
66

9-
4b

6e
-9

25
8-

ed
2f

-d
00

9-
e7

f3
 | 

P
ue

de
 v

er
ifi

ca
r 

la
 in

te
gr

id
ad

 d
e 

es
te

 d
oc

um
en

to
 e

n 
la

 s
ig

ui
en

te
 d

ire
cc

ió
n 

: h
ttp

s:
//s

ed
e.

ad
m

in
is

tr
ac

io
ne

sp
ub

lic
as

.g
ob

.e
s/

va
lid

a

ÁMBITO- PREFIJO CSV FECHA Y HORA DEL DOCUMENTO

GEISER GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3 19/06/2020 12:08:12 Horario peninsular

Nº registro DIRECCIÓN DE VALIDACIÓN

O00008744e2000024753 https://sede.administracionespublicas.gob.es/valida

GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3

https://sede.administracionespublicas.gob.es/valida


2.1 Introduction 19

Abstract. Fracture events in Short Fiber Reinforced polymers (SFRPs) are one of the most lim-
iting phenomena for their widespread use in many engineering applications, especially involving
lightweight structures. In this investigation, a novel Phase-Field (PF) model that accounts for the
anisotropic response of SFRPs is outlined from the theoretical and numerical standpoints. The
regularized crack surface functional, which characterizes PF methods, allows overcoming opera-
tive difficulties for complex crack topologies in engineering structures. In particular, we exploit
an invariant-based phenomenological elasto-plastic material model for the macroscopic response
of SFRPs with pressure-dependent behavior that is consistently coupled with the PF approach for
ductile fracture. The anisotropic character of SFRPs is incorporated into the elasto-plastic and
the fracture response. In contrast to previous investigations on the matter, one novel ingredient
of the proposed formulation is the use of a non-associative anisotropic plastic evolution. The
current variational formulation also exploits a modular format with a consistent generalization
of the crack driving function for SFRPs. The performance of the current modeling approach is
examined by means of representative applications, showing its robustness and reliability.

2.1 Introduction

Fracture events notably condition the integrity and durability of many engineering products in
practical applications. The achievement of a profound understanding with regard to the different
aspects affecting the initiation and propagation of fracture in engineering materials and structures
has been a recurrent topic of research in the last decades. Concepts addressing this issue can be
traced back to the seminal developments within the context of Linear Elastic Fracture Mechanics
(LEFM), and cohesive-like crack methods.

In this setting, recent advances in computational capabilities have promoted the active devel-
opment of different modeling strategies, mostly based on the Finite Element Method (FEM).
Cohesive-like methods [48–52], the eXtended FEM (XFEM) [53] and the Strong Discontinuity
Approach (SDA) [54] can be categorized as numerical techniques that encompass a strong dis-
continuous displacement jump across the crack flanks, leading to a sharp crack representation.
Despite the intensive development of such sharp crack approaches over the last two decades, these
strategies generally encounter notable difficulties in situations with intricate crack topologies
including crack branching, coalescence, among other scenarios. These difficulties have stimulated
a renovated interest in diffusive crack models as is the case of the Phase-Field (PF) approach to
fracture as was originally proposed in [13], and its numerical treatment was addressed in [14,15].
Posterior studies on PFmethods regarded the evaluation of its thermodynamics consistency, which
was thoroughly developed [43,55] following an engineering perspective. These investigations are
based on the Griffith-approach to brittle fracture in elastic bodies [24], encompassing a non-local
treatment of damage, but rooted in fracture mechanics concepts and devising a robust multi-
field variational formalism via the exploitation of the Γ-convergence concept [12]. Accordingly,
PF methods are characterized by accounting for the corresponding stiffness degradation at the
material point level, which is triggered through the definition of the PF crack variable.
In the last years, PF methods have attracted a great deal of research extending this approach

towards the treatment of quasi-brittle fracture [56, 57], failure in heterogeneous media via its
coupling with interface-crack models [58, 59], ductile fracture [60], to quote a few of them.
Formulations for ductile fracture have been rigorously treated in [45,46], whereby a generalization
of the so-called crack driving force was carried out. Thus, owing to its canonical format, PF
strategies have been proven to be a competitive modeling tool, for the prediction of failure events
in many engineering materials. Recent applications comprise soft materials [38], hydrogen
assisted cracking [61], hydraulic fracturing [62], frictional materials [63], among many others.
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Within the context of anisotropic materials, recent works embedded the anisotropic effects
into the corresponding variational formalism of fracture through the use of a structural tensor, A
(generally a second-order material tensor for low-order PF models), characterizing the internal
material direction. For bio-materials in soft issues applications, an extension of the PF approach to
fracture has been proposed in [38,64], in which the dissipative term is equipped with a directional-
based tensor for large deformations. A similar structure but also including second gradients of
the PF track variable has been addressed in [39]. Further developments have accounted for the
treatment of fracture events using PF formulation in Long Fiber Reinforced Polymers (LFRPs),
which are characterized by an anisotropic material response. Particularly, in [65] a PF model has
been outlined via the definition of several PF crack variables in the canonical formulation aiming
at distinguishing between different failure mechanisms. An alternative simplified PF model
has been formulated in [66], in which the existence of a predominant failure mechanism at the
material point is assumed, and therefore leading to the consideration of a single PF variable for
the material degradation but affecting different entries of the corresponding stiffness (elasticity)
tensor.

Alternative composite materials with a strong impact on many engineering products are those
denominated as Short Fiber Reinforced Polymers (SFRPs), which allow the achievement of high
production rates with intricate geometrical definitions. These materials have been extensively
used in car constructions in the last years, among many other lightweight applications. As a
consequence of this increasing interest, SFRPs have been comprehensively characterized by
different authors, see [67–72], among many others. Further investigations on the topic were
more focused on addressing the fracture response of SFRPs, see [73–76], and the references
therein. From a modeling standpoint, as fiber orientation play a fundamental role in the macro-
scopic response of SFRPs, several numerical methods relying on FEM haven been proposed
so far [77–79]. Complying with multi-scale models for SFRPs, several studies have conducted
rigorous numerical treatments in order to capture such anisotropic material response [80,81], see
the review conducted in [82]. Differing from this computationally demanding multi-scale per-
spective, phenomenological approaches followed a completely different methodology, which can
be efficiently used at the structural component level. In this concern, recalling the invariant-based
approach, see [83, 84], the authors in [85–89] have intensively enhanced such formulation for
the treatment of SFRPs for mechanical and thermo-mechanical scenarios following an invariant-
based elasto-plastic framework. However, up to now, especially using the variational-based
computational methods, the fracture treatment of SFRPs has received scarce attention within the
scientific community. Consequently, the principal aim of this contribution is the development of
a ductile fracture modeling framework within the context of the PF method for SFRPs undergoing
infinitesimal deformations. In particular, the integration of an invariant-based pressure-dependent
elasto-plastic material model for SFRPs into the PF method using a general variational formalism
is outlined, in which the corresponding numerical discretization can be implemented in most of
the standard Finite Element (FE) codes.
This chapter is organized as follows. Section 2.2 outlines the variational formulation and the

constitutive approach at the material point level for SFRPs. Therein, careful attention is devoted to
the definition of a new type of crack driving force. Once the variational formalism and the elasto-
plastic model are presented, Section 2.3 examines the performance of the proposed formulation
through different representative applications. For this purpose, the presented formulation is
implemented in the commercial FE code ABAQUS. Finally, the main contributions of this study
are resumed in Section 2.4.
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2.2 Variational Formulation and Constitutive Modeling Approach for SFRPs 21

2.2 Variational Formulation and Constitutive Modeling Approach for SFRPs

This section concerns the fundamental aspects regarding the variational formalism of the phase-
field approach for ductile fracture and the constitutive formulation for SFRPs. Note that the
formulation presented subsequently is restricted to infinitesimal deformation analysis, though the
consistent extension to finite deformation applications can be conducted following the variational
forms proposed in [45, 46, 90–92] and the constitutive models developed in [85–87,89].

2.2.1 Phase-Field Approach to Ductile Fracture: General Modeling Framework

The key concept for the phase-field approach to fracture comprises the regularization of a
sharp crack topology Γc by a diffusive crack within a diffusive crack zone of width l, Figure
2.1. This approximation is based on the definition of the so-called phase-field crack variable
d : B× [0,t]→ [0,1], which is a smooth function within the domain characterizing for d= 0 and
d= 1 the intact and the cracked states, respectively, see [15]. This variable is defined within the
body under consideration B and its evolution is ruled by a suitable temporal expression within
the time interval [0,t] along the deformation process (t denotes the deformed state).

a b

Figure 2.1 One-dimensional problem: (a) sharp crack representation at x = 0 and (b) regularized
crack topology at x = 0, depending on the length scale l.

For the application of the PF method within a multi-dimensional framework, let us consider
an arbitrary body whose domain is denoted by B ∈ Rndim (ndim is the dimension of the analysis),
whilst its delimiting boundary is identified by ∂B ∈ Rndim−1. The displacement field is denoted
by u : B→ Rndim and the strain tensor is defined by εεε := ∇

symu with εεε : B→ Rndim×ndim . The
Cauchy stress tensor is denoted as σσσ : B→ Rndim×ndim . Prescribed displacement conditions are
given by u = u on ∂Bu, whereas prescribed tractions conditions on the corresponding portion
of the boundary are denoted as t = σσσ ·n on ∂Bt . These boundary conditions comply with the
requirements: ∂Bt ∪∂Bu = ∂B and ∂Bt ∩ ∂Bu = /0, where n is the external outer normal
vector to the body (Figure 2.2). Based on the key concept of PF [13, 15], for multi-dimensional
analysis the fracture energy is approximated by:∫

Γc

GcdΓc ≈
∫
B

Gcγ(d,∇d)Ω, (2.1)

where Gc is the bulk critical energy release rate and γ(d,∇d) is the so-called crack surface density
functional.
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Different authors assumed the quadratic form of the crack surface density functional and which
was successfully applied to isotropic materials [55]:

γ(d,∇d) =
1
2l
d2 +

l
2
|∇d|2 . (2.2)

Note, that the expression above is also governed by the length scale parameter l which can be
related to the apparent material strength [93]:

l =
27
256

EGc
σ2

s
, (2.3)

where E denotes the Young modulus and σs is the material strength.

Figure 2.2 Phase-field method for diffusive crack modelling for anisotropic materials: (a) sharp
crack representation and (b) regularized crack topology.

For the case of anisotropic solids, the previous form of γ(d,∇d) can be accordingly modified
for the consideration of anisotropic crack density. Recalling [39, 65, 66], a simple anisotropic
crack functional that introduces the directional response into such functional is given by:

γ(d,∇d,A) =
1
2l
d2 +

l
2

∇d · Â ·∇d, (2.4)

where Â = 1+ α̂A is a second-order tensor reflecting the material anisotropy, 1 denotes the
second-order identity, α̂ stands for a parameter that weights the material direction a, and the
so-called structural tensor defined as A = a⊗a. Note that setting α̂ = 0, the isotropic formulation
is fully recovered.
In a general form, according to [45, 46], the phase-field method to fracture can resemble a

class of gradient damage approach. This allows the postulation of the total pseudo-energy density
W per unit volume for anisotropic elasto-plastic solids:

W (εεε,εεε p, ŵp,d,∇d,A) = Ψ
e(εεε− εεε

p,d,A)+Ψ
p(ŵp,d,A)+Wfrac(d,∇d,A), (2.5)

where Ψ
e(εεε−εεε

p,d,A) is the elastic bulk energy per unit volume, Ψ
p(ŵp,d,A) is the energy con-

tribution associated with the plastic deformation and Wfrac(d,∇d,A) corresponds to the fracture
counterpart. The particular forms of the elastic and plastic terms are outlined in Subsection 2.2.2
for SFRPs. Moreover, it is worth noting that in the previous expression the additive decomposition
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of the total strain tensor into elastic εεε
e and plastic εεε

p counterparts was assumed: εεε = εεε
e + εεε

p.
Finally, ŵp is the accumulated effective plastic dissipation.
The elastic contribution is assumed to comply with the simple form:

Ψ
e(εεε− εεε

p,d,A) = (1−d)2
Ψ̂

e(εεεe,A), (2.6)

where Ψ̂
e(εεεe,A) is the effective elastic strain energy for undamaged material. The degradation

function is given by g(d) = (1−d)2, satisfying Ψ
e(εεε−εεε

p,0,A) = Ψ̂
e(εεεe,A), Ψ

e(εεε−εεε
p,1,A) =

0, and ∂dΨ
e(εεε− εεε

p,d,A)< 0 in order to ensure the thermodynamics consistency.
Similarly, the plastic contribution renders:

Ψ
p(ŵp,d,A) = g(d)ŵp(εεε p,A). (2.7)

Note that the adoption of the same degradation function for the elastic and plastic contributions
via g(d) is a particular choice that can be modified in a straightforward manner.

With respect to the fracture term in Eq.(2.5), in [45, 46], it is stated that a simple criterion for
brittle fracture without threshold (for damage activation) can be expressed via the exploitation of
the crack density functional in the spirit of Griffith’s theory as follows:

Wfrac(d,∇d,A) = Gc γ(d,∇d,A) = Gc

[
1
2l
d2 +

l
2

∇d · Â ·∇d

]
. (2.8)

Through the insertion of Eq.(2.8) into Eq.(2.5), and the assessment of the loading criterion
via the computation −∂dW (εεε,εεε p, ŵp,d,∇d,A), it is possible to observe that the corresponding
driving force of fracture accounts for the ratio of the total effective elastic-plastic work with respect
to Gc , but it predicts damage progression even at low levels of elastic and plastic deformation (i.e.
right from the beginning of the computations). In this regard, in [90] an alternative expression
for the crack driving force H has been proposed which was subsequently exploited in [91,92].
Following a similar approach to that given in [90–92] but including a phenomenological failure
criterion (Section 2.2.2.4), the following form of the crack driving force is postulated:

H = ξ
e

〈 max
τ∈[0,t]

Ψ̂
e(τ)

Ψ̂e
init

−1〉+

+ξ
p

[
〈 Ψ̂

p

Ψ̂
p
init
−1〉+

]
. (2.9)

Note that H ensures the positive evolution of the PF variable, i.e. ḋ≥ 0; Ψ̂
e is the maximum

ever reached effective elastic energy, Ψ̂
e
init is the effective elastic energy for damage initiation (in

connection with Section 2.2.2.4), and ξ
e is a dimensionless parameter that triggers the activation

of damage due to the elastic contribution but also governs the post-peak behavior. Similarly,
in Eq.(2.9), Ψ̂

p is the effective plastic energy, Ψ̂
p
init is the effective plastic energy for damage

initiation, and ξ
p is a parameter that tracking the activation plastic-induced fracture. Eq.(2.9)

represents a generic form of a crack driving force in which the elastic and plastic contribution of
the energy are concomitantly considered. In particular, as stated above, the invariant-based and
pressure-dependent failure criterion described in Section 2.2.2.4 is adopted. Notwithstanding that
the current formulation allows the incorporation of phenomenologically-based failure criteria
to control the activation and evolution of the phase-field. It is worth noting that it also allows
accommodating any other definition of a crack driving force or initiation criteria.

The particular meaning of the previous effective energy contributions is detailed in Section 2.2.2.
Moreover, it is worth mentioning that the effective plastic work complies with a monotonically
increasing function and therefore no further constraints are required in order to enforce the crack
growth due to plastic deformation.
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Correspondingly, the phase-field problem can be solved using the following expression:

2(1−d)PH = Gcδdγ(d,∇) in B and ∇d ·n = 0 in ∂B, (2.10)

where P is an activation flag for the crack driving force which is activated if and only if its
respective failure criterion is met.
Based on the previous definitions, the functional that postulates the phase-field method to

ductile fracture is given by:

Π(u,d) = Πint(u,d)+Πext(u), (2.11)

where Πint(u,d) and Πext(u) are the internal and external contribution to the energy functional,
respectively:

Πint(u,d) =
∫
B

W (εεε,εεε p, ŵp,d,∇d,A)dΩ =
∫
B

Ψ
e(εεε− εεε

p,d,A)+Ψ
p(ŵp,d,A)dΩ

+
∫
B

Gcγ(d,∇d,A)dΩ,
(2.12)

Πext(u) =−
∫
B

fvdΩ−
∫

∂Bt

t̄d∂Ω, (2.13)

where fv is the deformation-independent volume-specific loads.
Recalling the standard Bubnov-Galerkin method, the trial solutions of the two primary fields

with:

u ∈Uu :=
{

u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
,

d ∈Ud :=
{
d ∈ H1(B)|d(x) ∈ [0,1], ḋ≥ 0, ∀x ∈B

}
,

are extended by the corresponding test functions:

δu ∈ Vu :=
{

δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

δd ∈ Vd :=
{

δd ∈ H1(B)|δd≥ 0, ∀x ∈B
}
,

where H1 denotes the Sobolev space. There accordingly, the weak form of the fracture problem
is constructed as follows:

δΠ(u,d,δu,δd) = δΠint(u,d,δu,δd)+δΠext(u,δu) = 0. (2.14)

The strong form of the field equations is obtained after simple algebraic manipulations:

divσσσ + fv = 0 in B and σσσ ·n = t̄ on ∂Bt , (2.15)

2(1−d)PH = Gcδdγ(d,∇d) in B and ∇d ·n = 0 on ∂B. (2.16)
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Due to the regularity of the energetic functions, first-order optimal condition is sufficient
to ensure stability and energy balance resulting in the following Karush-Kuhn-Tucker (KKT)
conditions:

ḋ≥ 0, (2.17)

2(1−d)PH −Gcδdγ(d,∇d)≤ 0, (2.18)

[2(1−d)PH −Gcδdγ(d,∇d)] ḋ= 0. (2.19)

The weak form of the aforementioned coupled displacement-crack phase-field problem result-
ing from Eq.(2.14) can be subsequently discretized using FEM and linearized within the context
of the incremental-iterative Newton-Raphson solution scheme.
Concerning the numerical implementation, a staggered solution scheme is adopted, see [43].

In particular the numerical implementation of the phase-field method given in [91,92] into the FE
code ABAQUS is exploited, which combined the implementation of the user-defined capabilities
UEL and UMAT for this purpose. This particular implementation endowed the separated solution
of the displacement and phase-field variables, offering an amenable and robust implementation
algorithm that is especially suitable for elasto-plastic fracture. Note that a detailed description of
FE implementation is omitted in the sequel for the sake of brevity.

2.2.2 Constitutive Formulation for SFRPs: Invariant-Based Anisotropic Model

This section presents the elasto-plastic constitutive formulations for the analysis of SFRP com-
posites. Note that the following derivations are constructed in the space of the effective stresses
σ̂σσ , which can be related to the Cauchy stress tensor σσσ by means of the standard relationship:
σσσ = g(d)σ̂σσ = (1− d)2

σ̂σσ . Inline with the investigations in [85–87, 89] assuming transversely
isotropic material response, the invariant representation theory is advocated [94]. This yields
to the development of the constitutive formulation through the introduction of the so-called
(second-order) structural tensor A as above:

A = a⊗a, (2.20)

where a stands for the preferential fiber orientation vector. As was described above, within the
infinitesimal deformation setting, the total strain tensor εεε can be additively decomposed into
elastic εεε

e and plastic εεε
p counterparts:

εεε = εεε
e + εεε

p. (2.21)

The effective Helmholtz free-energy function Ψ̂ is expressed as:

Ψ̂(εεεe,A) = Ψ̂
e(εεεe,A) =

1
2

εεε
e : Ce : εεε

e, (2.22)

where Ce stands for the constitutive elastic tensor:

Ce := ∂εεεeεεεe Ψ̂ = λ1⊗1+2µT I+α(1⊗A+A⊗1)+2(µL−µT )IA +βA⊗A, (2.23)

Herein, I is the fourth-order identity matrix, IA,i jkl = AimI jmkl +A jmImikl , and λ , α , β , µT ,
and µL correspond to the elastic constants, which are defined as follows:

λ = E22 (ν23 +ν31ν13)/D, (2.24)
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2.2 Variational Formulation and Constitutive Modeling Approach for SFRPs 26

α = E22 [ν31 (1+ν32−ν13)−ν32]/D, (2.25)

β = E11 (1−ν32ν23)/D−E22 [1−ν21 (ν12 +2(1+ν23))]/D−4G12, (2.26)

µL = G12 and µT = G23, (2.27)

with:

D= 1−ν
2
32−2ν13ν31−2ν32ν13ν31. (2.28)

Note, that usually, the 1-direction corresponds to the fiber orientation, the 2-direction is the
transverse in-plane orientation with respect to the fiber direction, and 3-direction stands for
transverse out-of-plane orientation.
Complying with Truesdell and Noll procedure [23], the following constitutive equation is

constructed:
σ̂σσ := ∂εεεe Ψ̂ = Ce : εεε

e, (2.29)

and the restriction over the internal dissipation due to plasticity D̂ p
int reads:

D̂ p
int = σ̂σσ : ε̇εε

p ≥ 0. (2.30)

2.2.2.1 Yield Function

Advocating [85, 86], the elastic domain E is given by:

E= {(ε̄ p) | f (σ̂σσ ,A, ε̄ p)≤ 0}, (2.31)

where ε̄
p corresponds to the equivalent plastic strain ε̄

p =
√

2
3‖εεε

p‖.
The current pressure-dependent elasto-plastic model is equipped with a quadratic form of the

yield function F (σ̂σσ ,A, ε̄ p) renders:

F (σ̂σσ ,A, ε̄ p) = ζ1I1 +ζ2I2 +ζ3I3 +ζ4I2
3 +ζ5I4 +ζ6I2

4 −1≤ 0, (2.32)

where Ii (i = 1,4) correspond to the family of the stress invariants representing the integrity basis.
These invariants are defined as:

I1 =
1
2
(tr[σ̂σσpind])2−tr[A(σ̂σσpind)2], I2 = tr[A(σ̂σσpind)2], I3 = tr[σ̂σσ ]−tr[Aσ̂σσ ], and I4 =

3
2
tr[Aσ̂σσ

dev],
(2.33)

where σ̂σσ
dev is the deviatoric part of the effective stress tensor and σ̂σσ

pind is the effective-plasticity
inducing stress tensor which is given by:

σ̂σσ
pind = σ̂σσ − 1

2
(tr[σ̂σσ ]−Aσ̂σσ)1+

1
2
(tr[σ̂σσ ]−3Aσ̂σσ)A. (2.34)

In Eq.(2.32), ζi(ε̄
p) (i = 1,6) stands for the corresponding yield parameters, that can represent

the different loading states. Figure 2.3-left depicts an schematic 3D representation of the yield
surface in the stress invariant space setting.

C
ód

ig
o 

se
gu

ro
 d

e 
V

er
ifi

ca
ci

ón
 : 

G
E

IS
E

R
-a

a3
4-

5f
08

-a
66

9-
4b

6e
-9

25
8-

ed
2f

-d
00

9-
e7

f3
 | 

P
ue

de
 v

er
ifi

ca
r 

la
 in

te
gr

id
ad

 d
e 

es
te

 d
oc

um
en

to
 e

n 
la

 s
ig

ui
en

te
 d

ire
cc

ió
n 

: h
ttp

s:
//s

ed
e.

ad
m

in
is

tr
ac

io
ne

sp
ub

lic
as

.g
ob

.e
s/

va
lid

a

ÁMBITO- PREFIJO CSV FECHA Y HORA DEL DOCUMENTO

GEISER GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3 19/06/2020 12:08:12 Horario peninsular

Nº registro DIRECCIÓN DE VALIDACIÓN

O00008744e2000024753 https://sede.administracionespublicas.gob.es/valida

GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3

https://sede.administracionespublicas.gob.es/valida
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Figure 2.3 Schematic representation of the transversely isotropic yield function (left) and plastic
potential (right) in the stress invariant space..

2.2.2.2 Plastic Potential Function

The current model adopts a non-associative flow rule in line with [85–87,89], which is character-
ized by an invariant-based pressure-dependent quadratic transversely isotropic plastic potential
function M = M (σ̂σσ ,A), see Figure 2.3-right. This function is defined as:

M (σ̂σσ ,A) = ς1I1 + ς2I2 + ς3I2
3 + ς4I2

4 −1, (2.35)

where ςi (i = 1,4) denotes the plastic potential parameters.
2.2.2.3 Evolution Equations

Following standard concepts for elasto-plastic modeling, the maximum energy dissipation prin-
ciple is herewith recalled in conjunction with the previous non-associative flow rule for the
introduction of evolution equations for the plastic rate of deformation. These are expressed in
terms of the internal variables of the model, i.e. the plastic strains εεε

p:

ε̇εε
p = γ

p ∂M (σ̂σσ ,A, ε̄ p)

∂ σ̂σσ
, (2.36)

where γ
p is the so-called plastic multiplier.

The Kuhn-Tucker (KT) loading/unloading conditions render:

γ
p ≥ 0, F (σ̂σσ ,A, ε̄ p)≤ 0, and γ

pF (σ̂σσ ,A, ε̄ p) = 0, (2.37)

whilst the consistency condition is given by:

γ
pḞ (σ̂σσ ,A, ε̄ p) = 0. (2.38)

The algorithmic treatment of the model is thoroughly outlined in [85–87,95] within the context
of the FEM, including a detailed description of its numerical implementation.
2.2.2.4 Failure Criterion

The last ingredient of the current model is a point-wise failure criterion at the material point level
which serves as an initiation criterion for the evolution of the phase-field variable. The initiation
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2.2 Variational Formulation and Constitutive Modeling Approach for SFRPs 28

criterion establishes a threshold for the activation of the phase-field cracking which is ruled by
the satisfaction of Eq.(2.39). In line with the previous description, note that Eq.(2.39) implicitly
defines the energy thresholds in Eq.(2.9). Herein, following [89, 96–99], an invariant-based
pressure-dependent quadratic failure surface for SFRPs is adopted. The particular form of the
failure criterion, S (σ̂σσ ,A), is given by:

S (σ̂σσ ,A) = ξ1I1 +ξ2I2 +ξ3I3 +ξ4I2
3 +ξ5I4 +ξ6I2

4 −1≤ 0, (2.39)

where ξi, (i = 1,6) denotes six strength parameters.
2.2.2.5 Parameter Identification

In addition to the elastic material constants, the yield function parameters ζi (i = 1,6), the
plastic potential parameters ςi (i = 1,4) and the failure surface parameters ξi (i = 1,6) are to be
determined in terms of experimental characterization data.
The coefficients ζi (i = 1,6) are explicitly expressed as follows:

ζ1 =
1

σ ts
y

2 , (2.40)

ζ2 =
1

σ is
y

2 , (2.41)

ζ3 =− 1

2σ
f c

y
− 1

σ tc
y

+
1

2σ
f t

y
+

1
σ tt

y
, (2.42)

ζ4 =− 1

4σ
f c

y σ
f t

y
− 1

4σ ts
y

2 +
1

σ tc
y σ tt

y
, (2.43)

ζ5 =− 1

σ
f c

y
+

1

σ
f t

y
, (2.44)

ζ6 =
1

σ
f c

y σ
f t

y
. (2.45)

σ
is
y , σ

ts
y , σ

f t
y , σ

f c
y , σ

tt
y , and σ

tc
y denote the yield stress states obtained from in-plane shear test,

transverse shear test, uniaxial longitudinal tension test, uniaxial longitudinal compression test,
uniaxial transverse tension, and uniaxial transverse compression test, respectively.

To comply with the maximum dissipation principle, the convexity of the yield surface should
be ensured. This imposes the following restrictions to the relations ζi(ε̄

p) (i = 1,6) which should
hold for any ε̄

p:

σ
f t

y σ
f c

y

[
4σ

ts
y

2−σ
tt
y σ

tc
y

]
≥ σ

tc
y σ

ts
y

2
σ

tt
y . (2.46)

The coefficients ςi (i = 1,4) are explicitly determined as follows:

ς1 = 1, (2.47)

ς2 = µ
p
12, (2.48)

ς3 =−
−1+ν

p
12 +ν

p
23

4(1+ν
p
23)

, (2.49)
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ς4 =
ν

p
12

1+ν
p
23
. (2.50)

As can be seen from above, herein ς1 is arbitrarily set to unity (since the size of the plastic
potential has no inherent physical meaning) and ςi (i = 2,4) are used to enforce certain plastic
Poisson’s ratios ν

p
23 = ε

p
22/ε

p
33 and ν

p
12 = ε

p
11/ε

p
22, and also certain plastic distortion behavior

through the relation µ
p
12 = ε

p
12/ε

p
23.

Similar to the yield function, for the plastic potential function, the following inequality in
terms of the plastic Poisson’s ratios must hold:

µ
p
12 ≥ 0∧

ν
p
12

1+ν
p
23
≥ 0∧−

−1+ν
p
12 +ν

p
23

4(1+ν
p
23)

≥ 0. (2.51)

The failure coefficients ξi (i = 1,6) are expressed similarly to the yield function parameters ζi
(i = 1,6). However, the yield stresses σ

j
y (ε̄

p) are replaced by the corresponding strength values
σ

j
s :

ξ1 =
1

σ ts
s

2 , (2.52)

ξ2 =
1

σ is
s

2 , (2.53)

ξ3 =−
1

2σ
f c

s
− 1

σ tc
s

+
1

2σ
f t

s
+

1
σ tt

s
, (2.54)

ξ4 =−
1

4σ
f c

s σ
f t

y
− 1

4σ ts
s

2 +
1

σ tc
s σ tt

s
, (2.55)

ξ5 =−
1

σ
f c

s
+

1

σ
f t

s
, (2.56)

ξ6 =
1

σ
f c

s σ
f t

s
. (2.57)

A detailed description of the procedure used to calibrate the model to experimental data is
described in [85, 86, 89, 100] which is beyond the scope of the current investigation.

2.3 Representative Applications

The above-described formulation is implemented into the commercial FE code ABAQUS adopting
the staggered solution scheme proposed in [43]. In this section, different numerical examples are
presented showing the predictive capabilities of the proposed formulation.

2.3.1 Material Parameters

Herein, two different SFRPs sheets are considered, (1mm in thickness) PA6GF30 (Polymide 6
with 30% Glass Fiber) and (1mm in thickness) PA6GF60 (Polyamide 6 with 60% Glass Fiber),
and the constitutive model is calibrated on the experimental results provided in [85–87,89] and
the references therein given. The elastic material constants of the PA6GF30 and PA6GF60 are
listed in Table 2.1 and Table 2.2, respectively.
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Table 2.1 PA6GF30 (1mm in thickness): elastic properties.

E11 (MPa) E22 (MPa) G12 (MPa) ν12 (minor) ν23
7893 3348 1601 0.175 0.4

Table 2.2 PA6GF60 (1mm in thickness): elastic properties.

E11 (MPa) E22 (MPa) G12 (MPa) ν12 (minor) ν23
13467 5570 2520 0.12 0.4

Following the procedure presented in Section 2.2.2.5, the yield function parameters ζi (i = 1,6)
that characterize the onset of yielding are listed in Table 2.3 and Table 2.4 for PA6GF30 and
PA6GF60, respectively.

Table 2.3 PA6GF30 (1mm in thickness): yielding parameters ζi at the onset of yielding.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6
0.00262532 0.00179157 −0.0097352 0.00411623 −0.0125167 0.00121853

Table 2.4 PA6GF60 (1mm in thickness): yielding parameters ζi at the onset of yielding.

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6
0.00338351 0.00230897 −0.0110519 0.00530498 −0.0142096 0.00157043

The plastic potential function parameters ςi (i = 2,4) are obtained for PA6GF30 and PA6GF60
from the plastic Poisson’s ratios given in Table 2.5 and Table 2.6, respectively.

Table 2.5 PA6GF30 (1mm in thickness): Plastic Poisson’s ratios.

µ
p
12 ν

p
12 (minor) ν

p
23

1.0 0.167 0.4

Table 2.6 PA6GF60 (1mm in thickness): plastic Poisson’s ratios.

µ
p
12 ν

p
12 (minor) ν

p
23

1.0 0.089 0.4

Furthermore, the failure criterion coefficients ξi (i = 1,6) that define the onset of failure are
listed in Table 2.7 and Table 2.8 for PA6GF30 and PA6GF60, respectively.

Table 2.7 PA6GF30 (1mm in thickness): failure parameters ξi at the onset of failure.

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
0.000232295 0.000158522 −0.00289583 0.000364213 −0.00372321 0.000107818

In addition, the fracture properties [101] and crack driving force parameters are reported in
Table 2.9 and Table 2.10 for PA6GF30 and PA6GF60, respectively.
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Table 2.8 PA6GF60 (1mm in thickness): failure parameters ξi at the onset of failure.

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6
0.000165166 0.000112713 −0.00244182 0.000258963 −0.00313949 0.0000766607

Table 2.9 PA6GF30 (1mm in thickness): fracture properties and phase filed parameters.

G c (N/mm) ξ
e (-) ξ

p (-)
3.25 3.5 (assumed) 3.5 (assumed)

Table 2.10 PA6GF60 (1mm in thickness): fracture properties and phase filed parameters.

Gc (N/mm) ξ
e (-) ξ

p (-)
5.1 4.5 (assumed) 4.5 (assumed)

2.3.2 Demonstrative Examples: Validation of Implementation

Herein, a single element example is used to demonstrate the proposed formulation and to show
its potential to predict the anisotropic behavior observed in SFRPs. The PA6GF30 3D brick
(cube) element’s side length is set to be 1mm. Four load cases are considered for which the fiber
direction is taken as reference: (i) longitudinal uniaxial tension, (ii) transverse uniaxial tension,
(iii) longitudinal uniaxial compression, and (iv) transverse uniaxial compression as depicted
Figure 2.4. The phase-field parameter l is set to 0.215mm according to Eq.(2.3) with σs = 112.0
MPa. With respect to the loading, in all the four cases, the element is loaded under displacement
control with constant increment ∆u = 0.001mm in order to ensure the stability of the solution
process.

The numerical results are depicted in Figure 2.4. In this plot, it can be observed that, through-
out the first part of the evolution, i.e. before the material strength is reached, the pre-failure
non-linearities are modeled assuming elasto-plastic behavior. Once the failure onset criterion is
satisfied, the crack phase-field parameter starts to evolve simultaneously with the plastic deforma-
tion. The ability of the model to predict the anisotropic asymmetric behavior observed in SFRPs
can clearly be seen. The simultaneous evolution of the plastic deformations and the cracking
process for the case of longitudinal uniaxial tension is shown in Figure 2.5. Furthermore, a very
satisfactory agreement between the experimental data (up to failure [89]) and the numerical
predictions can be noticed.

The present results validate the numerical implementation proposed, capturing the non-linear
material response during the different phases of the evolution and for several material directions.

2.3.3 Dog-Bone Specimen

Extending the assessment of the reliability of the current PF model, in the sequel, the 0◦ uniaxial
quasi-static tension test along the fiber direction on a 1mm thick dog-bone specimen made of
PA6GF60 is investigated. The test specimen definition in terms of geometry, FE discretization,
and boundary conditions are depicted in Figure 2.6.

In total, 5000 8-node 3D linear brick elements are utilized with 4 elements across the thickness.
The boundary conditions imposed are: (i) restrained displacements and rotations at the clamped
edge, and (ii) constrained displacements and rotations at the mobile edge except for the displace-
ment along the loading direction x (which is identified with the axis 1 in the corresponding graph).
In order to localize the fracture, the fracture toughness value of the elements in the middle of the
specimen is reduced by 5% with respect to the baseline fracture properties detailed above, see
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2.3 Representative Applications 32

a b

c d

Figure 2.4 Numerical simulations vs experimental results: (a) longitudinal uniaxial tension, (b)
transverse uniaxial tension, (c) longitudinal uniaxial compression, and (d) transverse
uniaxial compression.

0 0.01 0.02 0.03 0.04 0.05
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

0.2

0.4

0.6

0.8

Equivalent plastic strain
Crack phase field parameter

Figure 2.5 Simultaneous evolution of the plastic deformations and the cracking process: the case
of longitudinal uniaxial tension.

the elements in blue in Figure 2.6. The FE discretization is refined in the middle region of the
specimen where the crack is expected to grow. The phase-field parameter l is set to 0.291mm
according to Eq.(2.3) with σs = 158.0 MPa. The specimen is loaded under displacement control
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with constant increment ∆u = 0.0001mm until u = 1.25mm.
In Figures 2.7.a-2.7.c, the fracture process is depicted. As expected, the crack initiates and

propagates in the middle of the specimen in perpendicularly to the loading direction. Figure
2.7.d shows the experimental-numerical correlation of the load-displacement response up to
the failure initiation. In this graph, a good agreement between the experimental data and the
numerical predictions can be observed with minor deviations in the elasto-plastic evolution prior
to the damage. It is worth noting that the post-peak evolution triggering the stiffness loss was
unavailable for validation purposes, but the current simulations exhibit an excellent accuracy
in terms of the maximum strength value with respect to the experimental data in [89]. It is
also mentionable that no remarkable difficulties in achieving equilibrium configurations were
experienced noted, even when the fracture energy reduction was not considered.
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Figure 2.6 Dog-bone specimen of PA6GF60: specimen definition, FE discretization, and bound-
ary conditions.
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Figure 2.7 Dog-bone specimen of PA6GF60 under uniaxial tension: (a), (b), and (c) phase-
field parameter (SDV22) evolution at different loading stages and (d) experimental-
numerical correlation.

2.3.4 Single-Edge Notched Specimen

Herein, the failure of a 90◦ single-edge notched specimen made of PA6GF30 is investigated
under pure tension, i.e. the loading direction is perpendicular to the internal material direction.
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Figure 2.8 details the test specimen definition in conjunction with its FE discretization details
and the corresponding boundary conditions. The FE discretization is refined in the region of the
specimen where the crack is expected to propagate. The phase-field length scale parameter l
is set to 0.215mm according to Eq.(2.3) with σs = 112.0 MPa. The specimen is loaded under
displacement control with maximum increment ∆u = 0.00005mm.
To show the simultaneous evolution of plastic deformations and crack phase-field parameter,

the crack phase-field parameter is allowed to propagate since the beginning of loading, being an
interesting attribute of the current formulation. In Figures 2.9 and 2.10, the crack phase-field
parameter is represented at different loading stages together with the plastic deformations which
are represented by the equivalent plastic strain, respectively. As expected, the crack propagates
horizontally in 90◦ with respect to the loading direction throughout the simulation, starting at the
notch tip and propagating horizontally.

1
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33
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Figure 2.8 Single-edge notched specimen of PA6GF30: specimen definition, FE discretization,
and boundary conditions.

2.4 Concluding Remarks

In this study, a Phase-Field (PF) model of ductile fracture for anisotropic Short Fiber Reinforced
Polymers (SFRPs) within the infinitesimal deformation setting was outlined. The present for-
mulation encompassed two main ingredients. The first salient aspect is the exploitation of the
anisotropic elasto-plastic material response of SFRPs utilizing an invariant-based macroscopic
approach. The second central feature is concerned with the proposed canonical formulation
with an anisotropic non-associative plastic evolution model which was also equipped with a
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SDV22

+1.255e-07
+3.977e-03
+7.953e-03
+1.193e-02
+1.591e-02
+1.988e-02
+2.386e-02
+2.784e-02
+3.181e-02
+3.579e-02
+3.977e-02
+4.374e-02
+4.772e-02 SDV22

+1.536e-07
+9.131e-03
+1.826e-02
+2.739e-02
+3.652e-02
+4.565e-02
+5.478e-02
+6.391e-02
+7.304e-02
+8.217e-02
+9.131e-02
+1.004e-01
+1.096e-01

SDV22

+1.536e-07
+3.274e-02
+6.548e-02
+9.822e-02
+1.310e-01
+1.637e-01
+1.964e-01
+2.292e-01
+2.619e-01
+2.947e-01
+3.274e-01
+3.601e-01
+3.929e-01

SDV22

+1.536e-07
+5.289e-02
+1.058e-01
+1.587e-01
+2.116e-01
+2.644e-01
+3.173e-01
+3.702e-01
+4.231e-01
+4.760e-01
+5.289e-01
+5.818e-01
+6.347e-01

U = 0.022mm
U = 0.0325mm

U = 0.1mm U = 0.25mm

Figure 2.9 Ductile fracture of the single-edge notched specimen of PA6GF30: phase-field pa-
rameter (SDV22) evolution at different loading stages.

phenomenological damage activation criterion. This formulation fulfilled thermodynamics re-
strictions where two dissipative mechanisms were introduced: (i) plastic evolution and (ii) fracture
phenomena.

The numerical implementation of the proposed model was carried out in the FE code ABAQUS
following a staggered solution scheme. The performance of the model was examined through
several numerical demonstrative examples and structural applications, exhibiting promising
results.
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Figure 2.10 Ductile fracture of the single-edge notched specimen of PA6GF30: equivalent plastic
strain (SDV13).
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3 A Multi Phase-Field Fracture Model
for Long Fiber Reinforced Polymers

This chapter presents a paper concerns with the development of a multi phase-field model based
on Puck theory of failure for anisotropic fracture of long fiber reinforced polymers. The paper is
published in Composite Structures, May 2020, Paper 112446.
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3.1 Introduction 39

Abstract. Phase-Field (PF) methods of fracture have emerged as powerful modeling tools
for triggering fracture events in solids. These numerical techniques efficiently alleviate mesh
dependent pathologies and are very suitable for characterizing brittle as well as quasi-brittle
fracture in a wide range of engineering materials including Fiber Reinforced Polymers (FRPs). In
this study, a multi phase-field model relying on Puck theory of failure is proposed for triggering
intra-laminar cracking in Long Fiber Reinforced Polymers (LFRPs). The current formulation
encompasses the differentiation of fiber and inter-fiber (matrix-dominated) failure phenomena via
the consideration of two independent phase-field crack-like variables, corresponding evolution
equations, and length scales. Moreover, for matrix-dominated deformation states, the present
formulations endow the incorporation of plastic effects via an invariant-based plasticity model.
Special attention is also devoted to its finite element implementation, which is conducted utilizing
the user-defined capabilities UMAT and UEL of the Finite Element (FE) code ABAQUS, in conjunc-
tion with the thorough assessment of its thermodynamics consistency. Several representative
applications are presented, pinpointing the applicability and showing its robustness and reliability
of the proposed computational tool.

3.1 Introduction

The comprehensive understanding of fracture events in Fiber Reinforced Polymers (FRPs) (gen-
erally encompassing carbon and glass reinforced polymeric composites, CFRP and GFRP, re-
spectively) is a matter of significant importance in many practical applications, with a strong
interest in aerospace and aeronautical industries, widening their applicability to other production
sectors. However, under in-service conditions, cracking events generally lead to a drastic reduc-
tion of the load-bearing capacity of structural components and the posterior achievement of the
corresponding collapsing point.
The complexity of potential failure mechanisms from different signatures in long LFRPs,

i.e. inter-laminar (delamination and decohesion) and intra-laminar (fiber/matrix breakage, fiber
kinking, etc.), has promoted the development of a range of different predictive models, especially
within the context of the Finite Element Method (FEM). In this setting, cohesive-like models have
been proven to be an efficient modeling tool for the reliable prediction of delamination events in
FRPs and structures at different scales [50,52,102–105]. Focusing on intra-laminar failure, many
of the previous works have exploited the adoption of Continuum Damage Mechanics (CDM)-
based formulations in order to account for the distinction between fiber- and matrix-dominated
failures relying on the consideration of different internal damage-like variables [31,106–111],
which can be also applicable to non-local formulations.

In the last decade, the landmark investigation presented in [13] and its subsequent developments
in [14, 15], which is denominated as the Phase-Field (PF) approach to fracture, has emerged as a
powerful strategy for modeling fracture phenomena in solids and structures via the exploitation
and revitalization of Griffith’s fracture approach [43,45,46]. PF methods are characterized by
a diffusive crack representation with the prevention of any ad-hoc crack propagation criterion
and precluding the implementation of complex crack tracking algorithms [112]. Many models
based on the PF method have been validated against theoretical and experimental results [93,113].
Moreover, the exploitation of these appealing attributes has led to the successful application of
the PF approach to ductile fracture [37, 45, 114], fatigue, hydrogen-assisted crack failure [61],
functionally graded materials, in combination with interface-like crack methods [59,115], among
many other applications.

Within the context of cracking in anisotropic solids, several attempts have been developed so
far, see the use of tensor-based anisotropic formulations in anisotropic solids proposed in [39].
Further developments have also concerned the inclusion of anisotropic surface energy which
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 40

enables capturing complex crack kinking phenomena [40]. One of the most prominent aspects of
the intensive development of the PF method in the last decade regarded its modular format which
can be applied to non-standard solids regardless of their inherent mechanical response [116,117],
which can also encompass other anisotropic inelastic effects [85–88,118].

Focusing on modeling failure events in composite materials via PF methods, several approaches
have been proposed so far. In this concern, in [64–66, 119–121] the applicability of PF crack
methods to predict damage and failure of FRPs has been pinpointed. Particularly, in [65] a
multi-field PF formulation that endowed the separate effect of fiber and matrix failure using two
independent damage-like variables has been derived. This pioneering contribution has been
subsequently revised in [66] via the introduction of a simple PF variable with the identification
of the most prominent failure mechanism at the material point, which is also combined with
cohesive-like crack methods in [122, 123]. Notwithstanding, there exists an increasing interest in
the development of numerical predictive tools based on the PF method which allows the efficient
use of phenomenological failure theories for FRPs [111]. Recalling these arguments, the present
study concerns with the development of a new PF model for LFRPs via the exploitation of Puck
theory of failure [124]. Following the developments presented in [66] and [65], the current
investigation introduces the consideration of two independent phase-field crack variables for the
distinction between fiber- and matrix-dominated failure mechanisms. Moreover, the formulation
herein proposed endows the definition of two independent length scales for each phase-field
variable which can be related to Puck initiation strengths. Finally, the non-linear behavior in
shear-dominated response is accounted through elastic-plastic relationships between stress and
strain at ply level using an anisotropic invariant-based formulation [83, 87, 125–127].
This chapter is organized as follows. The modeling framework is presented in Section 3.2,

and the corresponding variational formulations are outlined in Section 3.3. Section 3.4 presents
the main aspects for the FE implementation. Subsequently, the model is examined via different
representative applications in Section 3.5. Conclusions of the present investigation are drawn in
Section 3.6.

3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure

In this section, the fundamental aspects of the current multi phase-field formulation for modeling
fracture events in long fiber reinforced composite materials are introduced. As stated above, the
principal aim is the construction of a numerical formulation encompassing crack propagation in
continuum anisotropic media originated from different physical failure mechanisms.
The current formulation can be derived directly from thermodynamic considerations as pro-

posed in [43], which can be consistently equipped with the variational formalism in the spirit of
the phase-field approach of fracture. In this regard, we first formulate the particular form of total
pseudo-energy density W per unit volume for anisotropic solids accounting for different failure
mechanisms (Section 3.2.1). Subsequently, the constitutive choices are addressed in sections
3.2.2 and 3.2.3.

3.2.1 Postulation of the Total Internal Energy Density

Restricting the analysis to infinitesimal strains, the point of departure of the current formulation
relies on the consideration of an arbitrary body with B ∈ Rndim ( ndim is the dimension of
the analysis). The delimiting boundary of B is denoted by ∂B ∈ Rndim−1. Throughout the
deformation process, the body experiences a displacement field identified by the vector field
u : B→ Rndim at the material point level The infinitesimal strain tensor is defined as follows:
εεε := ∇

symu with εεε : B→ Rndim×ndim . Prescribed displacement conditions are given by u = u on
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 41

∂Bu, whereas prescribed tractions conditions on the corresponding portion of the boundary are
denoted as t = σσσ ·n on ∂Bt with σσσ identifying the Cauchy stress tensor. Kinematic and static
boundary conditions satisfy the standard requirements: ∂Bt ∪∂Bu = ∂B and ∂Bt ∩∂Bu = /0,
where n is the external outer normal vector to the body.

In classical continuum damage mechanics (CDM), the total internal energy density is a state
function of the deformation tensor εεε and the internal damage-like variable d [128]. This basic
formulation can be extended to account for non-local effects via the incorporation of the ma-
terial gradient of d, i.e. ∇d which allows the circumvention of the ill-posed character of the
corresponding Initial Boundary Value Problem (IBVP) upon softening behavior. The consistent
generalization of this isotropic damage formulation to account for different failure mechanisms
can be postulated by means of recalling an additive decomposition scheme of the total pseudo-
energy densityW per unit volume, so that it becomes a state function of: (i) the strain field, (ii) the
n scalar damage variables di (with i = 1, . . . , n), and (iii) their respective gradients ∇di. Based
on this decomposition scheme, each individual damage variable is associated with a particular
physical failure mechanism and whose evolution is assumed to be confined between 0 (intact
state) and 1 (fully broken state). Moreover, as an additional argument of the current formulation,
we postulate the evolution of plastic deformation in order to accurately predict the material
non-linear behavior under a matrix-dominated response.
With the previous ingredients at hand and advocating the decomposition of the Helmholtz

free-energy function proposed in [129], which was successfully exploited in [111] for Puck-
based damage model, it is assumed that the total pseudo-energy density W per unit volume for
anisotropic materials can be expressed as follows:

W (εεε,εεε p, ŵp,di,∇di,A) =WFF (εεε,dFF ,∇dFF ,A)+WIFF (εεε,εεε
p, ŵp,dIFF ,∇dIFF ,A), (3.1)

where WFF (εεε,dFF ,∇dFF ,A) and WIFF (εεε,εεε
p, ŵp,dIFF ,∇dIFF ,A) correspond to the counter-

parts associated with the fiber and the inter-fiber failure, respectively, as addressed in Section
3.2.2. In the previous expression, A = a⊗a identifies the so-called structural tensor with a refers
to the material direction.
Note that in the scheme herein proposed, the dissipated energy results from the contribution

of each individual failure mechanism which only affects their corresponding counterparts of
the elasticity tensor. Therefore, in contrast to Bleyer and Alessi [65], the current constitutive
formulation completely precludes the coupling between the different damage variables.
In the forthcoming developments, the effective Helmholtz free-energy function Ψ̂ renders:

Ψ̂(εεεe,A) =
1
2

εεε
e : Ce : εεε

e, (3.2)

where Ce is the elastic constitutive tensor:

Ce := ∂εεεeεεεe Ψ̂ = λ1⊗1+2µT I+α(1⊗A+A⊗1)+2(µL−µT )IA +βA⊗A, (3.3)

In the previous expression, I stands for the fourth-order identity matrix, IA,i jkl = AimI jmkl +
A jmImikl , and λ , α , β , µT , and µL are to the elastic constants:

λ = E22 (ν23 +ν31ν13)/D, (3.4)

α = E22 [ν31 (1+ν32−ν13)−ν32]/D, (3.5)
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 42

β = E11 (1−ν32ν23)/D−E22 [1−ν21 (ν12 +2(1+ν23))]/D−4G12, (3.6)

µL = G12 and µT = G23, (3.7)

with:

D= 1−ν
2
32−2ν13ν31−2ν32ν13ν31. (3.8)

Note that usually, 1-direction corresponds to the fiber orientation, 2-direction is transverse
in-plane orientation with respect to the fiber direction, and 3-direction stands for transverse
out-of-plane orientation.
The specialization of the composing terms of W (εεε,εεε p, ŵp,di,∇di,A) can be established as

follows. Starting the derivation with the fiber failure contribution, the corresponding counterpart
is given by:

WFF (εεε,dFF ,∇dFF ,A) = (1−dFF )
2
Ψ̂

e
FF (εεε,A)+Wfrac,FF (dFF ,∇dFF ), (3.9)

with Ψ̂
e
FF = 1

2 εεε :Ce
FF : εεε identifying the elastic contribution associated with the fiber contribution,

where:

Ce
FF =


Ce

11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (3.10)

and Wfrac,FF (dFF ,∇dFF ) stands for the inelastic fracture energy due to the fiber breakage, which
adopts the form:

Wfrac,FF (dFF ,∇dFF ) = Gc,FF [γ(dFF ,∇dFF )] = Gc,FF

[
1

2lFF
d2

FF +
lFF
2
|∇dFF |

2
]
. (3.11)

In the previous expression, Gc,FF identifies as the fracture energy associated with the fiber
failure, γ(dFF ,∇dFF ) is the crack density functional of this failure mechanism, and lFF is the
characteristic length scale in the phase-field approach of fracture associated with fiber failure.
According to [93], the length scale parameter can be related to the apparent material strength as
follows:

lFF =
27
256

E11Gc,FF

σ2
s,FF

, (3.12)

where σs,FF is the material strength associated with fiber failure.
Similarly, the inter-fiber failure contribution (also accounting for the plastic deformation) can

be expressed as:

WIFF (εεε,εεε
p, ŵp,dIFF ,∇dIFF ,A) = (1−dIFF )

2
Ψ̂

e
IFF (εεε− εεε

p,A)+Ψ
p(ŵp,dIFF ,A)

+Wfrac,IFF (dIFF ,∇dIFF ),
(3.13)
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 43

with Ψ̂
e
IFF = 1

2 εεε
e : Ce

IFF : εεε
e is the elastic contribution associated with the matrix response,

where:

Ce
IFF =


0 Ce

12 Ce
13 0 0 0

Ce
21 Ce

22 Ce
23 0 0 0

Ce
31 Ce

32 Ce
33 0 0 0

0 0 0 Ce
44 0 0

0 0 0 0 Ce
55 0

0 0 0 0 0 Ce
66

 . (3.14)

Ψ
p(ŵp,dIFF ,A) stands for energy contribution associated with plastic deformation, whose

particular expression is given by:

Ψ
p(ŵp,dIFF ,A) = (1−dIFF )

2ŵp(εεε p,A) with ŵp =
∫ t

0
φ̂(ε̇εε p,A)dt ′, (3.15)

with φ̂(ε̇εε p,A) denotes the effective plastic dissipation potential as a function of the temporal
derivative of the plastic deformation for the elapsed time t throughout the deformation process.
Moreover, note that without any loss of generality, we adopt the same degradation function for
the elastic and plastic contributions in the part of the energy associated with inter-fiber failure.
Finally, Wfrac,IFF (dIFF ,∇dIFF ) is the dissipated energy due to matrix failure, and whose

particular form is given by:

Wfrac,IFF (dIFF ,∇dIFF ) = Gc,IFF [γ(dIFF ,∇dIFF )] = Gc,IFF

[
1

2lIFF
d2

IFF +
lIFF

2
|∇dIFF |

2
]
.

(3.16)
where Gc,IFF is the fracture energy corresponding to matrix failure, and lIFF is the corresponding
length scale. Similarly, the length scale parameter is estimated as:

lIFF =
27
256

E22Gc,IFF

σ2
s,IFF

, (3.17)

where σs,IFF is the material strength associated with inter-fiber failure, i.e. matrix cracking.
Note that with the previous definitions at hand, the damaged constitutive stiffness reads:

C(dFF ,dIFF ) = (1−dFF )
2Ce

FF +(1−dIFF )
2Ce

IFF , (3.18)

C(dFF ,dIFF ) =


P1C

e
11 P2C

e
12 P2C

e
13 0 0 0

P2C
e
21 P2C

e
22 P2C

e
23 0 0 0

P2C
e
31 P2C

e
32 P2C

e
33 0 0 0

0 0 0 P12C
e
44 0 0

0 0 0 0 P12C
e
55 0

0 0 0 0 0 P2C
e
66

 , (3.19)

where P1 = (1−dFF )
2, P2 = (1−dIFF )

2, and P12 = min(P1,P2).
As final comments, it is worth to remark that the current damage-based evolutions for fiber and

inter-fiber failures recall the quadratic dissipation function within the context of the phase-field
approach of fracture. Further extensions of the proposed formulation can be made using the
so-called PF-CZM for homogeneous media proposed in [130], which is a matter beyond the
scope of the present investigation. Also, the current formulation is equipped with two different
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 44

length scales, lFF and lIFF , which are associated with different intra-laminar failure mechanisms
and are linked with the respective fracture energies Gc,FF and Gc,IFF . Add to that, the length
scales are recalled as numerical regularizing parameters since the damage initiation is triggered
upon the evaluation of the Puck failure criteria, see Section 3.2.2.

3.2.2 Phenomenological Failure Criterion: Fundamentals of the Puck Theory of Failure

The condition of damage evolution at the material point level relies on the assessment of the
Puck failure criteria [124, 131], which distinguish between two main failure mechanisms: (i)
fiber failure and (ii) inter-fiber failure (matrix-dominated cracking). The ply coordinates are
expressed in the local setting 0− e1− e2− e3, see Figure 3.1.a. As customary, the fiber direction
corresponds to the symbol ‖ (subscript 1), whilst the directions transverse to the fiber direction
in-plane (subscript 2) and out-of-plane (subscript 3) are denoted by the symbol ⊥.

Mode B

Mode B
Mode C

0°

54°

Figure 3.1 Puck failure theory: Illustration of the different inter-fiber failure (IFF) modes accord-
ing to the 3D Puck criterion [131].

According to Puck theory, fiber failure is attained through the violation of the corresponding
failure criterion in tension and compressions.
In this setting, for each of the identified failure mechanisms, fracture can be triggered by the

evaluation of the corresponding failure exposure factors (material efforts) that relate the length
of a pseudo vector ϖϖϖ and that corresponding to the fracture vector ϖϖϖ frac, i.e. fE = |ϖϖϖ |/ |ϖϖϖ frac|,
see [131]. Therefore, failure is initiatedwhen the exposure factor fE reaches 1, whereas subsequent
failure progression relies on energetic considerations inline with standard PF methods of fracture.
The exposure factor for fiber failure under tensile stress conditions, which is denoted by the

subscript FF+, is given by:

fE,FF+ =
1

Rt
‖

[
σ̂11−

(
ν⊥‖−

E‖
E‖ f

ν⊥‖ f

)
(σ̂22 + σ̂33)P2

]
, (3.20)

where Rt
‖ stands for the tensile longitudinal strength in fiber direction. ν⊥‖ and ν⊥‖ f identify the

major Poisson’s ratios of the ply and the fibers, respectively, and E‖ f is the elastic modulus of the
fibers.

C
ód

ig
o 

se
gu

ro
 d

e 
V

er
ifi

ca
ci

ón
 : 

G
E

IS
E

R
-a

a3
4-

5f
08

-a
66

9-
4b

6e
-9

25
8-

ed
2f

-d
00

9-
e7

f3
 | 

P
ue

de
 v

er
ifi

ca
r 

la
 in

te
gr

id
ad

 d
e 

es
te

 d
oc

um
en

to
 e

n 
la

 s
ig

ui
en

te
 d

ire
cc

ió
n 

: h
ttp

s:
//s

ed
e.

ad
m

in
is

tr
ac

io
ne

sp
ub

lic
as

.g
ob

.e
s/

va
lid

a

ÁMBITO- PREFIJO CSV FECHA Y HORA DEL DOCUMENTO

GEISER GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3 19/06/2020 12:08:12 Horario peninsular

Nº registro DIRECCIÓN DE VALIDACIÓN

O00008744e2000024753 https://sede.administracionespublicas.gob.es/valida

GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3

https://sede.administracionespublicas.gob.es/valida


3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 45

The exposure factor for fiber failure in compression reads:

fE,FF− =

√√√√( 1
Rc
‖

[
σ̂11−

(
ν⊥‖−

E‖
E‖ f

ν⊥‖ f mσ f

)
P2 (σ̂22 + σ̂33)

])2

+κ

(
σ̂

2
12 + σ̂

2
13

R2
⊥‖

)
,

(3.21)
where Rc

‖ is the compressive longitudinal strength in fiber direction, R⊥‖ represents the in-plane
shear strength, and mσ f stands for the so-called magnification factor, which is assumed to take the
values 1.1 for CFRP and 1.3 for GFRP [131]. The incorporation of P2 is to scale the influence
of the transverse stress components on the longitudinal stress (lateral contraction) with respect to
the state of matrix damage. It is assumed that the contraction in the longitudinal direction due to
transverse stress will vanish in a case P2→ 1, i.e. matrix rupture parallel to the fibers. In the
case of compressive longitudinal stress, reduced compressive longitudinal fracture resistance of
the plies is assumed in case of increasing shear stress, see [132–136]. The parameter κ allows
controlling the influence of shear stresses on the failure of the fibers under compression. In the
case of lateral constraint κ = 0, because even in case of a crushed matrix the fibers are assumed to
be kept inline by the lateral constraint. In case of absent lateral constrains κ ≥ 0, since a crushed
matrix will promote fiber kinking and will, therefore, reduce the compressive load capacities in
fiber direction [132–136].
With regard to the inter-fiber failure, Puck theory introduced the concept of the so-called

fracture plane [124,131], and hence the inter-fiber failure criterion is based on the identification
of the fracture angle Θ f p and fracture plane with the highest exposure factor FE,IFF . The
determination of the fracture plane is usually performed via the assessment of the most critical
stress state in terms of the local components by calculating the value of FE,IFF for all angles Θ

within the interval of −90◦ ≤Θ≤+90◦, using an increment of one degree. The transformation
from the local ply setting to the action plane system yields:

 σ̂n(Θ)
τ̂nt(Θ)
τ̂n1(Θ)

=

 cos2
Θ sin2

Θ 2cosΘsinΘ 0 0
−cosΘsinΘ cosΘsinΘ cos2

Θ− sin2
Θ 0 0

0 0 0 sinΘ cosΘ




σ̂22
σ̂33
σ̂23
σ̂13
σ̂12

 . (3.22)

The particular expressions for inter-fiber failure under tensile and compressive loading condi-
tions on the action plane are given by the following, respectively:

fE,IFF+(Θ) =


√√√√[( 1

RAt
⊥
−

pt
⊥ψ

RA
⊥ψ

)
σ̂n(Θ)

]2

+

(
τ̂nt(Θ)

RA
⊥⊥

)2

+

(
τ̂n1(Θ)

RA
‖⊥

)2

+
pt
⊥ψ

RA
⊥ψ

σ̂n(Θ)


1

ηw
for σ̂n(Θ)≥ 0,

(3.23)
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fE,IFF−(Θ) =


√√√√( pc

⊥ψ

RA
⊥ψ

σ̂n(Θ)

)2

+

(
τ̂nt(Θ)

RA
⊥⊥

)2

+

(
τ̂n1(Θ)

RA
‖⊥

)2

+
pc
⊥ψ

RA
⊥ψ

σ̂n(Θ)


1

ηw
for σ̂n(Θ)< 0.

(3.24)

In the previous expressions, ηw accounts for the influence of the exposure factor in fiber
direction on the inter-fiber failure due to lateral contraction, as long as no fiber failure occurred
[132,134]. Moreover, one can identify RAt

⊥ = Rt
⊥, RA

⊥‖ = R⊥‖, where Rt
⊥ represents the transverse

tensile strength. Also, the fracture strength RA
⊥⊥ is given by:

RA
⊥⊥ =

Rc
⊥

2
(
1+ pc

⊥⊥
) , (3.25)

where Rc
⊥ represents the transverse compressive strength of the ply. The definitions of the incli-

nation parameters pt
⊥ψ and pc

⊥ψ at any angle ψ are given by the following relations, respectively:

pt
⊥ψ

RA
⊥ψ

=
pt
⊥⊥

RA
⊥⊥

cos2
ψ +

pt
⊥‖

RA
⊥‖

sin2
ψ and

pc
⊥ψ

RA
⊥ψ

=
pc
⊥⊥

RA
⊥⊥

cos2
ψ +

pc⊥‖
RA
⊥‖

sin2
ψ, (3.26)

with:

RA
⊥ψ =

(cosψ

RA
⊥⊥

)2

+

(
sinψ

RA
⊥‖

)2
 . (3.27)

The trigonometric terms defined as:

cos2
ψ =

τ̂
2
nt

τ̂2
nt + τ̂2

n1
and sin2

ψ =
τ̂

2
n1

τ̂2
nt + τ̂2

n1
. (3.28)

Finally, recommended values of material-dependent inclination parameters pt
⊥⊥, pc

⊥⊥, pt
⊥‖,

and pc
⊥‖ are reported in Table 3.1 for glass fiber reinforced (GFRP) and carbon fiber reinforced

(CFRP) composites.

Table 3.1 Recommended inclination factors for CFRP and GFRP composites.

Material pt
⊥⊥ pc

⊥⊥ pt
⊥‖ pc

⊥‖
GFRP 0.30 0.25 0.20 0.25
CFRP 0.35 0.30 0.25 0.30

3.2.3 Plasticity Formulation for Matrix-Dominated Response

The present section introduces an anisotropic plasticity model for the characterization of matrix-
dominated response in long fiber reinforced composites [85–87]. Via standard plasticity ar-
guments, the total strain tensor εεε can be additively decomposed into elastic εεε

e and plastic εεε
p

counterparts:

εεε = εεε
e + εεε

p. (3.29)
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3.2 Multi Phase-Field Formulation Based on the Puck Theory of Failure 47

Recalling the definition of the effective Helmholtz free-energy function Ψ̂(εεεe,A) in Eq.(3.2)
and complying with Truesdell and Noll procedure [23], the following constitutive equation is
constructed:

σ̂σσ := ∂εεεe Ψ̂ = Ce : εεε
e, (3.30)

and the restriction over the internal dissipation due to plasticity D̂ p
int reads:

D̂ p
int = σ̂σσ : ε̇εε

p ≥ 0. (3.31)

Correspondingly, the elastic domain E can be expressed as:

E= {(ε̄ p) | f (σ̂σσ ,A, ε̄ p)≤ 0}, (3.32)

where ε̄
p is the equivalent plastic strain ε̄

p =
√

1
2‖εεε

p‖. The particular form of the yield function
F (σ̂σσ ,A, ε̄ p) is given by:

F (σ̂σσ ,A, ε̄ p) = ζ1I1 +ζ2I2 +ζ3I3 +ζ4I2
3 −1≤ 0, (3.33)

where Ii (i = 1,3) represents the stress invariants which its expressions are omitted here for the
sake of brevity, see [85, 86] for further details.
In Eq.(3.33), the yielding parameters are identified by: ζi(ε̄

p) (i = 1,4) which represent
different loading states and can be characterized via experimental procedures.

The adoption of a pressure-dependent response is retrieved through the use of a non-associative
flow rule inline with [85–87]. This plastic response is characterized by an invariant-based
pressure-dependent quadratic transversely isotropic plastic potential function M (σ̂σσ ,A) which is
defined as follows:

M (σ̂σσ ,A) = ς1I1 + ς2I2 + ς3I2
3 −1, (3.34)

where ςi (i = 1,3) denote the plastic potential parameters.
Finally, the maximum energy dissipation principle is exploited for the definition of the evolution

equations for the plastic rate of deformation. Such evolution equations are expressed in terms of
the internal variables of the model as follows:

ε̇εε
p = γ

p ∂M (σ̂σσ ,A)

∂ σ̂σσ
, (3.35)

where γ
p is the so-called plastic multiplier.

With these derivations at hand, the Kuhn-Tucker (KT) loading/unloading conditions can be
expressed as:

γ
p ≥ 0, F (σ̂σσ ,A, ε̄ p)≤ 0, and γ

pF (σ̂σσ ,A, ε̄ p) = 0, (3.36)

whilst the consistency condition reads:

γ
pḞ (σ̂σσ ,A, ε̄ p) = 0. (3.37)
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3.3 Variational Formulation and Thermodynamics Aspects 48

3.3 Variational Formulation and Thermodynamics Aspects

In the sequel, the variational formulation of the present model is derived, see [137] for more
comprehensive details. The total energy functional of the body, Π(u,di) at an arbitrary instant t,
can be formulated as:

Π(u,di) = Πint(u,di)+Πext(u), (3.38)

where Πint(u,di) and Πext(u) are the internal and external contribution to the energy functional,
respectively:

Πint(u,di) =
∫
B

W (εεε,εεε p, ŵp,di,∇di,A)dΩ = Πint,FF (u,dFF )+Πint,IFF (u,dIFF ), (3.39)

Πext(u) =−
∫
B

fvdΩ−
∫

∂Bt

t̄d∂Ω, (3.40)

where fv is the deformation-independent volume-specific loads and:

Πint,FF (u,dFF ) =
∫
B

WFF (εεε,dFF ,∇dFF ,A)dΩ

=
∫
B
(1−dFF )

2
Ψ̂

e
FF (εεε,A)dΩ+

∫
B

Gc,FF

[
1

2lFF
d2

FF +
lFF
2
|∇dFF |

2
]

dΩ,

(3.41)

Πint,IFF (u,dIFF ) =
∫
B

WIFF (εεε− εεε
p,dIFF ,∇dIFF ,A)dΩ

=
∫
B
(1−dIFF )

2
Ψ̂

e
IFF (εεε− εεε

p,A)dΩ+
∫
B

Ψ
p(ŵp,dIFF )dΩ

+
∫
B

Gc,IFF

[
1

2lIFF
d2

IFF +
lIFF

2
|∇dIFF |

2
]

dΩ.

(3.42)

Recalling the standard Bubnov-Galerkin method, the three primary fields with:

u ∈Uu :=
{

u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
,

dFF ∈UdFF
:=
{
dFF ∈ H1(B)|dFF (x) ∈ [0,1], ḋFF ≥ 0, ∀x ∈B

}
,

dIFF ∈UdIFF
:=
{
dIFF ∈ H1(B)|dIFF (x) ∈ [0,1], ḋIFF ≥ 0, ∀x ∈B

}
,

are extended by the corresponding test functions:

δu ∈ Vu :=
{

δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

δdFF ∈ VdFF
:=
{

δd ∈ H1(B)|δdFF ≥ 0, ∀x ∈B
}
,

δdIFF ∈ VdIFF
:=
{

δd ∈ H1(B)|δdIFF ≥ 0, ∀x ∈B
}
,
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3.3 Variational Formulation and Thermodynamics Aspects 49

whereH1 denotes the Sobolev space. There accordingly, theweak form of the coupled displacement-
crack phase-field problem is constructed as:

δΠ(u,di,δu,δdi) = δΠint(u,di,δu,δdi)+δΠext(u,δu) = 0. (3.43)

After simple algebraic manipulations, the strong form of the field equations can be obtained:

divσσσ + fv = 0 in B and σσσ ·n = t̄ on ∂Bt , (3.44)

2(1−dFF )PFFHFF = Gc,FF δdFF
γ(dFF ,∇dFF ) in B and ∇dFF ·n = 0 on ∂B, (3.45)

2(1−dIFF )PIFFHIFF = Gc,IFF δdIFF
γ(dIFF ,∇dIFF ) in B and ∇dIFF ·n = 0 on ∂B. (3.46)

In the previous expressions, div[•] is the divergence operator. The Cauchy stress tensor σσσ can
be expressed in terms of the effective stress tensor σ̂σσ via: σσσ = (1−dFF )

2
σ̂σσFF +(1−dIFF )

2
σ̂σσ IFF

with σ̂σσFF = Ce
FF : εεε and σ̂σσ IFF = Ce

IFF : εεε
e.

With respect to the crack driving forces defined in Eqs.(3.45) and (3.46), it is worth mentioning
that fiber failure only attains elastic deformation, whereas inter-fiber failure is characterized by the
evolution of plastic and elastic strains. Here, PFF and PIFF are activation flags for the current
crack driving forces for fiber and inter-fiber failure, respectively, and are activated if and only if
their respective Puck failure criterion has been met. Accordingly, for fiber failure one can define:

HFF = ξ
e
FF

〈 max
τ∈[0,t]

Ψ̂
e
FF (τ)

Ψ̂e
init,FF

−1〉+

 , (3.47)

whereas for inter-fiber failure we adopt the crack driving force proposed in [137]:

HIFF = ξ
e
IFF

〈 max
τ∈[0,t]

Ψ̂
e
IFF (τ)

Ψ̂e
init,IFF

−1〉+

+ξ
p

[
〈 Ψ̂

p

Ψ̂
p
init
−1〉+

]
, (3.48)

It is worth mentioning that both HFF and HIFF ensure the positive evolution of the respective
phase-field variables, i.e. ḋFF ≥ 0 and ḋIFF ≥ 0. Moreover, Ψ̂

e
FF is the maximum reached

effective elastic energy for fiber failure and ξ
e
FF is a dimensionless parameter that characterizes

the activation of fracture due to the elastic contribution but also governs the post-peak behavior
for inter-fiber failure. Similarly, Ψ̂

e
IFF is the maximum ever reached effective elastic energy for

inter-fiber failure, Ψ̂
e
init,IFF is the effective elastic energy for fracture initiation for inter-fiber

failure, and ξ
e
IFF is a dimensionless parameter associated with the activation of fracture due to

the elastic contribution, Ψ̂
p stands for the effective plastic energy, Ψ̂

p
init is the effective plastic

energy for fracture initiation, and ξ
p is a parameter that tracking the activation of plastic-induced

fracture.
Owing to the regularity of the energetic functions, first-order optimality condition is sufficient

to ensure stability and energy balance leading to the following Karush-Kuhn-Tucker (KKT)
conditions:

ḋFF ≥ 0 and ḋIFF ≥ 0, (3.49)
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3.4 Finite Element Implementation 50

2(1−dFF )PFFHFF −Gc,FF δdFF
γ(dFF ,∇dFF )≤ 0, (3.50)

2(1−dIFF )PIFFHIFF −Gc,IFF δdIFF
γ(dIFF ,∇dIFF )≤ 0, (3.51)

[
2(1−dFF )PFFHFF −Gc,FF δdFF

γ(dFF ,∇dFF )
]
ḋFF = 0, (3.52)

[
2(1−dIFF )PIFFHIFF −Gc,IFF δdIFF

γ(dIFF ,∇dIFF )
]
ḋIFF = 0. (3.53)

3.4 Finite Element Implementation

In this section, the finite element implementation of the proposed multi phase-field fracture
model for LFRPs is outlined. The specific operations rely on the framework proposed in [91].
Furthermore, as discussed below, in this investigation, a staggered solution scheme is used for
the coupled system of equations. Alternative solution procedures as those given in [138,139] can
be also applicable with relatively minor modifications, which is a task beyond the scope of the
present paper.
The solution of the proposed elasto-plastic multi phase-field fracture problem is obtained

after discretizing the space using the Finite Element Method (FEM). This means, the continuous
domain of the body B is approximated by a discrete domain Bh that is formed by a finite number
of disjoints elements Be. There accordingly, the infinite-dimensional function spaces U and V
are approximated by the corresponding finite-dimensional subspaces U h and V h, imposing the
same conditions on the boundaries.

The interpolation of the continuous element fields ue, de
FF , and d

e
IFF is realized via the use of

the element-based shape functions:

ue =
Nnode

∑
i=1

Nu
i ue

i , de
FF =

Nnode

∑
i=1

Nd
i d

e
FF,i, de

IFF =
Nnode

∑
i=1

Nd
i d

e
IFF,i, (3.54)

where Nu
i and Nd

i are the shape functions associated with node i for the displacement field ue
i

and the two phase-field values de
FF,i, d

e
IFF,i, respectively, for Nnode in the finite element. The

derivatives associated with the fields u, dFF , and dIFF are expressed as follows, respectively:

εεε
e =

Nnode

∑
i=1

Bu
i ue

i , ∇de
FF =

Nnode

∑
i=1

Bd
i d

e
FF,i, ∇de

IFF =
Nnode

∑
i=1

Bd
i d

e
IFF,i, (3.55)

where Bu
i and Bd

i are the corresponding spatial derivatives of the shape functions.
Similarly, the test functions and their respective derivatives take the form:

δue =
Nnode

∑
i=1

Nu
i δue

i , δde
FF =

Nnode

∑
i=1

Nd
i δde

FF,i, δde
IFF =

Nnode

∑
i=1

Nd
i δde

IFF,i, (3.56)

δεεε
e =

Nnode

∑
i=1

Bu
i δue

i , ∇δde
FF =

Nnode

∑
i=1

Bd
i δde

FF,i, ∇δde
IFF =

Nnode

∑
i=1

Bd
i δde

IFF,i. (3.57)
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The element residual vectors for the displacement and the two phase-fields can be reduced to:

Ru
e =

∫
Be

(1−dFF )
2(Bu)T

σ̂σσFF +(1−dIFF )
2(Bu)T

σ̂σσ IFFdΩ−
∫
Be

(Nu)T fvdΩ

−
∫

∂Be
t

(Nu)T td∂Ω,
(3.58)

RdFF
e =

∫
Be

[
Gc,FF

lFF
dFF −2(1−dFF )PFFHFF

]
(Nd)T +Gc,FF lFF (B

d)T
∇dFFdΩ, (3.59)

RdIFF
e =

∫
Be

[
Gc,IFF

lIFF
dIFF −2(1−dIFF )PIFFHIFF

]
(Nd)T +Gc,IFF lIFF (B

d)T
∇dIFFdΩ.

(3.60)
Notice that the system of equations is non-linear due to the presence of plasticity and fracture.

Hence, after assembling, one must resort to incremental iterative solvers such as Newton-Raphson
(NR). It is clear that the phase-field equations, see Eqs.(3.59) and (3.60), are uncoupled from
each other, but coupled with the equilibrium equation, see Eq.(3.58). However, the global system
of equations is solved using an alternating minimization scheme to decouple the displacement
and the phase-field problem (fixed point minimization algorithm).

The corresponding Newton-Raphson iteration for the global assembled system at step (n+1)
can be written as:

 u
dFF
dIFF


n+1

=

 u
dFF
dIFF


n

−

 K uu 0 0
0 K dFFdFF 0
0 0 K dIFFdIFF

−1

n+1

 Ru

RdFF

RdIFF


n

,

(3.61)
where the corresponding element stiffness matrices read:

K uu
e :=

∂Ru
e

∂ue =
∫
Be

(Bu)TCepdBudΩ, (3.62)

K dFFdFF
e :=

∂RdFF
e

∂de
FF

=
∫
Be

[
Gc,FF

lFF
+2PFFHIFF

]
Nd(Nd)T +Gc,FF lFF (B

d)T BddΩ,

(3.63)

K dIFFdIFF
e :=

∂RdIFF
e

∂de
IFF

=
∫
Be

[
Gc,IFF

lIFF
+2PIFFHIFF

]
Nd(Nd)T +Gc,IFF lIFF (B

d)T BddΩ,

(3.64)
and Cepd is the material consistent tangent.
The above system of equations has been implemented in the general-purpose FE package

ABAQUS to take advantage of the in-built non-linear solvers and automatic time-stepping methods.
Hence, a user-defined UMAT is written for the solution of equilibrium equations associated with the
displacement field whereas UEL is utilized for solving the phase-field fracture problem. A three-
layer structure (for each ply) is adopted as shown in Figure 3.2, corresponding to the displacement
field and the two phase-fields, where each of the layers shares the same nodes but has different
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Call UMAT at each
      Gauss point

Obtain the FF phase filed 

crack from the 2nd layer and

 IFF from the 3rd layer

Obtain the effective stresses 

from the plasticity routine 

and evaluate Puck's criterion

Update the stresses 

and tangent

Update the elastic strain 

energy, plastic dissipation 

and the rest of the state 

variables

End UMAT

Call UEL at each 

element

Obtain elastic strain energy 

associated with FF from 

the 1st layer at begining 

of each increment

Obtain elastic strain energy 

associated with IFF and the 

plastic dissipation from 

the 1st layer at begining 

of each increment

Calculate the FF phase filed 

crack

Calculate the IFF phase filed 

crack

Assemble the FF associated 

residual vector and stiffness

Assemble the IFF associated 

residual vector and stiffness

End UEL

1st layer

2nd layer

3rd layer

Three-layer structure

1st layer (displacment):          UMAT

2nd layer (FF phase field): UEL

3rd layer (IFF phase field): UEL

Figure 3.2 Three-layer structure of ABAQUS subroutine.

stiffness and Degrees of Freedom (DOFs). The elements in the first layer contain three DOFs (two
for the 2D case), whereas the second and third layers have one DOF of phase-field dFF and dIFF ,
respectively. The UMAT is called at each Gauss point in the first layer to evaluate the constitutive
behavior of the displacement field. To be specific, the anisotropic elasto-plastic model presented
in Section 3.2 provides the elastic and plastic strains along with their corresponding effective
stresses. Subsequently, at each Gauss point, the stresses are checked against the Puck failure
criteria to predict the failure modes and activation flags. Since the degradation of the energy
entirely depends on the type of failure (i.e fiber failure or inter-fiber failure) different driving
forces are computed accordingly. The UEL is called at each element in the second and third layers.
Depending on the computed driving force and activation flags, the corresponding phase-field
values are computed.

The corresponding layers in the system disseminate through the common block. After each
increment, the solution dependent variables are stored as STATEV in UMAT to post-process the
results.

3.5 Representative Applications

In this section, different numerical examples are presented showing the predictive capabilities of
the proposed formulation.

3.5.1 Material Parameters

Herein, two different materials are considered, CFRP (IM7/8552) and GFRP (E-Glass/MY750),
and the proposed model is calibrated on the experimental data provided in [111,140,141] and
the references therein given. The elastic material constants of the CFRP and GFRP materials are
listed in Table 3.2.
Following the procedure presented in [95], the yield function parameters ζi (i = 1,4) that

characterize the onset of yielding are listed in Table 3.3 for CFRP and GFRP.
The plastic potential function parameters ςi (i = 2,3) are obtained for the CFRP and GFRP for

the plastic Poisson’s ratios given in Table 3.4.
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Table 3.2 CFRP and GFRP: elastic properties..

Material E11 (GPa) E22 (GPa) G12 (GPa) ν12 (minor) ν23
CFRP 171.42 9.08 5.39 0.0169 0.38
GFRP 45.6 16.2 5.83 0.099 0.4

Table 3.3 CFRP and GFRP: yielding parameters ζi at the onset of yielding..

Material ζ1 ζ2 ζ3 ζ4
CFRP 0.00262532 0.00179157 −0.0097352 0.00411623
GFRP 0.00338351 0.00230897 −0.0110519 0.00530498

Table 3.4 CFRP and GFRP: plastic Poisson’s ratios..

Material µ
p
12 ν

p
23

CFRP 1.0 0.38
GFRP 1.0 0.4

Furthermore, for the Puck failure criteria, the strength properties are listed in Table 3.5 for the
CFRP and GFRP materials.

Table 3.5 CFRP and GFRP: strength properties..

Material Rt
‖ (MPa) Rc

‖ (MPa) Rt
⊥ (MPa) Rc

⊥ (MPa) R‖⊥ (MPa)
CFRP 2323.5 1200.1 62.3 199.8 92.3
GFRP 1280 800 40 145 73.3

In addition, the fracture properties and phase-field parameters are reported in Table 3.6 for
CFRP and GFRP.

Table 3.6 CFRP and GFRP: fracture properties and phase-field parameters..

Material Gc,FF Gc,IFF lFF lIFF ξe,FF ξe,IFF ξp
(N/mm) (N/mm) (mm) (mm) (-) (-) (-)

CFRP 81.5 0.2774 0.273 0.07 50 (assumed) 0.5 (assumed) 0.5 (assumed)
GFRP 64 1.8 0.19 1.9 50 (assumed) 0.5 (assumed) 0.5 (assumed)

3.5.2 Validation of Implementation

Herein, the validity and potential of the proposed formulation are assessed utilizing a single
element FE model. The CFRP 3D brick element’s side length is set to be 1mm. Four load cases
(corresponding to four different failure modes) are considered for which the fiber direction is taken
as reference: (i) longitudinal uniaxial tension, (ii) transverse uniaxial tension, (iii) transverse
uniaxial compression, and (iv) in-plane shear.
With respect to the loading, in all the four cases, the element is loaded under displacement

control with constant increment ∆u = 0.0001mm in order to ensure the stability of the numerical
solution.
The numerical results of the first load case (longitudinal uniaxial tension) are depicted in

Figure 3.3. In this plot, it can be observed that, throughout the first part of the evolution, i.e.
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before the material strength is reached, linear elastic behavior is retrieved. Once the fiber failure
onset criterion is satisfied, the fiber failure phase-field crack variable commences evolving.

Figure 3.3 Numerical simulations and experimental results: FF Mode.

The results from the second loading case (transverse uniaxial tension) are shown in Figure
3.4.a. Herein, the pre-failure non-linearities are observed due to the assumption of elasto-plastic
behavior in a matrix-dominated response. Once the material strength is reached and the Puck inter-
fiber failure criterion is met, the inter-fiber phase-field crack begins to evolve. The orientation of
the fracture plane is stored as a state-dependent variable. Hence, under uniaxial tensile conditions,
the angle of the fracture plane is obtained to be around Θ f p = 0◦, which is inline with Mode A
in Puck’s theory. Similarly, for the third load case (transverse uniaxial compression), the Puck
inter-fiber failure criterion is violated, see Figure 3.4.b. However, in this case, the angle of the
fracture plane is predicted to be around Θ f p = 53◦ i.e. Mode C according to the Puck theory.

Figure 3.4 Numerical simulations and experimental results: (a) IFF Mode A and (b) IFF Mode
C.

In the fourth loading case, the applicability of the proposed model for triggering the failure
of the CFRP material under in-plane shear is examined. Similarly, the elasto-plastic model is
used to predict the experimentally observed prominent pre-failure non-linearities due to plasticity
associated with such load cases, see Figure 3.5.a. In accordance with Puck theory, inter-fiber
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failure with a fracture plane angle of Θ f p = 0◦ is predicted. The simultaneous evolution of the
plastic deformations and the cracking process is depicted in Figure 3.5.b.

The ability of the proposed multi phase-field model to predict the different fracture mechanisms
observed in long fiber reinforced composites can clearly be noticed. Furthermore, in all the
examined loading cases, a very satisfactory agreement between the experimental data (up to
failure [111]) and the numerical predictions can be noticed.

Figure 3.5 Numerical simulations and experimental results of the pure shear case: (a) stress-strain
response and (b) simultaneous evolution of the plastic deformations and the inter-fiber
cracking process.

3.5.3 Demonstrative Examples

In the preset section, the potential of the proposed formulation to capture the anisotropic fracture
behavior of long fiber composites is demonstrated. For this purpose, a FE model that mimics a
plate with an initial notch made of GFRP composites is constructed. The plate is partitioned into
four regions to allow assigning different fiber orientations to each one. The geometry, partitioning,
boundary conditions, and loading are depicted in Figure 3.6. Three different fiber orientation
arrangements are considered in the present study, which are listed in Table 3.7.

Table 3.7 GFRP plate with an initial notch: fiber orientation arrangement for the three different
cases..

Region 1 Region 2 Region 3 Region 4
Case 1 0◦ 0◦ 0◦ 0◦

Case 2 −45◦ −45◦ 0◦ 0◦

Case 3 0◦ 0◦ −45◦ −45◦

The domain is discretized employing 251000 4-node quadrilateral plane stress elements. In
all the three cases, the plate is loaded under displacement control with constant increment
∆u = 0.0001mm.

The numerical predictions obtained from the three different cases are presented in Figures 3.7-
3.9. Inline with previous research [66], matrix-dominated cracking evolution is predicted. Figures
3.7-3.9 depicts the different phases of the cracking evolution whereby significant crack kinks
between adjacent layers are obtained stemming from the differences between the corresponding
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Figure 3.6 GFRP plate with an initial notch: specimen geometry and boundary conditions.

material orientations. Hence, the capability of the proposed implemented model to predict the
anisotropic fracture behavior of long fiber reinforced composites can be observed.

a b

Figure 3.7 Inter-fiber phase-field crack (SDV20) from case 1 of the GFRP plate in: (a) undeformed
configuration and (b) deformed configuration.

3.5.4 Open-Hole Tension Problem

The proposed multi phase-field formulation is applied to predict the progressive failure of an
open-hole FRPs specimen. The geometric definition of the specimen under consideration is
shown in Figure 3.10, replicating the 3mm thick CFRP quasi-isotropic [90◦/0◦/±45◦]3s laminate
investigated in [111] employing a CDM model. The specimen is discretized employing 475008
8-node 3D brick elements. Two elements per ply are used. Inline with [111], the following in-situ
strengths are incorporated into the model based on the formulation proposed in [142], see Table
3.8. The specimen is loaded under tension until failure via displacement control with constant
increment ∆u = 0.0001mm.
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a b

Figure 3.8 Inter-fiber phase-field crack (SDV20) from case 2 of the GFRP plate in: (a) undeformed
configuration and (b) deformed configuration.

a b

Figure 3.9 Inter-fiber phase-field crack (SDV20) from case 3 of the GFRP plate in: (a) undeformed
configuration and (b) deformed configuration.
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Figure 3.10 open-hole tension problem: specimen geometry and boundary conditions.

The numerical-experimental correlation corresponding to the load-displacement curve is
depicted in Figure 3.11. In both cases (numerical and experimental) and before the maximum
strength is reached, a bilinear evolution of the curve is observed. Therein, an initial linear
evolution stage followed by a quasi-linear evolution due to the initiation and development of
damage and failure. Despite the fact that the numerically predicted initial linear stage of the
curve matches perfectly the experimental results, in the quasi-linear stage, a stiffer response
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Table 3.8 CFRP: in-situ strengths properties.

Rt
⊥ (MPa) R‖⊥ (MPa)

Embedded plies 106.2 101.4
Outer plies 130.2 107.0

is predicted. Such discrepancies are attributed to the fact that inter-laminar failures are not
considered appropriately in this simulation and hence the interaction between intra-laminar and
inter-laminar fracture events. However, a satisfactory agreement between the numerical and the
experimental data can be observed.
The inter-fiber and fiber failure patterns at different loading stages (40%, 65%, 85% of the

ultimate load, and rupture) are shown in Figures 3.12 and 3.13, respectively. As depicted in
Figure 3.12, an X-shaped inter-fiber crack pattern is observed in the 90◦ ply. With respect to the
0◦ ply, tensile fiber failure is predicted, see Figure 3.13. Inline with [111], a net section failure
mode is predicted in which the cracks are initially concentrated around the hole and subsequently
propagate perpendicular to the loading direction.

Figure 3.11 Open-hole tension problem: Numerical-experimental correlation corresponding to
the load-displacement curve.

3.6 Concluding Remarks

Relying on Puck theory of failure, fracture events in Long Fiber Reinforced Polymers (LFRPs) at
ply level can be mainly classified into fiber and inter-fiber (matrix-dominated) cracking. In order
to account for such failure mechanisms into the Phase-Field (PF) approach to fracture, a novel
multi phase-field model was proposed. Particularly, in the present investigation, a novel model
was formulated that is characterized by: (i) the consideration of a single crack-like phase-field
variable for each failure mechanism with corresponding fracture energy and length scale and (ii)
the employment of an invariant-based pressure-dependent plasticity model for characterizing
matrix-failure dominated states.
The proposed formulation was carefully derived via a multi-field variational formalism with

the specific incorporation of the multiple dissipative mechanisms within the spirit of the PF
method. Special attention was also devoted to the consistent numerical implementation.
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Figure 3.12 Open-hole tension problem: IFF phase-field crack (SDV26) evolution in the outer
90◦ layer at different loading stages: (a) 60% of the ultimate load, (b) 80% of the
ultimate load, (c) 100% of the ultimate load, and (d) rupture.

On the applicability side, several illustrative examples evidenced the reliability of the proposed
formulation. Finally, it is worth noting that this work can be conceived as a first attempt whereby
phenomenological failure criteria for FRPs are integrated into PF methods.
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Figure 3.13 Open-hole tension problem: FF phase-field crack (SDV23) evolution in the outer
0◦ layer at different loading stages: (a) 60% of the ultimate load, (b) 80% of the
ultimate load, (c) 100% of the ultimate load, and (d) rupture.
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4 FE Modeling and Simulation of
Delamination Migration in
Multi-Layered Long Fiber Reinforced
Polymers

This chapter presents a paper that regards the employment of the newly developed multi phase-
field model together with a cohesive zone model into the modeling and simulation of delamination
migration in multi-layered long fiber reinforced polymers. The paper is submitted for publication
in Composites Part B: Engineering, May 2020.
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4.1 Introduction 63

Abstract. Failure processes in Long Fiber Reinforced Polymers (LFRPs) entail the development
and progression of different physical mechanisms and in particular the interaction between inter-
laminar and intra-laminar cracking. Reliable modeling of such complex scenarios can be achieved
through the development of robust numerical predictive tools that allow for the interaction of
both failure modes. In this study, a novel multi Phase-Field (PF) model relying on the Puck
theory of failure for intra-laminar failure at ply level is efficiently coupled with a Cohesive Zone
Model (CZM) for inter-laminar cracking, in order to simulate delamination migration cracking
events in multi-layered FRPs. The current computational method is numerically implemented
as a system of non-linear partially coupled equations using the finite element method via user-
defined UMAT and UEL subroutines in ABAQUS. The computational tool applied for the prediction
of delamination migration in multi-layered LFRPs comprising 44 cross-ply. The reliability
of the current approach is examined via the correlation with experimental results, exhibiting
numerous kinking events until the collapsing point. Finally, the current study is complemented
with additional representative examples with the aim of providing further insight into the potential
role of different aspects of the system, including the variation of (i) the ply angle in the migration
zone, (ii) the load application point, and (iii) initial crack length.

4.1 Introduction

The widespread use of Fiber Reinforced Polymers FRPs (generally encompassing carbon and
glass reinforced polymeric composites, CFRP and GFRP, respectively) due to their high strength
to weight ratios has paved their way into many practical applications in different industrial
sectors, with special impact in aerospace and aeronautics, and more recently in automotive
sector [85, 86], to quote a few of them. In the presence of ever-increasing demands of new
technological advancements, load-bearing capabilities and failure modes of these materials are
not yet fully understood, posing notable restrictions on their use and leading to the introduction
of high safety factors.
Within this context, delamination failure can be conceived as one of the most critical failure

mechanisms in multi-layered Long Fiber Reinforced Polymers (LFRPs). Such cracking events
are generally associated with low through-thickness stiffness in layered disposals and can emerge
from manufacturing defects, the occurrence of post-buckling phenomena [143, 144], among
many others. From a modeling standpoint, delamination events in layered composites structures
have been analyzed using Linear Elastic Fracture Mechanics (LEFM) enforcing initiation and
growth along the ply interface with the use of strain energy-based methods in order to define
the corresponding fracture toughness [145, 146]. Delamination can be found in low-velocity
impact [147], skin debonding [148], defects from notches [149], among many other practical
cases. These phenomena have been extensively investigated based on cohesive-like cracking
methods in pre-notched coupon configurations, whereby an ad-hoc inter-laminar failure model
can be inserted into the most critical locations of the specimen for triggering such cracking
events [50–52, 150]. From a mechanical perspective, delamination can be seen as a result of the
coalescence of micro-cracks at the ply-interface, perpendicular to the tensile stress [151–153].

However, for some specific loading cases and configurations, it has been reported that mostly
due to the sign of the change of shearing stresses, a pre-existing crack along an interface of the
ply can kink out from such location, propagating into the adjacent ply. Matrix-cracking induced
by delamination can further progress through the ply thickness and then propagates out at another
interface as reported in [151,154,155], leading to the so-called delamination migration failure
mode. Thus, following the terminologies used in [156], the turning of delamination crack front
into one of the adjacent plies is referred to as kinking, whereas, when a crack propagates across
the thickness of plies and propagates out in adjacent interface is called migration [157]. The
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4.1 Introduction 64

main causes of such phenomena can be motivated by the analysis of the stress field around the
interface crack tip, see the experimental studies conducted in [151,152,155,158].
With regard to the different modeling methods for triggering intra-laminar failure in LFRPs,

the use of Continuum Damage Mechanics (CDM)-based methods has been of notable impor-
tance, see the phenomenological models proposed in [111, 159] and the references given therein.
Notwithstanding, the local versions of CDM models generally suffer from mesh pathological
issues that can be remedied using alternative methodologies. Within this context, Phase-Field
(PF) methods, originally proposed in [13] and subsequently developed in [14, 43], have become
plausible nonlocal modeling alternatives that prevent most of the main limitations of alternative
modeling tools for fracture in solids. With strong foundations on Griffith’s approach to Fracture
Mechanics (FM), PF methods exploit a multi-field variational formalism, whereby fracture is
accounted via diffusive representation within a particular region of the domain characterized by
the length-scale l. This approach encompasses an energy minimization of the potential energy of
the body (split into bulk and fracture counterparts, respectively) resulting in a multi-field Finite
Element (FE) formulation, and therefore complex cracking phenomena can be naturally captured
due to the implicit consideration of the evolution equation of the corresponding phase-field crack
variables. Posterior developments of PF techniques to fracture have been oriented towards the
analysis of alternative formulations [56, 57], shells [111], ductile fracture [160, 161], composite
materials [65,66,121,123,137], heterogeneous media [123], hydrogen assisted cracking [61],
among many others, and from a numerical point of view striving for different solution strate-
gies [138]. Recently, the authors have proposed the incorporation of phenomenological failure
criteria for composite materials widening the range of applicability of PF methods for different
composite materials [118].

In this investigation, due to the fact that the delamination migration is mainly a shear dominated
failure, two phase-field fracture variables as proposed in [162], each of them accounting for Fiber
Failure (FF) and Inter-Fiber Failure (IFF) relying on Puck’s failure criteria, are combined with
Cohesive Zone Model (CZM) following a bi-linear traction separation law in order to predict
the development of such failure events. Consequently, at the intra-ply level, the driving force for
each of the failure mechanism within the PF technique, i.e. fiber failure and inter-fiber failure,
are exploited independently, and moreover, this fracture model is readily used to capture the
kinking and migration events along with delamination. The proposed model is examined against
experimental data available in the related literature in order to validate the predictive capabilities
of the current simulation technique. In addition to the previous aspects, the current study also
encompasses the analysis of the variation of design parameters for which physical solution favors
delamination-migration such as load application point, angle of the ply at the interfaces, and
initial crack length. Such effects are studied to understand the load-bearing capacity of each
of the variations and show the applicability of the proposed model to predict complex failure
phenomena.
The chapter is organized as follows. In Section 4.2, the Multi Phase-Field-Cohesive Zone

(MPF-CZ) formulation based on the Puck theory of failure is introduced. In Section 4.3, the
variational formulation of the model along with the strong form is outlined with a special focus
on the particular contribution of each failure mechanism to the system. In Section 4.4, the finite
element implementation of the model is derived. The assessment of the proposed framework for
its validation is discussed in Section 4.5 in conjunction with a further investigation with respect
to the variation of numerous design parameters of the system. Finally, Section 4.6 summarizes
the main conclusions of the present study.
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4.2 Multi Phase-Field-Cohesive Zone (MPF-CZ) Formulation Based on the
Puck Theory of Failure

In this section, the computational framework herein proposed for capturing delamination migra-
tion in layered composite structures is outlined. The current method relies on the combination
of the multi phase-field formulation for modeling fracture in LFRPs relying on the Puck failure
criterion [162] along with the cohesive zone model. Specifically, the principle focus is the
construction of numerical formulation of coupled equations encompassing cracks propagation
that arises from different physical failure mechanisms.

The point of departure is the consideration of an arbitrary body in the general ndim Euclidean
space, occupying the placement B ∈ Rndim , with its external boundary ∂B ∈ Rndim−1, see
Figure 4.1. For any material point, the position vector is denoted by x ∈B. The displacement
field is identified by the vector u : B→ Rndim , with infinitesimal stain tensor εεε := ∇

symu for
εεε : B→ Rndim×ndim . The displacement boundary conditions are prescribed as u = u on ∂Bu
and traction conditions are given by t = σσσ ·n on ∂Bt such that, kinematic and static boundary
conditions satisfy: ∂Bt ∪∂Bu = ∂B and ∂Bt ∩∂Bu = /0, where n is outward normal vector
and σσσ is the Cauchy stress tensor.

Figure 4.1 Body under consideration: (a) sharp crack representation and (b) regularized crack
topology.

In addition to the previous definitions, let Γ be a crack set incorporating interface cracks Γi
arising from the cohesive zone and cracks in the bulk Γdi

from the multi phase-field such that,
Γi∪Γdi

= Γ and Γi∩Γdi
= /0 for each discrete t ∈ [0,T ] with Γt ⊆ Γt+1. The displacement jumps

along the interface as the relative displacement between two homogeneous points at the flanks are
denoted by g= u+

i −u−i , representing the difference between kinematic field along the interface
Γ
+
i and Γ

−
i inline with [58,163]. On the other hand, Γdi

is defined as the set of discontinuous
points x, where u has one sided approximate limits u+

d 6= u−d with respect to a suitable direction
vu normal to Γdi

inline with [164,165].
To account for multiple energies in the system, the total free energy functional describing the

mechanics of body B is given as the sum total of internal and external energies acting on the
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4.2 Multi Phase-Field-Cohesive Zone (MPF-CZ) Formulation Based on the Puck Theory of Failure 66

system as follows, respectively:

Π(u,Γ) = Πint(u,Γ)+Πext(u). (4.1)

In classical CDM, the total internal energy is a state function of strain tensor εεε and internal
damage like variable d [118, 162]. The consistent generalization of the isotropic damage formu-
lation for the consideration of different failure mechanisms can be postulated by the additive
decomposition of total internal energy into multiple contributions, in which each of them is
associated with a certain failure mechanism. In such a postulation, a scalar damage variable di
(i = 1,...,n) is associated with each one of the n failure mechanisms, such that di = 0 for intact
material state and di = 1 for fully broken state and so that di ∈ [0,1] for each i = 1,...,n. Moreover,
to account for non-local damage evolution, the respective gradients ∇di are incorporated in the
formulation. This additive decomposition postulation for intra-laminar failure was successfully
applied in [159] and later extended to incorporate failure criteria such as Puck failure theory so as
to distinguish between the fiber and matrix-dominated damage mechanisms in LFRPs [111, 162].
However, the consideration of dissipative energies stemming from debonding along the interface
Γi, and crack propagation in the bulk Γdi

is still a matter of investigation. The prediction of such
crack topology becomes increasingly complex due to branching and coalescence phenomenons,
as well as the interaction with diffusive cracks which may induce the debonding process along
the existing interface Γi. One possibility to achieve this is by employing a phase-field model
incorporating multiple diffusive crack fields within the bulk and interface elements relying on
cohesive zone methodologies at a prescribed interface inline with [58]. Hence, the total internal
energy is now an amalgamation of (i) total elastic energy constituting from bulk (fiber and
inter-fiber) energy, (ii) surface energy (crack energy) stemming from bulk (fiber and inter-fiber)
failure, and (iii) cohesive interface energy obeying a bi-linear traction-separation law:

Πint(u,Γ) = Πint,b(u,Γdi
)+Πint,c(Γi), (4.2)

where Πint,b(u,Γdi
) is the internal energy stemming from the bulk (fiber and inter-fiber) and

Πint,c(Γi) is the dissipative energy associated with cohesive debonding which are addressed in
detail in the sequel. The bulk associated energy Πint,b(u,Γdi

) is further decomposed into:

Πint,b(u,Γdi
) = Πint,FF (u,ΓdIFF

)+Πint,IFF (u,ΓdIFF
), (4.3)

where Πint,FF (u,ΓdFF
) and Πint,IFF (u,ΓdIFF

) correspond to the energies associated with fiber
and inter-fiber, respectively.
With such decomposition at hand, the scheme herein used recalls that the dissipated energy

arising from each of the individual failure mechanisms only affects their corresponding counter-
parts in the elasticity tensor, and therefore precluding the coupling between fiber and inter-fiber
failures and each of these failures with respect to the cohesive debonding. Note that, due to
this preclusion of interaction between the energies, the elastic energy is strongly coupled with
the surface energies stemming from fiber, inter-fiber, and cohesive debonding, whereas surface
energies among themselves are only weakly coupled.
In the impending events, the effective Helmholtz free-energy function Ψ̂ renders:

Ψ̂(εεε,A) =
1
2

εεε : Ce : εεε, (4.4)

where Ce is the elastic constitutive tensor defined as:

Ce := ∂εεεεεε Ψ̂ = λ1⊗1+2µT I+α(1⊗A+A⊗1)+2(µL−µT )IA +βA⊗A, (4.5)

C
ód

ig
o 

se
gu

ro
 d

e 
V

er
ifi

ca
ci

ón
 : 

G
E

IS
E

R
-a

a3
4-

5f
08

-a
66

9-
4b

6e
-9

25
8-

ed
2f

-d
00

9-
e7

f3
 | 

P
ue

de
 v

er
ifi

ca
r 

la
 in

te
gr

id
ad

 d
e 

es
te

 d
oc

um
en

to
 e

n 
la

 s
ig

ui
en

te
 d

ire
cc

ió
n 

: h
ttp

s:
//s

ed
e.

ad
m

in
is

tr
ac

io
ne

sp
ub

lic
as

.g
ob

.e
s/

va
lid

a

ÁMBITO- PREFIJO CSV FECHA Y HORA DEL DOCUMENTO

GEISER GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3 19/06/2020 12:08:12 Horario peninsular

Nº registro DIRECCIÓN DE VALIDACIÓN

O00008744e2000024753 https://sede.administracionespublicas.gob.es/valida

GEISER-aa34-5f08-a669-4b6e-9258-ed2f-d009-e7f3

https://sede.administracionespublicas.gob.es/valida
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where IA,i jkl = AimI jmkl +A jmImikl represents the fourth-order identity matrix, and λ , α , β , µT
and µL are the elastic constants taking the form:

λ = E22 (ν23 +ν31ν13)/D, (4.6)

α = E22 [ν31 (1+ν32−ν13)−ν32]/D, (4.7)

β = E11 (1−ν32ν23)/D−E22 [1−ν21 (ν12 +2(1+ν23))]/D−4G12, (4.8)

µL = G12 and µT = G23, (4.9)

withD= 1−ν
2
32−2ν13ν31−2ν32ν13ν31. The material direction is denoted by a and A = a⊗a

is the so-called structural tensor.
Here, 1-direction corresponds to the fiber orientation, 2-direction is transverse in-plane ori-

entation with respect to the fiber direction, and 3-direction stands for transverse out-of-plane
orientation.

4.2.1 Bulk Energies

In the light of previous developments, the total energy of the fiber can be established as the sum
total of the elastic energy and fracture energy associated with the fiber:

Πint,FF (u,ΓdFF
)≈Πint,FF (u,dFF ) =

∫
B
(1−dFF )

2
Ψ̂FF (εεε,A)dΩ

+
∫
B

Gc,FF

[
1

2lFF
d2

FF +
lFF
2
|∇dFF |

2
]
dΩ,

(4.10)

where Ψ̂FF is the elastic contribution associated with the fiber: Ψ̂FF = 1
2 εεε : Ce

FF : εεε , where:

Ce
FF =


Ce

11 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (4.11)

and Gc,FF is the fracture energy, and lFF is the material characteristic length associated with
fiber failure. This characteristic length is is related to the apparent material strength [93] as:

lFF =
27
256

E11Gc,FF

σ2
s,FF

, (4.12)

where σs,FF is the apparent material strength associated with fiber failure.
Similarly, the inter-fiber contribution to the total internal energy can be expressed as:

Πint,IFF (u,ΓdFF
)≈Πint,IFF (u,dIFF ) =

∫
B
(1−dIFF )

2
Ψ̂IFF (εεε,A)dΩ

+
∫
B

Gc,IFF

[
1

2lIFF
d2

IFF +
lIFF

2
|∇dIFF |

2
]
dΩ,

(4.13)
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where Ψ̂IFF = 1
2 εεε : Ce

IFF : εεε is the elastic contribution associated with the inter-fiber failure, and:

Ce
IFF =


0 Ce

12 Ce
13 0 0 0

Ce
21 Ce

22 Ce
23 0 0 0

Ce
31 Ce

32 Ce
33 0 0 0

0 0 0 Ce
44 0 0

0 0 0 0 Ce
55 0

0 0 0 0 0 Ce
66

 , (4.14)

where Gc,IFF and lIFF are the fracture energy and corresponding length scale associated with
inter-fiber failure, respectively. Similarly, the length scale parameter is estimated for the apparent
material strength σs,IFF of inter-fiber failure as:

lIFF =
27
256

E22Gc,IFF

σ2
s,IFF

. (4.15)

Note that with these definitions at hand, the damaged constitutive matrix renders:

C(dFF ,dIFF ) = (1−dFF )
2Ce

FF +(1−dIFF )
2Ce

IFF , (4.16)

C(dFF ,dIFF ) =


P1C

e
11 P2C

e
12 P2C

e
13 0 0 0

P2C
e
21 P2C

e
22 P2C

e
23 0 0 0

P2C
e
31 P2C

e
32 P2C

e
33 0 0 0

0 0 0 P12C
e
44 0 0

0 0 0 0 P12C
e
55 0

0 0 0 0 0 P2C
e
66

 , (4.17)

where P1 = (1−dFF )
2, P2 = (1−dIFF )

2, and P12 = min(P1,P2).

4.2.2 Interface Energies

The energy stemming from the interface is governed by a bi-linear traction separation law
which constitutes of a linear elastic stage characterized by an initial stiffness of Kn, Kt1 and Kt2
corresponding to the normal and shear components, respectively, followed by a linear softening
as in Figure 4.2. The irreversibility is accounted by introducing a damage variable dc depending
on the relative kinematic critical normal and tangential openings, g f

n and g
f
t j
( j=1 for 2D and

j=1,2 for 3D), respectively [50, 51].
The corresponding interface laws governing the normal and tangential tractions σσσn and τττt j

,
respectively, take the form:

σσσn =


kngn if gn ≤ g0

n

(1−dc)kngn if g0
n < gn < g f

n

0 Otherwise
, (4.18)

τττt j
=


kt j

gt j
if gt j

≤ g0
t j

(1−dc)kt j
gt j

if g0
t j
< gt j

< g
f
t j

0 Otherwise
, (4.19)
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4.2 Multi Phase-Field-Cohesive Zone (MPF-CZ) Formulation Based on the Puck Theory of Failure 69

Figure 4.2 Schematic representation of the bi-linear cohesive zone model traction-separation law
for mixed-mode.

for each j = 1,2 to account for the tangential traction, whereas gn and gt j
are the relative normal

and tangential displacements, respectively. The mixed-mode fracture energy of the interface
reads:

G i
c = GIc +(GIIc−GIc)

(
GII+GIII

GI+GII+GIII

)η

, (4.20)

where GIc, GIIc, and GIIIc represent the corresponding fracture energy associated with normal
(Mode I) and shear (Mode II and III), respectively, and computed as the area under the traction
separation curve, η identifies an experimental fitting parameter elucidating the effects of fracture
mode mixities [144]. Finally, GI, GII, and GIII are energy release rates associated with Mode I,
Mode II, and III, respectively. Based on the energy considerations, the evolution of the damage
variable dc is estimated based on the effective displacement gm =

√
〈gn〉

2 +g2
t1 +g2

t2 , as:

dc =
g f

m(g
max
m −g0

m)

gmax
m (g

f
m−g0

m)
, (4.21)

where g0
m and g f

m are the effective displacements at failure initiation and at complete failure,
respectively, gmax

m refers to the maximum value of effective displacement during loading history.
Finally, with this at hand, the corresponding total energy generated by the cohesive interface
takes the form:

Πint,c(Γi)≈Πint,c(dc) =
∫

Γi

G i
c(g,dc)dS . (4.22)

4.2.3 Fundamentals of Puck Failure Criterion

Damage evolution in the bulk relies on the Puck theory of failure [124] whose corresponding
failure criterion accounts for the independent assessment of fiber and inter-fiber failure surfaces.
For the fiber failure, with usual notations, that is ‖ (subscript 1), ⊥ (subscript 2 and subscript
3) representing fiber direction, normal to the fiber direction in-plane and, normal to the fiber
direction out-of-plane, respectively, for the ply co-ordinates in a local setting 0− e1− e2− e3.
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4.2 Multi Phase-Field-Cohesive Zone (MPF-CZ) Formulation Based on the Puck Theory of Failure 70

According to the Puck theory, fiber failure is triggered based on energetic considerations that,
the exposure factor (denoted fE,FF+ for tensile loading and fE,FF− for compressive loading)
reaches the value 1:

fE,FF+ =
1

Rt
‖

[
σ11−

(
ν⊥‖−

E‖
E‖ f

ν⊥‖ f

)
(σ22 +σ33)P2

]
, (4.23)

fE,FF− =

√√√√( 1
Rc
‖

[
σ11−

(
ν⊥‖−

E‖
E‖ f

ν⊥‖ f mσ f

)
P2 (σ22 +σ33)

])2

+κ

(
σ

2
12 +σ

2
13

R2
⊥‖

)
,

(4.24)
where Rt

‖ stands for the tensile longitudinal strength in fiber direction. ν⊥‖ and ν⊥‖ f identify the
major Poisson’s ratios of the ply and the fibers, respectively, and E‖ f is the elastic modulus of the
fibers. Moreover, Rc

‖ is the compressive longitudinal strength in fiber direction, R⊥‖ represents the
in-plane shear strength, and mσ f stands for the so-called magnification factor, which is assumed
to take the values 1.1 for CFRP and 1.3 for GFRP [131]. The incorporation of P2 is to scale
the influence of the transverse stress components on the longitudinal stress (lateral contraction)
with respect to the state of matrix damage. It is assumed that the contraction in the longitudinal
direction due to transverse stress will vanish in a case P2→ 1, i.e. matrix rupture parallel to the
fibers. In the case of compressive longitudinal stress, reduced compressive longitudinal fracture
resistance of the plies is assumed in case of increasing shear stress, see [132–136]. The parameter
κ allows controlling the influence of shear stresses on the failure of the fibers under compression.
In the case of lateral constraint κ = 0, because even in case of a crushed matrix the fibers are
assumed to be kept inline by the lateral constraint. In case of absent lateral constrains κ ≥ 0,
since a crushed matrix will promote fiber kinking and will, therefore, reduce the compressive
load capacities in fiber direction [132–136].
Puck theory also distinguishes the inter-fiber failure by introducing the so-called action

plane [124, 131], which corresponds to identifying the potential fracture plane derived from the
maximum stress states. The determination of the fracture plane is usually performed via the
assessment of the most critical stress state in terms of the local components by calculating the
value of FE,IFF for all angles Θ within the interval of −90◦ ≤Θ≤+90◦, using an increment of
one degree. The transformation from the local ply setting to the action plane system yields:

σn(Θ)
τnt(Θ)
τn1(Θ)

=

 cos2
Θ sin2

Θ 2cosΘsinΘ 0 0
−cosΘsinΘ cosΘsinΘ cos2

Θ− sin2
Θ 0 0

0 0 0 sinΘ cosΘ




σ22
σ33
σ23
σ13
σ12

 . (4.25)
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4.2 Multi Phase-Field-Cohesive Zone (MPF-CZ) Formulation Based on the Puck Theory of Failure 71

In particular, the expression for inter-fiber failure under tensile and compressive loading
conditions on the action plane takes the form:

fE,IFF+(Θ) =


√√√√[( 1

RAt
⊥
−

pt
⊥ψ

RA
⊥ψ

)
σn(Θ)

]2

+

(
τnt(Θ)

RA
⊥⊥

)2

+

(
τn1(Θ)

RA
‖⊥

)2

+
pt
⊥ψ

RA
⊥ψ

σn(Θ)


1

ηw
for σn(Θ)≥ 0,

(4.26)

fE,IFF−(Θ) =


√√√√( pc

⊥ψ

RA
⊥ψ

σn(Θ)

)2

+

(
τnt(Θ)

RA
⊥⊥

)2

+

(
τn1(Θ)

RA
‖⊥

)2

+
pc
⊥ψ

RA
⊥ψ

σn(Θ)


1

ηw
for σn(Θ)< 0.

(4.27)

In the previous expressions, ηw accounts for the influence of the exposure factor in fiber
direction on the inter-fiber failure due to lateral contraction, as long as no fiber failure occurred
[132,134]. Moreover, one can identify RAt

⊥ = Rt
⊥, RA

⊥‖ = R⊥‖, where Rt
⊥ represents the transverse

tensile strength. Also, the fracture strength RA
⊥⊥ is given by:

RA
⊥⊥ =

Rc
⊥

2
(
1+ pc

⊥⊥
) , (4.28)

where Rc
⊥ represents the transverse compressive strength of the ply. The definitions of the incli-

nation parameters pt
⊥ψ and pc

⊥ψ at any angle ψ are given by the following relations, respectively:

pt
⊥ψ

RA
⊥ψ

=
pt
⊥⊥

RA
⊥⊥

cos2
ψ +

pt
⊥‖

RA
⊥‖

sin2
ψ and

pc
⊥ψ

RA
⊥ψ

=
pc
⊥⊥

RA
⊥⊥

cos2
ψ +

pc⊥‖
RA
⊥‖

sin2
ψ, (4.29)

with:

RA
⊥ψ =

(cosψ

RA
⊥⊥

)2

+

(
sinψ

RA
⊥‖

)2
 . (4.30)

The trigonometric terms defined as:

cos2
ψ =

τ
2
nt

τ2
nt + τ2

n1
and sin2

ψ =
τ

2
n1

τ2
nt + τ2

n1
. (4.31)

Finally, recommended values of material-dependent inclination parameters pt
⊥⊥, pc

⊥⊥, pt
⊥‖,

and pc
⊥‖ are reported in Table 4.1 for glass fiber reinforced (GFRP) and carbon fiber reinforced

(CFRP) composites.
Due to the modelling assumptions herein made, the proposed model requires the following

fracture energy values: (i) Gc,FF fiber fracture energy, (ii) Gc,IFF matrix-dominated fracture
energy, and (iii) Gc inter-laminar fracture energy. These properties can be determined via
experimental procedures, see [142,166–168] and the references therein.
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4.3 Variational Formulation and Strong Forms 72

Table 4.1 Recommended inclination factors for CFRP and GFRP composites.

Material pt
⊥⊥ pc

⊥⊥ pt
⊥‖ pc

⊥‖
GFRP 0.30 0.25 0.20 0.25
CFRP 0.35 0.30 0.25 0.30

4.3 Variational Formulation and Strong Forms

Relying on the considerations given in Section 4.2, the total energy functional of the solid body
B, along with the cracks Γi and Γdi

at any arbitrary instance t ∈ [0,T ] takes the form:

Π(u,Γ)≈Π(u,di,dc) = Πint(u,di,dc)+Πext(u), (4.32)

where the internal and external contribution to the energy functional Π(u,di,dc) read, respec-
tively:

Πint(u,di,dc) =
∫
B
(1−dFF )

2
Ψ̂FF (εεε,A)+(1−dIFF )

2
Ψ̂IFF (εεε,A)dΩ

+
∫
B

Gc,FF

[
1

2lFF
d2

FF +
lFF
2
|∇dFF |

2
]
+Gc,IFF

[
1

2lIFF
d2

IFF +
lIFF

2
|∇dIFF |

2
]
dΩ

+
∫

Γi

G i
c(g,dc)dS ,

(4.33)

Πext(u) =−
∫
B

fvdΩ−
∫

∂Bt

t̄d∂Ω, (4.34)

where fv is the deformation-independent volume-specific loads.
Following the standard Bubnov-Galerkin method, the four primary fields with:

u ∈Uu :=
{

u ∈ H1(B)|∇u ∈ L2(B); u = ū on ∂Bu

}
,

dFF ∈UdFF
:=
{
dFF ∈ H1(B)|dFF (x) ∈ [0,1], ḋFF ≥ 0, ∀x ∈B

}
,

dIFF ∈UdIFF
:=
{
dIFF ∈ H1(B)|dIFF (x) ∈ [0,1], ḋIFF ≥ 0, ∀x ∈B

}
,

dc ∈Udc
:=
{
dc ∈ H1(B)|dc(x) ∈ [0,1], ḋc ≥ 0, ∀x ∈ Γi

}
,

are extended by the corresponding test functions:

δu ∈ Vu :=
{

δu ∈ H1(B)|∇δu ∈ L2(B); δu = 0 on ∂Bu

}
,

δdFF ∈ VdFF
:=
{

δd ∈ H1(B)|δdFF ≥ 0, ∀x ∈B
}
,

δdIFF ∈ VdIFF
:=
{

δd ∈ H1(B)|δdIFF ≥ 0, ∀x ∈B
}
,

δdc ∈ Vdc
:=
{

δd ∈ H1(B)|δdc ≥ 0, ∀x ∈ Γi

}
,
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4.4 Finite Element Implementation 73

whereH1 denotes the Sobolev space. There accordingly, theweak form of the coupled displacement-
crack phase-field-cohesive zone problem is constructed as:

δΠ(u,di,dc,δu,δdi,δdc) = δΠint(u,di,dc,δu,δdi,δdc)+δΠext(u,δu) = 0. (4.35)

Moreover, after simplifications, the strong form of the field equations can be reduced to the
following:

divσσσ + fv = 0 in B and σσσ ·n = t̄ on ∂Bt , (4.36)

2(1−dFF )PFFHFF = Gc,FF δdFF
γ(dFF ,∇dFF ) in B and ∇dFF ·n = 0 on ∂B, (4.37)

2(1−dIFF )PIFFHIFF = Gc,IFF δdIFF
γ(dIFF ,∇dIFF ) in B and ∇dIFF ·n = 0 on ∂B, (4.38)

divg [σσσn(dc)+ τn(dc)] = 0 in Γi, (4.39)

where in the previous expressions div[•] represents the divergence operator and γ is the so-called
crack density functional. The terms HFF and HIFF are the crack driving forces related to fiber
and inter-fiber failure, respectively. Herein, PFF and PIFF are activation flags for the current
crack driving forces for fiber and inter-fiber failure, respectively, and are activated if and only if
their respective Puck failure criterion has been met. In accordance with the Pucks failure criteria,
the crack driving force of each j = FF,IFF are given by:

H j = ξ j

〈 max
τ∈[0,t]

Ψ̂ j(τ)

Ψ̂init, j
−1〉+

 , (4.40)

where ξ j is a dimensionless parameter that characterizes the damage activation and post peak
behaviors. Ψ̂init, j is the effective elastic energy for damage initiation in each of j = FF,IFF .

The unilateral stationary condition of the total internal energy functional implies that δΠint = 0
for all (δu,δdFF ,δdIFF ,δg) > 0 and δΠint > 0 for (δu,δdFF ,δdIFF ,δg) = 0 along with the
irriversibility and boundedness of dFF , dIFF , and dc leads to the first-order optimality (KKT)
conditions for the quasi-static evolution [14, 47].
It is worth noting that the irreversible character of the phase-fields and cohesive zone can

be reduced to S , this is fulfilled by the history variable embedded by the history variable
Eq.(4.40). The boundedness of the phase-field variables dFF and dIFF ∈ [0,1] is ensured due to
the choice of degradation function (1−d j)

2 as in [43]. Also, it is important to note that, we have
assumed ∇d j = 0 due to the compactness property and δu = 0 on ∂Bt and δd j = 0 on ∂B, from
the variational form which are reflected in the choice of approximate spaces of test functions,
see [164,165].

4.4 Finite Element Implementation

In this section, details of the finite element implementation of the proposed model are outlined.
A staggered solution scheme is used to solve the system of coupled Partial Differential Equations
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4.4 Finite Element Implementation 74

(PDEs) using an alternating minimization scheme [15].
The solution of the proposed displacement multi phase-field-cohesive zone fracture problem

is obtained after discretizing the space using the Finite Element Method (FEM). Hence, the
continuous domain of the body B is approximated by a discrete domain Bh that is formed by
a finite number of disjoints elements Be. There accordingly, the infinite-dimensional function
spaces U and V are approximated by the corresponding finite-dimensional subspaces U h and
V h, imposing the same conditions on the boundaries.

At each element level, in the isoparamtric space settings, the triplet of field variables {ue,de
FF ,d

e
IFF}

as well as their variations {δue,δde
FF ,δd

e
IFF} are approximated using linear first-order La-

grangian triplet of shape functions
{

Nu
i ,N

d
i ,N

d
i

}
at ith node of each element satisfying partition

of unity, as follows:

ue =
Nnode

∑
i=1

Nu
i ue

i , de
j =

Nnode

∑
i=1

Nd
i d

e
j,i (4.41)

δue =
Nnode

∑
i=1

Nu
i δue

i , δde
j =

Nnode

∑
i=1

Nd
i δde

j,i for each j = FF,IFF. (4.42)

The triplet of spatial derivatives {∇ue,∇de
FF ,∇de

IFF} are approximated using the gradients of
the shape functions

{
Bu

i ,B
d
i ,B

d
i

}
at ith node of each element following:

εεε
e =

Nnode

∑
i=1

Bu
i ue

i , ∇de
j =

Nnode

∑
i=1

Bd
i d

e
j,i,

δεεε
e =

Nnode

∑
i=1

Bu
i δue

i , ∇δde
j =

Nnode

∑
i=1

Bd
i δde

j,i, for each j = FF,IFF.

Complying with the formulation of interface cohesive element, the displacement jump vector
g is represented in terms of local frames across the interface Γi [58]. Hence, the jump g and its
variation δg is approximated using the kinematic jump-displacement operator Bg = RNgL as:

ge = BgueL, δge = Bg
δueL, (4.43)

where L is the difference between the displacement of the upper and lower interface points and
R is a rotation matrix that converts integration points from global to the local frame, and Ng
represents the standard cohesive shape function, see [51].

The discrete elemental residual vectors for the quadruplet {ue,de
FF ,d

e
IFF ,g

e} can be reduced
to the following system of equations:

Ru
e =

∫
Be

(1−dFF )
2(Bu)T

σσσFF +(1−dIFF )
2(Bu)T

σσσ IFFdΩ−
∫
Be

(Nu)T fvdΩ

−
∫

∂Be
t

(Nu)T td∂Ω+Rg
e ,

(4.44)

RdFF
e =

∫
Be

[
Gc,FF

lFF
dFF −2(1−dFF )PFFHFF

]
(Nd)T +Gc,FF lFF (B

d)T
∇dFFdΩ, (4.45)
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RdIFF
e =

∫
Be

[
Gc,IFF

lIFF
dIFF −2(1−dIFF )PIFFHIFF

]
(Nd)T +Gc,IFF lIFF (B

d)T
∇dIFFdΩ.

(4.46)
where,

Rg
e =

∫
Γe

i

(Bg)T
τ(g,dc)dS , (4.47)

is the residual vector associated with the cohesive interface. It is clear that the displacement
field u is strongly coupled with the phase-fields dFF , dIFF , and the displacement the jump g.
Whereas, the phase-fields are among themselves and with the jump g are decoupled which are
evident from Eqs.(4.37)-(4.39) and from the assumption that Γi∩Γdt

= /0. Due to the existence
of multiple phase-field and interface, the system of equations describing the fracture is non-linear.
Hence, an iterative Newton-Raphson solver is used until the convergence in the sense of cauchy
sequence [(ut+1

n −ut
n)] is reached. Here, ut

n is the tth iteration at nth step. The corresponding
Newton-Raphson iteration to estimate (n+1) time step tales the form:

 u
dFF
dIFF


n+1

=

 u
dFF
dIFF


n

−

 K uu +K gg 0 0
0 K dFFdFF 0
0 0 K dIFFdIFF

−1

n+1

 Ru

RdFF

RdIFF


n

,

(4.48)
where the corresponding element stiffness matrices read:

K uu
e :=

∂Ru
e

∂ue =
∫
Be

(Bu)TCepdBudΩ, (4.49)

K gg
e :=

∂Rg
e

∂ue =
∫

Γe
i

(Bg)T
∂gτBgdS ,

K dFFdFF
e :=

∂RdFF
e

∂de
FF

=
∫
Be

[
Gc,FF

lFF
+2PFFHIFF

]
Nd(Nd)T +Gc,FF lFF (B

d)T BddΩ,

(4.50)

K dIFFdIFF
e :=

∂RdIFF
e

∂de
IFF

=
∫
Be

[
Gc,IFF

lIFF
+2PIFFHIFF

]
Nd(Nd)T +Gc,IFF lIFF (B

d)T BddΩ,

(4.51)
and Cepd is the material consistent tangent.
The previous non-linear system of equations is implemented in the finite element software

ABAQUS. For this purpose, a user-defined UMAT is written for the solution of equilibrium equations
associated with the displacement field whereas UEL is utilized for solving the fracture associated
problem.

4.5 Representative Examples

In this section, a comprehensive numerical analysis is presented to validate the model against
experimental results in order to draw a qualitative assessment of delamination migration. In
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the sequel, a holistic sensitivity analysis is carried out by means of the variation of the loading
application point, ply angle, and initial pre-crack length.

4.5.1 Description of the Numerical Model: General Aspects

Figure 4.3 depicts the baseline configuration under investigation herein. The corresponding
numerical model consists of 44 cross-ply IM7/8552 laminates with the layup sequence
[90◦4/0◦3/(90◦/0◦)2s/0◦3/CL/90◦4/CL/0◦/0◦/(90◦/0◦)2s/0◦/0◦/90◦3/0◦/90◦], where CL refers

to a cohesive layer. Each ply has a thickness of 0.125mm. Compared with the experimental
sequence as in [151], a PTFE (Polytetrafluoroethylene) layer is replaced by a cohesive layer and
in addition, another cohesive layer is added at the interface between the 90◦4 and 0◦ sequence in
order to account for delamination migration.

Figure 4.3 Schematic representation of the delamination migration model.

It is evident from the experimental results reported in [152] that, when shear stresses in
the model change sign, migration/kinking occurs and the crack propagates to the 90◦4 layers
facilitating the inter-fiber failure. Due to the smooth initiation and propagation (stemming from
the infinite supports) of phase-field approximations, and quasi-static load conditions, only a
qualitative assessment of the delamination migration has been presented in this study.

For each of the numerical simulations conducted in the sequel, a 2D analysis is carried with an
out-of-plane thickness of 8.37mm. Hence, the domain is discretized through employing 960000
4-node quadrilateral plane stress elements with an average element size of 0.04mm, such that
each layer of the cross-ply contains at least 4 elements across its thickness.

Thematerial properties of IM7/8552 ply are shown in Table 4.2 consistent with the experimental
results in [151]. The fracture energy and length scale parameters associated with the two phase-
fields are shown in Table 4.3. The properties of the cohesive layer in accordance with [169] are
listed in Table 4.4.

Table 4.2 IM7/8552: elastic properties.

E11 (GPa) E22 (GPa) G12 (GPa) ν12 (minor) ν23
161.0 11.38 5.17 0.03 0.43
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4.5 Representative Examples 77

Table 4.3 IM7/8552: intra-laminar fracture properties and phase-field parameters.

Gc,FF (N/mm) Gc,IFF (N/mm) lFF (mm) lIFF (mm)
50.0 0.65 0.05 0.05

Table 4.4 Cohesive layer properties.

Nominal stress Nominal stress Nominal fracture Fracture energy Power (BK law)
(MPa) in shear (MPa) energy (N/mm) in shear (N/mm)

15 15 0.5 0.65 2.17

4.5.2 Numerical-Experimental Validation

The global failure response for the specimen under consideration is investigated for the load case
L= a0 = 49mm. The numerical-experimental correlation corresponding to the load-displacement
curve is given in Figure 4.4. As shown in this figure, the failure response can fairly be divided
into three main zones (i) delamination of the cohesive zone, (ii) kinking followed by migration,
and (iii) delamination of the top cohesive zone. Overall, a satisfactory agreement between the
numerical and the experimental data can be observed.

Figure 4.4 Numerical-experimental correlation corresponding to the load-displacement curve
for L = a0=49mm.

As was previously discussed, based on postulations made in [151, 152] and the corresponding
thorough discussion, delamination migration occurs due to a change of sign in the shear stress
components. Negative shearing stresses promote delamination growth at the 0◦/90◦ interface,
and positive shearing stresses promote migration/kinking into 90◦ plies. The kinking happens at
multiple sites across the specimen. Due to the diffusive nature of the bulk cracks, the shearing
stress change can easily be noticed by the initiation of the inter-fiber phase-field as depicted in
Figure 4.5. Notice that, due to the negative sign at the beginning, delamination propagates until a
certain point until shearing stresses are positive. Meanwhile, inter-fiber failure is already initiated,
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4.5 Representative Examples 78

Figure 4.5 Inter-fiber crack field (SDV20) for L = a0=49mm.

but from the opposite direction, i.e 90◦/0◦ interface, but is not nucleated. Whereas, when the
shear stresses become positive in the adjacent increments, the migration starts developing, with a
crack front now migrating into the 90◦/0◦ interface.
For a phenomenology of embodiment, in the cohesive layers, once the failure criterion is

met, the cohesive layer starts delaminating. Similarly, when the Puck criterion is violated, the
inter-fiber failure phase-field is activated due to shearing stresses in the model. As long as the
PIFF is active, the inter-fiber failure phase-field crack dIFF grows and migrates into the 90◦ plies
until the 90◦/0◦ interface. Simultaneously, the top cohesive layer at the 90◦/0◦ interface starts
to delaminate. When the migration crack front crosses the 90◦/0◦ interface, the crack front is
again propagating due to the negative shear stress leading to the delamination of the top cohesive
layer. Here onward, crack propagation is dominated by the residual stresses in the model as in
Figure 4.4.

4.5.3 Sensitivity Analysis: Role of Different Parameters

This section aims at providing a further understanding with regard to the potential role of different
design parameters that can favor delamination-migration events.
4.5.3.1 Effect of Position of Loading Application

The first aspect under analysis concerns the variation of load application point along the specimen.
This parameter in the experimental setting might have a strong influence on the activation
of migration phenomena by simply inducing a different local stress field at critical locations.
Moreover, from a global standpoint, this can have notable effects on the load-displacement curve
as the shear stresses acting on the specimen are significantly different from one another. Keeping
a0 = 49mm, the variation of load L for L = 0.7a0, 0.8a0, 0.9a0, 1.0a0, and 1.1a0 are plotted in
Fig. 4.6.

Based on the current results, it can be observed that for a0 > L, all the cases exhibit delamination
prior to migration and show a sudden drop in the load-carrying capacity when migration starts, see
Figure 4.7. Whereas, for a0 < L, the shearing stress sign is favorable for migration at the beginning,
and hence there is smooth migration, with delamination spreading over the whole experiment,
see Figure 4.7 which is consistent with [152]. It is also to notice that after delamination migration
is finished, for all the load variations, the residual stiffness for delamination converges to a single
value.
4.5.3.2 Effect of the Variation of Ply Angle

The second aspect understudy has an inherent local effect since it focused on the investigation of
the delamination migration at 0◦/Θ

◦
4 interface. For this purpose, the original stacking sequence
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4.5 Representative Examples 79

Figure 4.6 Variation of load across the specimen for a0 = 49mm.

Figure 4.7 Inter-fiber crack field (SDV20) from 3 cases at L = 0.7a0, L = 0.9a0, and L = 1.1a0.

is replaced by a new layup sequence near the cohesive zones as 0◦3/CL/Θ
◦
4/CL/0◦/0◦. The fiber

orientation, Θ
◦ of 30◦, 45◦, and 60◦ is studied along with 90◦, and the results are shown in Figure

4.8.
From this graph, it can be seen that the global pre-peak response is almost unaltered by the

variation of the local orientation of the adjacent layers to the 0◦/Θ
◦
4 interface. However, this

aspect has a notable influence on the post-peak response, delaying the delamination initiation
and the subsequent delamination event of the top interface, according to the description given in
Figure 4.5, but however, the cracking migration is predicted to occur at almost the same loading
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4.6 Concluding Remarks 80

level (along the post-peak evolution).

Figure 4.8 Variation of angle across the specimen for L = a0 = 49mm.

4.5.3.3 Effect of the Variation of Initial Crack Length

The last effect under consideration corresponds to the initial crack length. Focusing on very
specific cases, we vary initial crack size from a0 = 49mm to a0 = 55mm.
The global load-displacement evolution curves for such cases are shown in Figure 4.9. Ac-

cording to these data, it can be stated that a simple variation of the initial crack length has a very
remarkable role in the specimen response. Thus, observing the pre-peak evolution, before any
inelastic process commences, the larger the initial crack length is set, the higher the maximum
load is achieved. Moreover, concerning the post-peak evolution, it is observable that while the
shorter initial crack-length case evidences similar evolution with respect with those previously
described, i.e. with the occurrence of delamination events and the posterior cracking migration
to the adjacent layer, the response of a0 = 55mm (and a0 > 55mm) exhibited a completely
different evolution with no evidence of cracking migration, see Figure 4.9, and 4.10 where the
matrix-failure maps for both configurations are depicted. These differences in the response are
directly associated with the discrepancies in the local stress state at the crack tips at the interface
and at the intermediate layer. This is again inline with previous studies, showing the robustness
and reliability of the proposed modeling framework.

4.6 Concluding Remarks

A consistent Multi Phase-Field-Cohesive Zone (MPF-CZ) model relying on Puck theory of
failure was proposed for matrix-dominated cracking in the presence of interfaces. The failure
mechanisms due to fiber failure, inter-fiber failure, and interface debonding are all accommodated
in the model by considering multi phase-fields, each characterized by their failure mechanism
with corresponding fracture energy and internal length scale, plus a cohesive zone model.
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4.6 Concluding Remarks 81

Figure 4.9 Variation of initial crack length across the specimen for L = a0.

Figure 4.10 Inter-fiber crack field (SDV20) for initial crack length a0 = 52mm and a0 = 55mm
with L = 1.0a0.

The computational framework was carefully derived via multi-field variational formulation
with multiple dissipative mechanisms within the spirit of Phase-Field (PF) and Cohesive Zone
(CZ) models such that thermodynamics consistency is preserved.

The model was applied to the study of delamination migration in multi-layered Long Fiber
Reinforced Polymers (LFRPs) to illustrate the capabilities of the model. The variation of the
design parameters, such as the load application point, the angle between the plies, and the initial
crack length was presented to assess the sensitivity of the model response.
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5 Summary and Outlook

5.1 Summary and conclusions

The research presented in this dissertation deals with the comprehensive development of the
numerical treatment of fracture events in different types of Fiber Reinforced Polymers (FRPS)
within the framework of the Phase-Field (PF) approach to fracture. In particular, the attention is
mainly focused on two types of composites materials, Short Fiber Reinforced Polymers (SFRPs)
and Long Fiber Reinforced Polymers (LFRPs), which are extensively employed in different
industrial sectors, such as aerospace and aeronautics and automobile applications, among others.
The current developments aimed at providing further insight into the different failure events

that can arise in composites materials aforementioned and would contribute to the establishment
of new paradigms in the design processes of the corresponding parts, leading to significant
reductions of the currently used safety factors. Moreover, from the environmental perspective,
this would result in optimized structural components inducing notable reductions in payload, fuel
consumption, and energy demands for the manufacturing processes.
The results and discussions throughout the present text show that the primary goals of the

present research have been successfully achieved.
The first part of the dissertation was devoted to the development of a new numerical method

for the simulation of the failure response of short fiber reinforced polymers. This new formation
exploited the fundamental concepts of the phase-field approach to fracture but incorporated
the corresponding attributes for SFRPs. In particular, within the context of macro-scale phe-
nomenological models, the use of the invariant-based theory for accounting for the anisotropic
character of SFRPs has been employed. This theory has exhibited strong potential for capturing
the macroscopic behavior of such materials but enabling the representation of complex mechani-
cal responses. In order to accommodate the use of the PF method, the baseline formulation of this
method was rigorously extended to the elaso-plastic fracture response. Moreover, an additional
novel ingredient of the present research was the employment of a non-associative elasto-plastic
formulation which enables capturing more realistic plastic deformations. The corresponding
governing equations for ductile fracture modeling of SFRPs lead to a multi-field formulation,
whose corresponding discrete system of equations was solved via a staggered solution-scheme
utilizing the commercial FE code ABAQUS. To do so, the proposed model was implemented via
user-defined capabilities, combining the use of user-defined elements and materials.
To conclude, the proposed coupled elasto-plastic phase-field model can successfully capture

anisotropic ductile fracture in SFRPs with more realistic plastic deformations.
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5.1 Summary and conclusions 84

The second research topic in this thesis comprised the analysis of failure response of long
fiber reinforced polymers from a numerical perspective using a novel multi phase-field modeling
approach. In view of the limitation of standard damage models for LFRPs, the main motivation
striving for this new development was the new attributes offered by the PF approach to fracture, i.e.
reduced mesh-dependence and robust account for fracture. In line with the model for SFRPs, a
macro-scale representation was assumed. In this concern, the developed formulation represented
a remarkable advancement in the current State of the Art on the topic. The point of departure was
again the variational formulation of the PF approach to fracture. However, in order to differentiate
the potential occurrence of damage mechanisms in LFRPs from different signatures, i.e. fiber
and matrix-dominated cracking events, the standard PF formulation was further enhanced with
the consideration of two different crack-like phase-field variables which are associated to both
failure mechanisms.

For the consistent activation of both failure types, without any loss of generality, the so-called
Puck’s failure theory was recalled. The selection of such failure criterion for LFRPs has been
adopted as a consequence of its reliability in different World Wide Failure Exercises (WWFEs)
on composites materials. Notwithstanding, it is remarkable that the current formulation can
accommodate any other failure criterion with simple and minor modifications of the code.

With respect to the specific modifications of PF models for bulk failure, the distinction between
two different failure mechanisms encompassed the consideration of two different crack-like phase-
field variables, with the corresponding phenomenological stress-based criterion for damage
activation, as well the respective values for the fracture toughness and length scale. It is worth
mentioning that this resulted in a novel FE design with a physically-sound fracture criterion, but
increasing the number of the required material parameters for the damage activation, i.e not only
those required for the PF method but also the set that is inserted into the Puck failure surfaces.
This might lead to difficulties for the experimental characterization of such parameters however
this is an aspect already present in most of the local continuum damage models for LFRPs.
From the computational side, the inclusion of an additional phase-field variable incurred in

the modifications of the baseline FE implementation for the PF approach, adding an extra degree
of freedom per node. Note also that the abrupt fiber failure might lead to difficulties in achieving
equilibrium solutions in the corresponding numerical procedure.
To conclude, the developed multi phase-field model can successfully predict the physically

observed inter-laminar (fiber and inter-fiber) fracture events in LFRPs.
Though the current Puck-based multi phase-field approach to fracture is oriented towards mod-

eling intra-laminar failure in LFRPs, the last part of the present thesis dealt with the combination
of the PF method for bulk fracture with interface-like crack methods (in particular cohesive
modeling) for inter-laminar events. For this purpose, the standard variational formulation has been
further equipped by means of the specific decomposition of the dissipative part of the governing
functional, making the discrimination between intra- and inter-laminar fracture. This approxima-
tion has been already proposed in the related literature, but in this research, the coupling with the
multi phase-field approach to fracture was performed. Moreover, the main application under an
analysis of such a coupled cracking method regarded a situation of high practical interest, as is the
case of the delamination migration phenomena in multi-layered LFRPs. From a more theoretical
and numerical standpoint, it is worth mentioning that the implicit competition between the onset
and progress of both dissipative phenomena led to different numerical difficulties due to the
staggered solution scheme herewith employed, which were overcome by the careful examination
of the different available solving capabilities.
To conclude, the proposed coupled multi phase-field cohesive zone strategy can successfully

predict delamination migration phenomena in multi-layered LFRPs.
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5.2 Future developments 85

5.2 Future developments

Stemming from the theoretical developments and the corresponding numerical treatment of the
models herewith proposed, several research areas are identified for potential improvement and
enhancement.
At present, prospective investigations concerning failure responses of SFRPs would require

the conduction of careful experimental campaigns. The main target of such experimental studies
is motivated for the achievement of a more comprehensive understanding of fracturing response
of such materials under different loading cases and rates.

Focusing on the numerical developments, continuing the research of this thesis, the proposed
model for SFRPs can be revisited using the feedback from the experimental campaigns mentioned
above. However, further developments are required for capturing large deformation effects and
thermo-mechanical fractures in both, SFRPs and LFRPs. An area of high interest will also
encompass the prediction of damage and fracture events due to fatigue loading conditions. Such
novel theoretical and computational formulations are being under development. However, these
developments will again necessitate the conduction of experimental tests for complementing
purposes. Another ongoing research related to LFRPs regards the application of the proposed
formulation for modeling fracture events in large composite structures such as the case of stiffened
panels, specimens with stress concentrators, among many other cases.
With respect to the future directions of research, an interesting topic would be the extension

of the proposed elasto-plastic PF fracture modeling for other materials. This can be the case
of porous materials, geomaterials, among many others. Finally, a very interesting direction for
both types of composite materials herewith investigated will be the use of multi-scale modeling
approaches to further the understanding of the micro-macro transition of cracking events, as well
as the corresponding investigation of size-effects in composites.
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