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Abstract

This article presents a rigorous prospective analysis of the impact of Inventory Record

Inaccuracy (IRI) on complex multi-echelon Supply Chains (SCs). Specifically, key

operational factors (i.e., the magnitude of the error, frequency of the inventory audits

and lead time variability) and SC structure are systematically assessed. We find that the

detrimental effects of IRI are exacerbated by the structural complexity of the SC and

lead time variability. Furthermore, we show how the efficacy of countermeasure

strategies may vary depending on SC configuration and operational conditions. These

results allow us to provide interesting managerial recommendations to guarantee

investment in prevention and correction strategies.
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1. CONTEXT

Inventory record inaccuracy (IRI) refers to the discrepancy between physical inventory

held in stock and the record of inventory stored in a firm’s information system (Kok and

Shang 2014). This discrepancy can deeply affect the performance of firms (Sarac et al.

2010) by generating lost sales, delay penalties, re-scheduling, suboptimal planning and

the increased use of small transport vehicles, among others (Thiel et al. 2010, Cannella

et al. 2015). Such inefficiencies are a natural consequence of uncorrected order patterns

generated by the Supply Chain (SC) members affected by inventory errors; essentially,

they create critical distortions in order placement, as almost every order policy utilizes

information regarding current inventory levels (Bruccoleri et al. 2014), and if the

recorded inventory quantity does not match the actual quantity on the shelf, the system

will either order unnecessary items or fall short on orders (Metzger et al. 2013).

Several studies demonstrate IRI to be a significant problem in practice (Heese 2007,

Uckum et al. 2008, Sahin and Dallery 2009, Hardgrave 2013, Kull et al. 2013, Fan et al.

2015). Kang and Gershwin (2005) report an inventory accuracy of only 51% after a

manual inventory verification of 500 stores of a global retailer. DeHoratious and Raman

(2008) observe inaccuracies in 65% of 369.567 inventory records collected from 37

leading retailers in the USA. For example, in 2009, retailers in the USA lost more than

$33 billion due merely to shrinkage, one of the several root causes of IRI (Hollinger and

Adams 2010, Xu et al. 2012). Furthermore, a 10% profit reduction due to inventory

errors has been estimated (Hesse 2007, Hardgrave 2013).

1.1 Background

Understanding the impact of this phenomenon on SC performance is important for

effective SC management (Mersereau 2013, Ketzenberg et al. 2013). For this reason,

there is increasing interest in investigating this issue (Dai and Tseng 2012, Kull et al.

2013). During the last decade, several efforts have been undertaken by researchers and

practitioners to understand the causes, consequences and remedies of these detrimental

occurrences (see, e.g., Dehoratius et al. 2008, Sahin and Dallery 2009, Rekik et al.

2009, Rekik 2011, Chan et al. 2012, Chen et al. 2014, Sarac et al. 2015). However, there

remains substantial room for analyzing and limiting the IRI problem. Among the current

gaps in the IRI literature, the following should be taken into account:
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[1] Dynamic effects of Inventory Errors. The literature on IRI may be classified into

two streams of research: empirical and theoretical. Empirical research primary

investigates the possible correlation between operating conditions and IRI

(Hardgrave et al. 2013). Theoretical studies may be further classified into two sub-

streams. The former focuses on the optimization of inventory policies in the

presence of errors (Sahin et al. 2009), whereas the latter focuses on the impact of

IRI on the behavior of SCs (Cannella et al. 2015). Both theoretical streams are

complementary and relevant to understanding and avoiding/reducing IRI

occurrences. The majority of IRI studies belong to the first theoretical stream. Such

works usually focus on determining the required buffer size to minimize shortage

costs by adopting single-period analytical models (Sarac et al. 2010, Thiel et al.

2010) or investigate optimal IRI-preventive and -corrective strategies, such as

inventory audits, improved tracking of stored items, etc. (Rekik and Sahin 2012). In

contrast, studies that belong to the second theoretical stream usually perform what-

if analyses in order to provide scientific and managerial insights on the impact of

IRI (i.e., the type and magnitude of inventory error occurrences) and on the

effectiveness of countermeasure actions for different market and operational

scenarios. In the last decade, prospective analyses have focused on the

consequences of and remedies to inventory errors (see, e.g., Fleisch and Tellkamp

2005, Sari 2008, Natchmann et al. 2010, Dai and Tseng 2012), mostly measured in

terms of holding costs and customer service. Rarely have investigations shed light

on the impact of IRI on critical time-varying phenomena, such as the so-called

bullwhip effect (Lee et al. 1997, Hussain et al. 2012, Turrisi et al. 2013, Shan et al.

2014, Li and Zhang, 2015, Zissis et al. 2015, Wang and Disney 2015). However,

the consequences of inventory errors include inefficiencies in inventory

management and process control at one stage and, by nature, propagate through the

SC and may negatively impact the performance of upstream partners (Gel et al.

2010, Dai and Tseng 2012, Xu et al. 2012, Bruccoleri et al. 2014, Kok and Shang

2014, Kwak and Gavirneri 2014, Cannella et al. 2015, Sari 2015).

[2] IRI in multi-echelon SC networks. Most IRI analyses are merely performed for a

single-stage SC (Sarac et al. 2010) and, in particular, the retailer stage (Rekik

2011). On the other hand, the few studies investigating the dynamic effects of IRI

on multi-echelon SCs focus mostly on classical serial SCs (i.e., SCs with a single
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member in each echelon) (Wan and Evers 2011). The adoption of this multi-

echelon model represents a common and powerful assumption for analyzing SC

performance (Chatfield 2013). However, it has been seldom verified in real SCs

(Bhattacharya and Bandyopadhyay 2011, Dominguez et al. 2015a) because the

relationships among firms in dynamic SCs are more complicated than those in

simple one-to-one buyer-supplier connections (Evers 1999, Wan and Evers

2011). The challenges imposed by the new generation of SCs (see, e.g.,

Christopher and Holweg 2011, Stank et al. 2011, Christopher and Ryals 2014,

Waller and Fawcett 2014, Dominguez et al. 2014a, b, Merzifonluoglu 2015,

Annarelli and Nonino 2016, Li and Zhen 2016) advocate for more realistic

models with which to analyze the growing complexity of those structures.

Therefore, it would be beneficial to assess the impact of errors in SCs that are

characterized by more than one member in the same echelon of the chain, such as

divergent SCs (Cannella et al. 2015, Sari 2015). In fact, even though there are

different types of SC structures in the real world (e.g., dyadic, serial, convergent,

and divergent) (Giard and Sali 2013), the most widely used is the

divergent/distribution SC (Beamon and Chen 2001, Hung 2011), which has been

adopted in consumer-oriented industries (Hung 2011).

[3] IRI problems and avoiding techniques in real-world SCs: The dynamic

performance of SCs depends on both the SC’s design (Disney et al. 2004,

Chatfield et al. 2012, Dominguez et al. 2015a, Cardoso et al. 2015, Heckmann et

al. 2015) and its operational parameters (Wan and Evers 2011, Talluri et al. 2013,

Guertler and Spinler 2015). Similarly, IRI, ceteris paribus, may produce a

different impact, depending on type of SC and parameter conditions. This

consideration can be reasonably extended regarding the efficacy of IRI-limiting

strategies, i.e., (1) prevention and (2) correction strategies. Most studies focusing

on the application of IRI-limiting strategies usually do not emulate real

conditions regarding some key operational factors, most notably, the intrinsic

stochasticity of lead time. Because this factor may greatly alter the impact of

inventory errors on SC performance and the efficacy of IRI-limiting strategies, it

is of interest to investigate this potential effect.



Cannella S. Dominguez R., Framinan J.M. 2016. Inventory Record Inaccuracy – The impact of structural complexity and lead time
variability. Omega. DOI: http://dx.doi.org/10.1016/j.omega.2016.06.009

5

1.3 Objective

Motivated by the previously mentioned considerations, in this paper, we analyze the

impact of IRI on the dynamic performance of both simple and complex SC structures

under a variety of operational parameter conditions.

More specifically, we model and simulate three different SCs characterized by an

increasing level of structural complexity under different IRI scenarios. To emulate the

IRI scenarios, we model a gap between the physical inventory, (i.e., the units actually

available in stock) and the inventory record (i.e., the units that, according to the

information system, are available in stock) of each SC member by introducing into the

inventory system a transaction-independent error, more specifically, a shrinkage error

(Kull et al. 2013). Among all sources of inventory inaccuracies, this type of error has

the biggest impact on SC costs (Fleisch and Tellkamp 2005, Gumrukcu et al. 2008,

Uçkun et al. 2008, Zhu et al. 2012, Fan et al. 2014, Kok and Shang 2014, Cannella et al.

2015). The shrinkage error is a permanent inventory loss, resulting in smaller actual

inventory when compared to the records in the Information Technology (IT) system

(Gel et al. 2010, Dai and Tsang 2012, Sarac et al. 2015). Therefore, it generates an

overestimation of the actual stock; the system believes it has inventory on hand (i.e.,

phantom inventory) and thus fails to order new inventory (Hardgrave 2013).

In order to provide comprehensive data inputs, we adopt a full-factorial experimental

design (Evers and Wan 2012). More specifically, the studied factors are (1) the level of

inventory errors, (2) the structural complexity of SCs, (3) the lead time variance (as a

measure of the lead time variability) and (4) the time between inventory corrections. As

a result, we statistically infer the significance of IRI on complex SCs and how the errors

interact with other key operational parameters.

We use simulations to perform the analyses. This approach is appropriate because (1) it

incorporates a high level of detail regarding the factors of interest, (2) it accommodates

nonlinearities essential to IRI research (e.g., frequencies in cycle counting and record

corrections), and (3) it accounts for stochastic elements in lead times, inventory errors,

and demand across channels (Kull et al. 2013). Due to the nature of our study, we adopt

the Multi-Agent System (MAS) modeling approach, recognized as a useful

methodology to perform complex prospective SC analysis (Long 2014). In order to
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perform a systematic simulation analysis, we adopt reasonable assumptions and data

inputs for simulations obtained from different cases and behaviors to emulate real-world

logistic systems (Rabinovic and Cheon 2011). Dynamic performance is measured

through the order rate variance ratio, also known as the bullwhip ratio (Chen et al.

2000), a common metric adopted for the evaluation of SC dynamics.

Our study provides novel insights into the IRI phenomenon. More specifically, we show

how:

- Detrimental effects of IRI on SC performance are exacerbated by the structural

complexity of the SC and lead time variability.

- The resilience of IRI-limiting strategies may be altered by the SC design and

operational factors. Ceteris paribus, as structural complexity and lead time

variability increase, SCs become more sensitive to the frequency of inventory

audits.

These results allow us to provide some managerial considerations to avoid IRI

consequences by streamlining the efficacy of IRI-limiting strategies; these

considerations include:

(1) The risks related to the adoption of specific policies regarding the frequency of a

cycle counting policy are more relevant for complex SCs with high lead time

uncertainty.

(2) Investments in IRI-limiting strategies may not be effective due to the complexity

of the SC and the lead time uncertainty.

(3) The efficacy of IRI-limiting strategies can be improved by adopting

complementary approaches such as limiting lead time variability (i.e., process

simplification using lean and six sigma methodologies, improving transportation

outsourcing services, collaboration, integration and sharing benefits among

partners) and reducing SC complexity (i.e., lean structure design and

reengineering SCs to improve IRI-limiting strategies).

The rest of the paper is organized as follows: Section 2 describes the SC models and

methodology. Section 3 presents the experimental design and results. Section 4

describes the findings. Section 5 presents directions for SC managers. Finally, Section 6

presents conclusions, limitations and further research directions.
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2. MODEL DESCRIPTION AND METHODOLOGY

In this section, we first describe the general design of the simulated SCs. A detailed

description of the SC models follows with definitions of the operational aspects.

Finally, we provide a description of the MAS SC-simulation tool (SCOPE) used to

model and simulate the SCs. A summary of the nomenclature used in this work is

provided in Table 1.

E Total number of echelons Estimated variance of the lead time of

N Total number of nodes Inventory review period of Order-Up-To (OUT)
policy

DivF Divergence factor Desired level of stock of

I Echelon position in the SC z Safety factor for the OUT policy

j Node position in echelon i Moving averages and variance forecast period

Node at position j in echelon i Physical inventory of

Total number of nodes in echelon i Recorded inventory of

Total number of customers ℎ Shrinkage factor

Customer at position j Inventory lost by due to shrinkage

T Current simulation time TBC Time between inventory corrections

Demand placed by Orders placed by

Average demand placed by Net stock of

Estimated average demand placed by Work in progress of

Variance of demand placed by Backlog of

Estimated variance demand placed by Total Variance Amplification echelon i

Demand faced by T Total simulation time (excluding warm-up)

Estimated average demand faced by Estimated variance of orders placed by echelon i

Estimated variance demand faced by Variance of orders placed by

Lead time of Estimated variance of orders placed by

Average lead time of BwSl Bullwhip slope

Estimated average lead time of Position of the ith echelon

Variance of the lead time of SC_Complx Supply chain complexity

Table 1. Nomenclature.
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2.1. Configuration of the supply chains

In the SC dynamics literature, the “gold standard” SC model is the four-echelon serial

SC, i.e., 1 Factory, 1 Distributor, 1 Wholesaler and 1 Retailer (see, e.g., Sterman 1989,

Chatfield et al. 2004, Dejonckheere et al. 2004, Cannella and Ciancimino 2010, Garcia

et al. 2012, Chatfield 2013, Croson et al. 2014, among others). The results obtained by

adopting this model have been validated in the real business world and have contributed

considerably to advances in the related scientific knowledge.

However, it has recently been shown that serial SCs and more structurally complex SCs,

ceteris paribus, perform differently (Sodhi and Tang 2011, Dominguez et al. 2014a).

Thus, to enhance the analysis of the impact of IRI on multi-echelon SCs, we analyze

this noxious phenomenon on not only a serial SC but also on other possible

configurations characterized by an increasing level of structural complexity. To do so,

we simulate IRI in a number of exemplificative SC configurations representing

increasing levels of structural complexity.

In order to select appropriate SC configurations, we refer to three well-known factors

identified in the literature as the drivers of SC structural complexity (see, e.g., Sucky

2009, Dominguez et al. 2015a): (1) the total number of echelons (E) or functional levels

of the chain; (2) the total number of nodes (N), which indirectly accounts for the

average number of nodes per echelon; and (3) the divergence factor (DivF), which

provides information on how the nodes are distributed along the different echelons of

the chain. Assuming a SC with = 1… echelons and = 1… nodes in each

echelon i, the divergence factor is calculated as the standard deviation of the number of

nodes across the echelons of the SC ( ) related to the average number of nodes in each

echelon (N/E), as in Eq. (1) (Dominguez et al., 2015a).

= ( − / )− 1 (1)

The first configuration is the previously mentioned serial four-echelon configuration,

termed in the following the Low Complexity SC (LCSC). We adopt this model to

emulate the configuration with a low level of structural complexity (E=4, N=4,

DivF=0).
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The second and third configurations are two divergent/distribution SCs, i.e., the

Medium Complexity SC (MCSC) and the High Complexity SC (HCSC). These SCs

emulate medium and high levels of structural complexity, respectively. As n-

combinations of divergent SCs can be generated, to establish a consistent design of

these structures and to represent increasing levels of SC structural complexity, we adopt

the following criteria:

- To provide a benchmark for the different SC topologies and to isolate the main

effects, the divergent SCs have to be analogous to the LCSC, which is used as a

reference. Thus, both divergent SCs should have an identical number of

echelons, i.e., E=4.

- Because a divergent distribution is characterized by a tree-like structure in which

every stock point in the system receives supply from a stock point exactly one

level higher and supplies to one or more lower-level stock points (Hwarng et al.

2005) and there is a fixed number of echelons (E=4), it is necessary to modify

the number of facilities at each echelon and the number of links between the

locations. Hence, to generate SCs characterized by higher structural complexity,

both the MCSC and the HCSC have to be characterized by a higher N and DivF

than the LCSC.

Thus, the MCSC is constructed by allowing each node to supply two nodes

downstream, thus obtaining a divergent SC with 15 nodes distributed over 4 echelons

(E=4, N=15, DivF=3.1) as follows: 1 Factory, 2 Distributors, 4 Wholesalers and 8

Retailers. This structure has been previously adopted in the SC dynamic literature (see,

e.g., Dominguez et al. 2014a, Dominguez et al. 2015b), and it has been shown to

adequately represent increasing structural complexity with respect to the classic LCSC.

The HCSC, which is generated by adopting an analogous procedure as that for the

MCSC, is the SC with the highest N and DivF (E=4, N=22, DivF=4.8): 1 Factory, 3

Distributors, 6 Wholesalers and 12 Retailers (Figure 1).
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Figure 1. SCs under analysis.

2.2. Supply chain model and assumptions

The SC model relies on widely accepted assumptions in SC dynamics and IRI studies.

Among these are the following:

 Stochastic demand placed by customers. The demand of each customer j

follows a normal distribution with mean , estimated by , and variance

, estimated by . Customers do not fill orders. Customer demands are

mutually independent.
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 Factories place orders to an outside supplier with unlimited capacity.

 The lead time ( ) of node j in echelon i is assumed to be stochastic and

gamma distributed (Chatfield et al., 2004). Lead times are assumed to be

stationary, independent and identically distributed with mean estimated by

and variance estimated by .

 The adopted inventory policy is the ( ,S) or periodic review with the Order-Up-

To (OUT) level (Nachtmann et al. 2010, Chatfield and Pritchard 2013, Li et al

2014). Given the common practice in retailing to replenish inventories

frequently (Disney and Lambrecht 2008), OUT is the most largely used periodic

review policy in practical applications (Hax and Candea 1984). The OUT level,

, is the base stock that allows the system to meet the demand during the time

period + , which is also known as the “protection period” (Chatfield et al.

2004). Under this policy, orders are placed at discrete time intervals given by ,

the inventory review interval. Prior to placing an order, the system checks the

inventory position (explained below, (Eq. (3)) and determines if it is below the

OUT level . In this case, an order is placed for the difference between the

OUT level and the inventory position; otherwise, no order is placed. Thus,

negative orders (returns) are not permitted (see below). The OUT level is

calculated with a commonly used approximation (Eq. (2)), where z is a safety

factor:

= + + + + (2)

 In order to update the , node j in echelon i needs to forecast the incoming

demand ( , the expected average demand at time t, and its variance, ) and

the lead time of upstream partners ( , the expected average lead time at time

period t and its variance, ). Demand and lead time data from previous periods

are available at each node. To estimate ( , ), each node uses a -period

moving average and a -period moving variance. To estimate ( , ), each

node uses running averages.
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 In order to simulate the IRI phenomenon, we considered two types of

inventories: the physical inventory, i.e., the physically available units ( ),

and the recorded inventory ( ), i.e., the inventory available according to the

information system. The discrepancy between the physical inventory level and

inventory records is due to IRI.

 According to Kull et al. (2013), inventory errors may be classified into two main

groups: (1) transaction-dependent errors and (2) transaction-independent errors

(Lee and Ozer 2007; Nachtmann et al. 2010). The former are changes in IRI

triggered by replenishments, demand orders, or product returns (e.g., incorrect

deliveries, misplaced items or incorrect picking). The latter are changes in IRI

that occur irrespective of transactions and that are influenced by the amount of

on-hand inventory (e.g., shrinkage, spoilage, or damage) (Kull et al. 2013). In

this work, IRI is assumed to be caused by transaction-independent errors due to

shrinkage, and it is assumed to be present at each node of the SC. We focus

merely on shrinkage for three reasons: (I) as claimed by Gel et al. (2010),

analyses of inventory errors due to different causes need to be studied separately

because the actions taken to address the different causes may be quite different;

(II) as reported in the literature, shrinkage has the largest impact on SC costs

(Cannella et al. 2015 and the references therein); and (III) despite the impact and

the presence of shrinkage errors in practice, the literature focusing on shrinkage

errors is particularly limited (Rekik and Sahin 2012). According to Khader et al.

(2014), shrinkage can be modeled by a multiplicative error structure because the

error magnitude might depend on the quantity of stock. Thus, the inventory lost

by each node at time period t can be modeled as = ℎ ∙ , where Shr is

the shrinkage factor. This factor considers random values every time period

according to a predefined interval.

 Each member of the SC adopts a periodic inventory cycle counting policy.

Therefore, recorded inventory is updated to the real level of physical inventory

at periodic intervals. This span is defined as the time between corrections

(TBC), (Nachtmann et al. 2010), also known in the literature as inventory

alignment time (Fleisch and Tellkamp 2005, Cannella et al. 2015). Both the

physical inventory and the inventory records are reconciled by updating the

recorded inventory to the actual physical inventory. Clearly, a TBC of one
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period is equivalent to no inventory errors because the inventory records are

reconciled every period.

 While most analytical models assume that the entire SC is able to backorder,

real-world systems rarely include backordering at the retail store level

(Nachtmann et al. 2010). Therefore, in the event of a stock-out situation at the

retailer’s echelon, backordering is not allowed, and unfilled demand is lost. On

the contrary, companies in higher echelons are allowed to backorder.

 We assume that returns of excess inventory to upstream partners are not

permitted, mainly because the allowance of returns, although a common

assumption in the bullwhip effect literature, may not be realistic and may

overestimate the bullwhip effect (Chatfield and Pritchard 2013, Dominguez et

al. 2015b).

 Orders ( ) are placed by each node at each time period in order to raise their

current inventory position to the target inventory level . The inventory

position equals the net stock ( ) plus the inventory on order but not yet

arrived, or work in progress ( ) (Disney and Lambrecth 2008). The net

stock equals recorded inventory minus backlog ( ), with the exception of

retailers, which are not allowed to backorder (Eq. (3)). Notice that due to the

presence of inventory errors, orders are placed according to erroneous

information about the current inventory ( ).= − + − ; ≥ 0 (3)

 In each time period, each node performs the following sequence of actions from

downstream echelons to upstream echelons:

1. Update the OUT level ( ) using the forecast calculated in the previous

period.

2. Place an order to raise or lower the inventory position to .

3. Receive products from the upstream partner and update [ , ]
accordingly.

4. Receive new orders from downstream nodes, satisfy demand and update[ , ] accordingly.



Cannella S. Dominguez R., Framinan J.M. 2016. Inventory Record Inaccuracy – The impact of structural complexity and lead time
variability. Omega. DOI: http://dx.doi.org/10.1016/j.omega.2016.06.009

14

5. Calculate a new forecast to be used in the next period.

6. Lose inventory due to shrinkage , updating accordingly.

7. Perform inventory cycle counting and update the recorded inventory in

their information systems = at every TBC interval.

2.3. Methodology: a MAS-based supply chain simulator (SCOPE)

An SC is a complex adaptive system (Surana et al. 2005, Pathak et al. 2007, Chen2012)

that often shows complex structures, uncertainties and partial information (Long and

Zhang 2014). The numerous interactions among entities as well as the characteristics of

nonlinearity, dynamics, and uncertainty, among others, make it challenging to analyze

SCs and predict their responses over time (Li et al. 2010a, b). Traditional analytical

methods are thus ineffective in SC modeling (Long et al. 2011) because they rely on

mathematical formalizations of the SC and thus require simplified approximations,

which are usually restrictive and limited in their consideration of time (Long and Zhang

2014).

To overcome the inconveniences and limitations of these analytic methods, simulations

have been broadly used to model and evaluate a wide range of different strategies in SC

management and have served as a decision-making tool to improve SC performance, as

simulations are able to handle the dynamics and stochastic behavior of the inter-related

SC processes (Chan and Prakash 2012) with strong and realistic modeling and analysis

capabilities. In addition, simulations have great ease of use, which makes this

methodology increasingly popular (Evers and Wan 2012). MAS is a modeling and

simulation paradigm from the field of artificial intelligence that provides the best

mechanism for modeling the autonomy, communication, coordination, and decision

making of an SC (Long and Zhang 2014). In addition, there is a natural correspondence

between SC participants and agents in a simulation model. Therefore, MAS is one of

the most effective tools for SC modeling (see, e.g., Swaminathan et al. 1998, Chatfield

et al. 2001, Govindu and Chinnam 2010, Chatfield et al. 2012, Dominguez and

Framinan 2013, Long and Zhang 2014, among others).

The SCs analyzed in this paper have been modeled by SCOPE (Dominguez and

Framinan 2013), which is a MAS-based software platform specifically designed to

overcome the shortcomings of traditional methodologies in SC modeling, allowing the
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simulation of large SCs with complex configurations and uncertainties, which are more

similar to real systems. The use of random variables allows SCOPE to simulate

stochasticity in any business process. In addition, the scalability of the MAS models

permits the user to create SCs of any size and distribution. These and other

characteristics (please see Dominguez and Framinan 2013 for more information) make

SCOPE a good choice for modeling the IRI problem in complex SC configurations with

uncertainties.

The simulator was implemented using Java-Swarm, a well-known software platform for

agent-based system development. SCOPE has been validated by contrasting the results

obtained from the simulations that have been carried out on an SC previously modeled

by other authors, such as Chen et al. (2000), Dejonckheere et al. (2004) and Chatfield et

al. (2004). For further information on the validation process, please see Dominguez and

Framinan (2013).

3. EXPERIMENTS

In this section, we first describe the experimental design by defining the variables to be

analyzed (independent variables), the experimental outcomes (dependent variables), and

the parameters of the model and simulation conditions. Then, we present a statistical

analysis of the output data using ANOVA, which analyzes the significance of the

independent variables related to the impact on the dependent variables.

3.1 Experimental design

A factorial experimental design is generally employed to generate input datasets

because it provides comprehensive data input (Evers and Wan, 2012). We adopt a full

factorial set of experiments to test the statistical significance of the impact of the

experimental factors i.e. shrinkage factor, time between corrections, complexity of the

SC, and lead time variance (as a measure of the lead time variability) on the bullwhip

effect.

We select three levels for each experimental factor (low, medium, and high), as

indicated in Table 2. Therefore, we perform a total of 34=81 experiments. In order to

select appropriate values for the three levels of the experimental factors, we searched for

similar values in relevant studies on this topic. The levels of the shrinkage factor and the



Cannella S. Dominguez R., Framinan J.M. 2016. Inventory Record Inaccuracy – The impact of structural complexity and lead time
variability. Omega. DOI: http://dx.doi.org/10.1016/j.omega.2016.06.009

16

time between corrections are set according to Nachtmann et al. (2010). Those authors

investigate a single-echelon system that is affected by demand error and inventory error,

they use a full-factorial design to analyze system performance, and they establish three

values of inventory errors and time between corrections. According to the authors, both

the model and the chosen values are consistent with real world systems. Thus, we can

argue that this setting may better approximate the effect of IRI in real SCs. The value of

the shrinkage factor changes every time period according to a uniform distribution

within a predetermined interval, which depends on the level of the factor. The time

between corrections may vary from 1 period (it is equivalent to a scenario without

inventory errors) to 4 and 7 periods. The values chosen for the three levels of lead time

variance are typical values from the SC and bullwhip effect literature (see, e.g.,

Chatfield et al. 2004). For simplicity, we assume that for a given experimental point (a

predefined combination of the levels of the experimental factors), the levels of the

aforementioned factors are the same for each node of the SC. Finally, the three levels of

SC complexity are the three SCs described in Section 2.1 with increasing structural

complexity.

The values of the model parameters are common values used in bullwhip effect

literature (see, e.g., Chatfield and Pritchard 2013). These values are summarized in

Table 2.

Model parameters Value

Customer demand (50, 20 ) units per period

Review period ( ) 1 period

Safety factor (z) 2 (service level of 97.72%)

Moving averages/variances ( ) 15 periods
Lead time average ( ) 4 periods

Independent variables Low Medium High

Shrinkage (Shr) 0-5% 0-10% 0-15%

Time between corrections (TBC) 1 period 4 periods 7 periods
Lead time variance (LTvar = ) 0 periods 1 period2 4 periods2

SC complexity (SC_Complx) LCSC MCSC HCSC

Dependent variable BwSl

Table 2. Experimental design.

The response variable of the experimental design is the bullwhip slope (BwSl), which is

explained below. The bullwhip effect has been traditionally quantified using the Order
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Rate Variance Ratio or Total Variance Amplification (TVAmp) (Chen et al., 2000,

Dejonckheere et al. 2004, Chatfield and Pritchard 2013, Chatfield 2013, Cannella

2014), computed as the ratio of the estimated variance of orders placed by the echelon i

to the estimated variance of orders placed by customers / . All metrics are

computed at the end of the simulation time (T).

In order to apply this metric to divergent SCs for which there might be more than one

node in each echelon, we use aggregate measures for each echelon (Dominguez et al.

2015b). Therefore, assuming that all customers’ demands are independent and that each

node places orders independently, the aggregate variance in echelon i is calculated as

the sum of the variances of orders of each node j in that echelon i ( , ), which are

estimated by ( , ). Thus, the calculation of for a divergent SC can be

written as in Eq. (4).

= ∑∑ (4)

In this paper, we are not particularly interested in analyzing the performance of each

specific echelon of the SC because it would lead to an elevated number of outputs due

to the high number of experiments (see below) and may confuse the interpretation of the

results. Instead, we assessed the global performance of the SC, which can be achieved

using a global measure of the bullwhip effect that summarizes all of the ratios obtained

for each echelon into a single value, the bullwhip slope (BwSl) (Cannella et al. 2013,

Dominguez et al. 2015b). This metric is computed as follows. For each echelon, the

values of are plotted in a Cartesian diagram using the echelon position as the

independent variable. This interpolated curve is referred to in the literature as the

Dejonckheere et al. (2004) curve. The BwSl is the tangent of the angle of inclination of

the linear regression of the Dejonckheere et al. (2004) curve. Similarly, the BwSl can be

defined as the slope of the linear interpolation of the set of values for a given

SC (Eq. (5)). The use of this metric allows for a concise comparison between different

SCs at the network level, as it measures the magnitude of the bullwhip propagation. A

high value of the slope indicates a fast propagation of the bullwhip effect through the

SC, whereas a low value indicates smooth propagation.
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= = ∑ −∑ ∑∑ − (∑ )
is the position of the ith echelon

(5)

In order to account for randomness, multiple replications of the experiments are

performed, and the simulation outputs are statistically analyzed. According to Evers and

Wan (2012), two main factors must be accounted for in order to design the simulation

runs: the number of replications and the length of each replication. Regarding the

former, more replications lead to greater precision in terms of statistical inferences.

Therefore, we perform 30 replications for each set of inputs, obtaining a total of 2,430

(30x81) simulation runs. With respect to the latter, because more-complex SCs need

more time to reach a steady state, we use a long simulation time of 4,000 periods with

1,000 warm-up periods up to reduce initialization bias, resulting in an effective

simulation time of T=3,000 periods. Relevant data regarding the amplification of

demand variability are collected for each node of the SCs under study and averaged for

the different echelons. Then, BwSl is calculated for each experiment.

3.2 Analysis of variances (ANOVA)

In this section, we present the results of an ANOVA on the simulation data, aiming to

determine the significance of the experimental factors (independent variables) using the

BwSl as the response variable and formally check for possible interactions. Table 3

reports the results. Because high-order interactions are often minimal (Hinkelmann and

Kempthorne 1994), only information on the main effects and two-order interactions is

presented.

The results show a very good fit, with R2=99.7%. All the experimental factors are found

to be statistically significant (p<0.001) at the 95% confidence level. The results suggest

that all the analyzed factors significantly impact the bullwhip effect. Moreover, all the

two-factor interactions are significant (p<0.001) at the 95% confidence level.
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Source DF SS MS F p

Adjusted Model 80 93,725.074 1,171.563 7,655.832 <0.001

Shr 2 4,107.362 2,053.681 13,420.219 <0.001

SC_Complx 2 28,894.113 14,447.057 94,407.382 <0.001

LTvar 2 21,791.153 10,895.576 71,199.474 <0.001

TBC 2 14,801.856 7,400.928 48,362.946 <0.001

Shr *SC_Complx 4 2,099.406 524.852 3,429.755 <0.001

Shr *LTvar 4 635.139 158.785 1,037.613 <0.001

Shr *TBC 4 4,820.864 1,205.216 7,875.742 <0.001

SC_Complx*LTvar 4 5,257.739 1,314.435 8,589.456 <0.001

SC_Complx*TBC 4 5,469.617 1,367.404 8,935.595 <0.001

LTvar*TBC 4 2,135.387 533.847 3,488.536 <0.001

Error 1,539 235.511 0.153

Total 1,620 328,367.335
Table 3. ANOVA.

4. DISCUSSION

In this section, we discuss the results obtained by the ANOVA by first analyzing the

main effects of each experimental factor (i.e., analyzing the impact of shrinkage, time

between corrections, SC complexity and lead time variability on the response variable

when considered independently) and then describing the interactions (i.e., how the

mentioned factors impact the response variable when other factors are considered at the

same time).

4.1. Main effects

We begin the discussion by performing a classification of the experimental factors

according to their impact on the bullwhip effect. Adopting the parameter F, we observe

that SC complexity reveals the highest impact on the bullwhip effect (F=94,407.382),

followed by the lead time variability (F=71,199.474), the time between corrections

(F=48,362.946) and the inventory shrinkage (F=13,420.219).

In order to describe the main effects of the analyzed factors, we plot the averages of all

the experiments for each level of the analyzed factor together with the 95% confidence

intervals in Figure 2. The impact of SC complexity and lead time variability on the

bullwhip effect has been previously reported by other authors (see, e.g., Chatfield et al.

2004, Dominguez et al. 2015a). Therefore, we do not describe the main effects of these
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factors in detail. Instead, we report an increasing bullwhip effect as the SC complexity

or the lead time variability increase (Figure 2), which is in line with the aforementioned

studies.

The plot situated at the upper left of Figure 2 reveals a progressive intensification of the

bullwhip effect as the level of inventory shrinkage increases. This indicates that a

minimum increase of inventory shrinkage inevitably leads to a deterioration of the

dynamic performance of the entire SC. Moreover, this detrimental occurrence is

observed for all simulated scenarios. Analogously, examining the plot situated at the

lower left of Figure 2, we observe that the time between corrections significantly

impacts the bullwhip effect. Thus, a decision on the configuration of the inventory cycle

counting policy might be relevant to control the bullwhip effect in SCs with IRI.

Furthermore, we note a particular phenomenon regarding this factor: we report a low

impact on the bullwhip effect for low to medium levels of time between corrections but

a substantially higher impact on the bullwhip effect for medium to high levels of this

factor. The first finding of our work can be summarized as follows:

 Both inventory errors and the configuration of the inventory cycle counting

policy have a significant impact on SC behavior.
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Figure 2. BwSl averages and 95% confidence intervals for each level of the experimental factors.

4.2. Interactions

The previous analysis provides an overview of how the factors under study impact the

bullwhip effect. However, due to the significant interactions detected by ANOVA, these

factors must be analyzed together. Essentially, the relevance of the inventory errors and

the configuration of the inventory cycle counting policy (time between corrections) may

depend on the structural complexity of the SC and on lead time variability. Therefore, in

the following analysis, we provide a detailed description of the identified interactions.

We first discuss the interaction between inventory shrinkage and the other factors. Then,

we describe the interactions related to the time between corrections. Figures 3 to 5 show

the interaction plots. Each plot shows the average BwSl for each combination of levels

of the interacting factors.

4.2.1. Inventory shrinkage and supply chain complexity

The left side of figure 3 reveals an important interaction between inventory shrinkage

and SC complexity (notice how the magnitude of the slopes of the Shr-BwSl curves

increase at higher levels of SC_complx). We estimate that an increase in the shrinkage

level from 0-5% to 0-15% in the LCSC results in a BwSl increase of 17.07%, whereas

the same increase in the shrinkage level in the HCSC results in a BwSl increase of

53.83%. This output provides an interesting and novel finding. SCs affected by the IRI

problem and characterized by higher structural complexity suffer a deeper decrease in

dynamic performance when compared with SCs of lower structural complexity. Thus, it

is reasonable to assume that complex SCs will experience higher benefits in dynamic
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performance by adopting IRI-avoiding policies. We can summarize this finding as

follows:

 As the complexity of the SC increases, the impact of inventory errors on

performance increases. Therefore, complex SCs are more vulnerable to the IRI

problem.

4.2.2. Inventory shrinkage and lead time variability

This interaction is shown on the right side of Figure 3. SCs with higher lead time

variability are more sensitive to inventory shrinkage. We estimate that an increase in

inventory shrinkage from 0-5% to 0-15% results in a ~34% increase of BwSl in cases of

low or medium levels of lead time variability. However, an analogous inventory

shrinkage increase with a high level of lead time variability generates a 42.26% increase

in BwSl. This result provides the following finding:

 The impact of inventory errors on performance depends on the lead time

variability of the SC. More specifically, SCs facing higher lead time uncertainty

are more vulnerable to inventory errors.

Figure 3. Interaction plots: average BwSl for the different experimental factors.

4.2.3. Inventory shrinkage and time between corrections

A relevant interaction is identified between the inventory shrinkage and the time

between corrections (Figure 4, left). In fact, for low and medium levels of time between

corrections, the impact of the inventory shrinkage on the BwSl is very low. It can be
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estimated that an increase in the inventory shrinkage from 0-5% to 0-15% results in a

BwSl increase of (1) 7% for 1 period between corrections and (2) 11.8% for 4 periods

between corrections. In contrast, the impact of the inventory shrinkage on the BwSl is

more relevant for high levels of the time between corrections. An increase in the

inventory shrinkage from 0-5% to 0-15% results in a BwSl increase of 84.6% for 7

periods between corrections. The analysis of this interaction provides the following

finding:

 The impact of inventory errors on performance significantly depends on the

value of the time between corrections. More specifically, as this value increases,

the SC becomes more vulnerable to inventory errors.

4.2.4. Time between corrections and supply chain complexity

The most significant interaction (F=8,935.595) takes place between the time between

corrections and the SC complexity. This interaction (Figure 4, right) shows a peculiar

behavior. Increasing the time between corrections from 1 to 4 periods has a similar

impact on the dynamic performance of the three SCs under analysis (the TBC-BwSl

curves are characterized by identical slopes). In addition, this impact is very low (i.e.,

average increase of 4.6% on BwSl). However, by increasing the time between

corrections from 4 to 7 periods, we note very different behaviors between the analyzed

SCs (a BwSl increase of 16.78% for the LCSC and a BwSl increase of 79.69% for the

HCSC). This interaction is summarized in the next finding:

 The impact of the time between corrections on performance significantly

depends on the structural complexity of the SC. More specifically, as the

structural complexity increases, the SC becomes more sensitive to the

configuration of the inventory cycle counting policy.
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Figure 4. Interaction plots: average BwSl for the different experimental factors.

4.2.5. Time between corrections and lead time variability

The interaction between the time between corrections and the lead time variability is

shown in Figure 5. We estimate that an increase in the time between corrections from 1

to 4 periods results in an average BwSl increase of ~5%, regardless of the lead time

variability. However, an increase in the time between corrections from 4 to 7 periods

has a significantly higher impact on BwSl, and in this case, the interaction between the

two factors is more relevant. We estimate a BwSl increase of 68.4% in SCs with high

lead time variability and a BwSl increase of 53.38% in SCs with low lead time

variability. The next finding summarizes this interaction:

 The impact of the time between corrections on performance depends on the lead

time variability. More specifically, as the lead time variability increases, the SC

becomes more sensitive to the configuration of the inventory cycle counting

policy.
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Figure 5. Interaction plot: average BwSl for the different experimental factors.

We present a summary of findings in Table 4. A scale of greys has been used to identify

the intensity of the interactions. Light greys represent lower-intensity interactions, while

dark greys represent higher-intensity interactions.

SC complexity Lead time
variability

Inventory
Shrinkage

Time between
corrections

Inventory
Shrinkage

The detrimental effects of
inventory error on the
bullwhip effect are
exacerbated by the
structural complexity of
the SC.

The detrimental effects of
inventory error on the
bullwhip effect are
exacerbated by the lead
time variability.

The impact of the inventory error on
the bullwhip effect strongly depends
on the time between corrections.
More specifically, long periods
between inventory corrections
increase the vulnerability of the SC
to the IRI caused by inventory
shrinkage.Time

between
corrections

The benefits that result
from the adoption of an
inventory cycle counting
policy can be diminished
by the SC complexity.

The benefits that result
from the adoption of an
inventory cycle counting
policy can be diminished
by the lead time variability.

Table 4. Summary of findings.
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scenarios must be consistent, diverse and small in number. Hence, we use a constant

number of Retailers and modify the distribution of nodes in the intermediate echelons,

thus generating three new divergent SC configurations characterized by different

(exemplary) distribution topologies.

1) Early arborescently (EA) SC: The divergence occurs at the upstream level, i.e.,

Factory provides to a number of Distributors that is equal to the number of

Wholesalers and Retailers of the SC.

2) Late arborescently (LA) SC: The divergence occurs at the downstream level,

i.e., a serial structure from Factory to Wholesaler and divergence at the Retailer

stage.

3) Intermediate arborescently (IA) SC: The divergence is spread from the

upstream to the downstream levels in the SC.

First, we focus on the MCSC scenario (see Figure 6) and study the interactions between

the IRI factors (i.e., Shr and TBC) and the different SC variations, i.e., MCSC-EA,

MCSC-IA, MCSC-LA, and the original SC analyzed in the previous section, i.e., the

MCSC. To do so, we run a new set of experiments and perform an ANOVA.

MCSC-EA MCSC-IA MCSC-LA
Figure 6. MCSC scenario.

We select the identical three levels for Shr and TBC adopted in the previous design of

the experiment (see Table 2). Moreover, to simplify the analysis, we exclude the lead

time variance as a factor, and we fix this value to LTvar = 4 periods2. Therefore, we

have a total of 3 (Shr) x 3 (TBC) x 4 (SC) = 36 experiments. As in the previous analysis,

we run 30 replications of each experiment.
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Table 5 shows the results of the ANOVA. The SC configuration has a significant impact

on the bullwhip effect (F-ratio 6,716.527), with the MCSC-EA variant showing the

lowest bullwhip effect and the MCSC-LA showing the highest bullwhip effect. The

effect of Shr and TBC on the bullwhip effect in the SCs under analysis is very similar:

even though the interactions Shr*SC and TBC*SC are significant (p<0.001), they have a

very low impact on the bullwhip effect (see F-ratio in Table 5). This phenomenon can

be seen in the interaction plots (Figure 7). It can be observed that the Shr and TBC

curves are almost parallel for all SC distributions (i.e., a given increase/decrease of Shr

or TBC will result in a similar increase/decrease of the BwSl), thus confirming the low

impact of the interactions. In summary, the MCSC structures show similar bullwhip

trends under IRI.

Source DF SS MS F p

Adjusted Model 35 36,227.399 1,035.069 3,212.244 <0.001

Shr 2 5,579.377 2,789.689 8,657.552 <0.001

SC 3 6,492.719 2,164.240 6,716.527 <0.001

TBC 2 18,534.260 9,267.130 28,759.721 <0.001

Shr*SC 6 45.034 7.506 23.293 <0.001

Shr*TBC 4 5,466.311 1,366.578 4,241.054 <0.001

TBC*SC 6 102.341 17.057 52.934 <0.001

Error 684 220.403 0.322

Total 720 284,311.879
Table 5. ANOVA – MCSC scenario.

Figure 7. Interaction plots – MCSC scenario.
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Additionally, we perform a similar analysis for the HCSC scenario. Following a similar

procedure to that for the MCSC scenario, we generate three new SC distributions, which

are shown in Figure 8.

HCSC-EA HCSC-IA HCSC-LA
Figure 8. HCSC scenario.

Adopting the analogous DOE of the MCSC scenario, we perform an ANOVA on the

new set of 36 experiments and present the results obtained in Table 6. As in the MCSC

analysis, we report very low F-ratios for the interactions between the pair [Shr,TBC]

and the different SC variations. Moreover, the interaction plots in Figure 9 show very

similar Shr and TBC curves for the different SCs. Consequently, we conclude with the

following finding:

 The impact of shrinkage and time between corrections on the bullwhip effect for

different variations of a divergent SC with a given number of echelons and

retailers is almost identical.

Source DF SS MS F p

Adjusted Model 35 77,254.012 2,207.257 4,144.017 <0.001

Shr 2 14,181.347 7,090.674 13,312.389 <0.001

SC 3 12,948.657 4,316.219 8,103.488 <0.001

TBC 2 37,467.888 18,733.944 35,172.055 <0.001

Shr*SC 6 103.578 17.263 32.411 <0.001

Shr*TBC 4 12,314.423 3,078.606 5,779.930 <0.001

TBC*SC 6 217.605 36.267 68.090 <0.001

Error 684 364.324 .533

Total 720 428,795.805
Table 6. ANOVA – HCSC scenario.
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Figure 9. Interaction plots – HCSC scenario.

Finally, in Figure 10, we present a comparison between the pairs [Medium Complexity,

High Complexity] of the Shr curves for each of the SC distributions under analysis. It

should be noted that, for any given SC distribution, the Shr curves show higher slopes

for the SC with High Complexity than for the SC with Medium Complexity. The same

occurs when we look at the TBC curves. Thus, the sensitivity analysis confirms the

findings obtained in the previous section regarding the interaction between the

complexity of the SC and IRI factors.

Figure 10. MCSC vs HCSC.
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5. MANAGERIAL IMPLICATIONS

In this section, we discuss managerial implications obtained from our work. More

specifically, we provide recommendations that may help managers to better understand

IRI and to limit its consequences. In particular, we focus on how IRI-corrective and -

preventive strategies can be improved in light of our results.

5.1. Corrective strategies for IRI

Standard corrective techniques for IRI include inventory audits, such as cycle counting

(de Kok et al. 2008, Kok and Shang 2014). Adopting a low frequency of inventory

audits (i.e., long time between corrections) cannot effectively reduce the detrimental

effects of IRI, particularly if the SC experiences a considerable magnitude of inventory

errors. However, adopting a high frequency improves the effectiveness of this corrective

strategy and may drastically reduce the sensitivity of the SC to IRI. Nevertheless,

inventory audits are expensive and disruptive (Get al., 2010) and may involve important

costs for each company.

Consequently, this frequency has to be based on a context-related trade-off analysis

between the costs derived from IRI occurrence and the costs of inventory audits.

Usually, in the IRI literature, this trade-off is based on a cost function that calculates the

frequency of counts in order to minimize the total cost and ensure an acceptable

stockout level or a sufficient buffer stock at a single or two-echelon system (see, e.g.,

Rossetti et al. 2010, Agrawal and Sharda 2012, Kok and Shang 2007, 2014, Fan et al.

2014). However, this work suggests that the effectiveness of inventory audits should

also consider other relevant factors, i.e., lead time variability and SC structure. Both

factors seem to amplify the detrimental consequences of IRI. Under an identical

magnitude of inventory error, a complex SC with higher lead time variability is more

sensitive to the frequency of inventory audits than a simpler SC with low lead time

variability. Thus, the risk related to decision making on the frequency of a cycle

counting is more relevant in the former scenario. This implies that SCs characterized by

noteworthy geographical dispersion (i.e., high lead time variability) and by multiple

retailers and distribution centers (i.e., high SC structural complexity) have to pay

particular attention to potential costs generated by the time-varying phenomenon when

adopting and devising inventory audit policies. In such cases, they may increase the
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frequency of inventory audits, even in spite of a superior investment in IRI-corrective

strategies in order to further prevent unnecessary costs.

5.2. Preventive strategies for IRI

Corrective strategies only offer a costly ex post remedy to the inventory error

occurrences when IRI is already present among SC members, and the potential

detrimental consequences spread along the chain. As a palliative measure, it may reduce

the effect of inventory errors, but by nature, it is not designed to eradicate the IRI

problem. Preferably, investments may be focused on preventive strategies in order to

reduce the root causes of errors. Improvements in workforce education, product and

shipment labeling, the shelving and storage of items, the foolproofing of procedures,

information technology, and product tagging, among others (see, e.g., DeHoratious and

Raman 2008, Gel et al. 2010,, Zhu et al., 2011, Kull et al., 2011; Shin and Eksioglu,

2015), represent useful techniques to prevent IRI occurrences. However, it has been

shown that inventory errors cannot be completely eliminated, even by adopting

innovative prevention strategies, such as RFID technology (Zhou 2009).

This work indicates that in simple SCs with low lead time variability, after the

implementation of a preventive technique, the impact of any potential residual errors

may be insignificant. However, in complex SCs with high lead time variability,

identical residual errors can undermine the investment in IRI-preventive strategies.

Therefore, to guarantee investment in such prevention strategies, managers may

consider developing complementary preventative strategies.

First, they may focus on production and operations approaches devoted to smoothing

lead time variability. Among these, process simplification using lean and six sigma

methodologies and contracting superior transportation outsourcing services can be

considered. Another possible solution is the introduction of new warehouses or

distribution centers to reduce distances and lead time variability among SC partners.

However, this approach can generate an unwanted effect because the inclusion of such

centers may increase the SC complexity and exacerbate the impact of inventory errors

as well.

Moreover, as self-interested parties and the lack of coordination among SC members

can exacerbate lead time variability, the adoption of consolidated best practices, such as

collaboration, integration and the sharing of benefits among partners, would yield
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noticeable benefits (Fawcett et al. 2011, Audy et al. 2012, Chan et al. 2012, Fan et al.

2014, 2015). Such approaches would not only facilitate the implementation of specific

preventive strategies, such as product tracking, and stimulate members to correctly

implement such strategies, but also improve their efficacy by reducing lead time

variability.

Finally, to limit the amplification effect of SC complexity on IRI consequences,

managers may implement SC design and reengineering approaches devoted to the

simplification of the SC structure, such as a structural lean strategy (Holweg and

Christopher 2011, Cannella et al. 2015) (i.e., reducing the number of retailers or

wholesalers). However, this approach is not always implementable due to the

technological and operational limitations of many SC processes.

6. CONCLUSIONS AND LIMITATIONS

This paper analyses the impact of IRI on the dynamic performance of both simple and

complex SC structures under a variety of operational parameter conditions. We model

and simulate three different SCs characterized by an increasing level of structural

complexity under different IRI scenarios. To emulate these scenarios, we model a gap

between the physical inventory and the inventory record and introduce a shrinkage error

into the inventory system of each SC member. We adopted a full-factorial experimental

design and studied the following four factors: (1) the level of inventory errors, (2) the

structural complexity of the SC, (3) the lead time variance and (4) the time between

inventory corrections. In order to perform the analysis, we employed a MAS modeling

approach. Assumptions and data input for the simulation were obtained from different

cases to emulate real-world logistic systems. Dynamic performance was measured

through the order rate variance ratio, also known as the bullwhip ratio (Chen et al.

2000), a common metric adopted for the evaluation of SC dynamics.

As a result, we have generated new knowledge regarding the IRI problem in SCs.

Among these novel insights is that the detrimental effects of IRI on SC performance are

exacerbated by the structural complexity of the SC and lead time variability.

Furthermore, we have shed light on the efficacy of IRI-limiting strategies by showing

how the benefit provided by these costly policies may be diminished by SC design and

operational factors.
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Moreover, we have provided insightful directions to properly apply IRI-corrective

strategies. Particularly, we have suggested specific actions to be considered under

different SC designs and operational scenarios in order to avoid the risk of annihilating

investments in such IRI-avoiding approaches. More specifically, this work has

underlined how the risk related to decisions on IRI-limiting strategies may be more

relevant for complex SCs with high lead time uncertainty. Thus, we have suggested the

adoption of complementary approaches in order to improve the efficacy of such

strategies by limiting lead time variability (i.e., process simplification using lean and six

sigma methodologies, improving transportation outsourcing services, collaboration,

integration and the sharing of benefits among partners) and by reducing SC complexity

(i.e., lean structure design and reengineering SC).

Finally, this study also presents important novel implications regarding the impact that

two common modeling assumptions have on the accuracy of what-if analysis. In reality,

assuming a serial or mono-echelon SC and/or deterministic lead times while providing

important benefits in terms of modeling simplification may produce important

differences for the estimation of the impact of IRI. Indeed, our study shows relevant

interactions between the mentioned assumptions, the impact of IRI and the frequency of

inventory audits on SC performance. Therefore, it is beneficial to adopt more realistic

SC models in order to increase the consistency of simulation outputs and to gain more

precise and novel insights on the impact of IRI in SCs.

This analysis presents some limitations that may create room for improvement and

further research. The first limitation is related to the SCs under analysis. In order to

establish the relationship between the structural complexity of SCs and inventory errors,

we focused on one SC topology (distribution SCs), as in Dominguez et al. (2015a).

Therefore, the present study can be extended by analyzing IRI in different SC

configurations, such as convergent (assembly type) or conjoined (mixed convergent-

divergent) SCs. Convergent SCs may show different results from those observed for

divergent SCs because there are fewer companies at lower echelons of the chain that

create the instabilities caused by inventory errors. Additionally, these instabilities are

shared among many members in the upper echelons. For similar reasons, the analysis of

inventory errors in conjoined SCs should be addressed.

Analogously, we analyzed a specific inventory error, i.e., shrinkage. However, other

types of both transaction-independent and -dependent errors (e.g., unreliable suppliers,
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internal movement of materials, incorrect deliveries and picking misplaced items) were

not considered in our analysis. Further works may extend our analysis to study the

impact of such errors.

Another important limitation refers to the assumption that all companies present the

same level of inventory error. We have made this simplification in order to clarify the

different aspects of the relationship between the inventory error problem, the

configuration of the SC and lead time variability. However, it is reasonable to consider

that retailers face a different level of inventory than do their upstream partners. In future

works, it would be of interest to analyze the effect of distributed inventory errors.

A very interesting phenomenon is the significant jump in the bullwhip effect reported

for high values of the time between corrections. As the time between corrections

increases, the discrepancy between physical inventory and recorded inventory at the

moment of inventory alignment increases as well. Thus, when a generic member aligns

his inventory, he generates a “pulse” in the order pattern. This pulse exponentially

amplifies the order variability upstream in the SC. This phenomenon could be the

reason for the strong non-linearity observed for the bullwhip slope as the time between

corrections increases. The determination of a possible threshold value for the time

between corrections and how operational and structural characteristics of the SC may

impact this value would be valuable for SC managers and requires additional research.

Moreover, in this work, we have adopted well-established modeling assumptions and

obtained theoretical distributions for data input (Evers and Wan 2012) to emulate the

probabilistic nature of several SC factors on the basis of other relevant empirical,

analytical, and what-if analyses. However, this work lacks a grounded empirical

method. Further work may employ a multi-method approach (Kull et al. 2013) using

both empirical and simulated IRI data to validate and deepen our contribution.

Finally, in the previous section, we suggested that managers of upstream echelons of the

SC may incentivize companies at lower echelons (retailers) to introduce and properly

apply preventive/corrective strategies. However, as the number of retailers increase,

investments in such strategies may increase as well. Hence, it would be interesting to

address how the benefits under different scenarios of SC configurations may be altered

in order to design proper incentives.
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