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Abstract: Phenylpropanoid metabolism represents an important metabolic pathway from which
originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as
flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological
processes. Therefore, various types of interconnection exist between different aspects of nitrogen
metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids
are postulated to play pivotal roles in adaptation to their biological environments, both as defensive
compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia.
In this paper, we summarize the recent progress made in the characterization of flavonoid and
isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under
different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B
irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in
glutamine synthetase. The results provide different types of evidence showing that an enhancement
of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic
stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the
use of co-expression networks, particularly MYB transcription factors, is also described. The results
obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as
soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and
human health.
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1. Introduction

The use of nitrogen by plants involves several steps, including uptake, assimilation, translocation,
and different forms of recycling and remobilization processes, all of them of crucial importance in terms
of nitrogen utilization efficiency. Different processes exist in plants, which give rise to the production of
endogenous sources of ammonium which have to be efficiently re-assimilated by secondary ammonium
assimilation. These processes include photorespiration, the biosynthesis of phenylpropanoids, as well
as ureide, nucleotide and amino acid catabolism [1]. Phenylpropanoid metabolism represents an
important metabolic pathway from which originates a wide number of secondary metabolites derived
from phenylalanine or tyrosine, including monolignols, flavonoids and isoflavonoids, various phenolic
acids, and stilbenes [2]. It is well known that secondary metabolites are crucial molecules in plant life,

Plants 2020, 9, 774; doi:10.3390/plants9060774 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-7334-5734
http://www.mdpi.com/2223-7747/9/6/774?type=check_update&version=1
http://dx.doi.org/10.3390/plants9060774
http://www.mdpi.com/journal/plants


Plants 2020, 9, 774 2 of 22

as protective agents against environmental factors (e.g., oxidative stress, pathogens, etc.) as well as
elements favoring reproduction [3–6]. In particular, it is well established that phenylpropanoid-derived
compounds have roles in plant growth and development, and in the defense against biotic and abiotic
stress [2]. The phenylpropanoid pathway has different branches that lead to different families of
compounds, such as chalcones, flavones, flavonols, flavanones, isoflavonoids, and anthocyanins,
among others [7]. The structure, composition and biological activity of flavonoids have been frequently
analyzed (see [7–10] for an overview, and references therein).

The second most important family of crop plants for humans, after Poaceae, are Fabaceae because
they provide sources of food, feed for livestock and raw materials for industry [11]. Legumes are crucial
plants in sustainable agriculture because they are able to fix atmospheric dinitrogen in a symbiotic
association with rhizobial species. In addition, legumes produce a high diversity of secondary
metabolites which serve as defense compounds against herbivores and microbes, but also as signal
compounds to attract pollinating and fruit-dispersing animals. As nitrogen-fixing organisms, legumes
produce more nitrogen containing secondary metabolites than other plant families [12]. In particular,
flavonoids and isoflavonoids, which are compounds lacking nitrogen in their structures, are postulated
to play pivotal roles in the adaptation of legumes to their biological environments both as defensive
compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia [13].
A primary function of flavonoids in legume–rhizobia symbiosis is to induce transcription of the genes
involved in the biosynthesis of Nod factors. These factors are rhizobial signaling molecules perceived
by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that
only induce Nod factor production in compatible rhizobia, and therefore act as important determinants
of host range [14]. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles
in rhizobial infection. The molecular details of how flavonoid production in plants is regulated during
nodulation have not yet been clarified, but nitrogen availability has been shown to play a role [15].
The role of flavonoids and isoflavonoids in plant symbiosis is not limited to nitrogen-fixing bacteria
since these compounds also play several roles in the symbiosis with mutualistic fungi. During the
establishment of fungal symbiosis, these compounds can stimulate spore germination, hyphal branching
and growth, root colonization, and arbuscule formation inside the root [16]. In later stages of symbiosis,
flavonoids may be involved in the autoregulation of mycorrhization [17]. In the case of soybean, a
specific isoflavonoid rather than a flavonoid can stimulate hyphal growth [18]. These effects often are
host-specific, much like in the case of plant–rhizobial symbiosis. In fact, autoregulation of nodulation
and autoregulation of mycorrhizae, the two negative feedback loops that control the formation of
rhizobial and mycorrhizal symbioses, may share common elements [19]. However, the inhibitory
effects of some plant flavonoids on fungal symbiosis have also been reported, both in plants that are
host for mycorrhizal fungi and in non-host plants ([16], and references therein). Flavonoids can also
accumulate in the early stages of plant–fungi interaction as a defense response; however, once the
symbiosis has been established, the fungal symbiont may use the flavonoids as carbon source [20].
In addition, because legumes are a significant source of food and forage, the effects of leguminous
flavonoids and isoflavonoids on human and animal health are being studied intensively [13,21].
In particular, excellent reviews describe exhaustively the different isoflavonoids compounds found in
legume plants [22–24].

A major impetus in the investigation of the phenylpropanoid pathway in forage legumes was the
fact that proanthocyanidins are beneficial in the diet of grazing ruminants through reduced pasture
bloat, increase protein uptake and reduced intestinal parasite burdens [25,26]. Bloat is caused by
protein foam formed in the rumen when animals graze protein-rich legume pastures. Rumen foam
prevents normal expulsion of gases and, as consequence, ruminal volume and intraruminal pressure
increase [26]. In the presence of proanthocyanidins, excess dietary proteins as well as bacterial enzymes
are complexed and the level of protein degradation in the rumen is significantly reduced. This leads to
an increased protein bypass to the ruminant’s gut and the improved absorption of essential amino
acids, resulting in increased milk and meat production [25–28]. The production of pasture legume
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species with moderate amounts of foliar proanthocyanidins (2–4%) is of considerable interest to the
pastoral agricultural industry [25,28,29].

Genomics and functional genomics, together with genetics, biochemistry, physiology,
and molecular and cell biology, have accelerated discoveries in legume molecular and systems
biology. Unfortunately, agricultural legumes are relatively poor model systems for research in genetics
and genomics. Studies on most of the major leguminous crops are hampered by large genome sizes
and other disadvantages (allogamy, polyploidy, transformation or regeneration recalcitrancies, few or
large seeds and seedlings, genome duplications, long generation times, etc.). As a result, two species,
Lotus japonicus and Medicago truncatula, were adopted internationally as models for modern legume
research [30,31] and important advances have been produced in understanding the molecular details
of rhizobial–legume symbiosis [32–37]. The high levels of synteny that exist between the different
legume genomes imply that the advances obtained with the model plants can be used in order to
understand and improve the performance of cultivated legume species [38].

In this paper, we will summarize recent progress made in the characterization of flavonoid and
isoflavonoid biosynthetic pathways in legume plants with a particular focus on the model legume
Lotus japonicus, and the impact that these studies may have to improve cultivated legumes of great
agronomic importance such as soybean (Glycine max).

2. Flavonoid and Isoflavonoid Biosynthetic Pathways in Lotus

The enzyme chalcone synthase (CHS) is involved in the biosynthesis of the precursor molecules
for both flavonoids and isoflavonoid biosynthesis. CHS is a member of the type III polyketide synthase
family that catalyzes the conjugation of three acetate units from malonyl-CoA to a p-coumaroyl-CoA
starter molecule derived from phenylalanine via the general phenylpropanoid pathway (Figure 1).
In the same active site, additional aromatic “A” cycle of flavonoids is built via the intramolecular
cyclisation [39]. The product of such reaction is 2’,4,4’,6’-tetrahydroxychalcone (naringenin chalcone),
later changing to 5,7,4’-trihydroxyflavanone (naringenin) by building of the “C” heterocycle catalyzed
by chalcone isomerase (CHI) that serves as a precursor for the other flavonoids [40]. In some species
of the family Fabaceae, isoflavonoids, such as genistein, biochanin A or others, are produced from
naringenin [41]. However, most of the isoflavonoids are synthesized via isoliquiritigenin that is
produced by the coupled catalytic action of CHS and chalcone reductase (CHR; also called polyketide
reductase, PKR, see below).
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Figure 1. Overview of the flavonoid and isoflavonoid pathways in Lotus japonicus. 4CL, 4-
coumarate:CoA ligase; 2’OMT, 2’-O-methyltransferase; I2’H, isoflavone-2′-hydroxylase; ANR, 
anthocyanidin reductase; ANS, anthocyanidin synthase; C4H, cinnamic acid 4-hydroxylase; CHI, 
chalcone isomerase; DMID, 7,2‘-dihydroxy-4‘-O-methoxyisoflavanol dehydratase (syn. pterocarpan 
synthase); CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; 
F3’H, flavanone 3’-hydroxylase; FLS, flavonol synthase; HID, 2-hydroxyisoflavanone dehydratase; 
HI4’OMT, 2-hydroxyisoflavanone 4′-O-methyltransferase; IFR, isoflavone reductase; IFS, 2-
hydroxyisoflavanone synthase; LAR, leucoanthocyanidin reductase; PAL, phenylalanine ammonia 
lyase; PKR, polyketide reductase (syn. chalcone reductase); PTR, pterocarpan reductase; VR, vestitone 
reductase. Purple color: enzymes of general phenylpropanoid pathway; grey color: enzymes of 
flavonoid pathway; blue color: enzymes of isoflavonoid pathway. Dashed arrows represent multiple 
biosynthetic steps. Trivial names of compounds are presented if they are commonly used; the others 
are presented by their semi-systematic names. Semi-systematic names and chemical structures of the 
referred flavonoids and isoflavonoids are attached online in Table S1. The names underlined in bold 
highlight most abundant isoflavonoids found in L. japonicus according to our data [42]. 

Whereas in Arabidopsis thaliana only one single gene for CHS is known, in other species several 
CHS genes were found (e.g. two in cacao, four in wild strawberry, five in apple, six in poplar), which 
is especially true for legumes [43,44]. In L. japonicus 13–14 CHS genes were found, 15 in Glycine max 
and 17 in Medicago truncatula [43]. The higher number of CHS genes in legumes is likely related to the 

Figure 1. Overview of the flavonoid and isoflavonoid pathways in Lotus japonicus. 4CL, 4-coumarate:CoA
ligase; 2’OMT, 2’-O-methyltransferase; I2’H, isoflavone-2’-hydroxylase; ANR, anthocyanidin reductase;
ANS, anthocyanidin synthase; C4H, cinnamic acid 4-hydroxylase; CHI, chalcone isomerase; DMID,
7,2’-dihydroxy-4’-O-methoxyisoflavanol dehydratase (syn. pterocarpan synthase); CHS, chalcone
synthase; DFR, dihydroflavonol 4-reductase; F3H, flavanone 3-hydroxylase; F3’H, flavanone
3’-hydroxylase; FLS, flavonol synthase; HID, 2-hydroxyisoflavanone dehydratase; HI4’OMT,
2-hydroxyisoflavanone 4’-O-methyltransferase; IFR, isoflavone reductase; IFS, 2-hydroxyisoflavanone
synthase; LAR, leucoanthocyanidin reductase; PAL, phenylalanine ammonia lyase; PKR, polyketide
reductase (syn. chalcone reductase); PTR, pterocarpan reductase; VR, vestitone reductase. Purple
color: enzymes of general phenylpropanoid pathway; grey color: enzymes of flavonoid pathway;
blue color: enzymes of isoflavonoid pathway. Dashed arrows represent multiple biosynthetic steps.
Trivial names of compounds are presented if they are commonly used; the others are presented by their
semi-systematic names. Semi-systematic names and chemical structures of the referred flavonoids and
isoflavonoids are attached online in Table S1. The names underlined in bold highlight most abundant
isoflavonoids found in L. japonicus according to our data [42].

Whereas in Arabidopsis thaliana only one single gene for CHS is known, in other species several
CHS genes were found (e.g., two in cacao, four in wild strawberry, five in apple, six in poplar), which is
especially true for legumes [43,44]. In L. japonicus 13–14 CHS genes were found, 15 in Glycine max and 17
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in Medicago truncatula [43]. The higher number of CHS genes in legumes is likely related to the presence
of the isoflavonoid pathway in that family. In L. japonicus, CHS6 (called LjCHS1 in [45]) could represent
the non-leguminous type of chalcone synthase; on the other hand, in soybean, GmCHS6, GmCHS7
and GmCHS8 seem more related to isoflavonoid production [46,47]. GmCHS7 and GmCHS8 show
strong homology with LjCHS5 (Lj1g3v2626200.1), LjCHS8 (Lj0g3v0129339.1) LjCHS9 (Lj2g3v2124320.1)
and LjCHS11 (Lj2g3v2124320.2), whereas GmCHS6 is homologous to LjCHS12 (Lj4g3v2574990.1).
However, Lotus isoflavonoids are produced mainly via isoliquiritigenin, the daidzein and genistein
(and their derivates) found in soybean are produced from isoliquiritigenin and naringenin chalcone,
respectively [41,48] (Figure 1). Therefore, the regulation pattern of chalcone synthases in soybean
might be more complex.

The flavonoid biosynthetic pathway producing flavonols, anthocyanidins and proanthocyanidins
(condensed tannins) in L. japonicus are described in Figure 1. F3H, F3’H and FLS genes have not been
studied in detail to date—five DFR genes were described in a cluster on chromosome 5 by [49] and
different specificities of DFR isozymes in the substrate hydroxylation patterns have been reported.
The proanthocyanidins (both epicatechin and catechin type) are biosynthesized from dihydroflavonols
by the action of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two gene
encodings for enzymes committed to epicatechin and catechin biosynthesis, respectively, that were
identified in L. corniculatus [50].

Higher plants share a common core flavonoid pathway, although different species frequently
develop specific branches as an adaptation to diverse environmental conditions. For example, A. thaliana
accumulates mainly flavonols (kaempferol, quercetin and isorhamnetin glycosides) in all tissues, and
anthocyanidins and epicatechin types of proanthocyanidins in the seed coat under stress conditions [51].
A rising number of studies report protein–protein interactions of flavonoid biosynthetic enzymes
providing evidence for weakly bound complexes called “metabolons” which are co-localized at the
endoplasmic reticulum (ER) [52–54]. The interaction of the enzymes in the system likely allows better
connection of reaction intermediates with subsequent enzymes and prevents their loss by diffusion
or unfavorable cell equilibrium. Such protein–protein interactions were found for CHS, flavanone
3-hydroxylase (F3H), dihydroxyflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and also
CHI or CHI-like protein (with a putative role as fatty-acid binding protein) [55], so the proposed
model of metabolon comprises the enzymes necessary for formation of anthocyanidins [56]. On the
other hand, there is still lack of evidence of interaction with flavanone 3’–hydroxylase (F3’H) [57].
Proanthocyanidins are produced by action of ANR, LAR and polyphenol oxidase (LAC15) resulting
in the oligo-and polymers of the flavan-3-ol units. Substrate channeling between DFR and LAR was
described using molecular modeling and predicted the functional significance of metabolon formation
during synthesis [58]. Proanthocyanidins are produced both in shoots and roots of Lotus sp. However,
significant differences in their accumulation may occur among different species, but also within different
populations of the same species. Whereas in L. japonicus (and some other species) they are usually
present in almost undetectable amounts, the closely related tetraploid forage species L. corniculatus
may accumulate proanthocyanidins in considerable levels [59,60]. The highest proanthocyanidin levels
were found in L. unifoliolatus (syn. L. americanus) and L. uliginosus (syn. L. pedunculatus) [59,61].

The key enzyme for flavonol formation is flavonol synthase (FLS) using dihydroflavonol substrates.
L. japonicus is a plant that accumulates flavonol kaempferol glycosides in considerable amounts,
especially kaempferol-3,7-dirhamnoside. Quercetin glycosides are present at lower levels but increase
under some abiotic stress conditions [62,63]. Moreover, a considerable amount of gossypetine glycosides
occurs in flowers and a small amount of isorhamnetine can be detected in stems [64]. Only the minor
methylation on 3’ position of quercetine is present in L. japonicus, whereas the methylation at position
8 was described only in L. corniculatus [65], leading to presence of sexangularetin and corniculatusin in
that species [66].

The production of isoliquiritigenin, the starting point of the second branch of the biosynthetic
pathway, is related to the activity of CHR (also called polyketide reductase, PKR), only identified
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in papilionoid legumes (like Glycine max, Medicago sativa, Glycyrrhiza echinata, Glycyrrhiza glabra).
Five genes and 1 pseudogene are present in the L. japonicus genome [35]. CHR acts in a coupled
catalytic action with CHS [45]. Furthermore, two types of CHI genes are present. LjCHI2 is highly
homologous to non-legumes (also referred as type I), whereas LjCHI1, LjCHI3 and LjCHI4 are
legume-specific type II, also occurring in Medicago sativa, Phaseolus vulgaris, Pisum sativum and Pueraria
lobata [67] (Figure 1). The legume-specific type II evolved to produce 5-deoxy(iso)flavonoids from
6’deoxychalcone (isoliquiritigenin) along with the establishment of the Fabaceae.

The protein–protein interaction of key enzymes of isoflavonoid pathway (CHS, CHR, CHI and
IFS) that are associated with ER via cytochrome P450 has been recently demonstrated in soybean [68]
as well as with the three enzymes of general phenylpropanoid pathway (PAL, C4H, 4CL) and with
the last enzyme of the shikimate pathway, arogenate dehydratase (ADT), the enzyme converting
arogenate to phenylalanine [69]. The enzyme complex may be associated with the ER membrane at
the plastid-associated membrane sites, allowing the flux of intermediates from shikimate pathway
occurring in plastids toward daidzein or glycitein isoflavones present in soybean [69,70].

Isoflavone synthase (IFS; 2-hydroxyisoflavanone synthase) is a membrane-associated enzyme
belonging to the CYP93C subfamily of cytochrome P450 monooxygenases that constructs the
isoflavonoid skeleton from 4’,7-dihydroxyflavanone substrate (liquiritigenin) by an unusual aryl
migration reaction. At a lower rate, IFS may convert naringenin in several legume species, such as
soybean [41]. IFS has been identified almost exclusively in legumes, with Beta vulgaris being the only
known exception [71,72]. Among 273 putative P450 genes in A. thaliana genome, none of them has
isoflavone synthesizing activity [73]. At least two functional genes of IFS (IFS1 and IFS2) and one
pseudogene are present in the L. japonicus genome [45]. L. japonicus IFS likely has a strong preference
for liquiritigenin, although a small amount of biochanin A detected in plants on UV-B irradiation
suggests a possibility of a minor activity using also naringenin as a substrate [42].

The substrate specificity of 2-hydroxyisoflavanone dehydratase (HID) may differ among species.
In soybean, HID accepts 2,5,7,4’-tetrahydroxyisoflavanone or 2,7,4’-trihydroxyisoflavanone as substrate,
which is then de-hydrated to produce a double bond between C-2 and C-3, yielding genistein or
daidzein [23,74]. The overexpression of HID from soybean with broad substrate specificity in L. japonicus
resulted in the production of considerable amounts of daidzein or genistein [75]. The biosynthesis of the
main isoflavonoid, vestitol, in L. japonicus was proposed by [45], according the previous data described in
Glycyrrhiza echinata [74]. Firstly the 4’-O-methyltransferase (HI4‘OMT) reaction occurs, and subsequent
dehydration by HID yields formononetin (Figure 1), the central biosynthetic intermediate for the
production of diverse isoflavonoid phytoalexins (e.g., maackiain, pisatin, medicarpin, etc.) in a number
of legume species, including agronomically important ones such as pea (Pisum sativum) or chickpea
(Cicer arietinum) [76].

In L. japonicus, formononetin is then converted by isoflavone-2’-hydroxylase (I2’H) to
2’,7-dihydroxy-4’-O-methoxyisoflavone and subsequently to vestitone by isoflavone reductase
(IFR). The next step is the NADPH-dependent reduction of vestitone to 7,2’-dihydroxy-4’-O-
methoxyisoflavanol, catalyzed by the vestitone reductase (VR) that is stereospecific for the
(3S)-vestitone [77]. HI4’OMT, HID and I2’H were suggested to occur in single copies in the L. japonicus
genome [78], but recently, more putative copies could be predicted at least in the case of HID
(miyakoguza.jp 3.0). The putative L. japonicus IFR1 and VR1, VR2, VR3 and VR4 genes (four VR genes)
for vestitol accumulation were identified by sequence similarity with Medicago sativa [45]. Although
their functional validation is still lacking, these genes are markedly upregulated after glutathione
treatment [79]. The production of medicarpin from 7,2’-dihydroxy-4’-O-methoxyisoflavanol is catalyzed
by pterocarpan synthase (PTS) that was found in L. japonicus, Glycine max and Glycyrrhiza echinata. This
enzyme has similar biochemical properties as previously reported DMI-dehydratase in Cicer arientinum,
G. max and Medicago sativa. This raises the question of whether the product of the LjPTS1 gene
corresponds to the enzyme described above, but the evidence available at present is not conclusive [80].
The synthesis of vestitol is then catalyzed by pterocarpan reductase (PTR). Four genes were found
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to encode PTR, from which PTR3 was found to be inducible by glutathione [45]. However, PTR1
and PTR2 have much higher activity and enantiospecifity with (-)-medicarpin; therefore, they are
considered to be responsible for vestitol production [81]. In stress conditions like UV-B application
or glutathione treatment, a remarkable accumulation of sativan was observed in L. japonicus and
L. corniculatus [42,82]. Production of sativan requires the activity of a 2'-O-methyltransferase to
convert vestitol to sativan. Among the type I O-methyltransferases isolated from Medicago truncatula,
MtOMT2, MtOMT4, MtOMT5, MtOMT6 and MtOMT7 showed some vestitol methylation activity,
but with a very low efficiency. Furthermore, they appeared to methylate vestitol at the positions 7
and/or 4’; any clear evidence of methylation at 2’ position of vestitol is still lacking [83]. Vestitol is
a predominant isoflavonoid produced in L. japonicus, present in very small amount in unstressed
conditions, but increases significantly at biotic [84,85] or abiotic stresses [62] or after treatment with
10 mM glutathione [78,86]. To a lesser extent, sativan also accumulates in such conditions. Other
isoflavonoids, such as formononetin and biochanin A, were raised after UV-B irradiation but their
levels remained more than ten-times lower in comparison to vestitol. Accumulation of sativan and
medicarpin was also detected, but in an even lower extent [42].

Glycosylation is a major decorative modification that occurs frequently as a last step of the
biosynthesis of certain flavonoids or isoflavonoids. UDP sugar residues are attached to the flavonoid
core via a uridine diphosphate glycosyltransferase (UGT) [87]. A large number of putative UGT
genes have been identified in several plant species. However, only few of them were functionally
characterized, mostly in Arabidopsis thaliana [88]. In the L. japonicus genome, 188 putative UGT genes
were identified by genome-wide searching [89]. Tree UGT proteins of the UGT72 family enzymes
(UGT72AD1, UGT72AH1 and UGT72Z2) showed narrow substrate preferences to flavonol aglycones
in vitro and the overexpression of UGT72AD1 and UGT72Z2 led to increase of flavonol rhamnosides.
Another two proteins, UGT72AF1 and UGT72V3, exhibited a broad activity towards flavonoids and
isoflavonoids [89]. Such a broad activity of UGTs is known also from other legumes, in particular in
the case of four UGTs (GT22D, GT22E09, GT29C and GT29H) from M. truncatula [90] and three UGTs
(UGT73F2, UGT73C20 and UGT88E19) from G. max [91,92]. The UGT activity resulted to high diversity
of glycosides in L. japonicus; particularly (25) kaempferol and (12) quercetine glycosides were found
mostly in flowers [64]. A list of genes related to flavonoid and isoflavonoid pathways in Lotus japonicus
is shown in Table S2.

3. Differential Regulation of Flavonoid and Isoflavonoid Biosynthetic Pathways in
Lotus japonicus

The biosynthesis of flavonoids in relation to different stresses in plants has been studied by several
authors (see [93] as an example). A recent work has established that there is a differential regulation of
flavonoid and isoflavonoid biosynthetic pathways in L. japonicus in relation to nitrogen metabolism
and in response to different stress conditions [62]. An increase in the level of expression of several
genes of the isoflavonoid pathway was observed in response to drought or active photorespiration,
which was much more noticeable in a Ljgln2-2 photorespiratory mutant lacking the plastidic isoform
of glutamine synthetase (GS2) [1,62] (Figure 2). Therefore, important changes in phenolic metabolism
as a result of GS2 deficiency were observed in L. japonicus plants in response to stress. The plastidic
GS2 isoform is the main point of connection between nitrogen assimilation and photorespiratory
metabolism. Both photorespiration and phenylpropanoid metabolism are mainly related to carbon
metabolism, but also to nitrogen metabolism because of the use of amino acids as precursors. Therefore,
the use of photorespiratory mutants allowed us to understand the cross-interaction between carbon
and nitrogen metabolisms as well as (iso)flavonoid metabolism [1,94]. Previous works have clearly
established how a GS2 defect in nitrogen assimilation affects carbon metabolism in this plant [1,94–96].
In addition, different transcription factors were detected that may be important in the carbon/nitrogen
(C/N) balance in L. japonicus plants [94]. Several works in different plant species have pointed out that
the transcription of flavonoid genes is modulated by the plant’s C/N ratio, and that this regulation
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seems to be mediated by MYB transcription factors [97]. However, despite numerous studies examining
the effects of available carbon (C) or nitrogen (N) on flavonoid biosynthesis, the mechanism of C/N
interactive effects on flavonoid metabolism is still unclear [97].
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Figure 2. Comparison of the changes in the relative expression levels of the most highly modulated
genes (determined by RT-qPCR) and in the levels of metabolites in Lotus japonicus leaves, in response to
different abiotic stress situations studied (drought, impairment of photorespiration, UV-B irradiation).
Changes are indicated as log2 of the fold change in gene expression levels and metabolite content for
each genotype and stress condition analyzed, relative to the unstressed control plants, as described
in previous works [42,62]. Red and green indicate lower and higher levels than in the controls,
respectively. The color intensity represents the log2 of fold change as indicated in the scale bar. WT,
wild type; MUT, Ljgln2-2 photorespiratory mutant plants deficient in plastidic glutamine synthetase
(GS2); active PR, active photorespiration. Active photorespiration is particularly stressful for the
Ljgln2-2 mutant plants due to the high accumulation of ammonium produced as a consequence of the
deficiency in photorespiratory ammonium re-assimilation (the impairment of photorespiration) [95,98].
Abbreviations used for genes are described in Figure 1. Given the high number of genes that encode for
the flavonoid and isoflavonoid biosynthetic enzymes and the high gene redundancy, a set of specific
oligonucleotides were utilized that amplified only specific copies of the redundant gene probesets
for key enzymes of the pathways [62]. The results obtained for the most representative and highly
expressed gene from each gene family are shown. Genes indicated have the following accession numbers
(using Kazusa 3.0 terminology and when available GeneBank codes): PAL, Lj1g3v4590760 (BAF36971.1);
CHS, Lj2g3v2124310; CHI, Lj5g3v2288880 (Q8H0G2.1); FLS, Lj1g3v0705350; DFR, Lj5g3v0108500
(BAE19948.1); IFS, Lj4g3v0485090 (BAF64284.1); PTR, Lj3g3v3360890 (BAF34841.1). Semi-systematic
names and chemical structures of the indicated metabolites are shown in Table S1.

Figure 2 also shows that kaempferol and quercetin, the main flavonols detected in L. japonicus
leaves, tended to accumulate substantially in response to drought stress in wild type plants [62].
Flavonol accumulation may represent the basic defense system in L. japonicus against the increased
oxidative stress produced by drought or the impairment of photorespiration, as in many other plants,
since it is well known that flavonols are probably the most important flavonoids participating in stress
response [8], especially those with dihydroxy-substituted B-ring, which have been reported to play an
antioxidant role [99]. However, there are also reports on legumes showing that the accumulation of
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isoflavonoid phytoalexins and the induction of their biosynthesis may also occur in different types of
abiotic stresses, such as UV-irradiation, drought or the presence of heavy metals [100–102]. Although
vestitol is a clear example of a typical phytoalexin, mainly active in the response to pathogen attack [78],
it is possible that the abiotic stress situations perceived by L. japonicus plants, at least in some cases, may
mimic some stages of the signal transduction pathway that is elicited by biotic stress, thus stimulating
the biosynthesis of isoflavonoids over flavonols. Moreover, it has also been reported that isoflavonoid
biosynthesis could be elicited using reduced glutathione in L. japonicus leaves, a treatment associated
with phytoalexin production in response to biotic challenges [45,103]. Interestingly, a strong bias is also
documented in soybean toward increasing the expression of isoflavonoid biosynthesis concomitant
with some down regulation of other flavonoids such as flavonols, anthocyanins and tannins in response
to biotic stress induced by Pseudomonas syringae [104]. The differential response between WT and
mutant plants observed regarding the biosynthesis and accumulation of different branches of flavonoids
or isoflavonoids could be related to changes in C/N balance and to the crucial role of GS2 in this balance
in L. japonicus plants. GS2 may be connected with some type of regulatory network related to phenolic
metabolism in this plant [62].

Recent work has also examined the response of L. japonicus plants to UV-B irradiation. Intense
ultraviolet radiation is an important stress situation that hampers the growth and productivity of
the plants. Under this stress condition, an induction of isoflavonoid biosynthesis in L. japonicus was
observed [42] (Figure 2). However, in this case a substantial increase in isoflavonoid content produced
by UV-B was detected in wild type plants even in the absence of the GS2 mutation. Therefore, a peculiar
strategy was observed in L. japonicus in different types of abiotic stress situations which resulted in an
accumulation of isoflavonoids as a possible alternative to accumulation of flavonols as described in other
plant species. The possible function of different isoflavonoids in UV-B defense is still unclear. In Medicago
sativa, UV-B treatment induced the accumulation of several isoflavonoids, although vestitol was not
detected [105]. The increase of several genistein and daidzein derivatives, especially malonylgenistin
was observed in soybean [47]. Different responses with respect to isoflavonoids can be found as a result
of UV-B radiation, depending on the plant species. In non-legume plants, genes involved in flavonoid
biosynthesis pathways were highly induced in leaves after UV-B irradiation [106] and accumulation
of flavonoid compounds, mainly glycosilated flavonoids, have been described [106,107]. However,
in legumes plants, UV-B radiation increases the accumulation of isoflavonoids and the expression of
genes involved in isoflavonoid biosynthesis pathways [102,108,109], although [110] reported that the
expression of GmF3H and GmFLS was induced by UV-B irradiation and their expression stimulated
the accumulation of flavonols as kaempferol glycones in soybean plants. In L. japonicus it has been
suggested that vestitol could play an important role after 16 h of UV-B treatment. Vestitol would
act as an antioxidant compound since increase in reactive oxygen species has been described as a
common response to different abiotic stress conditions [42]. Different works have reported total peroxyl
radical-scavenging capacity of flavonoids [111].

The differential expression of flavonoid genes during nodule formation is of particular
interest considering the relevance of these compounds for symbiosis formation. Genes involved
in phenylpropanoid synthesis were highly expressed in nodule parenchyma and nodule cortex.
Phenylpropanoids provide the main building blocks of both suberin and lignin, which function as a
physical barrier or mechanical support at the cell wall. Because nodule vascular bundles are developed
through the nodule’s inner cortex, where lignin accumulation is necessary, expression of genes in the
phenylpropanoid pathway at nodule parenchyma will be responsible for the synthesis of the nodule
vascular bundle [112].

It is noteworthy that a set of genes for the flavonoid biosynthesis pathway was highly expressed
in nodule parenchyma. Flavonoids are necessary for forming the nodule by inhibition of polar
auxin transport at the site of the rhizobia infection, especially in indeterminate nodules such as
Medicago truncatula and white clover [113,114]. In the nodulation process of the determinate legume,
the flavonoid pathway seemed to be activated in at least four different stages: first, in a nitrogen
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nutrient deficiency condition to release flavonoids as signal compounds [115]; second, shortly after Nod
factor perception as defense-related genes [116]; third, during nodule primordia development [117,118];
and, fourth, in mature nodules without known physiological functions [45,118,119]. Some of those
flavonoid-related genes were also identified as glutathione responsive genes, and then seemed to
mediate a part of vestitol biosynthesis, suggesting a function of flavonoid derivatives as a chemical
barrier against other microbes in the nodules. Flavonoids function as a regulator of auxin flow also in
determinate nodules [112].

4. Co-Expression Analysis of Potential MYB Regulatory Genes in Lotus japonicus

As mentioned above, isoflavonoid biosynthesis can be stimulated in L. japonicus under certain
stress conditions, making it very interesting to further analyze the way these processes are regulated
and the transcription factors responsible for the regulation of the isoflavonoid metabolic pathway
in this plant. This is particularly important because isoflavonoids in the diet have been linked to
anticancer and antiaging health benefits that are associated with their phytoestrogenic and antioxidant
properties [103]. In addition, in legumes, there is an extra dimension to the regulatory control of
phenylpropanoid metabolism because they produce isoflavonoids that serve as phytoalexins and
as signaling molecules for nodulation. Consequently, there is an interest in understanding how
isoflavonoid metabolism can be engineered in tissues where their high levels might be beneficial [103].

Phenylpropanoid metabolism is regulated spatially and temporally during plant development,
and different works have previously shown the importance of MYB transcription factors (TF)
as regulators in plants as well as the potential of exploiting MYB transcription factors as a
mean of modifying phenylpropanoid accumulation [2]. The gene regulation of plant secondary
metabolism involves the formation of the MBW complex, which consists of R2R3-MYB proteins,
base-helix-loop-helix (bHLH) proteins and WD-repeat (WDR) proteins [2,120]. This multiprotein
complex is based on the interaction between MYB group proteins and the bHLH group or on the
interaction between different subgroups of bHLH proteins. MYB transcription factors within this
complex may act as activators or repressors in plants and confer the specificity in regulating the different
pathways. The R2R3 domain of proteins belongs to the largest groups of MYB factors and is responsible
for DNA binding, promoter specificity as well as for the interactions with other cofactors [121]. In some
cases, for example in Vitis vinifera, bHLH and WD40 factors have not been identified, indicating that
not all plants in flavonoid biosynthesis need to retain the MYB-bHLH-WD40 regulatory complex [122].
In the control of flavonoid pathway regulation in A. thaliana, there are six important genes that encode
transcriptional regulators. Specifically, these are TT2 (from the MYB group), TT8 (from the bHLH
group), TTG1 (WD type), TT16 (MADs box), TT1 (zinc finger) and the TTG2 gene [123]. In the
L. japonicus genome over 100 putative MYB and bHLH genes have been distinguished [103]. Three
MYB genes LjTT2a (Lj6g3v1201340.1-3), LjTT2b (Lj6g3v1201220.1) and LjTT2c (Lj6g3v1201370.1) are
involved in induction of LjANR but not LjLAR. LjTT2b expression appeared to be limited to the roots,
interacting with TT8 and TTG1. LjTT2c was expressed in all organs examined and showed weak
transactivity without TT8 and TTG1. LjTT2a was expressed in response to environmental stresses and
had the most diversified activation of the ANR promoter, with a low specificity of interaction with
bHLH, in addition to little requirement for WDR proteins [124]. All 3 TT2s also activated expression of
DFR2 and ANS showing the capacity to control PA synthesis. Similarly, the expression of LjMYB14
correlates with ANR, ANS and LAR1 [125]. Another MYB factor, LjPAP1, activated only the DFR2
and ANS promoter with co-expression of LjTT8 and LjTTG1 but not ANR, suggesting that LjPAP1 is
specifically responsible for anthocyanin production [126]. The biosynthesis of flavonols is stimulated
by the MYB12 factor that induced the expression of CHS6, F3H and FLS [127].

Considering that MYB proteins represent one of the largest plant TF families and are involved in
the regulation of multiple processes [2], the search for specific MYB TF that may regulate isoflavonoid
biosynthesis in model legumes such as L. japonicus is of fundamental importance. Protein structure
and expression patterns were found to be informative for determining the function of individual MYB
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proteins [2,103,128–130]. The authors of [103] initiated this type of study in L. japonicus by coupling
bioinformatics and co-expression analysis in order to identify candidate genes encoding TF involved in
the regulation of isoflavonoid biosynthesis in this plant. The authors concluded that several members
of different subgroups of R2R3MYB TFs act coordinately to induce the flux to isoflavonoids and/or
reduce the flux of metabolites through competing branches of phenylpropanoid metabolism, such as
those leading to flavonols and anthocyanins, so that the precursor metabolite pool can be channeled
effectively into isoflavonoids. The most likely regulators of isoflavonoid biosynthesis were found to be
genes such as LjMYB14 which enhanced the expression of the general phenylpropanoid metabolism
and some of the genes specific for isoflavonoid metabolism [103]. However, the overexpression of
LjMYB14 was not sufficient to induce isoflavonoid accumulation, suggesting that additional TFs are
required for the induction of key genes (IFS, IFR) in isoflavonoid biosynthesis. A prime candidate for
such an additional regulator of isoflavonoid biosynthesis was found to be LjMYB152, which showed
similar kinetics but much higher transcript levels than LjMYB14 after elicitation of the induction of
expression of isoflavonoid biosynthetic genes [103]. Interestingly, it has been also suggested that the
attenuated expression of a complex integrated by MYB and bHLH would allow metabolites from the
flavonoid pathway to be diverted to the isoflavonoid biosynthesis in L. japonicus [131].

A recent work aimed to build a gene co-expression network using all the transcriptomic data
available for L. japonicus in order to analyze the interconnections between nitrogen assimilation and
photorespiration [94]. Networks are very useful tools for the prediction of genes co-expressed under
different conditions and for the identification of transcription factors that could be involved in the
regulation of these genes [132–134]. A first co-expression network was constructed using the genes for
primary nitrogen assimilation and for photorespiratory metabolism. In addition, a second co-expression
network was built using the same type of genes and also different TF genes from L. japonicus available in
the databases. In that co-expression network, a total of 370 TFs resulted to be connected to at least one
gene for nitrogen assimilation and one photorespiratory gene. Some of these TFs could be related to
isoflavonoid metabolism considering that both nitrogen and photorespiratory metabolisms are related
with isoflavonoid biosynthesis, as mentioned above. An additional gene co-expression network has
been set up to establish interconnections between the isoflavonoid biosynthetic pathway and MYB and
MYB-related genes in L. japonicus (Figure 3). By using this new gene co-expression network, six different
MYB TFs have been identified that could be involved in the regulation of isoflavonoid metabolism
in this plant species. Analyzing these results, it was observed that the LjI2’H1 gene is the only one
connected to three MYB genes (LjSGA_059924.1, chr1.CM0122.1190.r2.m and chr5.CM0492.240.r2.m),
suggesting that the expression of the LjI2’H1 gene would be regulated by these TFs. The LjHID4
gene showed the highest number of connections. This gene was interconnected to other isoflavonoid
pathway genes (LjIFS1, LjI2’H2, LjHI4’OMT and LjVR1), and to the other three MYB genes identified
in the co-expression network: chr6.CM1613.30.r2.m, LjSGA_033877.1 and chr4.LjB15O07.70.r2.m.
The other isoflavonoid gene showing connections was LjI2’H2. In this case, the LjI2’H2 gene was
interconnected with LjSGA_033877.1 and chr4.LjB15O07.70.r2.m genes. In summary, only LjI2’H1,
LjI2’H2 and LjHID4 genes were interconnected to the MYB genes identified in the co-expression network,
suggesting that these six TFs could be involved in the regulation of the expression of these genes which
correspond to enzymes that catalyze two consecutive reactions of the isoflavonoid pathway. The other
isoflavonoid genes of this route were connected to each other but did not show connections to any of
the above-mentioned TFs. Two MYB genes obtained in this co-expression network (LjSGA_033877.1
and chr4.LjB15O07.70.r2.m) were found among 370 TFs connected to genes for nitrogen assimilation
and photorespiratory genes [94], confirming again the relation between these two pathways and
isoflavonoid biosynthesis. According to the co-expression network presented here, new candidates for
isoflavonoid regulation were identified, in addition to the previously proposed ones (LjMYB14 and
LjMYB152 [103]). Current projects aim to use transposon-tagged LORE1 mutants affected in the genes
encoding for MYB transcription factors already identified in L. japonicus in order to demonstrate and
characterize their possible role in isoflavonoid biosynthesis regulation in this plant.
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Figure 3. Gene co-expression network developed to analyze the connectivity between isoflavonoid
biosynthetic pathway and MYB genes. Genes shown with the same color show a similar transcriptional
regulation in all data analyzed. Grey lines indicate the interconnections between isoflavonoid and MYB
genes, and red lines link probesets with gene names or Kazusa codes of genes. The co-expression network
was visualized using Cytoscape and analyzed using the NetworkAnalyzer [135]. Gene abbreviations as
described in Figure 1 and other codes as reported in Kazusa 2.5 terminology. Gene codes according to the
3.0 version of the L. japonicus genome are: LjIFS1 (Lj4g3v0485090.1); LjI2’H1 (Lj2g3v1925730.1); LjI2’H2
(Lj4g3v0189840.1); LjHID4 (Lj5g3v2057520.1); LjHI4’OMT (Lj4g3v0484930.1); LjVR1 (Lj6g3v0294050.1);
LjSGA_033877.1 (Lj4g3v2079370.1); chr4.LjB15O07.70.r2.m (Lj4g3v1787120.1); chr6.CM1613.30.r2.m
(Lj6g3v0029920.1); LjSGA_059924.1 (Lj0g3v0337739.1); chr1.CM0122.1190.r2.m (Lj1g3v4830110.1);
chr5.CM0492.240.r2.m (Lj5g3v2298100.1).

It is also important to mention here that interconnections between nitrogen availability and
(iso)flavonoid metabolism have been clearly shown by different authors, since the content of flavonoids
increases in response to nitrogen and phosphorous depletion [136–139]. Different members of the MYB
TF families have been commonly identified as relevant also in these processes. Many other studies have
analyzed other aspects of nitrogen fertilization and secondary metabolism (see for example [140,141]).
More detailed information and schemes about the intertwining of nitrogen and phenolic metabolism
can be found elsewhere [142].

5. The Importance of Isoflavonoid Biosynthesis in Soybean: Use of the Knowledge Obtained in
the Model Legume Lotus japonicus for the Genetic Improvement of Soybean

Particularly important is the transfer of knowledge obtained with the model species L. japonicus
to a cultivated legume of great economic importance such as soybean. Both legumes have the same
type of determinate nodules and genomes with a high degree of synteny [38]. Soybean orthologous
genes corresponding to the promising LjMYB genes found in L. japonicus would be identified and
further studied. The positive regulator of soybean isoflavones biosynthesis GmMYB29 was found to
form a cluster with the L. japonicus isoflavonoid regulator LjMYB14 [143]. Mutant collections are being
screened in order to develop new commercial soybean varieties [144]. Some positive [143,145–149]
or negative [150,151] regulators of isoflavonoid biosynthesis in soybean have already been found;
however, there are still many aspects and actors of the regulation of this pathway that have to be
discovered. We expect that the advancement produced with the model legume L. japonicus will help
to make progress in the understanding of isoflavonoid biosynthesis regulation in soybean. This is
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particularly important considering the beneficial effects of soybean isoflavonoids (isoflavones) on
human health, including the prevention of different types of cancer and of cardiovascular diseases [143].
While several efforts are being made in order to obtain soybean varieties with high isoflavonoid
content, in some cases a high content of isoflavonoids is not desirable, such as in the case of the
soy beans used for infant nutrition formulas, where the estrogenic effect of isoflavonoids may have
adverse health effects on the infant development [152]. For these reasons, it is important to obtain
new soybean varieties with either increased or decreased content of isoflavonoids, and, in order to
do that, it is fundamental to identify all the factors that regulate the biosynthetic pathway of these
compounds. In the case of mutants affected in negative regulators, high isoflavonoid content should be
observed, while in the case of positive regulators, low isoflavonoid content is expected, and both types
of mutants should be of interest. The fact that soybean represents more than 50% of the production of
oilseed legumes worldwide [153] together with its importance for human nutrition and health [154,155]
make the study of isoflavonoid biosynthesis in soybean of extreme interest. A further interest in the
study of MYB mutants in soybean comes from the fact that the knockout of some of these factors
can result in increased tolerance to abiotic stresses such as cold [156] or drought [157]. The current
authors are actually working on the characterization of specific mutants of the LjMYB13 and LjMYB15
genes in order to figure out their possible role in the regulation of isoflavonoid biosynthesis and/or
response to stress [79]. The LjMYB15 gene was interconnected to isoflavonoid pathway genes as
described above (Figure 3) and, in a phylogenetic analysis, the LjMYB13 gene was shown that was in
the same clade than LjMYB15 and other well-known genes that are part of the abiotic stress response
in plants [103,143], as well as with genes involved in the regulation of isoflavonoid biosynthesis
such as LjMYB14 and GmMYB29 [103,143]. A function in isoflavonoid regulation was proposed for
LjMYB15 but not demonstrated [103]. In the case of the Arabidopsis homologs of LjMYB13 and LjMYB15,
their involvement in the response to drought was demonstrated [158,159].

It has been also recently shown that a R2R3-type MYB transcription factor gene from soybean,
GmMYB12, is involved in flavonoid accumulation and abiotic stress tolerance in transgenic
Arabidopsis [160]. Interestingly, the authors propose that the higher tolerance to abiotic stress was
produced by regulating osmotic balance (increased proline accumulation), together with other factors
such as protecting membrane integrity and maintaining ROS homeostasis. Our previous works
have also shown that all these factors may be also related with (iso)flavonoid biosynthesis under
abiotic stress in a model legume such as L. japonicus ([61], and references therein). The research with
model legume species improves our knowledge of cultivated legumes, but this is also true vice versa.
For example, in a recent report, LjG6DT, the enzyme that catalyzes the prenylation of isoflavonoids in
L. japonicus [161], was discovered thanks to the knowledge previously obtained about isoflavonoid
prenylation in soybean. Studies with both cultivated and model species are not mutually exclusive but
rather they complement each other, like in the case of L. japonicus and soybean.

6. Conclusions and Future Prospects

This paper summarizes recent advances made in flavonoid and isoflavonoid research in the model
legume L. japonicus. The study of the response of L. japonicus to abiotic stress conditions led to different
novel findings, such as the accumulation of new flavonols that were described for the first time in
L. japonicus leaves [62] and of a peculiar pattern of isoflavonoid accumulation in the response of this
plant to UV-B irradiation [42]. Despite the fact that flavonoid and isoflavonoid metabolism is a very
active field of research; several aspects of these pathways are far from having been completely described.
Technical advances in metabolomics are enabling the discovery of a growing number of flavonoids and
isoflavonoids structures. However, chemical modification of the flavonoid/isoflavonoid scaffolds, such
as glycosylation and acylation, add another layer of complexity to their chemical diversity; and the
reason beyond such complexity is still not completely understood. Legumes also use flavonoids or
isoflavonoids in order to attract their chosen symbiont in a species-specific way. Despite the important
role played by L. japonicus in elucidating the molecular genetics of legume–rhizobia symbiosis, it is



Plants 2020, 9, 774 14 of 22

still unknown which class of phenolic compounds are used by this species in order to attract its
chosen symbiont [15]. Studies of the symbiotic capacity of specific L. japonicus mutants impaired in
specific branches of the biosynthesis of phenolic compounds, paired with metabolite profiling will
be needed in order to fill this gap. The regulation of isoflavonoid metabolism is also far from being
completely understood. A few negative and positive regulators have been identified in soybean, while
no clear isoflavonoid regulators have been identified in L. japonicus to date. The co-expression analysis
presented in this paper identified potential candidates for isoflavonoid regulation in L. japonicus. Future
works should be aimed to the characterization of specific mutants in these genes in order to understand
whether they are involved in isoflavonoid regulation, and also if they may play a role in the response
to different kinds of abiotic stress. A deeper understanding of isoflavonoid regulation may also permit
tackling the genetic improvement of soybean and to breed varieties with either increased or decreased
isoflavonoid content, two opposite traits that can be desirable depending on the products that will
be manufactured using these soya beans. Since most of the regulators identified in these species
are from the MYB transcription factor family, which is composed of a very high number of genes,
traditional approaches, such as searching for isoflavonoid-related QTL, may be very time consuming.
Bioinformatics approaches, such as the construction and analysis of gene co-expression networks in
order to find new candidate regulators, combined with validation of these genes by characterizing
loss-of–function mutants, have already showed promising results. Finally, as explained in this review,
in order to broaden the knowledge of flavonoid and isoflavonoid metabolism and regulation, studies
that take into consideration both model species such as L. japonicus, of easier genetic manipulation,
and cultivated species of great economic importance, such as soybean, will be of paramount impact for
legume flavonoid/isoflavonoid research.
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